
An Empirical Study on Low GPU Utilization of Deep Learning
Jobs

Yanjie Gao
Microsoft Research

Beijing, China
yanjga@microsoft.com

Yichen He∗
Microsoft Research

Beijing, China
v-

yichenhe@microsoft.com

Xinze Li∗
Peking University
Beijing, China

panzer_marching@163.com

Bo Zhao∗
Microsoft Research

Beijing, China
v-bozha@microsoft.com

Haoxiang Lin†
Microsoft Research

Beijing, China
haoxlin@microsoft.com

Yoyo Liang
Microsoft

Beijing, China
yoliang@microsoft.com

Jing Zhong
Microsoft

Beijing, China
jinzhong@microsoft.com

Hongyu Zhang
Chongqing University
Chongqing, China

hyzhang@cqu.edu.cn

Jingzhou Wang∗
Tsinghua University

Beijing, China
jz-

wang20@mails.tsinghua.edu.cn

Yonghua Zeng
Microsoft

Beijing, China
yozen@microsoft.com

Keli Gui
Microsoft

Beijing, China
keligui@microsoft.com

Jie Tong
Microsoft

Beijing, China
jietong@microsoft.com

Mao Yang
Microsoft Research

Beijing, China
maoyang@microsoft.com

ABSTRACT
Deep learning plays a critical role in numerous intelligent software
applications. Enterprise developers submit and run deep learning
jobs on shared, multi-tenant platforms to efficiently train and test
models. These platforms are typically equipped with a large num-
ber of graphics processing units (GPUs) to expedite deep learning
computations. However, certain jobs exhibit rather low utilization
of the allocated GPUs, resulting in substantial resource waste and
reduced development productivity. This paper presents a compre-
hensive empirical study on low GPU utilization of deep learning
jobs, based on 400 real jobs (with an average GPU utilization of 50%
or less) collected from Microsoft’s internal deep learning platform.
We discover 706 low-GPU-utilization issues through meticulous ex-
amination of job metadata, execution logs, runtime metrics, scripts,
and programs. Furthermore, we identify the common root causes
and propose corresponding fixes. Our main findings include: (1)
Low GPU utilization of deep learning jobs stems from insufficient
GPU computations and interruptions caused by non-GPU tasks;
∗The work was performed during the internship at Microsoft Research.
†Haoxiang Lin is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04
https://doi.org/10.1145/3597503.3639232

(2) Approximately half (46.03%) of the issues are attributed to data
operations; (3) 45.18% of the issues are related to deep learning
models and manifest during both model training and evaluation
stages; (4) Most (84.99%) low-GPU-utilization issues could be fixed
with a small number of code/script modifications. Based on the
study results, we propose potential research directions that could
help developers utilize GPUs better in cloud-based platforms.

CCS CONCEPTS
• Software and its engineering→ Software performance.

KEYWORDS
deep learning jobs, GPU utilization, empirical study
ACM Reference Format:
Yanjie Gao, Yichen He, Xinze Li, Bo Zhao, Haoxiang Lin, Yoyo Liang, Jing
Zhong, Hongyu Zhang, Jingzhou Wang, Yonghua Zeng, Keli Gui, Jie Tong,
and Mao Yang. 2024. An Empirical Study on Low GPU Utilization of Deep
Learning Jobs. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639232

1 INTRODUCTION
Deep learning (DL) has made remarkable achievements in various
areas, including natural language processing, gaming, and image
recognition. It is now playing a critical role in numerous intelligent
software applications. To facilitate efficient DL model training and
testing, enterprises have established shared, multi-tenant platforms
such as Microsoft Azure Machine Learning [47], Amazon Sage-
Maker [2], and Google Vertex AI [20] for developers to submit and

https://doi.org/10.1145/3597503.3639232
https://doi.org/10.1145/3597503.3639232


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

run their DL jobs. These platforms are equipped with a large num-
ber of hardware accelerators dedicated to DL computation, among
which graphics processing units (GPUs) are typically used. Given
the computational intensity inherent in deep learning [72], GPU
utilization—a measurement of the actual GPU computing time as a
percentage of the total GPU service (i.e., allocation) time—serves
as a crucial indicator for both the runtime performance of DL jobs
and the service-level agreement compliance within DL platforms.

Microsoft is a multinational IT company offering cloud comput-
ing and intelligent services. Internally, Microsoft houses Platform-X,
a deep learning platform constructed with commodity computing
hardware (e.g., GPUs and RDMA networks) and widely used open-
source software (e.g., Kubernetes [6] and Docker [44]). Every day,
hundreds of developers from various research and product teams
train and test their DL models on Platform-X for tasks such as ob-
ject detection, machine translation, and advertising. These DL jobs
exclusively occupy GPUs due to the lack of mature and efficient
hardware/software support for fine-grained GPU sharing [21, 66].
Contrary to the expectation that DL jobs should fully utilize com-
puting resources, we observe that some of them exhibit rather low
utilization of the allocated GPUs. For example, a job with eight
NVIDIA Tesla V100 GPUs used a too small batch size, causing its
GPU utilization to fluctuate primarily between 10% and 40%. An-
other scenario involved a job frequently saving model checkpoints
to a distributed data store for fault tolerance. The large model size
and synchronous remote upload led to recurrent idle GPU periods,
severely hindering the training process. Low GPU utilization of DL
jobs not only results in a substantial waste of precious platform re-
sources (including GPUs, CPUs, main memory, network bandwidth,
and storage) but also reduces development productivity. Such ad-
verse effects may be exacerbated in the widely adopted practice of
automated machine learning (AutoML), where many trial jobs of
the same experiment could share analogous computation processes
and GPU utilization since their programs, neural architectures, and
hyperparameter values are highly similar. As deep learning be-
comes a fundamental component of modern software applications,
and cloud-based platforms serve as the predominant infrastructure
for training and deploying models, it is particularly relevant and
essential for software engineering researchers and practitioners to
comprehend the reasons behind low GPU utilization in DL jobs
and seek solutions. Addressing these issues helps unveil unique
software engineering challenges in the deep learning domain [41]
and develop high-quality, cost-efficient software solutions.

Considerable research has been conducted on CPU utilization [5,
22, 27, 50, 74]. However, previous work could not sufficiently sup-
port developers in enhancing GPU utilization due to fundamental
differences between CPUs and GPUs. These differences encom-
pass various aspects, including the number of computing cores,
cache/memory size, interconnect bandwidth, nature of schedul-
ing, and application programming interface (API). Recently, re-
searchers have performed quite a few empirical studies on deep
learning [7, 25, 26, 28, 29, 69, 82–84], many of which concentrate
on the failures and defects of deep learning programs, jobs, frame-
works, and compilers. For example, Zhang et al. [84] analyzed 175
TensorFlow [1] program bugs from GitHub and Stack Overflow.
Investigating low GPU utilization in large-scale, multi-tenant GPU

clusters dedicated to deep learning training, Jeon et al. [28] identi-
fied resource locality, gang scheduling [55], and job failures as the
root causes from a platform perspective. Their research primarily
focuses on the GPU utilization of clusters instead of individual jobs.

This paper conducts the first comprehensive empirical study
on low GPU utilization of industrial deep learning jobs. We ran-
domly selected 400 real jobs from Platform-X as study subjects.
The average GPU utilization of each job was less than or equal to
50%—a utilization threshold determined in collaboration with the
Platform-X team. Through meticulous examination of job metadata,
execution logs, runtime metrics, scripts, and programs, we discov-
ered 706 low-GPU-utilization issues across the sampled jobs. These
issues were attributed to the code logic of scripts and programs. We
further identified the common root causes, classified them into four
high-level dimensions and fifteen categories, and proposed fixes.

We obtain many findings and list the main ones as follows:
(1) Low GPU utilization of deep learning jobs stems from in-

sufficient GPU computations (e.g., using a small batch size
or running a non-DL, CPU-centric job) and interruptions
caused by non-GPU tasks (e.g., saving a model checkpoint
synchronously to the distributed data store).

(2) Approximately half (46.03%) of the issues are attributed to
data operations, including inefficient data transfer between
main memory and GPU memory (27.90%) and continual data
exchange among GPUs in distributed training (7.08%).

(3) 45.18% of the issues are related to deep learning models and
manifest during both model training and evaluation stages,
such as using improper batch sizes (25.64%) and performing
less efficient model checkpointing (16.43%).

(4) Most (84.99%) low-GPU-utilization issues could be fixed with
a small number of code/script modifications. However, the re-
mainder will necessitate enhancements in deep learning plat-
forms, frameworks, and toolchains. Experimental results on
the BERT [11] and Swin Transformer [38] jobs demonstrate
substantial speedups of up to 7.52X and 3.95X, respectively.

Based on the study results, we provide guidelines to help deep
learning developers utilize GPUs more efficiently. Moreover, we
propose potential future research directions.

In summary, this paper makes the following contributions:
(1) We identify a critical, challenging, and timely research prob-

lem in real-world enterprise AI development practices: low
GPU utilization of deep learning jobs.

(2) Through the first comprehensive empirical study on 400 real
industrial jobs, we discover 706 low-GPU-utilization issues,
identify their root causes, and propose corresponding fixes.

(3) We present the findings of our empirical study and recom-
mend enhancements for both developers and platforms to
improve GPU utilization.

2 BACKGROUND: DEEP LEARNING JOBS ON
PLATFORM-X

Platform-X, Microsoft’s internal deep learning platform, operates
across multiple physical GPU clusters, supporting hundreds of de-
velopers from various research and product teams. Every day, thou-
sands of DL jobs for tasks like object detection, machine translation,
advertising, and gaming are submitted and executed on Platform-X.



An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 1: Workflow of Platform-X.

Platform-X adopts comparable types of computing hardware,
widely used open-source software, and a standard DL program-
ming paradigm. Therefore, the job submission and execution of
Platform-X closely resemble those of public platforms such as Mi-
crosoft Azure Machine Learning [47], Amazon SageMaker [2], and
Google Vertex AI [20]. Figure 1 illustrates a concise overview of
Platform-X’s workflow. Firstly, developers upload their input data,
scripts, programs, and model checkpoints (for continuous training)
to a distributed data store via the web portal or a command-line
tool. The training code is typically written in Python, utilizing DL
frameworks like PyTorch [56] and TensorFlow [1]. Next, develop-
ers specify the job configuration, including resource quota (e.g.,
preferred GPU type and quantity), input/output paths, Docker [44]
image, startup Shell script, main program file, etc. Platform-X offers
a standard deep learning toolchain (e.g., official PyTorch Docker
images) to establish a hermetic environment for job execution. The
submitted jobs are initially queued for scheduling. Once a job is
selected, Platform-X allocates all requested GPUs and resources
at once (using gang scheduling [55]) and instantiates Docker con-
tainers to execute the startup script and main program file. The
subsequent model training takes place on one or more GPU ma-
chines provided by Platform-X. If the job experiences an unexpected
slowdown or a sudden crash during execution, the developer can
directly connect to those worker machines for remote debugging.

From a developer’s perspective, the lifecycle of a DL job is typi-
cally divided into the following four consecutive stages:

(1) Initialization. The job customizes the execution environment
on Platform-X to align with the developer’s local setup due to
inherent environmental differences [82]. For example, many
dependent libraries might be missing, particularly when the
developer specifies an official DL Docker image. Accordingly,
the startup Shell script must install them by either invoking
the pip tool or cloning and building the source code.

(2) Data preprocessing. This stage primarily involves cleaning
and augmenting [18] input data. As the job continually uti-
lizes remote data over extended periods, a common practice
is to initially download input data to all worker machines.

(3) Model training. The deep learning model—essentially a lay-
ered data representation [18]—is constructed using mathe-
matical operations termed operators, such as Conv2d (2D con-
volution) and ReLU (rectified linear unit). Subsequently, the
training process iteratively updates these operators’ learn-
able parameters (biases andweights) until themodel achieves

the desired learning performance (e.g., predictive accuracy).
Periodically, the job assesses its current learning perfor-
mance to prompt adjustments to hyperparameter values
or initiate early termination if necessary.

(4) Model evaluation (i.e., testing). After training, the job quan-
tifies the final learning performance and saves the trained
model and evaluation results to the distributed data store.

Platform-X employs Prometheus [61] to monitor system status
and gather real-time metrics for each DL job at regular intervals.
GPU utilization data is retrieved from the NVIDIA Data Center
GPU Manager (DCGM)1. Additional metrics include GPU mem-
ory footprint, CPU utilization, main memory footprint, network
sent/received bytes, disk read/write bytes, etc.

3 STUDY METHODOLOGY
3.1 Study Design
Our goal is to understand and resolve low GPU utilization of deep
learning jobs. In this paper, we limit our research scope to the real
jobs on Platform-X. These jobs target a wide range of application
areas, and Platform-X shares broad similarities with other deep
learning platforms. We aim to answer the following two questions:

(1) What are the root causes of low-GPU-utilization issues?
(2) What are the current solutions to fix these issues?
The first question aims at revealing the essential reasons behind

the emergence of low-GPU-utilization issues, and the findings can
facilitate the development of effective approaches for issue localiza-
tion. The second question tries to devise practical, non-intrusive,
and easily validated fixes. Therefore, developers can promptly ap-
ply them to mitigate low-GPU-utilization issues without breaking
their programs and jobs. Indeed, we have motivated and discussed
more advanced fixes in Section 5.2. These include GPU utilization
estimation/prediction under various hyperparameter values, hetero-
geneous pipelining, sophisticated model checkpointing, and many
others. However, implementing such advanced fixes is considerably
complicated, necessitating major code modifications to the jobs,
along with indispensable platform and tool support.

In contrast to many prior related studies [7, 26, 29, 69, 83, 84],
there is a lack of available human labels, discussions, conclusions,
and fixes for reference in our research, such as those commonly
found in StackOverflow questions andGitHub issues. Consequently,
we perform manual analysis from scratch using domain expertise
and experience to answer the above two questions. Reference ma-
terials include the related work [7, 26, 28, 84] and best practices of
Platform-X and other platforms [3, 19, 46]. To minimize subjectivity,
each job is independently analyzed by two of the authors, and we
calculate Cohen’s kappa statistic [10] to assess the inter-rater relia-
bility of root cause labeling. When the analysis is over, we involve
group discussion to review the results, resolve disagreements, final-
ize the classification of root causes, and devise fixes for each issue
category. We further organize the issue categories into high-level
dimensions. Experiments are conducted to confirm the issues and
validate the fixes. Regarding complicated cases, we contact the job
submitters directly for clarification.

1https://developer.nvidia.com/dcgm

https://developer.nvidia.com/dcgm


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

3.2 Data Collection
As mentioned before, Platform-X collects the GPU utilization of
jobs periodically. Suppose that a job requested 𝑁 GPUs, with 𝑡 and
𝑡 as its start and end times, respectively. Let 𝑡 𝑗 be 𝐾 time points
(1 ≤ 𝑗 ≤ 𝐾 , and 𝑡 = 𝑡0 < 𝑡1 < · · · < 𝑡𝐾 = 𝑡 ) at which 𝑢𝑖, 𝑗—the
current GPU utilization of the 𝑖-th GPU (1 ≤ 𝑖 ≤ 𝑁 )—was collected.
Therefore, we calculated the average GPU utilization of the 𝑖-th
GPU (denoted by𝑈𝑖 ) and the job (denoted by𝑈 ) as follows:

𝑈𝑖∈[1,𝑁 ] =

∑𝐾
𝑗=1 𝑢𝑖, 𝑗 × (𝑡 𝑗 − 𝑡 ( 𝑗−1) )

𝑡 − 𝑡
, 𝑈 =

∑𝑁
𝑖=1𝑈𝑖

𝑁
.

We started by crawling all jobs submitted within ten days in
August 2021 by developers from both product and research teams.
Next, we filtered out the running, failed, and terminated jobs be-
cause their lifecycles were essentially incomplete, and thus, certain
low-GPU-utilization issues may not be exposed. The system jobs
from dedicated user accounts for testing purposes only were also
excluded. Then, we retained only those jobs with an average GPU
utilization of 50% or less—a utilization threshold determined in
collaboration with the Platform-X team, considering the current
overall GPU utilization of Platform-X as well as domain expertise
and experience. Lastly, we randomly selected 400 jobs across all
job submitters, teams, clusters, and application areas to ensure
greater diversity. These jobs involved training representative mod-
els, such as BERT [11], Swin Transformer [38], NeRF [48], ResNet50,
Inception-V3, and Graph Neural Networks. They targeted a wide
range of application areas, including but not limited to natural
language processing, computer vision, bioinformatics, speech and
audio processing, search engines, advertising, and gaming. For each
selected job, we also collected relevant information for subsequent
investigation, including, for example, job metadata, execution logs,
various runtime metrics, scripts, and programs.

3.3 Identification of Low-GPU-Utilization Issues
We analyzed all 400 jobs manually from scratch. For each candidate
job, we first thoroughly inspected the user-written Shell scripts
and Python programs to understand the job’s purpose and which
devices (such as GPU, CPU, or network) it would operate. If a code
statement invoked third-party library APIs, we also referred to the
library documentation and looked through the library source code
when possible.

Secondly, we correlated Shell and Python code with runtime
metrics, such as the utilization of GPUs, CPUs, and main memory,
for further investigation. Essentially, we located log messages to
infer a code snippet’s start and end timestamps. For example, devel-
opers often print messages before and after model checkpointing
statements. As another example, package installation statements
using the pip tool also output details about the installation process.
Additionally, DL jobs usually write logs (e.g., printing the iteration
number) and perform non-GPU tasks (e.g., accuracy calculation) at
the beginning and end of a training or evaluation iteration. This
causes the GPU utilization to drop suddenly and then recover, al-
lowing us to infer the execution period of each iteration. With the
start and end timestamps, we extracted the runtime metrics from
the time range and correlated them with the code.

Thirdly, we re-evaluated the execution of Shell scripts and Python
programs by cross-referencing them with correlated runtime data.
The objective was to ascertain whether the allocated GPUs had
been in full use during their execution. Low-GPU-utilization issues
could potentially arise if there was room for improving one or more
GPUs’ utilization of GPU-related code (e.g., trying a larger batch
size), or if there existed opportunities to minimize non-GPU-related
operations through reductions, eliminations, or overlaps with other
operations (e.g., transitioning from synchronous to asynchronous
model checkpointing). If uncertain about specific details, we con-
tacted the job owner directly for clarification.

In the end, our investigation discovered a total of 706 low-GPU-
utilization issues attributed to the code logic of the jobs’ scripts and
programs. These issues were classified into fifteen categories by
root causes, employing a general classification schema established
in prior studies [7, 26, 82, 84] (such as “Improper Batch Size”, “Data
Preprocessing”, and “API Misuse”). We also supplemented some
new categories (such as “GPU Oversubscription”, “Unreleased Job”,
and “External Data Usage”). To present a comprehensive overview,
we further organized the categories into four high-level dimensions:
Job, Model, Data, and Library, each associated with the execution
of jobs. We devised fixes based on domain expertise and experience,
related work [7, 26, 28, 84], and best practices of Platform-X and
other platforms [3, 19, 46]. Moreover, experiments on real jobs (such
as BERT [11], Swin Transformer [38], NeRF [48], Fairseq [54], and
many others) were conducted to confirm the issues and validate
the fixes.

3.4 Threats to Validity
Threats to Internal Validity. Due to the unavailability of reference
labeling data, we manually analyzed all jobs using domain expertise
and experience. Therefore, inherent subjectivity arises in analyz-
ing issues, identifying root causes, and proposing fixes, owing to
the complexity of deep learning and the extensive manual effort
involved. To mitigate this threat, each job was independently an-
alyzed by two of the authors. The inter-rater reliability (Cohen’s
kappa statistic [10]) of root cause labeling is 94.51%, indicating a
strong level of agreement. Moreover, experiments were conducted
on Platform-X to confirm the issues and validate the fixes. In in-
stances of disagreement, we strived to reach a group consensus
before finalizing decisions. Regarding complicated jobs, we con-
tacted their submitters directly for clarification.

Threats to External Validity. We conducted our study on DL jobs
that were all collected from Platform-X. These jobs train represen-
tative models and target a wide range of application areas. Addi-
tionally, Platform-X shares broad similarities with other DL plat-
forms in platform architecture, software stack, job management,
and toolchain. However, it is possible that certain findings might
pertain exclusively to Microsoft and might not be applicable to
other companies and platforms. To mitigate this threat, we strived
to avoid drawing conclusions specific to Platform-X and Microsoft
within the study. In Section 5.1, we discuss the generality of our
findings in detail. Another potential threat might be the timeli-
ness of certain fixes dependent on specific hyperparameters or API
behaviors (e.g., setting a particular pin_memory parameter to fix
Inefficient Host-GPU Data Transfer issues in Section 4.3). These



An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Classification of the 706 low-GPU-utilization issues discovered across 400 deep learning jobs.

Dimension Category Description No. Ratio

Job

Interactive Job The execution of a job entails regular interaction with its owner. 15 2.12%
GPU Oversubscription A job requests more GPUs than it actually utilizes. 6 0.85%
Unreleased Job A job does not terminate promptly after completing its computation. 9 1.27%

Non-DL Job A job is unrelated to deep learning and does not utilize GPUs at all. For example, the
job performs data analysis using CPUs solely. 4 0.57%

Subtotal 34 4.82%

Model

Improper Batch Size Improper values of the batch size are used, which decrease the GPU computation of
deep learning operators. 181 25.64%

Insufficient GPU Memory The GPU memory is not sufficient to support more GPU computation. 22 3.12%
Model Checkpointing A job saves model checkpoints synchronously to the distributed data store. 116 16.43%
Subtotal 319 45.18%

Data

Inefficient Host-GPU Data
Transfer The data transfer between main memory and GPU memory is not efficient. 197 27.90%

Data Preprocessing Raw input data is preprocessed using CPUs before model training. 28 3.97%
Remote Data Read A job opens and reads input data directly from the distributed data store. 18 2.55%
External Data Usage A job accesses input data or model files directly from external sites. 18 2.55%
Intermediate Result Upload A job saves intermediate training results synchronously to the distributed data store. 14 1.98%

Data Exchange The GPUs of a distributed job continually exchange data, such as gradients and output
tensors, among one another. 50 7.08%

Subtotal 325 46.03%

Library
Long Library Installation The installation of dependent libraries takes too much time (at least 10 minutes). 12 1.70%
API Misuse API usage violates assumptions. 16 2.27%
Subtotal 28 3.97%

Total 706 100%

fixes may become outdated due to future software updates. In prac-
tice, platform engineers could update such fixes more promptly to
mitigate the threat.

4 STUDY RESULTS
This section presents the categorization of issues and their respec-
tive fixes in detail. Table 1 illustrates the 706 low-GPU-utilization
issues discovered across 400 deep learning jobs, classified into fif-
teen categories by root causes. We further organize these categories
into four high-level dimensions: Job, Model, Data, and Library.

4.1 Dimension 1: Job
This dimension consists of four categories and encompasses 34
(4.82%) low-GPU-utilization issues, attributed to inappropriate job
types or configurations. These issues typically lead to prolonged
idle times or the non-use of one or more GPUs.

Interactive Job (15; 2.12%) means that a DL job entails regular
developer interaction during its execution. For example, a job utiliz-
ing four NVIDIA V100 GPUs ran for approximately 251.8 minutes.
However, the average GPU utilization of this job was less than 1%
because it regularly utilized CPUs for interaction, relegating GPUs
to a brief usage window. In most cases, we observed that develop-
ers connected remotely to Platform-X using SSH. They may either
develop and test their models on Platform-X as they would on local
development machines or debug and optimize their jobs on the plat-
form. Alternatively, developers launched Jupyter [31] notebooks to
execute programs line by line. Due to the non-deterministic nature
of interaction, it is impossible to predict when and for how long the
GPUs will remain idle in advance. A common fix to these issues is
to prevent the submission of interactive jobs. Moreover, platforms

could employ preemptible resources to establish a dedicated service
(e.g., JupyterHub) for interactive computing.

GPU Oversubscription (6; 0.85%): Occasionally, developers re-
quest more GPUs than they actually utilize. When dealing with
distributed jobs, it is crucial to accurately determine the total num-
ber of GPUs for even workload distribution. Typically, developers
specify this quantity as a parameter. However, errors may occur
when the specified value is mistakenly set lower than the actual
number of GPUs. For example, in a PyTorch job, while half of the
eight GPUs exhibited good utilization at 83.24%, the remaining
GPUs showed zero utilization. Our investigation into the scripts
and programs revealed an incorrect setting for the nproc_per_node
parameter2, which was erroneously configured to 4 instead of 8 (all
GPUs originating from a single machine). As a result, four GPUs
remained idle throughout the job’s lifecycle. To fix this type of
issue, developers must meticulously assess how many GPUs they
really need and ensure that their jobs receive the correct number of
GPUs. Moreover, platforms could facilitate resolution by offering
a standardized interface that enables easier access to essential job
configurations, such as through environment variables.

Unreleased Job (9; 1.27%) means that a DL job does not terminate
promptly after completing its computation.We observed a job being
forced to sleep for an extra ten minutes after training. Subsequently,
we contacted the developer for assistance. He intended to upload
the final result to the distributed data store. Assuming that the
remote upload would operate asynchronously, the developer added
enough minutes of sleep to accommodate the upload’s completion.
Contrary to his assumption, accessing the distributed data store
was indeed synchronous. Therefore, this sleeping operation was

2https://pytorch.org/docs/1.12/distributed.html

https://pytorch.org/docs/1.12/distributed.html


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

unnecessary and resulted in a conspicuous waste of eight NVIDIA
V100 GPUs. The fix to this issue is to remove the extra-sleeping code.
In other instances, developers appeared to manage the lifecycles of
their jobs manually; nevertheless, they failed to precisely track the
completion of deep learning computations, causing delays in GPU
release. In general, developers should utilize platforms to manage
job lifecycles instead of relying on their own methods.

Platform-X is a dedicated platform designed for deep learning.
However, we observed that certain data analysis jobs and traditional
machine learning jobs (e.g., classification using scikit-learn [57])
were submitted. Despite developers requesting and being allocated
GPUs, these jobs utilized CPUs solely, resulting in Non-DL Job
issues (4; 0.57%) and causing a severe waste of GPUs. The fix is to
submit non-DL jobs to platforms specifically designed for such tasks,
rather than using Platform-X. For example, an Apache Spark [81]
job should be directed to a big-data analytics platform.

4.2 Dimension 2: Model
There are 319 (45.18%) low-GPU-utilization issues in this dimension,
which are related to deep learning models and manifest during the
model training and evaluation stages.

The first of the three categories, labeled Improper Batch Size,
comprises 181 (25.64%) issues. During the training of a model, var-
ious hyperparameters govern the training process, including the
learning rate and sequence length. Among these, the batch size—
representing the number of input data items in a single training
iteration—exerts a significant influence onmodel training. Improper
batch sizes noticeably decrease the GPU computation of deep learn-
ing operators (expressed as the total number of floating-point oper-
ations or FLOPs), thereby reducing overall GPU utilization. Another
minor issue arises from developers usually using the same batch size
for both model training and evaluation, unaware that the amount of
GPU computation required for each stage differs obviously. Because
model evaluation is less computation-intensive (lacking backpropa-
gation and weight updates), this uniformity could lead to reduced
GPU utilization during the evaluation stage. Figure 2 illustrates an
example with a small batch size. Identifying an Improper Batch Size
issue necessitates that both the average GPU utilization and the
peak GPU memory utilization during the model training or evalu-
ation stage are less than or equal to 50%. We introduce this extra
condition on GPU memory utilization to eliminate cases where the
limited capacity of GPU memory causes low GPU utilization: De-
velopers opt for a small batch size to prevent out-of-GPU-memory
exceptions, as larger batch sizes also increase GPU memory con-
sumption (refer to the second paragraph below). This category
experiences numerous low-utilization issues, given the challenge
for developers to determine the optimal batch size that fully utilizes
target GPUs before job submission. This challenge motivates tool
development to estimate or predict the GPU utilization of deep
learning models [13, 43, 79].

A simple yet common fix is to use reasonably large batch sizes [3,
42, 80] that do not lead to out-of-GPU-memory exceptions during
both model training and evaluation. Developers should strive to
determine optimal batch sizes for three reasons: (1) Deep learn-
ing tasks demand more powerful and abundant GPUs than those
utilized in local development. Consequently, developers have the

1 from torch.utils.data import DataLoader
2
3 train_batch_size = 32 384
4 eval_batch_size = 32 448
5 train_loader = DataLoader(dataset = train_data, batch_size =

train_batch_size, shuffle = True)↩→
6 eval_loader = DataLoader(dataset = eval_data, batch_size =

eval_batch_size, shuffle = True)↩→

Figure 2: A simplified example of Improper Batch Size is-
sues. “train_batch_size” and “eval_batch_size” are specified
arguments for model training and evaluation, respectively.
The fix is to increase their values independently (lines 3–4).

obligation and willingness to fine-tune the batch size, maximizing
the use of platform resources; (2) Considering the rapid growth of
training data and model size, employing larger batch sizes becomes
a pragmatic approach to accomplishing large-scale model training
within a reasonable timeframe; (3) Recent research [42, 68, 80] sug-
gests that there is “no evidence that larger batch sizes degrade out-
of-sample performance.” [68] Note that we are not advocating for
an arbitrary increase in batch size without considering the impact
on training instability. Developers can leverage familiar techniques
such as data shuffling, proper weight initialization, and learning
rate scheduling [3] to stabilize training and enhance model learning
performance. Additionally, tools such as Microsoft DeepSpeed [65]
and NNI [45] offer convenient batch-size autotuning.

The second category is Insufficient GPU Memory (22; 3.12%), in-
dicating a limitation in GPU memory capacity that constrains GPU
utilization. Compared to main memory, the physical memory of
a GPU is notably smaller. When a job consumes excessive GPU
memory (e.g., training a large language model), it becomes chal-
lenging to augment deep learning computation and GPU utilization
(e.g., by enlarging the batch size) due to the potential occurrence
of out-of-GPU-memory exceptions. To illustrate, a GPT-2 [62] job
with a single NVIDIA V100 GPU exhibited an average GPU uti-
lization of only 40%. However, attempts to increase the batch size
were hindered by the imminent depletion of GPU memory, with
peak utilization reaching 83%. Detection of an Insufficient GPU
Memory issue involves two conditions: (1) Average GPU utilization
during model training or evaluation must be less than or equal to
50%; (2) Meanwhile, peak GPU memory utilization should exceed
80%. Developers address this type of issue by either requesting
additional GPUs or optimizing GPU memory usage through careful
data placement and timely cold data swap-out. Another approach
involves leveraging automatic GPU memory management provided
by specific DL frameworks and optimization libraries. For exam-
ple, Microsoft DeepSpeed incorporates the novel Zero Redundancy
Optimizer (ZeRO) [64], significantly conserving GPU memory.

Model Checkpointing (116; 16.43%) is the third and final category.
Model checkpointing preserves the state of a model (including
both the learnable parameters and optimizer condition) to reliable
storage, which is crucial for recovering from job failures. How-
ever, checkpointing is time-consuming due to the substantial data
transfer required from GPU memory to main memory, followed
by writing to the distributed data store over the network. As the
model size increases, this procedure leads to extended periods of
GPU inactivity. For example, a job with a single NVIDIA V100



An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 import torch
2+import threading
3+import shutil
4+import os
5
6 def main():
7 ...
8 for epoch in range(start_epoch, num_epochs):
9 if step > num_training_steps:
10 break
11 ...
12 for i, batch in enumerate(tqdm(train_loader)):
13 ...
14 logits = model(input_data)
15 ...
16 optimizer.zero_grad()
17 loss.backward()
18 optimizer.step()
19 ...
20 f1, pred = evaluator.evaluate(val_loader, model, step)
21 ...
22 if f1 > max_f1:
23 max_f1 = f1
24 torch.save(model, remote_path)
25 + local_path = make_tmp_path(epoch, i)
26 + torch.save(model, local_path)
27
28 + def save_file(local_path, remote_path):
29 + shutil.copyfile(local_path, remote_path)
30 + os.remove(local_path)
31
32 + threading.Thread(target = save_file, args = [local_path,

remote_path]).start()↩→
33
34 if __name__ == '__main__':
35 main()

Figure 3: A simplified example of Model Checkpointing
issues. The fix is to save the checkpoint to a local temporary
file (lines 25–26), followed by an asynchronous copy to the
remote data store in a separate thread (lines 28–32).

GPU saved a new checkpoint at the end of each epoch (i.e., full
training on the entire input data). Nevertheless, the checkpointing
task took an average of 96 seconds, surpassing more than half of
the total epoch duration (168 seconds on average). As a result, the
average GPU utilization of this job dropped significantly to 39.57%.
Moreover, due to the unpredictable nature of failures, DL jobs ne-
cessitate frequent checkpointing to minimize recovery costs, which
continually disrupts normal GPU computations and slows down
model training. A simple yet common fix is to use asynchronous
model checkpointing, enabling both GPUs and I/O devices to work
in parallel [49, 51]. Figure 3 provides an illustrative example. More
advanced checkpointing techniques are discussed in Section 5.2.

4.3 Dimension 3: Data
This is the largest dimension among the four, encompassing 325
(46.03%) low-GPU-utilization issues attributed to diverse data op-
erations. The first five categories pertain to the manipulation of
input, output, and model data, while the sixth category relates to
data exchange among multiple GPUs in distributed training.

Training a model involves loading input data into GPU memory
from its initial residence in main memory. PyTorch developers com-
monly employ the torch.utils.data.DataLoader class [59] to
handle input data. Subsequently, they utilize the torch.Tensor.to

1 import torch
2 from torch.utils.data import DataLoader
3
4 train_loader = DataLoader(train_set,..., num_workers=8,

pin_memory=True)↩→
5 eval_loader = DataLoader(eval_set, ..., num_workers=8,

pin_memory=True)↩→
6
7 for epoch in range(num_epochs):
8 ...
9 for _, data in enumerate(train_loader, 0):
10 # get the inputs
11 inputs, labels = data
12 inputs = inputs.to(device, non_blocking=True)
13 labels = labels.to(device, non_blocking=True)

Figure 4: A simplified example of Inefficient Host-GPU Data
Transfer issues. The fix is to enable automatic memory pin-
ning by setting the pin_memory parameter to True (lines 3–4).
We further set the non_blocking parameter to True (lines 11–
12), which tries asynchronous data transfer if possible.

function3 to transfer input tensors frommainmemory to GPUmem-
ory. However, the default usage of DataLoader disables automatic
memory pinning [59], resulting in increased data transfer latency,
continual fluctuations in GPU utilization, and the emergence of
Inefficient Host-GPU Data Transfer issues. This category comprises
197 (27.90%) issues, accounting for the largest among all the fifteen
categories. Note that these issues are currently confined to PyTorch
jobs, as TensorFlow manages host-GPU data transfer transparently,
leaving developers with no direct control over it. Figure 4 provides
an illustrative example. An effective fix is to set the pin_memory pa-
rameter of DataLoader to True (lines 3–4), which allows input data
to be loaded into locked main memory pages, thereby expediting
subsequent host-GPU data transfer [70]. Developers can also con-
sider setting the non_blocking parameter of torch.Tensor.to
to True (lines 11–12), in which PyTorch “tries to transfer asyn-
chronously with respect to the host if possible.” [59] Moreover, bulk
transfer (i.e., transferring multiple input tensors at once) and tensor
prefetching can further enhance transfer efficiency.

Developers usually engage in preprocessing raw input data, such
as removing erroneous or corrupted data points. Another essential
aspect is dataset augmentation [18]: Developers flip, crop, or ro-
tate input images in computer vision tasks to expand the training
dataset, thereby enhancing model learning performance. Despite
its significance, data preprocessing predominantly relies on CPUs
rather than GPUs, leading to Data Preprocessing issues (28; 3.97%).
A common fix is to preprocess raw input data in advance through
a dedicated data analysis job. Another approach for specific data
types, such as images, audio, or videos, involves leveraging the
NVIDIA Data Loading Library (DALI)4, which allows developers
to expedite preprocessing with GPUs. Figure 5 demonstrates the
utilization of DALI to address a low-utilization issue.

Remote Data Read (18; 2.55%) denotes that a DL job accesses and
retrieves input data directly from the distributed data store. Due
to the relatively sluggish network transfers, GPUs intermittently
pause while waiting for input. Even worse, these remote files will
be repeatedly accessed if the job cannot accommodate the entire

3https://pytorch.org/docs/1.12/generated/torch.Tensor.to.html
4https://developer.nvidia.com/dali

https://pytorch.org/docs/1.12/generated/torch.Tensor.to.html
https://developer.nvidia.com/dali


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

1+from nvidia.dali import *
2
3+@pipeline_def(batch_size=..., num_threads=..., device_id=...)
4+def data_pipeline(path):
5 + jpegs, labels = fn.readers.file(file_root=path)
6 + images = fn.decoders.image(jpegs, ...)
7 + flipped = fn.flip(images, ...)
8 + return flipped, labels
9
10
11 for image_path in files:
12 ...
13 feat_extract.main(image_path = image_path, ...)
14 + pipe = data_pipeline(image_path)
15 + pipe.build()
16 + pipe.run()
17 ...

Figure 5: A simplified example of Data Preprocessing issues.
The fix is to leverage the NVIDIA Data Loading Library, uti-
lizing GPUs instead of CPUs for faster data preprocessing.

input data in main memory because of excessive data volume or
limited memory capacity. A common practice developers adopt is
to download remote input files to the local storage of worker ma-
chines before initiating model training. A more efficient approach,
as discussed in Section 5.2, involves pipelining the sequence of data
copying and model training, which enables training to commence
as soon as partial input data becomes available.

DL jobs can rely on external data sources for their routine work.
For example, when utilizing the Hugging Face Transformers li-
brary [75] for continuous training, developers may require datasets
andmodel files housed within Hugging Face’s own repository. How-
ever, because accessing external sites tends to be less reliable and
slower than the internal storage, these jobs could significantly slow
down, resulting in External Data Usage issues (18; 2.55%). The fix is
to pre-upload the external data into the internal distributed data
store before job submission.

Intermediate Result Upload (14; 1.98%) indicates the frequent up-
loading of intermediate training results in a DL job to the distributed
data store, including regular validation outputs or trial statistics
from an AutoML experiment. All these issues involve synchronous
remote file uploads and share similarities with those found in the
Model Checkpointing category. Consequently, the fix involves a
similar approach: Developers create an asynchronous task to upload
intermediate results.

In a distributed job, GPUs consistently share data such as gra-
dients and output tensors. This data exchange between GPUs,
whether through the network or PCI Express bus, frequently inter-
rupts their designated tasks and causes a sudden drop in GPU utiliza-
tion to zero. Within theData Exchange category, there are 50 (7.08%)
issues. A common fix is to enhance communication efficiency by
minimizing the frequency of data exchange (e.g., using large batch
sizes) and enabling compressed communication [34, 39]. For users
of Horovod [67], enlarging the backward_passes_per_step pa-
rameter5 can help accumulate more local gradient updates and
transmit them simultaneously. Developers can also leverage Mi-
crosoft DeepSpeed’s 3D (data, model, and pipeline) parallelism,
whose 1-bit Adam and 0/1 Adam [39] optimizers demonstrate sig-
nificant reductions in communication volume.

5https://horovod.readthedocs.io/en/stable/api.html

1 # CUDA_VISIBILE_DEVICES=0,1 python -u train.py ...
2 import torch
3 # Main trainer:
4 class Trainer:
5 def __init__(self, model, train_dataset, test_dataset, config):
6 self.model = model
7 self.train_dataset = train_dataset
8 self.eval_dataset = eval_dataset
9 self.config = config
10
11 # take over whatever gpus are on the system
12 self.device = 'cpu'
13 if torch.cuda.is_available():
14 self.device = torch.cuda.current_device()
15 + if torch.cuda.device_count() > 1:
16 + self.model = torch.nn.DataParallel(self.model)
17 self.model = self.model.to(self.device)

Figure 6: A simplified example of API Misuse issues. The
data-parallel job employs just one of the two assigned GPUs.
The fix is to encapsulate the model within the DataParallel
class (lines 17–18) to fully utilize both GPUs.

4.4 Dimension 4: Library
This dimension encompasses 28 (3.97%) low-GPU-utilization issues
attributed to dependent libraries and DL frameworks. These issues
typically lead to prolonged inactive periods or even non-use of one
or more GPUs. There are two categories within this dimension.

Long Library Installation (12; 1.70%) refers to issues where a DL
job expends considerable time, at least 10 minutes, installing neces-
sary libraries during its initialization phase. To illustrate, a job took
approximately 16 minutes simply to transfer an extensive folder of
library code from the distributed data store to the worker machine.
Throughout this period, the assigned NVIDIA V100 GPU remained
inactive, without any workload. Platform-X has indeed offered of-
ficial DL Docker images to establish a hermetic environment for
job execution. Moreover, it supports custom Docker images that
come pre-installed with all required libraries. Despite these provi-
sions, we observed that a majority of jobs continue to handle their
libraries manually by invoking “pip install” for standard Python
packages, cloning library code from the Internet, or directly copying
code folders from the distributed storage. This tendency might be
attributed to the rapid evolution of deep learning toolchains, mak-
ing the maintenance of custom Docker images quite challenging.
We propose that developers proactively construct custom Docker
images encompassing all requisite libraries to reduce waiting time
and prevent library installation failures [82].

API Misuse issues (16; 2.27%) arise from the incorrect usage of
intricate framework/library APIs. We observed several instances
where jobs set erroneous values to CUDA_VISIBLE_DEVICES, an
environment variable responsible for managing GPU visibility in
CUDA applications. For example, a job configured it with an empty
string. As a result, no allocated GPUs were detected, compelling
the job to execute on CPUs for around 481 minutes. These de-
velopers might duplicate startup Shell scripts from other sources,
such as their local development setups, while neglecting to up-
date CUDA_VISIBLE_DEVICES before job submission. Figure 6 illus-
trates another API Misuse issue, where a data-parallel job employs
just one of the two assigned GPUs. The code in line 17 invokes
the torch.nn.Module.to function to load the model into GPU
memory. However, when multiple GPUs are available, the correct

https://horovod.readthedocs.io/en/stable/api.html


An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Experiments on large batch sizes.
Model BZ Average GPU Peak GPU Mem Speedup

Utilization Utilization

BERT

32 55.21% (64.40%) 19.46% 1.00

(large-uncased)

64 55.52% (70.43%) 22.03% 1.96
128 54.91% (79.40%) 27.92% 3.10
256 62.38% (85.59%) 39.15% 4.16
512 57.32% (88.48%) 61.53% 4.67
768 59.06% (90.78%) 84.87% 4.92
1024 N/A: OOM N/A: OOM N/A: OOM

Swin Transformer

8 53.40% (57.79%) 13.95% 1.00
16 55.56% (63.80%) 16.49% 1.79
32 61.00% (73.90%) 21.14% 2.51
64 61.65% (79.36%) 29.97% 2.94
128 62.32% (82.46%) 48.12% 3.32
256 61.81% (85.05%) 84.86% 3.41
384 N/A: OOM N/A: OOM N/A: OOM

Note: “BZ” denotes batch size, while “OOM” indicates that the job ran out of GPU
memory and crashed. The numbers inside the parentheses represent the average
GPU utilization during the model training stage.

approach involves initially utilizing the torch.nn.DataParallel
class6 (lines 15–16). This class encapsulates the model and automat-
ically parallelizes the training on all GPUs by “splitting the input
across the specified devices by chunking in the batch dimension.”6

4.5 Evaluation of Proposed Fixes
We conducted many experiments on real deep learning jobs to
validate the fixes. Upon applying these fixes, we observed that the
overall GPU utilization of all experimental jobs improved. In this
section, we demonstrate the effectiveness of addressing Improper
Batch Size, Model Checkpointing, and Inefficient Host-GPU Data
Transfer issues through large batch sizes, asynchronous model
checkpointing, and automatic memory pinning, respectively. The
selection of these three fixes is based on two primary reasons:

(1) They effectively resolve the top three categories of low-GPU-
utilization issues (refer to Table 1).

(2) The particular issues are fairly common in deep learning
development and impact the entire model training stage.

In our experiments on Platform-X, we chose two representative
real-world jobs. The first one trained BERT [11], a transformer-
based model for natural language processing, with a batch size of 32.
The second job trained Swin Transformer [38], a general-purpose,
transformer-based model for computer vision “whose representa-
tion is computed with shifted windows.” [38] It used a batch size
of 8. In both cases, a new model checkpoint was synchronously
saved to the distributed storage per epoch. The BERT job initially
had automatic memory pinning enabled by default; however, we
deactivated this feature to establish a baseline for comparison.

We re-ran the two jobs with their original settings (e.g., both uti-
lizing eight NVIDIA V100 32GB GPUs). Subsequently, we measured
the average GPU utilization during the entire lifecycle, average
GPU utilization specifically during model training, peak GPU mem-
ory usage, and job execution speedup. To determine the speedup,
we computed 𝑇𝑜𝑟𝑖𝑔

𝑇𝑓 𝑖𝑥𝑒𝑑
, where 𝑇𝑜𝑟𝑖𝑔 and 𝑇𝑓 𝑖𝑥𝑒𝑑 represented the total

execution time of the original and fixed jobs, respectively.
6https://pytorch.org/docs/1.12/generated/torch.nn.DataParallel.html

Table 3: Experiments on asynchronousmodel checkpointing.
Model BZ Ckpt Average GPU Speedup

Mode Utilization

BERT
32

Sync 55.21% (64.40%) 1.00

(large-uncased)
Async 60.96% (63.65%) 1.20

768
Sync 59.06% (90.78%) 4.92
Async 83.74% (90.69%) 7.48

Swin Transformer
8

Sync 53.40% (57.79%) 1.00
Async 53.45% (57.81%) 1.02

256
Sync 61.81% (85.05%) 3.41
Async 56.66% (82.17%) 3.82

Note: “Ckpt” denotes checkpointing.

Table 4: Experiments on automatic memory pinning.
Model BZ Memory Average GPU Speedup

Pinning Utilization

BERT
32

False 55.21% (64.40%) 1.00

(large-uncased)
True 56.25% (63.89%) 1.15

768
False 59.06% (90.78%) 4.92
True 55.69% (92.06%) 5.01

Swin Transformer
8

False 53.40% (57.79%) 1.00
True 54.82% (59.30%) 1.03

256
False 61.81% (85.05%) 3.41
True 62.64% (86.50%) 3.50

The experimental results in Table 2 demonstrate the positive
impact of larger batch sizes on GPU utilization and job execution
speed. As we incremented batch sizes, both jobs eventually maxed
out GPU memory and crashed. Employing previously mentioned
techniques, such as proper weight initialization and learning rate
scheduling [3], helped stabilize training without compromising
model learning performance (e.g., F1 score [9]). For the BERT job,
average GPU utilization during the model training stage surged
from 64.40% to 90.78%, resulting in a noteworthy speedup of up to
4.92X. Similarly, the Swin Transformer job experienced a speedup
of up to 3.41X, with average GPU utilization climbing from 57.79%
to 85.05% during model training. Due to significantly shortened
training and evaluation stages, GPU operations became less and
less dominant in the total execution time. Interestingly, the overall
average GPU utilization of both jobs did not appear to grow steadily;
instead, it even decreased slightly. This suggests the potential for
optimization by enhancing non-GPU operations and stages.

Table 3 illustrates the advantages of asynchronous model check-
pointing in enhancing GPU utilization and runtime performance.
The BERT job experienced a significant boost due to its large model
size and extended checkpoint upload. Moreover, this enhancement
became more noticeable when employing a larger batch size, as
the training time per epoch was considerably reduced, amplify-
ing the proportion of model checkpointing. Table 4 demonstrates
that both jobs also benefit from automatic memory pinning. Even
with a larger batch size, the improvement is still evident due to a
considerable reduction in training time.

By integrating these three fixes, the overall improvement be-
comes substantially more notable. Table 5 indicates that the BERT
job achieves a remarkable final speedup of 7.52X, while the Swin
Transformer job attains a final speedup of 3.95X.

https://pytorch.org/docs/1.12/generated/torch.nn.DataParallel.html


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

Table 5: Experiments integrating large batch sizes, asynchro-
nous model checkpointing, and automatic memory pinning.

Model BZ Ckpt Memory Average GPU Speedup
Mode Pinning Utilization

BERT 32 Sync False 55.21% (64.40%) 1.00
(large-uncased) 768 Async True 85.78% (91.90%) 7.52

Swin Transformer
8 Sync False 53.40% (57.79%) 1.00
256 Async True 58.61% (87.50%) 3.95

5 DISCUSSION
5.1 Generality of Our Study
While our research is conducted exclusively within Microsoft, we
believe that the findings on low GPU utilization are universal and
applicable to other deep learning platforms like Microsoft Azure
Machine Learning [47], Amazon SageMaker [2], and Google Vertex
AI [20]. This perspective is grounded in the broad similarities be-
tween Platform-X and alternative platforms, primarily in two key
aspects. Firstly, the programs of our jobs follow a standard deep
learning programming paradigm, utilizing the identical Python lan-
guage, DL algorithms, frameworks, and associated libraries. More-
over, they target typical DL applications, such as natural language
processing and image recognition. Secondly, the system architec-
ture, computing hardware, and software stack of Platform-X are
widely embraced [4, 28, 77]; our job management mechanism, in-
cluding submission, scheduling, and execution, aligns with prac-
tices employed elsewhere. Consequently, DL jobs across diverse
platforms could experience the same low-GPU-utilization issues.

As a case in point, certain issues arise from the characteristics
of GPUs and deep learning frameworks, making them applicable
across various platforms. GPU memory, notably smaller than main
memory, imposes limitations on the amount of data it can accommo-
date. Consequently, the current lack of a transparent and effective
mechanism within GPUs and frameworks for data placement and
swapping can result in Inefficient Host-GPU Data Transfer and
Insufficient GPU Memory issues. Additionally, the intricacies of
deep learning computations are concealed within frameworks and
proprietary NVIDIA CUDA/cuBLAS/cuDNN APIs. This introduces
quite a challenge in determining optimal batch sizes, other hyperpa-
rameter values, and neural architectures that align well with GPU
computing capacities before job submission.

As another case, specific issues stem from the environmental dif-
ferences between local development machines and platforms [82].
Typically, developers execute their programs interactively for lo-
cal development. However, running interactive jobs becomes un-
affordable due to the preciousness of platform resources. These
environmental discrepancies can also cause library-related issues.
For example, developers may need to install dependent libraries not
included in the standard deep learning Docker images. Meanwhile,
the allocated GPUs have to remain completely idle.

We observe that Google’s performance and cost optimization
guide for machine learning [19] corroborates a number of low-GPU-
utilization issues and proposes similar fixes, affirming the generality
of our study. For example, user-managed notebooks (a type of in-
teractive job) “should be switched off or deleted unless they are
really running experiments.” [19] Additionally, the guide recom-
mends that developers “preprocess the input data once and save it

as a TFRecord file,” [19] effectively resolving Data Preprocessing
issues. The TFRecord format stores processed data in binary form
and improves runtime performance. Developers can also leverage
TensorFlow Transform [71] to establish flexible pipelines, enabling
model training to proceed without waiting for data preprocessing
to complete.

5.2 Future Research Directions
This section proposes potential future research directions based
on our empirical study. In conjunction with the study findings,
these suggestions aim to assist developers and platforms in optimiz-
ing GPU utilization and addressing unique software engineering
challenges in the deep learning domain.
Tool Support.

Estimation and Prediction of GPU Utilization. To comprehend
how GPUs are utilized, developers currently rely on their domain
expertise or submit numerous jobs with diverse neural architec-
tures and hyperparameter values. This process is both technically
demanding and resource- and time-consuming. An alternative ap-
proach involves developing an estimator that infers GPU utilization
and other runtime metrics (e.g., GPU memory consumption [15]
and execution time [60]) for DL models. This can be achieved by
constructing a comprehensive analytic cost model derived from
the actual deep learning computations and GPU computing capac-
ity. Additionally, we can train predictive models [13, 43, 79] using
historical GPU utilization data. For example, DNNPerf [13] adopts
the Graph Neural Network (GNN) to predict the execution time
and GPU memory consumption of training jobs; this methodology
can be adapted for GPU utilization. Estimation and prediction tools
play a crucial role in assisting developers in selecting optimal hy-
perparameter values and neural architectures that fully exploit the
capabilities of target GPUs across various model configurations.
Furthermore, when combined with satisfiability modulo theories
(SMT) solvers [14, 17], such tools enhance practicability by effi-
ciently handling many more candidate configurations within the
real constraints of computational resources.

Code Advisor. Program analysis proves to be a valuable approach
for software defect detection by statically analyzing source code
without execution. Code advisors that perform program analysis on
deep learning scripts, programs, and configuration files can proac-
tively uncover many types of low-GPU-utilization issues before
job submission, including categories such as GPU Oversubscrip-
tion, Inefficient Host-GPU Data Transfer, Remote Data Read, and
Model Checkpointing. Our findings indicate that most (84.99%)
issues could be fixed with a small number of code/script modifica-
tions. Consequently, code advisors have the potential to offer fix
suggestions and automated program repairs to developers.

Efficient Model Checkpointing. DL jobs necessitate model check-
pointing to recover from both hardware and software failures. Nev-
ertheless, frequent checkpointing and synchronous uploading to a
distributed data store, particularly for large language models, can
lead to prolonged and recurrent GPU idle periods. To enhance the
efficiency of model checkpointing, we can employ various tech-
niques such as asynchrony [49, 51], frequency adaptivity [33, 49],
incremental checkpointing [12], data compression [32, 78], high-
performance serialization [63, 73], and distributed caching [35].



An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Platform Improvement.
Heterogeneous Pipelining. Currently, on platforms, GPU alloca-

tion occurs all at once at the beginning [55] and remains unchanged
until job completion. Our observations indicate that many low-GPU-
utilization issues stem from time-consuming synchronous data pro-
cesses, such as download, preprocessing, and upload. Additionally,
fewer GPUs are required during model evaluation compared to
training. The static allocation of GPUs hinders efficient resource
reclamation and causes prolonged periods of GPU inactivity, lead-
ing to substantial GPU waste and noticeable reductions in GPU
utilization. A more effective approach involves restructuring a sin-
gle job as a pipeline of heterogeneous tasks and assigning GPUs
solely and separately to model training and evaluation. As a result,
data preprocessing can be managed by CPU-centric big-data tasks
(e.g., via Apache Spark), with the platform transferring processed
data in either batch or streaming mode to subsequent GPU-based
tasks. This adaptable GPU allocation method significantly enhances
overall GPU utilization on deep learning platforms. Furthermore,
heterogeneous pipelining simplifies data sharing across multiple
jobs; in AutoML training, one data-preprocessing task can distrib-
ute outputs to numerous trial tasks simultaneously, ensuring that
the same input data is processed just once.

GPU Sharing. The NVIDIAMulti-Instance GPU (MIG)7 technique
partitions a GPU (e.g., A30, A100, and H100) into a number of
isolated instances, each equipped with its “own high-bandwidth
memory, cache, and compute cores.”7 Platforms can integrate MIG
into their job schedulers to enhance overall GPU utilization by
dynamically packing a number of low-GPU-utilization jobs across
various instances within a group of shared GPUs.

Distributed Data Caching. Distributed training for large models
has recently gained popularity. However, transferring input data
from distributed storage to each worker machine might not be
affordable or even feasible due to the vast amount of data. To address
this challenge, employing a distributed data cache dedicated to DL
workloads like SiloD [85] can be beneficial in expediting training
and reducing resource waste. This becomes particularly significant
in AutoML scenarios, where multiple trial jobs of an experiment
utilize the same input data. Moreover, similar to established big-data
platforms such as Apache Spark [81] and Microsoft Cosmos [58],
DL platforms should align with frameworks to comprehend how
jobs interact with data, thereby optimizing cache performance.

6 RELATEDWORK
Prior research has primarily concentrated on modeling, estimating,
and predicting CPU utilization [5, 22, 27, 50, 74]. However, these
efforts could not sufficiently support developers in enhancing GPU
utilization due to various fundamental differences between CPUs
and GPUs. Additionally, a number of researchers target perfor-
mance issues [23, 24, 30, 36, 37, 52, 53]. Jin et al. [30] conducted
a comprehensive study on 110 real-world performance bugs ran-
domly selected from five software suites. They derived efficiency
principles from patches to enhance performance bug detection. Nis-
tor et al. [53] and Nistor [52] investigated how developers identified,
reported, and resolved performance bugs. PCatch [36] accurately
predicted performance cascading bugs in representative distributed

7https://www.nvidia.com/en-us/technologies/multi-instance-gpu

systems, based on executions with small-scale workloads. While
the previous studies may not have directly addressed deep learning,
they do provide valuable insights and guidelines for enhancing the
overall runtime performance of DL jobs.

In recent empirical studies on deep learning [7, 16, 25, 26, 28, 29,
69, 82–84], many researchers have focused on investigating the fail-
ures and defects in DL programs, jobs, compilers, and frameworks.
Zhang et al. [82] examined the program failures of 4,960 DL jobs
from Microsoft’s internal platform, while Shen et al. [69] analyzed
603 bugs across three popular DL compilers and developed a fuzzer
for testing Apache TVM [8]. Meanwhile, Jeon et al. [28] investigated
low GPU utilization in large-scale, multi-tenant GPU clusters dedi-
cated to deep learning training. They identified resource locality,
gang scheduling, and job failures as the root causes from a platform
perspective and proposed enhancements for future cluster sched-
ulers. Their research primarily concentrated on the GPU utilization
of clusters instead of individual jobs. Cao et al. [7] characterized 224
performance problems in TensorFlow and Keras programs based
on 210 Stack Overflow posts. This work revealed similarities to cer-
tain issues encountered in our study, such as those stemming from
inappropriate batch sizes. While the investigation of performance
issues in DL programs is becoming a domain of active exploration,
our study delves into the topic of low GPU utilization in industrial
DL jobs. These jobs are distinct from prior study subjects (typically
reported in online posts) in various dimensions, including execu-
tion mode, DL algorithm, job scale, and hardware specification.
Consequently, we unveil a range of unique low-GPU-utilization
issues and fresh insights (such as those related to job submission
and hardware specification) arising in a cloud-based deep learning
platform, yet unexplored by previous research.

Several techniques have been proposed to enhance the GPU uti-
lization and runtime performance of DL programs and jobs. Nicolae
et al. [51] introduced asynchronous model checkpointing to conceal
serialization and I/O overhead by distributing the workload among
all processes. Wu et al. [76] implemented EDL to enable elastic
model training through dynamic adjustment of GPU numbers for
optimal efficiency. Rammer [40] presented a novel DL compiler de-
sign on the automatic optimization of job execution by “exploiting
parallelism through inter- and intra- operator co-scheduling.” [40]
Microsoft DeepSpeed [65] is an optimization library built atop Py-
Torch, achieving extreme-scale and efficient distributed training.
While these techniques address specific low-GPU-utilization is-
sues, our study indicates the need for a comprehensive solution to
optimize overall GPU utilization in deep learning jobs.

7 CONCLUSION
This paper presents a comprehensive empirical study on low GPU
utilization of deep learning jobs. We randomly selected 400 real
jobs from Platform-X and discovered 706 low-GPU-utilization is-
sues attributed to the code logic of the jobs’ scripts and programs.
Furthermore, we manually identified the common root causes and
suggested corresponding fixes. Based on the findings, we proposed
potential research topics to enhance the GPU utilization of jobs. We
believe that our work provides valuable guidelines for the future
development of deep learning programs and platforms.

https://www.nvidia.com/en-us/technologies/multi-instance-gpu


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Y. Gao, Y. He, X. Li, B. Zhao, H. Lin, Y. Liang, J. Zhong, H. Zhang, J. Wang, Y. Zeng, K. Gui, J. Tong, and M. Yang

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 265–283.

[2] Amazon. 2023. Amazon SageMaker. https://aws.amazon.com/sagemaker.
[3] Weights & Biases. 2023. Current Best Practices for Training LLMs from Scratch.

https://wandb.ai/site/llm-whitepaper.
[4] Scott Boag, Parijat Dube, Benjamin Herta, Waldemar Hummer, Vatche Ishakian,

K JAYARAM, Michael Kalantar, Vinod Muthusamy, Priya NAG-PURKAR, and
Florian Rosenberg. 2017. Scalable multi-framework multi-tenant lifecycle man-
agement of deep learning training jobs. In Workshop on ML Systems, NIPS.

[5] Samira Briongos, Pedro Malagón, José L. Risco, and José M. Moya. 2017. Building
Accurate Models to Determine the Current CPU Utilization of a Host within
a Virtual Machine Allocated on It. In Proceedings of the Summer Simulation
Multi-Conference (Bellevue, Washington) (SummerSim ’17). Society for Computer
Simulation International, San Diego, CA, USA, Article 33, 12 pages.

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (apr 2016), 50–57.

[7] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin
Peng. 2022. Understanding Performance Problems in Deep Learning Systems.
In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 357–369.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation. USENIX Association, Carlsbad, CA, 578–594.

[9] Nancy Chinchor. 1992. MUC-4 Evaluation Metrics. In Proceedings of the 4th
Conference on Message Understanding (McLean, Virginia) (MUC4 ’92). Association
for Computational Linguistics, USA, 22–29.

[10] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1.
Association for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.

[12] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. Check-N-Run: a Checkpointing System for Training Deep
Learning Recommendation Models. In 19th USENIX Symposium on Networked
Systems Design and Implementation. USENIX Association, Renton, WA, 929–943.

[13] Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2023.
Runtime Performance Prediction for Deep Learning Models with Graph Neural
Network. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 368–380.

[14] Yanjie Gao, Zhengxian Li, Haoxiang Lin, Hongyu Zhang, Ming Wu, and Mao
Yang. 2022. REFTY: Refinement Types for Valid Deep Learning Models. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 1843–
1855.

[15] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin,
and Mao Yang. 2020. Estimating GPU Memory Consumption of Deep Learning
Models. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 1342–1352.

[16] Yanjie Gao, Xiaoxiang Shi, Haoxiang Lin, Hongyu Zhang, Hao Wu, Rui Li, and
Mao Yang. 2023. An Empirical Study on Quality Issues of Deep Learning Platform.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 455–466.

[17] Yanjie Gao, Yonghao Zhu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2021.
Resource-Guided Configuration Space Reduction for Deep Learning Models. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
175–187.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[19] Google. 2022. Best Practices for Performance and Cost Optimization for Machine
Learning. http://web.archive.org/web/20220521055530/https://cloud.google.com/
architecture/best-practices-for-ml-performance-cost.

[20] Google. 2023. Google Vertex AI. https://cloud.google.com/vertex-ai.
[21] JiazhenGu, Huan Liu, Yangfan Zhou, and XinWang. 2017. DeepProf: Performance

Analysis for Deep Learning Applications via Mining GPU Execution Patterns.
CoRR abs/1707.03750 (2017). arXiv:1707.03750

[22] Hugo Lewi Hammer, Anis yazidi, and Kyrre Begnum. 2016. Reliable Modeling of
CPU Usage in an Office Worker Environment. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (Pisa, Italy) (SAC ’16). Association for
Computing Machinery, New York, NY, USA, 480–483.

[23] Xue Han, Daniel Carroll, and Tingting Yu. 2019. Reproducing performance bug
reports in server applications: The researchers’ experiences. Journal of Systems
and Software 156 (2019), 268–282.

[24] Xue Han and Tingting Yu. 2016. An Empirical Study on Performance Bugs for
Highly Configurable Software Systems. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(Ciudad Real, Spain) (ESEM ’16). Association for Computing Machinery, New
York, NY, USA, Article 23, 10 pages.

[25] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021.
Characterization and Prediction of Deep Learning Workloads in Large-Scale
GPU Datacenters. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC
’21). Association for Computing Machinery, New York, NY, USA, Article 104,
15 pages.

[26] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520.

[27] Deepak Janardhanan and Enda Barrett. 2017. CPU workload forecasting of
machines in data centers using LSTM recurrent neural networks and ARIMA
models. In 2017 12th International Conference for Internet Technology and Secured
Transactions (ICITST). 55–60.

[28] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In Proceedings of the 2019 USENIX Confer-
ence on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC
’19). USENIX Association, USA, 947–960.

[29] Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020. An
Empirical Study on Bugs Inside TensorFlow. In Database Systems for Advanced
Applications: 25th International Conference, DASFAA 2020, Jeju, South Korea, Sep-
tember 24–27, 2020, Proceedings, Part I (Jeju, Korea (Republic of)). Springer-Verlag,
Berlin, Heidelberg, 604–620.

[30] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Un-
derstanding and Detecting Real-World Performance Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New
York, NY, USA, 77–88.

[31] Jupyter. 2023. Project Jupyter. https://jupyter.org.
[32] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. Ndzip-Gpu: Efficient

Lossless Compression of Scientific Floating-Point Data on GPUs. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery,
New York, NY, USA, Article 93, 14 pages.

[33] Zhiling Lan and Yawei Li. 2008. Adaptive Fault Management of Parallel Applica-
tions for High-Performance Computing. IEEE Trans. Comput. 57, 12 (dec 2008),
1647–1660.

[34] Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and
Yuxiong He. 2022. 1-bit LAMB: Communication Efficient Large-Scale Large-
Batch Training with LAMB’s Convergence Speed. In 2022 IEEE 29th International
Conference on High Performance Computing, Data, and Analytics (HiPC). 272–281.

[35] Haoyuan Li. 2018. Alluxio: A Virtual Distributed File System. Ph. D. Dissertation.
EECS Department, University of California, Berkeley.

[36] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S. Gunawi,
Xiaohui Gu, Xicheng Lu, and Dongsheng Li. 2018. PCatch: Automatically De-
tecting Performance Cascading Bugs in Cloud Systems. In Proceedings of the
Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for
Computing Machinery, New York, NY, USA, Article 7, 14 pages.

[37] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detect-
ing Performance Bugs for Smartphone Applications. In Proceedings of the 36th
International Conference on Software Engineering (Hyderabad, India) (ICSE ’14).
Association for Computing Machinery, New York, NY, USA, 1013–1024.

[38] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV). 9992–10002.

[39] Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He.
2023. Maximizing Communication Efficiency for Large-scale Training via 0/1
Adam. In The Eleventh International Conference on Learning Representations.

[40] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-
iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
Holistic Deep Learning Compiler Optimizations with rTasks. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation

https://aws.amazon.com/sagemaker
https://wandb.ai/site/llm-whitepaper
http://www.deeplearningbook.org
http://web.archive.org/web/20220521055530/https://cloud.google.com/architecture/best-practices-for-ml-performance-cost
http://web.archive.org/web/20220521055530/https://cloud.google.com/architecture/best-practices-for-ml-performance-cost
https://cloud.google.com/vertex-ai
https://arxiv.org/abs/1707.03750
https://jupyter.org


An Empirical Study on Low GPU Utilization of Deep Learning Jobs ICSE ’24, April 14–20, 2024, Lisbon, Portugal

(OSDI ’20). USENIX Association, 881–897.
[41] Silverio Martinez-Fernandez, Justus Bogner, Xavier Franch, Marc Oriol, Julien

Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2022. Soft-
ware Engineering for AI-Based Systems: A Survey. ACM Trans. Softw. Eng.
Methodol. 31, 2, Article 37e (apr 2022), 59 pages.

[42] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018. An
Empirical Model of Large-Batch Training. CoRR abs/1812.06162 (2018).

[43] Hengquan Mei, Huaizhi Qu, Jingwei Sun, Yanjie Gao, Haoxiang Lin, and
Guangzhong Sun. 2023. GPU Occupancy Prediction of Deep Learning Mod-
els Using Graph Neural Network. In 2023 IEEE International Conference on Cluster
Computing (CLUSTER). 318–329.

[44] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J. 2014, 239, Article 2 (mar 2014).

[45] Microsoft. 2018. NNI (Neural Network Intelligence): an open source AutoML
toolkit for AutoML lifecycle. https://github.com/microsoft/nni.

[46] Microsoft. 2023. AzureML Large Scale Deep Learning Best Prac-
tices. https://github.com/Azure/azureml-examples/tree/main/best-practices/
largescale-deep-learning.

[47] Microsoft. 2023. Microsoft Azure Machine Learning. https://azure.microsoft.
com/en-us/services/machine-learning-service.

[48] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV.

[49] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). USENIX Association, 203–216.

[50] Langston Nashold and Rayan Krishnan. 2020. Using LSTM and SARIMA Models
to Forecast Cluster CPU Usage. CoRR abs/2007.08092 (2020). arXiv:2007.08092

[51] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. 2020. DeepFreeze: Towards Scalable Asynchronous Checkpoint-
ing of Deep Learning Models. In 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). 172–181.

[52] Adrian Nistor. 2014. Understanding, detecting, and repairing performance bugs.
Ph. D. Dissertation. University of Illinois at Urbana-Champaign. https://mir.cs.
illinois.edu/marinov/publications/Nistor14PhD.pdf

[53] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel:
Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. In
Proceedings of the 37th International Conference on Software Engineering (Florence,
Italy) (ICSE ’15). IEEE Press, 902–912.

[54] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of NAACL-HLT 2019: Demonstrations.

[55] J.K. Ousterhout. 1982. Scheduling techniques for concurrent systems. In Pro-
ceedings of the 3rd International Conference on Distributed Computing Systems.
22–30.

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, Vol. 32. Curran
Associates, Inc., 8024–8035.

[57] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12, 85 (2011), 2825–2830.

[58] Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael Rys,
Ed Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady, Joshua Rowe,
Fan Zhang, Rich Draves, Marc Friedman, Ivan Santa Maria Filho, and Amrish
Kumar. 2021. The Cosmos Big Data Platform at Microsoft: Over a Decade of
Progress and a Decade to Look Forward. Proc. VLDB Endow. 14, 12 (jul 2021),
3148–3161.

[59] PyTorch. 2022. Data Loading Utility. https://pytorch.org/docs/1.12/data.html.
[60] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance

Model for Deep Neural Networks. In Proceedings of ICLR.
[61] Björn Rabenstein and Julius Volz. 2015. Prometheus: A Next-Generation Moni-

toring System (Talk). In SREcon15 Europe. USENIX Association, Dublin.
[62] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).
[63] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. 2021. Breakfast

of Champions: Towards Zero-Copy Serialization with NIC Scatter-Gather. In
Proceedings of the Workshop on Hot Topics in Operating Systems (Ann Arbor,
Michigan) (HotOS ’21). Association for Computing Machinery, New York, NY,
USA, 199–205.

[64] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations toward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 20, 16 pages.

[65] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA, 3505–3506.

[66] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. 2016. vDNN: Virtualized deep neural networks for scalable, memory-
efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1–13.

[67] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799

[68] Chris Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-dickstein, Roy Frostig,
and George Dahl. 2018. Measuring the Effects of Data Parallelism on Neural
Network Training. Journal of Machine Learning Research (JMLR) (2018).

[69] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A Comprehensive Study of Deep Learning Compiler Bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 968–980.

[70] StackOverflow. 2011. Why is CUDA pinned memory so fast? https://
stackoverflow.com/questions/5736968/why-is-cuda-pinned-memory-so-fast.

[71] TensorFlow. 2023. Get Started with TensorFlow Transform. https://www.
tensorflow.org/tfx/transform/get_started.

[72] Neil C. Thompson, Kristjan H. Greenewald, Keeheon Lee, and Gabriel F. Manso.
2020. The Computational Limits of Deep Learning. CoRR abs/2007.05558 (2020).

[73] Kenton Varda et al. 2013. Cap’n Proto serialization/RPC system - core tools and
C++ library. https://github.com/capnproto/capnproto.

[74] Thomas Wang, Simone Ferlin, and Marco Chiesa. 2021. Predicting CPU Usage for
Proactive Autoscaling. In Proceedings of the 1st Workshop onMachine Learning and
Systems (Online, United Kingdom) (EuroMLSys ’21). Association for Computing
Machinery, New York, NY, USA, 31–38.

[75] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. CoRR abs/1910.03771 (2019). arXiv:1910.03771

[76] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, Zhenkun Cai, Yuzhen Huang, James
Cheng, Han Yuan, and Fan Yu. 2022. Elastic Deep Learning in Multi-Tenant
GPU Clusters. IEEE Transactions on Parallel and Distributed Systems 33, 1 (2022),
144–158.

[77] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Schedul-
ing for Deep Learning. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation. USENIX Association, USA, 595–610.

[78] Yifan Yang, Joel S. Emer, and Daniel Sanchez. 2021. SpZip: Architectural Support
for Effective Data Compression in Irregular Applications. In Proceedings of the
48th Annual International Symposium on Computer Architecture (Virtual Event,
Spain) (ISCA ’21). IEEE Press, 1069–1082.

[79] Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, and Peter
Garraghan. 2020. Towards GPUUtilization Prediction for CloudDeep Learning. In
12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20). USENIX
Association.

[80] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD Batch Size to 32K
for ImageNet Training. CoRR abs/1708.03888 (2017). arXiv:1708.03888

[81] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.
2016), 56–65.

[82] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An Empirical Study on Program Failures of Deep Learning Jobs. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). 1159–
1170.

[83] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An Em-
pirical Study of Common Challenges in Developing Deep Learning Applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). 104–115.

[84] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 129–140.

[85] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Mingxia Li, Fan Yang,
Qianxi Zhang, Binyang Li, Yuqing Yang, Lili Qiu, Lintao Zhang, and Lidong Zhou.
2023. SiloD: A Co-Design of Caching and Scheduling for Deep Learning Clusters.
In Proceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
883–898.

https://github.com/microsoft/nni
https://github.com/Azure/azureml-examples/tree/main/best-practices/largescale-deep-learning
https://github.com/Azure/azureml-examples/tree/main/best-practices/largescale-deep-learning
https://azure.microsoft.com/en-us/services/machine-learning-service
https://azure.microsoft.com/en-us/services/machine-learning-service
https://arxiv.org/abs/2007.08092
https://mir.cs.illinois.edu/marinov/publications/Nistor14PhD.pdf
https://mir.cs.illinois.edu/marinov/publications/Nistor14PhD.pdf
https://pytorch.org/docs/1.12/data.html
https://arxiv.org/abs/1802.05799
https://stackoverflow.com/questions/5736968/why-is-cuda-pinned-memory-so-fast
https://stackoverflow.com/questions/5736968/why-is-cuda-pinned-memory-so-fast
https://www.tensorflow.org/tfx/transform/get_started
https://www.tensorflow.org/tfx/transform/get_started
https://github.com/capnproto/capnproto
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1708.03888

	Abstract
	1 Introduction
	2 Background: Deep Learning Jobs on Platform-X
	3 Study Methodology
	3.1 Study Design
	3.2 Data Collection
	3.3 Identification of Low-GPU-Utilization Issues
	3.4 Threats to Validity

	4 Study Results
	4.1 Dimension 1: Job
	4.2 Dimension 2: Model
	4.3 Dimension 3: Data
	4.4 Dimension 4: Library
	4.5 Evaluation of Proposed Fixes

	5 Discussion
	5.1 Generality of Our Study
	5.2 Future Research Directions

	6 Related Work
	7 Conclusion
	References

