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highly capable of human-level reasoning across many tasks and levels of granularity.

Abstract
The development of artificial intelligence systems
is transitioning from creating static, task-specific
models to dynamic, agent-based systems capa-
ble of performing well in a wide range of ap-
plications. We propose an Interactive Agent
Foundation Model that uses a novel multi-task
agent training paradigm for training AI agents
across a wide range of domains, datasets, and
tasks. Our training paradigm unifies diverse pre-
training strategies, including visual masked auto-
encoders, language modeling, and next-action
prediction, enabling a versatile and adaptable AI
framework. We demonstrate the performance of
our framework across three separate domains—
Robotics, Gaming AI, and Healthcare. Our model
demonstrates its ability to generate meaningful
and contextually relevant outputs in each area.
The strength of our approach lies in its general-
ity, leveraging a variety of data sources such as
robotics sequences, gameplay data, large-scale
video datasets, and textual information for effec-
tive multimodal and multi-task learning. Our ap-
proach provides a promising avenue for develop-
ing generalist, action-taking, multimodal systems.
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1. Introduction
The development of AI systems that can not only gather
useful sensory information, but also interact with their en-
vironments in meaningful ways has been a long-time goal
for AI researchers. One key advantage of developing gen-
eralist AI systems is that of training a single neural model
across many tasks and data modalities, an approach which
is highly scalable via data, compute, and model parameters
(Reed et al., 2022). With recent significant advances sur-
rounding general-purpose foundation models (Bommasani
et al., 2021), the AI community has a new set of tools for
developing generalist, action-taking AI systems en route
to artificial general intelligence. Despite their impressive
results across various AI benchmarks, large foundation mod-
els frequently hallucinate the presence of objects and actions
in scenes and infer factually incorrect information (Rawte
et al., 2023; Peng et al., 2023). We posit that one of the key
reasons why these foundation models hallucinate is due to
their lack of grounding in the environments in which they
are trained (e.g., large-scale internet data instead of phys-
ical or virtual environments). Furthermore, the dominant
approach for building multimodal systems is to leverage
frozen pre-trained foundation models for each modality and
to train smaller layers that allow for cross-modal informa-
tion passing (Alayrac et al., 2022; Li et al., 2022; 2023d;
Dai et al., 2023; Liu et al., 2023). Since the visual- and
language-specific submodules are not tuned during multi-
modal training, any hallucination errors in the submodules
will likely be present in the resulting multimodal system.
Additionally, lack of cross-modal pre-training could make
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grounding information across modalities challenging.

Towards such a generalist model that is grounded and pre-
trained within physical or virtual environments, we propose
a unified pre-training framework for handling text, visual
data, and actions as input. We treat each input type as
separate tokens and pre-train our model to predict masked
tokens across all three modalities. Our approach uses pre-
trained language models and pre-trained visual-language
models to effectively initialize our model with pre-trained
submodules, which we jointly train in our unified framework.
We call our approach and resulting model an Interactive
Agent Foundation Model, due to its ability to interact with
humans and its environment, as well as its visual-language
understanding ability as shown in Figure 1.

In this paper, we show that a 277M parameter model1 that is
jointly pre-trained across 13.4 M video frames from several
distinct domains and data sources can effectively engage in
interactive multi-modal settings using text, video, images,
dialogue, captioning, visual question answering, and embod-
ied actions within four disparate virtual environments. In
order to effectively evaluate the broad range of capabilities
and generalization abilities of our model, we show results
across distinct domains: (1) Robotics, (2) Gaming AI, and
(3) Healthcare. Despite using domain-specific visual inputs,
text descriptions, and action-spaces, our model is effectively
able to generalize across all three domains. To facilitate
research in this discipline, we plan to release our code and
models publicly.

2. Related Work
2.1. Foundation Models

A large number of works have sought to develop general-
purpose foundation models based on large-scale pre-training
on broad-scale internet data from a variety of sources (Bom-
masani et al., 2021). Within the field of Natural Language
Processing, this generally consists of larger proprietary
LLMs (Wang et al., 2022) such as the GPT-series (Brown
et al., 2020; Min et al., 2022), or smaller open-source mod-
els such as the LLaMA series (Touvron et al., 2023), or
instruction-tuned variants such as Alpaca (Taori et al., 2023)
and Vicuna (Zheng et al., 2023). Within the field of com-
puter vision, strategies such as masked auto-encoders (He
et al., 2022) and contrastive learning (Radford et al., 2021)
are two popular methods for self-supervised learning.

2.2. Multimodal Understanding

Recently, many multimodal models have been developed
that seek to learn a relatively small number of parameters
to connect large pre-trained visual encoders and language

1We are currently developing an even larger model.

model decoders (that are generally frozen) with represen-
tative models including Flamingo (Alayrac et al., 2022),
the BLIP-series (Li et al., 2022; 2023d; Dai et al., 2023),
and LLaVA (Liu et al., 2023). These models are generally
trained using the standard language modeling cross-entropy
loss on large-scale internet data consisting of visual-text
pairs, using a source of data similar to that used to train
contrastive dual encoder models (Radford et al., 2021; Bain
et al., 2021; Sun et al., 2023b). Unlike most previous work,
we explore training models to predict visual tokens and ac-
tion tokens in addition to language tokens and explicitly
train our model for agentic tasks.

2.3. Agent-Based AI

Agent-based AI is distinguished from traditional AI by its
need to generate dynamic behaviors that are grounded in an
understanding of environmental contexts. Recent research
has focused on employing advanced large foundation mod-
els to create Agent-based AI systems, as shown in (Durante
et al., 2024). In the field of robotics, for instance, recent
studies have highlighted the potential of LLM/VLMs in
enhancing multimodal interactions between robots, envi-
ronments, and humans. This applies to both manipulation
(Jiang et al., 2022; Brohan et al., 2023; 2022; Li et al., 2023e;
Ahn et al., 2022; Shah et al., 2023b; Li et al., 2023c; Wake
et al., 2023a; Gong et al., 2023a) and navigation (Gadre
et al., 2023; Dorbala et al., 2023; Cai et al., 2023; Shah
et al., 2023a; Zhou et al., 2023; Dorbala et al., 2022; Liang
et al., 2023; Huang et al., 2023). Additionally, significant
advances in reinforcement learning have improved agent pol-
icy training on top of VLM/LLMs. Key advancements have
been made in areas such as reward design (Yu et al., 2023;
Katara et al., 2023; Ma et al., 2023), efficient data collection
(Kumar et al., 2023; Du et al., 2023), and the management
of long-horizon steps (Xu et al., 2023; Sun et al., 2023a; Li
et al., 2023a; Parakh et al., 2023; Wake et al., 2023b). Simi-
larly to robotics, gaming agents require an understanding of
visual scenes and textual instructions/feedback (Puig et al.,
2023; Li et al., 2021; Srivastava et al., 2022; Gong et al.,
2023b). Agent-AI in the context of healthcare has focused
on the text-based interaction between humans by utilizing
the capabilities of LLM/VLMs. Representative applications
include diagnostic assistance (Lee et al., 2023; Li et al.,
2023b), knowledge retrieval (Peng et al., 2023; Guu et al.,
2020), and remote monitoring (Amjad et al., 2023).

3. Agent Paradigm
Recent advancements in AI technology have been remark-
able, enabling a reasonable understanding of linguistic and
visual information acquired in open-world environments.
At this pivotal historical juncture, public interest in embod-
ied agent technology is shifting from research confined to
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Figure 2. We propose an Agent AI paradigm for supporting interactive multi-modal generalist agent systems. There are 5 main modules
as shown: (1) Agent in Environment and Perception with task-planning and observation, (2) Agent learning, (3) Memory, (4) Action, and
(5) Cognition and Consciousness (we use “consciousness” to imply a degree of awareness of an agent’s state and surroundings). A key
difference between our approach and some previous interactive strategies is that, after training, the agent’s action will directly impact task
planning, as the agent does not need to receive feedback from the environment to plan its next actions.

simulations and controlled environments to practical ap-
plications in highly uncertain environments. For example,
consider a scenario where a robot, upon being unboxed, can
instantly start communicating with non-expert humans and
swiftly adapt to performing household tasks in the home
environment. In this section, we define a new paradigm for
embodied agents to position our proposed Interactive Agent
Foundation Model within the context of this new paradigm.

We define the embodied agent paradigm as “any intelligent
agent capable of autonomously taking suitable and seamless
action based on sensory input, whether in the physical world
or in a virtual or mixed-reality environment representing
the physical world” (Figure 2). Importantly, an embodied
agent is conceptualized as a member of a collaborative
system, where it communicates with humans with its vision-
language capabilities and employs a vast set of actions based
on the humans’ needs. In this manner, embodied agents are
expected to mitigate cumbersome tasks in virtual reality and
the physical world.

We believe such a system of embodied agents requires at
least three key components:

1. Perception that is multi-sensory with fine granularity.
Like humans, multi-sensory perception is crucial for
agents to understand their environment, such as gaming
environments, to accomplish various tasks. In particu-
lar, visual perception is useful for agents that can parse
the visual world (e.g., images, videos, gameplay).

2. Planning for navigation and manipulation. Planning
is important for long-range tasks, such as navigating
in a robotics environment and conducting sophisti-
cated tasks. Meanwhile, planning should be grounded
on good perception and interaction abilities to ensure
plans can be realized in an environment.

3. Interaction with humans and environments. Many
tasks require multiple rounds of interactions between
AI and humans or the environment. Enabling fluent
interactions between them would improve the effec-
tiveness and efficiency of completing tasks for AI.

In light of these principles, our proposed Interactive Agent
Foundation Model represents preliminary research that
focuses on these critical aspects, aiming to develop an em-
bodied agent that functions as a practical assistance system.
For an overview of our goals for developing an embodied
agent, see Figure 2.

Achieving an embodied agent is not easy, especially consid-
ering the complex dynamics of systems with multi-modal
observations in the physical world. Despite the advancement
of recent LLM/VLMs, many challenges must be addressed,
including but not limited to: 1) unstructured environments,
where current visual inputs affect both high-level and low-
level actions of the embodied agent given the same goal in-
struction; 2) open sets of objects, which require the agent’s
decision-making module to use common sense knowledge
that is hard to encode manually; 3) natural language interac-
tions, which require the agent to understand and operate on
more than just template-based commands, but also a context
of goals, constraints, and partial plans expressed in every-
day language. To enable a more comprehensive approach to
these complex challenges, the inclusion of researchers and
practitioners from a broader range of fields is critical.

4. Agent Foundation Model
Our proposed framework is shown in Figure 3. By syner-
gistically combining visual perception with linguistic un-
derstanding, our models offer the potential to endow robots
with a more intuitive understanding of their surroundings
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Figure 3. Overview of our Interactive Agent framework. Our foundation model is designed to process multi-modal information that
conveys various levels of abstraction. This approach facilitates a comprehensive understanding of the context and environment, thus
ensuring that actions are coherent. By training on a variety of task domains and applications, we develop a versatile foundation model that
can be fine-tuned for executing optimal actions in a variety of contexts, paving the way towards generally intelligent agents.

and better contextual reasoning. Our current work focuses
on developing a joint image and video encoder and align-
ing this joint encoder to existing foundation models. This
has several notable benefits: firstly, it allows for the use
of both action, image, and video with language datasets
for pre-training. Secondly, it increases the capabilities of
the model across a variety of downstream tasks (e.g., video
understanding, temporal reasoning, action prediction, in-
teraction with human feedback, etc.). Finally, by using a
joint encoder, we can reduce the overall model size (instead
of using two separate encoders), which can be useful for
edge deployments or in limited computing scenarios such
as robotics, gaming, and interactive healthcare tasks.

4.1. Model Architecture

To effectively initialize our model to handle text, visual, and
agent tokens as input, we initialize our architecture with
two pre-trained submodules. First, we use CLIP ViT-B16
from (Radford et al., 2021) to initialize our visual encoder,
denoted Eθ, and initialize our action and language model,
Fϕ, from OPT-125M (Zhang et al., 2022). We encode each
frame in a video Vi as visual features Zi = Eθ(Vi). We
enable cross-modal information sharing by training an ad-
ditional linear layer ℓ that transforms the embeddings of
our visual encoder Eθ into the token embedding space of
our transformer model Fϕ. Thus, given a text prompt W
and a single video frame Vi, we can obtain Â, a text to-

ken or action token prediction via Â = Fϕ(W, ℓ(Eθ(Vi))).
To incorporate prior time steps into our model, we also in-
clude the previous actions and visual frames as input during
pre-training. For a given time step t, we predict Ât as

Ât = Fϕ(W, ℓ(Eθ(V1)), A1, ℓ(Eθ(V2)), A2,

. . . , ℓ(Eθ(Vt−1)), At−1, ℓ((Eθ(Vt))). (1)

In practice, due to memory constraints, we only handle
the previous M actions and frames, and update the pre-
vious Vi and Ai as a sliding window. In order to more
effectively train our visual encoder to predict masked vi-
sual tokens, we use sinusoidal positional embeddings, as
in (He et al., 2022) instead of the positional embeddings of
CLIP. Since we are using relatively small checkpoints, we
are able to jointly train our entire model during pre-training,
unlike previous visual-language models that largely rely
upon frozen submodules and seek to learn an adaptation
network for cross-modal alignment (Alayrac et al., 2022; Li
et al., 2022; Liu et al., 2023). We show our general process
for formatting our input tokens in Figure 4, and describe our
pre-training strategy in Section 4.2. For additional details,
see Appendix A.

4.2. Pre-Training Strategy

We pre-train our model on a wide range of robotics and gam-
ing tasks, with each input sample containing text instruc-
tions, videos, and action tokens. We notate each sample as a

4



An Interactive Agent Foundation Model

Figure 4. Our Unified Tokenization Framework. We propose a
general pre-training strategy for predicting input tokens. For text
tokens, we use the standard language modeling task with next
token prediction. For actions, we expand the vocabulary of the
language model to include special “agent” tokens that represent
each of the actions available to the language model. Finally, we
incorporate visual tokens into our framework by training a visual
encoder to predict masked visual tokens.

sequence S = (W,V1, A1, V2, A2, . . . , VT , AT ), where W
is the sequence of tokens corresponding to the text instruc-
tion, Vi is the sequence of image patches corresponding to
frame i, and Ai is the sequence of action tokens correspond-
ing to the frame i of a video sequence of T frames. We
denote wj as the tokens of the text prompt W , and denote
the parameters of our model as θ. For each sample, there are
three components to the loss function: language modeling,
masked image auto-encoding, and action modeling.

The language modeling loss is a standard causal language
modeling loss to minimize the negative log likelihood of
each token in the instruction conditioned on prior tokens.
The language modeling loss for a particular sample S is

Llang(S) = −
|W |∑
j=1

log pθ(wj |w<j). (2)

The masked image autoencoding loss is generated by ran-
domly masking 75% of the image patches and calculating
the mean-squared error between the reconstructed image
and original image in pixel space for the masked image
patches. The masked auto-encoder loss for a particular
sample, S is:

Lmae(S) =

T∑
t=1

||U(Vt)− U(Dθ(Eθ(M(Vt))))||22, (3)

where M randomly masks 75% of the image patches, U
only selects the previously masked out features, and Eθ

and Dθ are the encoder and decoder for the vision module,
respectively.

Finally, the action modeling loss minimizes the negative
log-likelihood of each action token conditioned on all prior
information, including all text tokens, prior visual tokens,
and prior action tokens. The action modeling loss for a
particular sample S is:

Lact(S) = −
T∑

t=1

|At|∑
i=1

log pθ((at)i|W,V≤t, A≤t, (at)<i).

(4)

The full loss function for each sample combines the above
components:

L(S) =
Llang(S) + Lmae(S) + Lact(S)

|W |+
∑T

t=0(|Vt|+ |At|)
. (5)

On robotics data, we only use T = 4 frames of video as
input since the tasks are Markovian and therefore do not re-
quire long histories to accurately predict the next action. Our
gaming data samples use T = 9 frames of video as input
since an observation history is necessary for the partially-
observable gaming tasks.

5. Tasks
We believe that a foundational model, trained in visual,
language, and agent capabilities, leads to a powerful and
general-purpose tool that significantly impacts a variety
of interactive tasks. To evaluate the effectiveness of our
approach, we applied the model to three major agent-AI
scenarios, encompassing representative downstream tasks:
1) Robotics: human-machine manipulation in the physical
world; 2) Gaming: human-machine embodiment in virtual
reality; 3) Healthcare: augmented human-machine interac-
tion in traditional multimodal tasks. For these tasks, the
pre-trained model was fine-tuned with specific datasets. As
a result, the model demonstrated reasonable and competitive
performance in terms of action prediction, visual understand-
ing, natural language-driven human-machine interactions,
gaming, and hospital scene understanding. We outline the
task definitions and specific datasets used below.

5.1. Robotics Tasks

For the robotics scenario, we tested the model on language-
guided manipulation tasks. To this end, we selected two
distinct robotics manipulation datasets: Language-Table
(Lynch et al., 2023) and CALVIN (Mees et al., 2022). In
the Language-table dataset, a robot gripper rearranged table-
top objects following language commands. The data were
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Figure 5. Our robotics and gaming pre-training pipeline. For sim-
plicity, we use the same notation as in Sections 4.1 and 4.2; we
represent our text instruction as W , input frames as Vt, our visual
encoder and linear projection layer as Eθ and ℓ, respectively, our
action and language transformer model as Fϕ, and the predicted
actions at time step t as Ât.

collected through teleoperation in a simulation, totaling
4.93 million frames. In the Calvin dataset, a 7-DOF robot
manipulator performed manipulation tasks following rela-
tively abstract instructions linked with a series of language
commands. We utilized only the data containing language
instructions, which amounted to 1.44 million frames. We
chose these two datasets to gain insights into the model’s
performance across two dimensions: language-instruction
abstraction and task-step length.

5.2. Gaming Tasks

Our primary gaming dataset consists of the Minecraft
demonstrations collected by contractors in (Baker et al.,
2022). In the original dataset, contractors were simply in-
structed to play Minecraft with no specific goal, and the
dataset provided video gameplay synchronized with player
actions and inventory metadata. However, since our archi-
tecture can leverage text instructions, we use GPT-4V to
label videos with more specific instructions. Our prompt
to GPT-4V also includes changes in the player’s inventory
over the video, which we found helped to reduce misclas-
sifications of objects and actions in the video. In total, the
Minecraft portion of our pre-training dataset consists of 4.7
million frames.

In addition to Minecraft, we also used a dataset of gameplay
from Bleeding Edge, a team-base multiplayer game, which
consists of video and synchronized player actions. Similarly,
there are no specific instructions provided with the video,
so we use GPT-4V to label the videos in our dataset. The
Bleeding Edge portion of our pre-training dataset consists
of 2.3 million frames across 7 different settings in the game.

5.3. Healthcare Tasks

In the healthcare domain we explored, our main dataset con-
sisted of real-world recorded scenes from hospital ICU (in-
tensive care unit) rooms using wall-mounted RGB cameras.

Video Captioning Visual Question 
Answering

Q: Where is 
the patient?

A: The patient 
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Figure 6. A High-level Overview of our Healthcare Tasks. We
leveraged nurse-labeled annotations to train our multimodal agent
on healthcare data. To adapt our model for visual question answer-
ing, we generated additional training data with GPT-4 using the
PHI-safe process shown in Appendix B.

Experienced ICU nurses generated captions of extracted 5-
10 second video clips depicting common nursing activities
in the ICU. We also included routine nursing documentation
of important observations based on longer 5-30 minute win-
dows, which included common clinical measures that assist
with assessment and treatment of the patient’s condition.
For the analysis described in this paper, we focused on the
RASS (Richmond Agitation-Sedation Scale) score used to
assess the patient’s state of agitation and sedation (Sessler
et al., 2002) and the bed position to confirm that the head
of the bed is at the proper angle to decrease the chance of
acquiring a ventilator-associated pneumonia (Keeley, 2007).
Both assessments are recorded frequently in the medical
record and automated documentation has the potential to
optimize caretaker time.

In order to fine-tune our model for human interactions in our
ICU use case, we leveraged the nurse-provided video-clip
captions and clinical documentation to have GPT-4 gen-
erate a synthetic video question-answer dataset that was
used to expand the capabilities of our model after healthcare
fine-tuning. A definite advantage of the GPT-4 generated
derivative dataset is that it did not use any confidential pa-
tient data and consequently can be made publicly available
to train any language-grounded clinical model. Figure 6
provides an overview of the healthcare tasks we evaluated:
(1) video captioning, (2) video question answering, and (3)
RASS score prediction (which we formulate as an activ-
ity recognition problem). For more information about our
GPT-4 based question-answer generation procedure, see
Appendix B.

6. Experiments
From a technical perspective, we are developing a generic
artificial intelligence agent foundation model that can un-
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derstand a wide array of input modalities and can produce
coherent outputs and actions within a wide range of di-
verse interactive environments. In addition to evaluating our
framework in these more specific domains, we evaluated the
capabilities of our pre-training model on robotics manipu-
lation, game playing, and interactive healthcare tasks. The
details of the experimental setting and our main results are
described in the following sub-sections.

6.1. Pre-training Experiments

To pre-train our model, we used the full training sets of
Language Table, CALVIN, Minecraft, and Bleeding Edge,
and trained for 100 epochs. We used a linear warmup co-
sine learning rate scheduler, with an initial learning rate of
0.0001. We initialized the vision component of our model
with the CLIP base model with patch size 16, and initialized
the language and action components with OPT-125M. We
used 12 nodes of 16 V100 GPUs for 175 hours for all of our
pre-training.

We added new action tokens corresponding to the actions
used in our training set. All tasks include a token to indicate
starting actions and a token to indicate ending actions. For
Minecraft, there are additionally 23 button actions, and we
discretized mouse actions to 100 bins along the x axis and
100 bins along the y axis. For Bleeding Edge, there are
11 button actions, and 2 joysticks. Each joystick has 256
possible values for rotation and 4 values for magnitude,
resulting in a total of 520 joystick action tokens.

For robotics, we added new action tokens corresponding
to valid actions in the environment, along with agent state
tokens for proprioception. For all robotics data, we included
a special action token to indicate the end of a trajectory. In
Language Table, we included 21 binned actions for each of
the x and y directions, representing the end effector transla-
tion target. We also included 21 binned state tokens repre-
senting the current end effector translation for each of the x
and y directions, and an equal number of state tokens repre-
senting the previous robot action. In CALVIN, we included
two actions for the gripper, indicating opening and closing,
along with 21 actions for each of the six degrees of freedom
of the end effector in the relative Cartesian displacement
action space. We also included 21 binned states for each of
the 14 attributes of the proprioceptive state, excluding the
gripper action which has two states.

Our gaming dataset has 525,309 trajectories for Minecraft
and 256,867 for Bleeding Edge, each consisting of 9 frames.
Our robotics dataset consists of 1,233,659 trajectories for
Language-Table and 360,566 for CALVIN, each consist-
ing of 4 frames. Therefore, our total dataset consists of
13,416,484 frames. When sampling trajectories to train our
model, we additionally added color jitter to each of the
images, randomly scaling the brightness and saturation be-

Figure 7. Plot of total pre-training loss over 100 epochs.

tween 70% and 140%, and randomly shifting the hue by at
most 0.05. We plot our pre-training loss in Figure 7.

6.2. Robotics Experiments

The pre-trained model was fine-tuned for the Language-
Table and CALVIN datasets and evaluated separately. For
fine-tuning, we used the same pipeline as in pre-training,
maintaining the original MAE and language-modeling loss
functions, and the original vocabulary size. During fine-
tuning, 50% of the image patches were masked, while no
masking was involved in the evaluation.

6.2.1. LANGUAGE-TABLE

In the Language-table dataset, we used data from a setup
involving a total of 8 blocks, out of which 6 blocks were
non-manipulated and unrelated to the tasks. This setup re-
sulted in 181,020 trajectories. We split each trajectory into
a series of 4 frames to fit our model architecture, resulting
in 1,233,659 samples for fine-tuning. To investigate per-
formance against different task characteristics, the model
was evaluated on 5 different subtasks: 1) moving a block to
another block; 2) moving a block relative to another block;
3) moving a block to an absolute position; 4) moving a block
to a relative position; 5) separating two blocks. For each
task, 50 trajectories were randomly sampled and evaluated
three times, and the average success rate was computed.
While the pre-trained model performed better than training
from scratch (Table 1), our model was outperformed by
other models such as (Brohan et al., 2023), which could be
attributed to the fact that we used less data for pre-training,
only using the human-teleoperated data in the Language-
Table, CALVIN, and gaming datasets.

6.2.2. CALVIN

In the CALVIN dataset, each long-step trajectory was split
into a series of 4 frames, resulting in 360,566 samples across
34 tasks for fine-tuning. To better capture the entire scene,
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Table 1. Results for robotics fine-tuning across tasks on CALVIN and Language-Table, along with their corresponding evaluation metrics.

CALVIN LANGUAGE TABLE

MODEL 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP AVG LENS SUCCESS RATE

MCIL 37.3 2.7 0.2 0.0 0.0 0.4 —
OURS (FROM SCRATCH) 20.6 0.8 0.0 0.0 0.0 0.214 40.0
OURS 64.8 29.0 12.3 4.7 1.9 1.127 42.0

Table 2. Performance metrics for gaming data. We report BLEU-4
scores for action prediction in Minecraft (abbreviated as MC), and
Bleeding Edge (abbreviated as BE). We choose the last epoch for
the pre-trained model and the epochs with the best validation score
for the other models.

MODEL MC (BLEU-4)↑ BE (BLEU-4)↑

OURS (FROM SCRATCH) 0.174 0.238
OURS (PRE-TRAIN ONLY) 0.170 0.249
OURS (PRE-TRAIN AND FINE-TUNED) 0.272 0.411

the third-person view RGB camera was chosen as the source
of image input from the available camera resources. For fine-
tuning, we incorporated all available appearance settings,
including the one used for testing, to enlarge the dataset,
following the standard ABCD → D task definition. To
evaluate the model performance with multiple steps, we
computed the averaged success rate at each step, follow-
ing the methodology described in the original CALVIN
paper (Mees et al., 2022). Compared to Multi-context Im-
itation Learning (MCIL) (Lynch & Sermanet, 2021), our
model shows better performance while only using 1% of the
data (Table 1).

6.3. Gaming Experiments

For both gaming settings of Minecraft and Bleeding Edge,
we evaluated our model’s ability to predict actions given
video frames and high-level instructions, along with its
MAE reconstruction quality. Specifically, we used a held-
out test dataset of 100 videos each, formatted in the same
manner as our training data.

We report the BLEU-4 scores of actions in Table 2. We com-
pare our pre-trained baseline to fine-tuning on task-specific
data initialized from our pre-trained model and a version
initialized from CLIP and OPT. We find that both fine-tuned
models over-fit to the training data within 5 epochs, so we
report the BLEU-4 test scores from the checkpoints with
the highest validation score. We find that fine-tuning our
pre-trained model is significantly more effective than train-
ing from scratch for both gaming domains, highlighting
the importance of our diverse pre-training mixture. We also
show a visualization of predicted actions from our fine-tuned
model compared to the validation ground-truth in Table 3
and Appendix E.

6.4. Healthcare Experiments

For our experiments on our healthcare dataset, we evaluated
our model’s ability on three separate downstream tasks:
video captioning, visual question answering, and activity
recognition in the form of RASS score prediction. We used
the final checkpoint from our pre-training run as described
in Section 6.1.

Healthcare Setting For visual question-answering, we
use the question as the text prompt W , and use the fixed
text prompt “A video of” for video captioning. We train our
model to the corresponding text tokens of the caption or an-
swer and report the average perplexity across both settings.
We frame RASS score prediction as a 10-way activity clas-
sification problem, and train a separate classification head
for our model. We use the video-level setting for our visual
encoder with 9 frames as input, as described in Appendix
A. To evaluate the effectiveness of our pre-training frame-
work, we compared the performance of our model against
three baselines that leverage CLIP and OPT for initializa-
tion. First, we compared against a frozen baseline that uses
the same pre-trained models, kept frozen, while fine-tuning
a single linear layer for cross modal information passing,
similar to (Liu et al., 2023). Second, we compared against
a joint baseline that uses the same pre-trained models but
fine-tunes them jointly along with the linear layer. For both
of these baselines, we encode frames with CLIP individu-
ally and concatenate the frame-level embeddings. Third, we
compared against a baseline of our same architecture, that
makes use of our video-level encoder and is initialized from
CLIP and OPT, but does not use any large-scale agent pre-
training. We show our performance against the proposed
baselines in Table 4. For all results, we train for 20 epochs
on 4 16GB V100 GPUs with a fixed learning rate of 4e-5
and report results on a held-out evaluation set. For fair com-
parison, we do not perform any additional hyperparameter
search.

7. Ablations and Analysis
Pretraining Loss Curves: We plot our combined pre-
training loss across 100 epochs in Figure 7, and show indi-
vidual components of the loss function in Appendix C.

Comparisons with GPT-4V: In Figure 10, we show how
our model has the ability to output low-level action predic-
tions, while GPT-4V is unable to consistently output low-
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Task Text instruction Start frame Predicted Action Ground Truth Action

Minecraft

the player is using an
iron sword to attack
and kill pigs in a for-
est...

[STARTACTION]
[attack] [ENDOFAC-
TION]

[STARTACTION]
[attack] [ENDOFAC-
TION]

Bleeding
Edge

the player is controlling
a red robot ... fighting
other characters

[STARTACTION]
[lockon][meleeattack]
[lrot162] [lmag4]
[ENDOFACTION]

[STARTACTION]
[lockon][meleeattack]
[lrot160] [lmag4]
[ENDOFACTION]

Table 3. Examples of actions predicted by our fine-tuned models for Minecraft (above) and Bleeding Edge (below). More examples are
presented in Appendix E.

Table 4. Performance on healthcare text generation and RASS
score action recognition, along with the corresponding evaluation
metrics. Agent pre-training on robotics and gaming data improves
performance for action recognition, but does not improve text
generation abilities.

MODEL PERPLEXITY ↓ RASS ACC ↑

CLIP + OPT (FROZEN) 93.3 55.4
CLIP + OPT (UNFROZEN) 102.7 92.6
OURS (FROM SCRATCH) 100.0 70.3
OURS (AGENT PRE-TRAINED) 106.3 95.7

level controls. While our model is able to output precise
movements and actions, GPT-4V only outputs high-level
instruction.

Effects of Agent Pre-Training: In Table 2 and Table 4,
we demonstrate the effectiveness of our agent pre-training
strategy compared to training from scratch and training
against an equivalent visual-language baseline. In particular,
we show that a commonly used approach for fine-tuning
visual-language models by using frozen visual encoders,
similar to LLaVA (Liu et al., 2023) or Mini-GPT-4 (Zhu
et al., 2023), performs worse than joint fine-tuning for action
recognition on our healthcare dataset. Furthermore, our
agent pre-training boosts performance for action prediction
across all gaming and robotics datasets.

8. Conclusion
We introduced an Interactive Agent Foundation Model de-
signed to take text, action, and visual inputs. We found that
by pre-training on a mixture of robotics and gaming data,
our model is effective in modeling actions across a variety
of domains, even showing positive transfer when fine-tuning
in unseen domains such as healthcare. The generality of
our framework allows it to be broadly applicable across
decision-making settings, unlocking new possibilities for
generalist agents in multimodal systems.

9. Impact Statement
This paper presents the initial steps on making interactive
agents possible through an Interactive Agent Foundation
Model. We do not foresee negative societal consequences
from presenting and open-sourcing our current work. In
particular, the main output of our model is domain-specific
actions, such as button inputs for gaming data, making the
downstream applications of our model different from those
of standard LLMs and VLMs.

In the domain of robotics, we wish to emphasize that our
model should not be deployed on real robots without more
training and additional safety filters.

In the domain of gaming, downstream applications of our
foundation model may have some societal consequences.
Smarter, more realistic AI characters could lead to more
immersive worlds, which can increase players’ enjoyment
in games, but may also lead to social withdrawal if not used
appropriately. Specifically, more realistic AI characters
could potentially lead to video game addiction and players
anthropomorphising artificial players. We encourage game
developers who build AI agents using our models to mitigate
these potential harms by encouraging social interactions
between human players and applying appropriate content
filters to AI agents.

In the domain of healthcare, we emphasize that our models
are not official medical devices and have not gone through
rigorous testing in live settings. We strongly discourage
using our models for self-prescription. Even as our models
improve in future iterations, we strongly encourage keeping
a medical practitioner in the loop to ensure that unsafe ac-
tions are avoided. As our models continue to develop, we
believe that they will be useful to caretakers, especially by
automatically forming drafts of documentation and notify-
ing caretakers when patients may need urgent attention.
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Finally, we note that the capabilities of agent AI models
may significantly change at scale. As we scale our model
in terms of architecture, compute, and training data, we
will actively monitor its capabilities before releasing new
versions publicly.
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Appendix

A. Architecture Details
To effectively handle images and video inputs jointly, we use a divided space-time attention similar to (Bain et al., 2021).
We initialize our visual encoder from CLIP ViT-B16 (Radford et al., 2021), and learn temporal attention layers after each
spatial attention layer. We further mask 75% of the image patches (using tubelet masking for videos) during training, and
use a MAE-decoder similar to (He et al., 2022). Gaming and robotics use a frame-level visual encoder so that the agent is
able to observe a continuous stream of tokens and act after every frame. For healthcare, we leverage the video understanding
capabilities of our visual encoder since the tasks are video-level.

B. GPT-4 Prompting

System prompt: You are a helpful hospital assistant that will be creating questions and answers for 
clinical training.

User prompt: I will give you a caption, a bed angle, and an associated RASS score for a patient.  The 
caption describes what is happening during the local segment of a video clip (5-10 seconds).

The bed angle describes the position of the bed during the video clip. The RASS score describes the level of 
sedation of the patient over a larger 5 minute window.  

The RASS score is an integer between -5 and +4.  Negative numbers indicate sedation, positive numbers 
indicate agitation, and zero indicates a calm, alert patient.

Your task is to create a question and answer pair that is relevant to the caption, the bed angle, and/or the 
RASS score. The question should be answerable given the live video feed of the patient. To generate the 
question/answer pairs, you must use the caption, bed angle, and RASS score.  Please generate your 
questions and answers in json format from the RASS score and captions as follows. It is preferable to NOT 
ask questions directly related to the bed angle. Do not add any additional text, only the part starting with { 
and ending with }.

RASS score: 0 - Alert and calm 
Caption: Someone begins to walk into an empty hospital room
Bed angle: > 45°
Response:
{
    "question": "What is the person doing?",
    "answer": "The person is walking into the room."
}

RASS score: 0 - Alert and calm 
Caption: The nurse is bringing the patient into the room
Bed angle: > 45°
Response:
{
    "question": "Who is the nurse bringing into the room?",
    "answer": "The nurse is bringing a patient into the room."
}

RASS score:  0 - Alert and calm  
Caption:  The clinician is helping the patient up from the 

bed and then helping them walk across the room.
Bed angle: > 45°
Response:

Output: 
{

"question": "What is the clinician doing with the patient?",
"answer": "The clinician is helping the patient up from the bed 
and assisting them in walking across the room."

}

GPT-4 Prompt for Healthcare

Corresponding Video 
(for reference)

Figure 8. Our PHI-safe GPT-4 Prompt for Generating Healthcare QA Examples. By ensuring the usage of non-identifying video
captions and documentation data, we prevent any identifiable patient data leakage to GPT-4 while simultaneously generating additional
visual-language training data. For the particular example shown, we use a RASS score of “0 - Alert and calm”, a caption of “The clinician
is helping the patient up from the bed and then helping them walk across the room.”, and a bed angle of “ > 45°”.

We show our GPT-4 Prompt for Healthcare Visual Question Answering generation in Figure 8, and our GPT-4V Prompt for
gaming instruction generation in Figure 9.

C. Pre-training Loss Curves
We show all components of the loss function in Figure 11 and plot our combined pre-training loss across 100 epochs in
Figure 7.
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Prompt: 

These are frames of a video of a Bleeding Edge player ordered from 
left to right and top to bottom as a grid. Give a simple, but precise 
description of what the player is doing in 1 sentence. Be specific 
about important items, entities, and actions. In your description do 
not mention specific frame numbers or the name of the game. 

Video input:

Output: 

The player begins by running around the 
map, passing through different 
checkpoints and interacting with several 
capture points, then fights against an 
enemy player, and finally captures an 
objective while being attacked by another 
enemy. 

GPT-4-Vision

 

Figure 9. Our GPT-4V prompt for games like Bleeding Edge that have 3rd person viewpoints and visually complex scenes. In order to
input a large number of frames (48) to GPT-4V, we input the frames as a grid with frame numbers overlaid on each frame (as shown
above).

D. Gaming Task Pipeline
We provide an example of our pipeline for a gaming task in Figure 12. Note the similarities to the robotics task in Figure 5
since both tasks require predicting an action given a text instruction and sequence of prior actions.

E. Example Outputs
We show examples of our model predicting actions on unseen, robotics simulation data in Table 5 and 6. We show example
outputs for healthcare in Table 7, and show example outputs for gaming in Table 8 and 9.

15



An Interactive Agent Foundation Model

Figure 10. When using GPT-4V to choose actions given a history of frames, we find that it gives reasonable high-level actions but does
not choose precise low-level actions, highlighting the importance of our pre-trained model.

Figure 11. Plot of all components of the training loss over the 100 epochs of pre-training.
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Figure 12. Our gaming pre-training pipeline. For simplicity, we use the same notation as in Sections 4.1 and 4.2; we represent our text
instruction as W , input frames as Vt, our visual encoder and linear projection layer as Eθ and ℓ, respectively, our action and language
transformer model as Fϕ and the predicted actions at time step t as Ât.
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Text instruction Start frame Middle frame End frame

Pull the red moon
apart from the blue
moon.

→ →

Push the yellow start
next to the red moon. → →

Move the red pen-
tagon away from the
blue cube.

→ →

Move the red moon to
the bottom of the yel-
low pentagon.

→ →

Pull the red moon to
the bottom left. → →

Table 5. We show 5 unique demonstrations from Language Table, where our model successfully follows the text instruction. In addition to
the high level instruction, we also show the low-level predicted actions of our agent above each frame.
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Text instruction Start frame Middle frame End frame

Push the handle to
close the drawer. → →

Lift the red block
from the sliding cabi-
net.

→ →

Pull the handle to
open the drawer. → →

Push the sliding door
to the left side. → →

Push the sliding door
to the right side. → →

Table 6. We show 5 unique demonstrations from CALVIN, where our model successfully follows the text instruction. In addition to the
high level instruction, we also show the low-level predicted actions of our agent above each frame.
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Task Start frame End frame Model Output

Video Captioning
The patient is awake and
calm. The patient is coopera-
tive. The patient is alert

Video Question An-
swering

Q: Where is the patient? A:
patient is in deep sedation.
The patient likely requires as-
sistance.

Action Recognition
(RASS) 0 - Alert and calm

Video Captioning
The patient is awake and
calm. They are speaking on
the phone.

Table 7. We show 4 demonstrations of our agent model’s outputs on a held-out Healthcare dataset that uses actors instead of actual patients.
We demonstrate our model’s outputs across 3 different tasks: video captioning, visual question answering, and RASS score prediction
(action recognition). Due to the nature of our actor-collected example videos, the model predicts that the patient is awake and calm (RASS
score of 0) for most video clips, despite only 60% of the training data containing RASS score of 0.
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Text instruction Start frame Predicted Action Ground Truth Action

the player is dig-
ging and placing dirt
blocks to terraform
the terrain around
their house...

[STARTACTION] [attack]
[CAMERAX0] [CAMERAY-1]
[ENDOFACTION]

[STARTACTION] [attack]
[ENDOFACTION]

the player is min-
ing underground us-
ing a diamond pick-
axe, gathering cobble-
stone, coal, iron ore...

[STARTACTION] [attack]
[CAMERAX-3] [CAMERAY0]
[ENDOFACTION]

[STARTACTION] [attack]
[CAMERAX-3] [CAMERAY0]
[ENDOFACTION]

the minecraft player
is moving around a
village ...

[STARTACTION] [forward]
[sprint] [ENDOFACTION]

[STARTACTION] [forward]
[sprint] [ENDOFACTION]

the player is using a
brewing stand ...

[STARTACTION] [sneak] [use]
[ENDOFACTION]

[STARTACTION] [sneak]
[ENDOFACTION]

the player is ... ter-
raforming by digging
...

[STARTACTION] [attack]
[ENDOFACTION]

[STARTACTION] [attack]
[ENDOFACTION]

Table 8. We show 5 demonstrations from a held-out Minecraft dataset. In addition to the high level instruction, we show the low-level
predicted actions and ground truth actions. We truncate the instructions to show only the parts relevant to the current frames. The most
common errors are slight differences in camera movements and occasionally performing unnecessary actions. Note that sometimes the
ground truth values are not the only valid actions; for instance, the fourth example predicts that the player will click the bottle, which
happens a few frames later in the ground truth trajectory.
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Text instruction Start frame Predicted Action Ground Truth Action

the player is using
a character with
a sword to fight
enemies and collect
power cells ...

[STARTACTION]
[lockon][meleeattack] [lrot214]
[lmag4] [ENDOFACTION]

[STARTACTION]
[lockon][meleeattack] [lrot213]
[lmag4] [ENDOFACTION]

the player is riding a
hoverboard-like vehi-
cle ... avoiding or at-
tacking enemy play-
ers ...

[STARTACTION]
[lockon][meleeattack] [lrot204]
[lmag4] [ENDOFACTION]

[STARTACTION]
[lockon][meleeattack] [lrot201]
[lmag4] [ENDOFACTION]

the player starts by
descending some
stairs towards an
open area where they
engage in combat
with an enemy player
...

[STARTACTION] [jump]
[lockon][specialability1]
[lrot199] [lmag4] [ENDOFAC-
TION]

[STARTACTION] [jump]
[lockon][meleeattack] [lrot201]
[lmag4] [ENDOFACTION]

the player ... captures
an objective point
while fighting off
multiple opponents ...

[STARTACTION]
[lockon][meleeattack] [lrot63]
[lmag4] [ENDOFACTION]

[STARTACTION]
[lockon][meleeattack] [lrot63]
[lmag4] [ENDOFACTION]

a bleeding edge
player is controlling a
robot character with a
sword ... engaging in
combat with enemy
players ...

[STARTACTION] [evade]
[lrot236] [lmag4] [ENDOFAC-
TION]

[STARTACTION] [evade]
[lrot236] [lmag4] [ENDOFAC-
TION]

Table 9. We show 5 unique demonstrations from a held-out Bleeding Edge dataset. In addition to the high level instruction, we show the
low-level predicted actions and ground truth actions. We truncate the instructions to show only the parts relevant to the current frames.
The most common errors are slight deviations from the precise value of the joysticks, which are naturally noisy. Some other errors include
predicting the wrong type of attack, though this typically happens in situations where multiple attacks are still valid.
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