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Figure 1. Overview of an Agent Al system. It is applicable to multiple domains and provides an agent foundation model for interactive
manipulation and embodied operations. Agent Al functions in both physical and virtual worlds by training on cross-modal data that is
obtained through interactions between diverse environments. Agent Al offers a promising approach to unify a broad range of applications
and capabilities for infrastructure and system, and it is emerging as a promising avenue a route towards Artificial General Intelligence
(AGI) using a new agent Al paradigm.

Abstract derstanding of learning and cognition. This paper
we aim to broaden the research community’s per-

Recent advancements in large foundational mod-
els have remarkably enhanced our understanding
of sensory information in open-world environ-
ments. At this pivotal moment, it is crucial to the
Al research trend toward excessive reductionism
and returning to the Al principles inspired by the
holistic philosophy of Aristotle. Specifically, we
emphasize developing “Agent AI”, an embodied
system that integrates large foundation models
into agent actions. The emerging field of Agent
Al spans a wide range of existing embodied and
agent-based multimodal interactions, including
robotics, gaming, and diagnostic systems. We em-
phasize the importance of integrating recent large
foundational models to enhance intelligence and

spective on achieving holistic intelligence, while
highlighting the need for an integrated approach
that considers the agent’s purpose, functionality,
and interaction. Finally, we reflect on a deeper
discussion of these Agent Al topics from a main-
stream and interdisciplinary perspective. This dis-
cussion illustrates Al cognition and consciousness
within the scope of scientific discourse, and may
serves as a basis for future research directions and
social influences.
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interaction capabilities. Furthermore, we discuss
how agents exhibit remarkable capabilities across
a variety of domains and tasks, challenging our un-
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1. Introduction

Historically, the Al systems were defined at the Dartmouth
Conference as artificial life forms that could collect informa-
tion from the environment and interact with the environment.
For example, MIT’s Minsky group, inspired by this defini-
tion, built a system, called “copy demo”, which observed a
block world and successfully completed the same structure;
the system consists of observation and interaction modules.
These early studies revealed that each module itself was
quite challenging and further research were necessary. As
the results, each module, based on the divide-and-conquer
approach coming from Rene Descartes Reductionism, be-
come specialized and fragmented to conduct research. This
too-much-reductionism approach provides the situation that
Cambrian explosion of each field occurs and the overall
goals of the Al research became less clear.

To address this trend, it is necessary to return the fundamen-
tals based on Aristotelian Holism. Fortunately, leveraging
recent progress of Large Language Models (LLMs) and
Visual Language Models (VLMs) has made it possible to
reconstruct such Al agent along the Holismic idea. Seizing
this opportunity, our proposed framework, “Agent AI”, em-
phasize to develop a comprehensive intelligence system that
integrates language proficiency, visual cognition, context
memory, intuitive reasoning and adaptability. It explore the
potential completing this synthesis using LLM and VLM.
During this exploration, consideration is also given to re-
visiting the system’s design based on Aristotle’s final cause
(why the system exists), which may have been overlooked
in the initial round of AI agent development in 70s. Specifi-
cally, we define Agent Al as “an intelligent agent capable of
autonomously executing appropriate and seamless actions
based on sensory input, whether in a physical, virtual, or
mixed-reality environment.”

Importantly, an embodied agent is conceptualized as a col-
laborative system, where it communicates with humans or
environments with its perception capabilities and employ a
set of vast actions based on human needs. This is the reason
why we consider that the advance of LLMs and VLMs (Ope-
nAl, 2023) will make a significant contribution to Agent
Al, enabling systems to parse and infer human intent from
natural-form instructions and images.

Building upon the Agent Al framework, we believe that the
Al community will steadily accumulate insights and knowl-
edge essential for transitioning from AI models used for
passive, structured tasks to those capable of dynamic, inter-
active roles in complex environments. This is a critical step
towards the development of Artificial General Intelligence
(AG]). In this paper, we introduce the cognitive aspects for
Agent Al, and review recent literature in Agent AI domains
including robotics, gaming, and healthcare. This approach
allow us to illustrate how the development of those tech-

nologies is bringing the agent closer to holistic ideal. Fur-
thermore, we introduce research areas impacted by Agent
Al to engage a broader community of researchers and ac-
tively promote its development. Finally, we discuss future
research directions, including the ethical challenges that
need to be addressed.

2. Agent Al Paradigm

Agent Al new paradigm represents a change in thinking
in embodied intelligence, emphasizing the importance of
complex dynamics, and an integrated approach to interactive
intelligence. This approach is motivated by the belief that
true intelligence arises from the intricate interplay between
learning, memory, action, observation, planning, perception,
and cognition in a interactive decision with consciousness.

As shown in the Fig. 2, a new Agent Al paradigm aims to ex-
plore the complex challenges towards general purpose agent
and interactive intelligence by leveraging interdisciplinary
in the computer science, biological physics, cognition sci-
ence, medical health, and moral philosophy. In this paper,
we argue that consciousness/cognition of Al is best assessed
by drawing on neuroscientific theories of consciousness. We
describe prominent theories of this kind and investigate their
implications for agent Al.

We define the Agent Al as “any intelligent agent capable
of autonomously taking suitable and seamless action based
on sensory input, whether in the physical world or in a vir-
tual or mixed-reality environment representing the physical
world.”. Importantly, an embodied agent is conceptualized
as a collaborative system, where it communicates with hu-
mans with its vision-language capabilities and employ a
set of vast actions based on human needs. In this manner,
embodied agents are expected to mitigate cumbersome tasks
in virtual reality and physical world.

Despite numerous gaps between current technologies
and holistic intelligence, the recent advancements in
LLMs/VLMs have brought society closer to the idea that
such a system is within reach. What steps are required to
achieve this ultimate goal? In light of traditional AI philos-
ophy, we believe that successful Agent Al systems require
several key components:

Cognitive Aspects. The concept of holistic intelligence
focuses not only on the exceptional performance of indi-
vidual components (e.g., image recognition, language pro-
cessing, task planning) but also on the utility of the system
as a whole. Consider a scenario where a robot, right after
being unboxed, begins to communicate instantly with a non-
expert user and swiftly adapts to carry out domestic tasks
within the user’s home setting. Realizing such a system is
challenging with only a single component. Moreover, cog-
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Figure 2. An Agent Al paradigm for supporting embodied multi-modal generalist agent systems. There are 5 main modules as shown: (1)
Agent in Environment and Perception with task-planning and observation, (2) Agent learning, (3) Memory, (4) Action, and (5) Cognition
and Consciousness (we use “consciousness” to imply a degree of awareness of an agent’s state and surroundings). A key difference
between our approach and some previous interactive strategies is that, after training, the agent’s action will directly impact task planning,
as the agent does not need to receive feedback from the environment to plan its next actions.

nitive functions, such as high-level task planning, human
communication, a deep understanding of the relationships
between the environment and actions, and their integration
are necessary.

We can build a neuro-cognitive module that can be deployed
onto its embodied robots, and generalizable into other agents
through a cloud service. The deployed cognitive on the
infinite agent will give the ability to understand and respond
to dynamic, real-world situations, making them potentially
more versatile and adaptive in complex environments.

Perception. Like humans, robust and multimodal percep-
tion is crucial for agents to understand their environment.
Visual perception is one of the most important abilities,
enabling the agent to comprehend the world, e.g., images,
videos, gameplay. Audio perception is crucial for under-
standing human intent.

Planning. Planning is an important aspect of long-range
tasks, such as a robot manipulating objects in an environ-
ment for a specific purpose. The planning strategy typically
depends on the goal of the task. Goal-oriented planning
enables flexible operation that adapts to uncertainties due to
any external and internal disturbances.

Interaction. In general, real-world operations cannot be
completed in one shot and thus require multi-round inter-
actions between humans or the environment and the agent.
Enabling fluent interactions is key to effective operation.

Memory. Long-term memory enables the Agent to re-
member specific operations adaptable to the environment
or user preference. In contrast, short-term memory refers
to the history of actions and perception results during an
operation. Short-term memory enables the system to replan
and consider next-step actions based on history.

Learning. An intelligent agent can adapt to a new environ-
ment by acquiring new knowledge and updating its skills.
To this end, the agent should learn from human demon-
strations. Additionally, the agent should always be under
human supervision for safety. In case it encounters a dif-
ficult situation, it should ask the user for help and further
instructions.

Achieving embodied agents that incorporate these elements
is not straightforward. In the section 4, we will introduce a
specific example that embodies these aspects. In Section 6,
we will discuss the main challenges and necessary actions,
including ethical concerns in Agent Al research.

3. Agent Al Foundation Model Mechanism

In this section, we provide an overview of our Agent Al
system that leverages foundation models with the latest
machine-learning technologies. The system is highlighted
by three components: i) Interactive agent transformer, ii)
Agent foundation model learning strategy with reinforce-
ment learning (RL), and imitation learning (IL).

3.1. Agent Transformer

Type Embodied Actions Agent Intention

Agent Foundation Model

Vision Agent Language

Figure 3. Overview of an interactive agent foundation model frame-
work. The transformer is designed to process multi-modal infor-
mation that conveys various levels of abstraction. This approach
facilitates a comprehensive understanding of the context, thus en-
hancing coherent actions. Through learning across a variety of
task domains and applications.
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We have designed a multimodal encoding transformer
(Fig. 3) as the model that allows interactive agent actions
based on multimodal information. This model is initialized
with two pre-trained submodules, namely, CLIP ViT-B16,
which is used to initialize our visual encoder, and OPT-
125M, which is used to initialize our action and language
model.

In our approach, each frame in a video is encoded as visual
features. To facilitate cross-modal information sharing, we
train an additional linear layer that transforms the embed-
dings of our visual encoder into the token embedding space
of our transformer model. This allows us to make predic-
tions for text or action tokens based on both a text prompt
and a single video frame.

We also incorporate historical data into our model by in-
cluding previous actions and visual frames as input during
pre-training. As a result, for any given time step, we can
predict the action token based on the text prompt, the visual
frames up to that point, and the actions taken up to that point.
This approach allows our model to take into account both
the current context and the history of interactions, making it
able to respond more accurately to the task at hand.

3.2. Agent Learning Strategy

Agent with Reinforcement Learning (RL). To facilitate
human-AlI interaction, we can develop a embodied agent
which uses an emerging mechanism for generating and un-
derstanding scenes in virtual or real worlds with the rein-
forcement learning module stores human-Al interactions
from which the human intent feedback. The embodied agent
is trained via reinforcement learning to incorporate feedback
using the reward like GPT-X setting. We can use the actor-
critic algorithm PPO (Schulman et al., 2017) to update the
parameters of the agent using its own version.

Generation Agent with Imitation Learning (IL). Gen-
erally speaking, a trained interactive agent can be used to
perform simulation/VR scene generation. Note the agent
requires an multi-model information (image/video and lan-
guage) to generate relevant memory for the interaction
model. For example, we can use a text-to-image gener-
ative model, GPT-4V, to reconstruct the physical anchor
view which is further used to extract the desired memory.
LLM/VLM implicitly serves as the vision-memory source
that contains the visual prior memory of what we can imag-
ine from the task planing. The embodied agent then takes as
input the original language information and the generated
simulation information to retrieve memory and outputs a ac-
tion prediction tuple, while foundation model can generates
new memory-enhanced prompt using the agent output.

To generate the simulation transfer physical world scene
from memory/task planing prompt, we use can use the

LLM/VLM to output user intent instruction that is then
rendered using a similation rendering engine. We use the
prompt and action instruction in foundation model to gener-
ate the spatial arrangement in the simulation environment.
We perform experiments with foundation model as the low-
level action generation model, and we can use the foundation
model to load the simulation models viewable in the sim-
ulation environment. More information about generating
the prompt to run the simulation robot can be referenced in
(Wake et al., 2023c) and (Wake et al., 2023b).

4. Agent Al Categorization

Agent Al refers to integrated Al systems that LLMs/VLMs.
Consequently, many of the Al systems based on VLMs or
LLMs proposed in recent years can be categorized and as-
sociated with Agent Al subcatogiries. This section reviews
recent related research, elucidating the Agent Al aspects
they capture. We emphasize the significance of integrating
VLMs/LLMs and clarify the research domains encompassed
by Agent Al

4.1. Embodied Agents

Embodied Al refers to agent systems that particularly em-
phasize interaction with the environment. This field is con-
stantly evolving due to the development of perception mod-
els such as image recognition, speech recognition, and nat-
ural language processing, along with the advancement of
reinforcement learning techniques.

1. Action Agents: Agents performing physical actions
in simulated or real-world environments, divided into
gaming Al and robotics. (Meta Fundamental AI Re-
search (FAIR) Diplomacy Team et al., 2022; Park et al.,
2023b; Huang et al., 2022a; Wang et al., 2023b; Yao
etal., 2023; Li et al., 2023c; Ahn et al., 2022a; Huang
et al., 2022b; Liang et al., 2022; Wang et al., 2023e;
Baker et al., 2022; Driess et al., 2023; Brohan et al.,
2023)

2. Interactive Agents: A broader category than action
agents, these agents interact with the world through
various means, not limited to physical actions, and
include applications in diagnostics and knowledge re-
trieval. (Lee et al., 2023; Peng et al., 2023)

4.2. Simulation and Environments Agents

This type of agent utilizes trial-and-error in simulated en-
vironments for training, which is essential for tasks where
physical trials are impractical or risky. Typically, research
on these agents involves simulation platforms for navigation,
object manipulation, and human-agent interaction. (Tsoi
et al., 2022; Deitke et al., 2020; Kolve et al., 2017; Wang
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et al., 2023d; Mees et al., 2022; Yang et al., 2023a; Ehsani
et al., 2021; Savva et al., 2019; Szot et al., 2021; Puig et al.,
2018; Carroll et al., 2019; Puig et al., 2023; Li et al., 2021;
Srivastava et al., 2022; Mittal et al., 2023; Zhong et al.,
2023; Liu & Negrut, 2021; Saito et al., 2023)

4.3. AR/VR/Mixed-reality Agents

These agents enhance the creation of interactive content in
gaming and VR, enabling users to author their own experi-
ences with advanced Al models and tools (Chen et al., 2021;
Mao et al., 2022; Wake et al., 2023a). In some cases, agents
are designed to assist in creating characters, environments,
and objects in virtual worlds, streamlining the creation pro-
cess and enabling dynamic generation and interaction within
XR settings. (Huang et al., 2023b)

4.4. Knowledge and Logical Inference Agents

This agent focuses on applying knowledge and logical
reasoning, integrating implicit and explicit knowledge
sources for more accurate and contextually appropriate re-
sponses (Brown et al., 2020; OpenAl, 2023; Lewis et al.,
2020; Peng et al., 2023; Gao et al., 2022; Marcus & Davis,
2019; Gao et al., 2020; Wang et al., 2023a; Chen et al., 2020;
Park et al., 2023a).

4.5. Agents for Emotional Reasoning

Several works have developed empathy-aware agents for
engaging dialogue and human-machine interactions. (Chen
et al., 2021; Mao et al., 2022; Wake et al., 2023a)

4.6. Neuro-symbolic Agents

Neuro-symbolic Agents operate on a hybrid system of neu-
rons and symbols, solving problems stated in natural lan-
guage by capturing discrete symbolic structural information.
(Chen et al., 2020; Park et al., 2023a)

These categories of Agents emphasize the importance of us-
ing multimodal information to take beneficial actions from
their respective aspects. This indicates the necessity for
Agents to possess high recognition capabilities for both
language and images, thereby strongly suggesting the effec-
tiveness of leveraging LLMs/VLMs.

S. Agent Al Application Tasks

In Section 4, we categorized existing research within the
realm of Agent Al. To offer a tangible understanding of
its applications, we introduce representative sub-tasks that
Agent Al is applied.

5.1. Robotics

Robots are representative agents that necessitate effective
interaction with their environment. In this section, we intro-
duce key elements essential for efficient robotic operation,
review research topics where the latest LLMs/VLMs have
been applied, and share findings from our most recent stud-
ies.

Multimodal Systems. Recent research focuses on de-
veloping end-to-end systems incorporating LLM/VLM
technologies as encoders for input information, guiding
robotic actions based on linguistic instructions and visual
cues (Jiang et al., 2022; Brohan et al., 2023; 2022; Li et al.,
2023g; Ahn et al., 2022b; Shah et al., 2023b; Li et al.,
2023d).

Task Planning and Skill Training. Advanced language
processing abilities of LLLMs interpret instructions and
decompose them into robot action steps, advancing task
planning technologies (Ni et al., 2023; Li et al., 2023a;
Parakh et al., 2023; Wake et al., 2023d). For skill training,
LLMs/VLMs are used for designing reward functions (Yu
et al., 2023; Katara et al., 2023; Ma et al., 2023), generating
data for policy learning (Kumar et al., 2023; Du et al., 2023),
or as part of a reward function (Sontakke et al., 2023).

On-site Optimization. This involves dynamically adapt-
ing and refining robotic skills by integrating task plans with
real-time environmental data (Ahn et al., 2022b; Zhou et al.,
2023b; Raman et al., 2023). Strategies seek to achieve
environment-grounded robot execution by adjusting the
robot’s actions at the task plan or controller level.

Conversation Agents. LLMs contribute to natural,
context-sensitive interactions with humans in conversational
robots (Ye et al., 2023; Wake et al., 2023b). They process
and generate responses that mimic human conversation and
estimate conceptual (Hensel et al., 2023; Teshima et al.,
2022) and emotional attributes (Zhao et al., 2023; Yang
et al., 2023b; Wake et al., 2023a) of utterances.

Navigation Agents. Robot navigation focuses on
core aspects such as map-based path planning and
SLAM (Guimaraes et al., 2016). Advanced technologies
enable robots to navigate in challenging environments
using object names (Chaplot et al., 2020; Batra et al., 2020;
Gervet et al., 2023; Ramakrishnan et al., 2022; Zhang et al.,
2021) or zero-shot object navigation (Gadre et al., 2023;
Dorbala et al., 2023; Cai et al., 2023). Vision-Language
Navigation (VLN) interprets sentences for navigation in
unseen environments (Anderson et al., 2018; Shah et al.,
2023a; Zhou et al., 2023a; Dorbala et al., 2022; Liang et al.,
2023; Huang et al., 2023a).



Position Paper: Agent AI Towards a Holistic Intelligence

5.2. Agents for Gaming

Games provide a unique sandbox to test the agentic behavior
of LLMs/VLMs, pushing the boundaries of their collabora-
tive and decision-making abilities. We describe three areas
in particular that highlight agent’s abilities to interact with
human players and other agents, as well as their ability to
take meaningful actions within an environment.

NPC Behavior. In modern gaming systems, the behavior
of Non-Player Characters (NPCs) is predominantly dictated
by predefined scripts crafted by developers. These scripts
encompass a range of reactions and interactions based on
various triggers or player actions within the gaming en-
vironment. In light of this situation, Agent Al is at the
forefront of revolutionizing NPC technologies. By leverag-
ing LLMs, Agent Al can provide dynamic dialogues and
refine behaviors based on player feedback and in-game data,
significantly contributing to the evolution of NPC behavior
in games.

Human-NPC Interaction. Agent Al plays a critical
role in enhancing the interaction between human players
and NPCs, offering a more immersive gaming experience.
The conventional interaction paradigm is primarily one-
dimensional, with NPCs reacting in a preset manner to
player inputs. Agent Al utilizing LLMs/VLMs, can analyze
and learn from human behavior, providing more human-like
interactions and increasing realism and immersion.

Agent-based Analysis of Gaming. Gaming is an integral
part of daily life, estimated to engage half of the world’s
population (Intelligence, 2020) and exhibits a positive im-
pact on mental health (Granic et al., 2014). Contemporary
game systems, however, often exhibit deficiencies in inter-
actions with human players due to primarily hand-crafted
behaviors by game developers.

In such a context, Agent Al proves valuable as a system
that analyzes in-game text data, such as chat logs and player
feedback, to identify patterns of player behavior and pref-
erences, as well as analyzes image and video data from
gaming sessions to understand user intent and actions.

Scene Synthesis for Gaming. Scene synthesis is essen-
tial for creating and enhancing immersive gaming environ-
ments, encompassing the generation of three-dimensional
(3D) scenes, terrain creation, object placement, realistic
lighting, and dynamic weather systems. In modern games,
providing vast open-world environments necessitates the
use of procedural or Al-driven techniques for automated
terrain generation. Agent Al utilizing LLMs/VLMs, aids
scene designers by formulating non-repeating, unique land-
scape design rules based on the designers’ desires and the
current scene, ensuring semantic consistency and variability
of the generated assets. These models expedite object place-

ment and assist in content generation, enhancing the design
process.

5.3. Interactive Healthcare

In healthcare, Agent Al can help both patients and physi-
cians by utilizing LLMs/VLMs in understanding the intent
of the user, retrieving clinical knowledge, and grasping the
undergoing human-to-human interaction, but not limited to
these areas. Examples of application include:

Diagnostic Agents. LLMs as medical chatbots for pa-
tient diagnosis have gained attention for their potential
to help triage and diagnose patients, providing equitable
healthcare access to diverse populations (Lee et al., 2023).
They offer a pathway to improve healthcare for millions,
understanding various languages, cultures, and health condi-
tions, with initial results showing promise using healthcare-
knowledgeable LLMs trained on large-scale web data (Li
et al., 2023b). However, risks such as hallucination within
medical contexts are notable challenges.

Knowledge Retrieval Agents. In the medical context,
model hallucinations can be dangerous, potentially lead-
ing to serious patient harm or death. Approaches using
agents for reliable knowledge retrieval (Peng et al., 2023)
or retrieval-based text generation (Guu et al., 2020) are
promising. Pairing diagnostic agents with medical knowl-
edge retrieval agents can reduce hallucinations and improve
response quality and preciseness.

Telemedicine and Remote Monitoring. Agent-based Al
in Telemedicine and Remote Monitoring can enhance health-
care access, improve communication between healthcare
providers and patients, and increase the efficiency of doctor-
patient interactions (Amjad et al., 2023). Agents can assist
in triaging messages from doctors, patients, and healthcare
providers, highlighting important communications, and rev-
olutionizing remote healthcare and digital health industries.

5.4. Interactive Multimodality

The integration of visual and linguistic understanding is a
fundamental of Agent Al. Therefore, the development of
Agent Al is closely linked to the performance of multimodal
tasks, including image captioning, visual question answer-
ing, video language generation, and video understanding.
Here are some tasks that have recently garnered significant
interest:

Image and Language Understanding and Generation.
Image-language understanding is a task that involves the in-
terpretation of visual content in a given image with language
and the generation of associated linguistic descriptions. This
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task is critical to the development of Al agents that can in-
teract with the world in a more human-like manner. Some
of most popular ones are image captioning (Lin et al., 2014;
Sharma et al., 2018; Young et al., 2014; Krishna et al., 2016),
referring expression (Yu et al., 2016; Karpathy et al., 2014),
and visual question answering (Antol et al., 2015; Ren et al.,
2015; Singh et al., 2019). This demands capabilities beyond
object recognition, encompassing a deep understanding of
spatial relationships, visual semantics, and integrating world
knowledge for accurate descriptive and reasoning abilities.

Video and Language Understanding and Generation.
Video captioning and storytelling involve generating coher-
ent sentences for video frames, challenging due to the need
for a comprehensive understanding of each frame and their
interrelations. Recent advances leverage large foundation
models for improved video-language generation, emphasiz-
ing the development of agent-aware text synthesis models
for encoding sequences and generating cohesive paragraphs.
Video understanding broadens image understanding to in-
clude dynamic content and requires agents to interact with
visual, textual, and audio modalities. Key tasks include
captioning, question answering, and activity recognition,
focusing on temporal alignment, sequence handling, and
complex activity interpretation. Agents also need to process
audio cues like spoken words and background sounds to
grasp a video’s mood and nuances.

Parallel research explores generating scaled datasets from
large models, then applying visual instruction tuning (Liu
et al., 2023; Li et al., 2023e; Zhu et al., 2023) on the gen-
erated data. Considerable audio, speech, and visual expert
perception models are subsequently used to verbalize videos.
Speech is transcribed with automatic speech recognition
tools, and video descriptions and related data are produced
with various tagging, grounding, and captioning models (Li
et al., 2023f; Maaz et al., 2023; Chen et al., 2023; Wang
et al., 2023c). These techniques demonstrate how instruc-
tion tuning video-language models on generated datasets
may lead to enhanced video-reasoning and communication
abilities.

6. Deploying Agent Al

We believe that in order to develop a system that incorpo-
rates these elements, it is necessary to involve a wide range
of experts and practitioners. For instance, there are the
following important research areas:

Exploring new paradigms to address common issues in
large-scale models, such as hallucinations and biases in
their outputs. the development of agents paradigm with
integrated modalities (audio, image, text, sensor inputs),
aiming to enhance their recognition and response capabili-

ties for a wide variety of applications.

General-purpose end-to-end systems. the development
of end-to-end models that are trained with large-scale data,
seeking to create versatile and adaptable Al solutions.

Methodologies for grounding modalities. integrating in-
formation across various modalities, enhancing the coher-
ence and efficacy of data processing.

Intuitive human interface. the development of effective
and meaningful interaction between humans and agents.

Taming LLM/VLMs. exploring new approaches to ad-
dress common issues in large-scale foundation models, such
as hallucinations and biases in their outputs.

Bridging the gap between simulation and real. The
’sim-to-real” problem highlights the challenge of deploying
Al agents trained in simulations to the real world, where
discrepancies in conditions like disturbances and physical
properties can degrade performance. To tackle this, strate-
gies include:

* Domain randomization: Introducing variability in the
simulated environment to better prepare the model for
real-world unpredictability (Tobin et al., 2017; Saito
etal., 2022).

* Domain adaptation: Bridging sim-to-real gap by train-
ing on both simulated and real-world data (Zhu et al.,
2017a; Rao et al., 2020; Ho et al., 2021).

* Improvement of simulation: Enhancing simulation
fidelity through better replication of real-world condi-
tions (Zhu et al., 2017b; Allevato et al., 2020; Martinez-
Gonzalez et al., 2020; Miiller et al., 2018; Shah et al.,
2018; Sasabuchi et al., 2023).

7. Challenges for Agent Al

In this paper, we put special emphasis on discovering the cur-
rent agent Al limitation, and we discuss the challenges ahead
for advancing towards deeper and more comprehensive ver-
sions of AGI, including the possible need for pursuing a
new paradigm that moves beyond next-word prediction.

Achievement of the Agent Al still have some challenges,
especially considering the dynamic system with high modal-
ity observations in the physical world. There still exist a
number of challenges that need to be addressed, including
but not limited to: 1) unstructured environments, where
current visual inputs affect both high-level intents and low-
level actions of the embodied agent given the same goal
instruction; 2) empathy for agent, when open sets of objects,
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which require the agent’s decision-making module to use
common sense knowledge that is hard to encode manually;
3) multi-agent interactions and collaborations, which re-
quire the agent to understand and operate on more than just
template-based commands, but also a context of goals, con-
straints, and partial plans expressed in everyday language.
To enable a more comprehensive approach to these complex
challenges, the inclusion of researchers and practitioners
from a broader range of fields is critical.

We aspire to broaden our collective understanding of the
potential and limitations of Agent Paradigm by leveraging
our unique and diverse perspectives. We strongly believe
that this proposed new agent paradigm will not only enrich
the participant’s individual perspectives, but will also en-
hance the community’s collective knowledge and promote
a holistic view that is more inclusive of the wide-ranging
challenges faced by future agent Al

8. Ethical Discussion and Consideration

Multimodal Agent Al systems have many applications. In
addition to interactive Al, grounded multimodal models
could help in generating training datasets for robots and
Al agents, and assist in productivity applications, helping
to re-play or paraphrase scenario, predict actions in novel
scenarios, or synthesize 3D or 2D scenes. Fundamental
advances in agent Al help contribute towards these goals
and many would benefit from a greater understanding of how
to model embodied and empathetic behavior in a simulated
environment or the real world. Therefore, there are many
applications that have positive benefits.

However, this technology could also be used by bad actors.
Agent Al systems that generate content can be used to ma-
nipulate or deceive people. Therefore, it is very important
that this technology is developed in accordance with respon-
sible Al guidelines. For example, explicitly communicating
to users that content is generated by an Al system and pro-
viding the user with controls in order to customize such a
system. It is possible the Agent Al could be used to develop
new methods to detect manipulative content - partly because
it is rich with hallucinations that emerge from large foun-
dation models - and thus help address another real world
problem.

For example, ethical deployment of LLM and VLM agents,
especially in sensitive domains like healthcare, is paramount.
Al agents trained on biased data could potentially worsen
health disparities by providing inaccurate diagnoses for un-
derrepresented groups. Moreover, the handling of sensitive
patient data by Al agents raises significant privacy and confi-
dentiality concerns. In the gaming industry, Al agents could
transform the role of developers, shifting their focus from
scripting non-player characters to refining agent learning

processes. Similarly, adaptive robotic systems could rede-
fine manufacturing roles, necessitating new skill sets rather
than replacing human workers. Navigating these transitions
responsibly is vital to minimize potential socio-economic
disruptions.

Furthermore, the agent Al focuses on learning collabora-
tive policies in simulation and there is some risk of directly
applying the policy to the real world due to the distribu-
tion shift. Robust testing and continuous safety monitoring
mechanisms should be put in place to minimize risks of
unpredictable behaviors in real-world scenarios.

9. Conclusion

This proposed Agent Al focuses on advanced multimodal
systems that interact effectively within both physical and
virtual environments and facilitate effective interaction with
humans. This paper will bring together researchers in the
field of agent Al with expertise in large foundation model
based embodied modules in exploring the holistic inter-
sections. By leveraging the collective expertise of agent
paradigm, agent foundation model, agent infrastructure, and
agent system from various Al disciplines. This paper aims
to not only advance scientific interactive understanding of
Agent Al, but also to discuss the embodied agent at the
frontier of novel holistic intelligence research and helps us
position ourselves to capitalize on emerging foundational
models.

10. Impact Statement

One of the main goals of the Agent Al paradigm is to create
general-purpose agents that can work alongside humans in
both real and virtual environments. This paradigm therefore
intends to have a very broad impact, possibly affecting all
members of society.

Our framework emphasizes the integration of agents into
the wider environment across a variety of settings, such as
gaming, robotics, healthcare, and long-video understand-
ing. Specifically, the development of multimodal agents
in gaming could lead to more immersive and personalized
gaming experiences, thereby transforming the gaming in-
dustry. In robotics, the development of adaptive systems
could revolutionize industries ranging from manufacturing
to agriculture, potentially addressing labor shortages and
improving efficiency. In healthcare, the use of LLMs and
VLMs as diagnostic agents or patient care assistants could
lead to more accurate diagnoses, improved patient care, and
increased accessibility to medical services, particularly in
underserved areas. Furthermore, the ability of these mod-
els to interpret long-form videos could have far-reaching
applications, from enhancing online learning to improving
technical support services. In general, the Agent Al frame-
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work will have significant downstream effects on a wide
range of industries and people across the world.

We must also highlight the diverse and complex challenges
that come with implementing Al agents across a wide vari-
ety of environments and situations. For instance, there are
many limitations and potential hazards linked to Agentic
Al systems when they are developed for specialized sectors
such as healthcare diagnostics. In this domain, issues like
dangerous hallucinations in Al behavior can pose significant
risks, highlighting the critical need for meticulous design
and testing. However, these specific challenges may not be
equally relevant or noticeable when considering Al agents
crafted for the gaming industry. In such recreational fields,
developers might instead prioritize tackling different hur-
dles, such as the need for Al to perform more open-ended
generation and exhibit creativity, adapting dynamically to
unpredictable gameplay scenarios and player interactions.
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