
Published as a conference paper at ICLR 2024

CASCADING REINFORCEMENT LEARNING

Yihan Du
Electrical and Computer Engineering
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA
yihandu@illinois.edu

R. Srikant∗
Electrical and Computer Engineering
University of Illinois Urbana-Champaign
Urbana, IL 61801, USA
rsrikant@illinois.edu

Wei Chen∗

Microsoft Research
Beijing 100080, China
weic@microsoft.com

ABSTRACT

Cascading bandits have gained popularity in recent years due to their applicability
to recommendation systems and online advertising. In the cascading bandit model,
at each timestep, an agent recommends an ordered subset of items (called an item
list) from a pool of items, each associated with an unknown attraction probability.
Then, the user examines the list, and clicks the first attractive item (if any), and after
that, the agent receives a reward. The goal of the agent is to maximize the expected
cumulative reward. However, the prior literature on cascading bandits ignores the
influences of user states (e.g., historical behaviors) on recommendations and the
change of states as the session proceeds. Motivated by this fact, we propose a
generalized cascading RL framework, which considers the impact of user states and
state transition into decisions. In cascading RL, we need to select items not only
with large attraction probabilities but also leading to good successor states. This
imposes a huge computational challenge due to the combinatorial action space. To
tackle this challenge, we delve into the properties of value functions, and design an
oracle BestPerm to efficiently find the optimal item list. Equipped with BestPerm,
we develop two algorithms CascadingVI and CascadingBPI, which are both
computation-efficient and sample-efficient, and provide near-optimal regret and
sample complexity guarantees. Furthermore, we present experiments to show the
improved computational and sample efficiencies of our algorithms compared to
straightforward adaptations of existing RL algorithms in practice.

1 INTRODUCTION

In recent years, a model called cascading bandits (Kveton et al., 2015; Combes et al., 2015; Li et al.,
2016; Vial et al., 2022) has received extensive attention in the online learning community, and found
various applications such as recommendation systems (Mary et al., 2015) and online advertising (Tang
et al., 2013). In this model, an agent is given a ground set of items, each with an unknown attraction
probability. At each timestep, the agent recommends an ordered list of items to a user, and the user
examines the items one by one, where the probability that each item attracts the user is equal to its
attraction probability. Then, the user clicks the first attractive item (if any), and skips the following
items. If an item is clicked in the list, the agent receives a reward; if no item is clicked, the agent
receives no reward. The objective of the agent is to maximize the expected cumulative reward.

While the cascading bandit model has been extensively studied, it neglects the influences of user
states (e.g., users’ past behaviors) on recommendations, and the fact that states can transition as
users take actions. For example, in personalized video recommendation, the recommendation system
usually suggests a list of videos according to the characteristics and viewing records of users. If
the user clicks a video, the environment of the system can transition to a next state that stores the

∗Corresponding authors.

1

Published as a conference paper at ICLR 2024

user’s latest behavior and interest. Next, the recommendation system will suggest videos of a similar
type as what the user watched before to improve the click-through rate. While contextual cascading
bandits (Li et al., 2016; Zong et al., 2016) can also be used to formulate users’ historical behaviors
as part of contexts, cascading RL is more suitable for long-term reward maximization, since it
considers potential rewards from future states. For instance, to maximize the long-term reward,
the recommendation system may recommend videos of TV series, since users may keep watching
subsequent videos of the same TV series once they get attracted to one of them.

To model such state-dependent behavior, we propose a novel framework called cascading rein-
forcement learning (RL), which generalizes the conventional cascading bandit model to depict the
influence of user states on recommendations and the transition of states in realistic applications.
In this framework, there is a pool of N items and a space of states. Each state-item pair has an
unknown attraction probability, an underlying transition distribution and a deterministic reward. In
each episode (e.g., a session in recommendation systems), at each step, the agent first observes the
current state (e.g., the user’s past behavior in the session), and recommends a list of at most m ≤ N
items. Then, the user goes over the list one by one, and clicks the first interesting item. After that, the
agent receives a reward, and transitions to a next state according to the current state and clicked item.
If no item in the list interests the user, the agent receives zero reward, and transitions to a next state
according to the current state and a virtual item a⊥. Here we say that the user clicks a⊥ if no item is
clicked. We define a policy as a mapping from the space of states and the current step to the space of
item lists, and the optimal policy as the policy that maximizes the expected cumulative reward.

Our work distinguishes itself from prior cascading bandit studies (Kveton et al., 2015; Vial et al.,
2022) on its unique computational challenge. In prior cascading bandit studies, there is no state, and
they only need to select m items with the highest attraction probabilities, which does not involve
computational difficulty. In contrast, in cascading RL, states also matter, and we need to balance
between the maximization of the attraction probabilities of chosen items and the optimization of
the expected reward obtained from future states. This poses a great computational difficulty in the
planning of the optimal policy under a combinatorial action space. Moreover, the combinatorial
action space also brings a challenge on sample efficiency, i.e., how to avoid a dependency on the
exponential number of actions in sample complexity.

To handle these challenges, we conduct a fine-grained analysis on the properties of value functions,
and design an efficient oracle BestPerm to find the optimal item list, based on a novel dynamic
programming for combinatorial optimization. Furthermore, we design computation-efficient and
sample-efficient algorithms CascadingVI and CascadingBPI, which employ oracle BestPerm to
only maintain the estimates for items and avoid enumerating over item lists. Finally, we also conduct
experiments to demonstrate the superiority of our algorithms over naive adaptations of classic RL
algorithms in computation and sampling.

The contributions of this work are summarized as follows.

• We propose the cascading RL framework, which generalizes the traditional cascading bandit
model to formulate the influence of user states (e.g., historical behaviors) on recommen-
dations and the change of states through time. This framework can be applied to various
real-world scenarios, e.g., personalized recommendation systems and online advertising.

• To tackle the computational challenge of cascading RL, we leverage the properties of value
functions to develop a novel oracle BestPerm, which uses a carefully-designed dynamic
programming to efficiently find the optimal item list under combinatorial action spaces.

• For the regret minimization objective, with oracle BestPerm, we design an efficient algo-
rithm CascadingVI, and establish a Õ(H

√
HSNK) regret, which matches a known lower

bound for the general episodic RL setting up to Õ(
√
H). Here S is the number of states, H

is the length of each episode, and K is the number of episodes. Note that the regret depends
only on the number of items N , instead of the exponential number of item lists.

• For the best policy identification objective, we devise a computation and sample efficient
algorithm CascadingBPI, and provide Õ(H

3SN
ε2) sample complexity. CascadingBPI is

optimal up to a factor of Õ(H) when ε < H
S2 , where ε is an accuracy parameter.

2

Published as a conference paper at ICLR 2024

2 RELATED WORK

Cascading bandits. Kveton et al. (2015) and Combes et al. (2015) concurrently introduce the
cascading bandit model, and design algorithms based on upper confidence bounds. Cheung et al.
(2019) and Zhong et al. (2021) propose Thompson Sampling-type (Thompson, 1933) algorithms.
Vial et al. (2022) develop algorithms equipped with variance-aware confidence intervals, and achieve
near-optimal regret bounds. In these cascading bandit studies, there is no state (context), and the
order of selected items does not matter. Thus, they only need to select m items with the maximum
attraction probabilities. Li et al. (2016); Zong et al. (2016) and Li & Zhang (2018) study linear
contextual cascading bandits. In (Zong et al., 2016; Li & Zhang, 2018), the attraction probabilities
depend on contexts, and the order of selected items still does not matter. Hence, they need to select
m items with the maximum attraction probabilities in the current context. Li et al. (2016) consider
position discount factors, where the order of selected items is important.

Different from the above studies, our cascading RL formulation further considers state transition,
and the attraction probabilities and rewards depend on states. Thus, we need to put the items that
induce higher expected future rewards in the current state in the front. In addition, we require to both
maximize the attraction probabilities of selected items, and optimize the potential future reward.

Provably efficient RL. In recent years, there have been a number of studies on provably efficient
RL, e.g., (Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al., 2017; Jin et al., 2018; Zanette &
Brunskill, 2019). However, none of the above studies tackle the challenge of combinatorial action
space and the computation and sample efficiency issues it brings. In contrast, we have to directly face
this challenge when we generalize cascading bandits to the RL framework to better formulate the state
transition in real-world recommendation and advertising applications, and we provide satisfactory
solutions with near optimal computation and sample efficiency.

3 PROBLEM FORMULATION

We consider an episodic cascading Markov decision process (MDP)M(S, Aground,A,m, q, p, r,H).
Here S is the space of states. Aground := {a1, . . . , aN , a⊥} is the ground set of items, where
a1, . . . , aN are regular items and a⊥ is a virtual item. Item a⊥ is put at the end of each item list
by default, which represents that no item in the list is clicked. An action (i.e., item list) A is a
permutation which consists of at least one and at most m ≤ N regular items and the item a⊥ at the
end. A is the collection of all actions. We use “action” and “item list” interchangeably throughout the
paper. For any A ∈ A and i ∈ [|A|], let A(i) denote the i-th item in A, and we have A(|A|) = a⊥.

For any (s, a) ∈ S × Aground, q(s, a) ∈ [0, 1] denotes the attraction probability, which gives the
probability that item a is clicked in state s; r(s, a) ∈ [0, 1] is the deterministic reward of clicking
item a in state s; p(·|s, a) ∈ △S is the transition distribution, so that for any s′ ∈ S , p(s′|s, a) gives
the probability of transitioning to state s′ if item a is clicked in state s. For any s ∈ S, we define
q(s, a⊥) := 1 and r(s, a⊥) := 0 (because if no regular item is clicked, the agent must click a⊥ and
receives zero reward). Transition probability p(·|s, a⊥) allows to formulate interesting transition
scenarios that could happen when none of the recommended items is clicked. One of such scenarios
is that the session ends with no more reward, which is modeled by letting p(s0|s, a⊥) = 1 where s0
is a special absorbing state that always induces zero reward.

H is the length of each episode. In addition, we define a deterministic policy π = {πh : S →
A}h∈[H] as a collection of H mappings from the state space to the action space, so that πh(s) gives
what item list to choose in state s at step h.

The cascading RL game is as follows. In each episode k, an agent first chooses a policy πk, and starts
from a fixed initial state sk1 := s1. At each step h ∈ [H], the agent first observes the current state skh
(e.g., stored historical behaviors of the user), and then selects an item list Ak

h = πk
h(s

k
h) according to

her policy. After that, the environment (user) browses the selected item list one by one following
the order given in Ak

h. When the user browses the i-th item Ak
h(i) (i ∈ [|Ak

h|]), there is a probability
of q(skh, A

k
h(i)) that the user is attracted by the item and clicks it. This attraction and clicking event

is independent among all items. Once an item Ak
h(i) is clicked, the agent observes which item is

clicked and receives reward r(skh, A
k
h(i)), skipping the subsequent items {Ak

h(j)}i<j≤|Ak
h|

, and the
system transitions to a next state skh+1 ∼ p(·|skh, Ak

h(i)). On the other hand, if no regular item in Ak
h

3

Published as a conference paper at ICLR 2024

is clicked, i.e., we say that a⊥ is clicked, then the agent receives zero reward and transitions to a next
state skh+1 ∼ p(·|skh, a⊥). After step H , this episode ends and the agent enters the next episode.

For any k > 0 and h ∈ [H], we use Ik,h to denote the index of the clicked item in Ak
h, and Ik,h = |Ak

h|
if no regular item is clicked. In our cascading RL model, the agent only observes the attraction of
items {Ak

h(j)}j≤Ik,h
(i.e., items {Ak

h(j)}j<Ik,h
are not clicked and item Ak

h(i) is clicked), and the
state skh+1 the system transitions into based on the unknown p(·|skh, Ak

h(Ik,h)). Whether the user
would click any item in {Ak

h(j)}j>Ik,h
is unobserved.

For any policy π, h ∈ [H] and s ∈ S, we define value function V π
h : S → [0, H] as the expected

cumulative reward that can be obtained under policy π, starting from state s at step h, till the end of
the episode. Formally, V π

h (s) := Eq,p,π[
∑H

h′=h r(sh′ , Ah′(Ih′))|sh = s]. Similarly, for any policy
π, h ∈ [H] and (s,A) ∈ S ×A, we define Q-value function Qπ

h : S ×A → [0, H] as the expected
cumulative reward received under policy π, starting from (s,A) at step h, till the end of the episode,
i.e., Qπ

h(s,A) := Eq,p,π[
∑H

h′=h r(sh′ , Ah′(Ih′))|sh = s,Ah = A]. Since S, A and H are finite,
there exists a deterministic optimal policy π∗ which always gives the maximum value V π∗

h (s) for all
s ∈ S and h ∈ [H] (Sutton & Barto, 2018). The Bellman equation and Bellman optimality equation
for cascading RL can be stated as follows.

Qπ
h(s,A) =

|A|∑
i=1

i−1∏
j=1

(
1− q(s,A(j))

)
q(s,A(i))

(
r(s,A(i)) + p(·|s,A(i))⊤V π

h+1

)
,

V π
h (s) = Qπ

h(s, πh(s)),

V π
H+1(s) = 0, ∀s ∈ S,∀A ∈ A,∀h ∈ [H].

Q∗
h(s,A) =

|A|∑
i=1

i−1∏
j=1

(
1− q(s,A(j))

)
q(s,A(i))

(
r(s,A(i)) + p(·|s,A(i))⊤V ∗

h+1

)
,

V ∗
h (s) = max

A∈A
Q∗

h(s,A),

V ∗
H+1(s) = 0, ∀s ∈ S,∀A ∈ A,∀h ∈ [H].

(1)

Here
∏i−1

j=1(1 − q(s,A(j)))q(s,A(i)) is the probability that item A(i) is clicked, which captures
the cascading feature. r(s,A(i)) + p(·|s,A(i))⊤V ∗

h+1 is the expected cumulative reward received
from step h onward if item A(i) is clicked at step h. Q∗

h(s,A) is the summation of the expected
cumulative reward over each item in A. In this work, we focus on the tabular setting where S is not
too large. This is practical in category-based recommendation applications. For example, in video
recommendation, the videos are categorized into multiple types, and the recommendation system can
suggest videos according to the types of the latest one or two videos that the user just watched.

We investigate two popular objectives in RL, i.e., regret minimization and best policy identification.
In the regret minimization setting, the agent plays K episodes with the goal of minimizing the regret
R(K) =

∑K
k=1 V

∗
1 (s1) − V πk

1 (s1). In the best policy identification setting, given a confidence
parameter δ ∈ (0, 1) and an accuracy parameter ε, the agent aims to identify an ε-optimal policy
π̂ which satisfies V π̂

1 (s1) ≥ V ∗
1 (s1) − ε with probability at least 1 − δ, using as few episodes as

possible. Here the performance is measured by the number of episodes used, i.e., sample complexity.

4 AN EFFICIENT ORACLE FOR CASCADING RL

In the framework of model-based RL, it is typically assumed that one has estimates (possibly including
exploration bonuses) of the model, and then a planning problem is solved to compute the value
functions. In our problem, this would correspond to solving the maximization in Eq. (1). Different
from planning in classic RL (Jaksch et al., 2010; Azar et al., 2017; Sutton & Barto, 2018), in cascading
RL, a naive implementation of this maximization will incur exponential computation complexity due
to the fact that we have to consider all A ∈ A.

To tackle this computational difficulty, we note that each backward recursion step in Eq. (1) involves
the solution to a combinatorial optimization of the following form: For any ordered subset of Aground

4

Published as a conference paper at ICLR 2024

denoted by A, u : Aground → R and w : Aground → R,

max
A∈A

f(A, u,w) :=

|A|∑
i=1

i−1∏
j=1

(
1− u(A(j))

)
u(A(i))w(A(i)). (2)

Here f(A, u,w) corresponds to Q∗
h(s,A), u(A(i)) represents q(s,A(i)), and w(A(i)) stands for

r(s,A(i)) + p(·|s,A(i))⊤V ∗
h+1. We have u(a⊥) = 1 to match with q(s, a⊥) = 1.

4.1 CRUCIAL PROPERTIES OF PROBLEM (2)

Before introducing an efficient oracle to solve problem Eq. (2), we first exhibit several nice properties
of this optimization problem, which serve as the foundation of our oracle design.

For any subset of items X ⊆ Aground, let Perm(X) denote the collection of permutations of the items
in X , and DesW(X) ∈ Perm(X) denote the permutation where items are sorted in descending order
of w. For convenience of analysis, here we treat a⊥ as an ordinary item as a1, . . . , aN , and a⊥ can
appear in any position in the permutations in Perm(X).

Lemma 1. The weighted cascading reward function f(A, u,w) satisfies the following properties:

(i) For any u, w and X ⊆ Aground, we have

f(DesW(X), u, w) = max
A∈Perm(X)

f(A, u,w).

(ii) For any u, w and disjoint X,X ′ ⊆ Aground \ {a⊥} such that w(a) > w(a⊥) for any a ∈ X,X ′,
we have

f((DesW(X), a⊥), u, w) ≤ f((DesW(X ∪X ′), a⊥), u, w).

Furthermore, for any u, w and disjoint X,X ′ ⊆ Aground \ {a⊥} such that w(a) > w(a⊥) for
any a ∈ X , and w(a) < w(a⊥) for any a ∈ X ′, we have

f((DesW(X,X ′), a⊥), u, w) ≤ f((DesW(X), a⊥), u, w).

Property (i) can be proved by leveraging the continued product structure in f(A, u,w) and a similar
analysis as the interchange argument (Bertsekas & Castanon, 1999; Ross, 2014). Property (ii) follows
from property (i) and the fact that u(a⊥) = 1. The detailed proofs are presented in Appendix B.

Remark. Property (i) exhibits that when fixing a subset of Aground, the best order of this subset is to
rank items in descending order of w. Then, the best permutation selection problem in Eq. (2) can be
reduced to a best subset selection problem.

Then, a natural question is what items and how many items should the best subset (permutation)
include? Property (ii) gives an answer —– we should include the items with weights above w(a⊥),
and discard the items with weights below w(a⊥). The intuition behind is as follows: If a permutation
does not include the items in X ′ such that w(a) > w(a⊥) for any a ∈ X ′, this is equivalent to putting
X ′ behind a⊥, since u(a⊥) = 1. Then, according to property (i), we can arrange the items in X ′ in
front of a⊥ (i.e., include them) to obtain a better permutation. Similarly, if a permutation includes
the items X ′ such that w(a) < w(a⊥) for any a ∈ X ′, from property (i), we can also obtain a better
permutation by putting X ′ behind a⊥, i.e., discarding them.

4.2 ORACLE BestPerm

Making use of the properties of f(A, u,w), we develop an efficient oracle BestPerm to solve problem
Eq. (2), based on a carefully-designed dynamic programming to find the optimal item subset.

Algorithm 1 presents the pseudo-code of oracle BestPerm. Given attraction probabilities u and
weights w, we first sort the items in Aground in descending order of w, and denote the sorted sequence
by a1, . . . , aJ , a⊥, aJ+1, . . . , aN . Here J denotes the number of items with weights above w(a⊥).
If J = 0, i.e., a⊥ has the highest weight, since the solution must contain at least one item, we choose
the best single item as the solution (lines 3-4). If 1 ≤ J ≤ m, (a1, . . . , aJ) satisfies the cardinality
constraint and is the best permutation (lines 6-7). If J > m, to meet the cardinality constraint, we

5

Published as a conference paper at ICLR 2024

Algorithm 1: BestPerm: find argmaxA∈A f(A, u,w) and maxA∈A f(A, u,w)

Input: Aground, u : Aground → [0, 1], w : Aground → R.
1 Sort the items in Aground in descending order of w, and denote the sorted sequence by

a1, . . . , aJ , a⊥, aJ+1, . . . , aN . Here J denotes the number of items with weights above w(a⊥);
2 if J = 0 then
3 a′ ← argmaxa∈{a1,...,aN}{u(a)w(a) + (1− u(a))w(a⊥)}; // Select the best single item
4 Sbest ← (a′). F best ← u(a′)w(a′) + (1− u(a′))w(a⊥);
5 if 1 ≤ J ≤ m then
6 Sbest ← (a1, . . . , aJ); // Simply output (a1, . . . , aJ)
7 F best ←

∑J
i=1

∏i−1
j=1(1− u(aj))u(ai)w(ai) +

∏J
j=1(1− u(aj))w(a⊥);

8 if J > m then
9 S[J][1]← (aJ); // Select m best items from (a1, . . . , aJ)

10 F [J][1]← u(aJ)w(aJ) + (1− u(aJ))w(a⊥);
11 For any i ∈ [J], S[i][0]← ∅ and F [i][0]← w(a⊥);
12 For any i ∈ [J] and J − i+ 1 < k ≤ m, F [i][k]← −∞;
13 for i = J − 1, J − 2, . . . , 1 do
14 for k = 1, 2, . . . ,min{m,J − i+ 1} do
15 if F [i+ 1][k] ≥ w(ai)u(ai) + (1− u(ai))F [i+ 1][k − 1] then
16 S[i][k]← S[i+ 1][k]. F [i][k]← F [i+ 1][k];
17 else
18 S[i][k]← (ai, S[i+ 1][k − 1]);
19 F [i][k]← u(ai)w(ai) + (1− u(ai))F [i+ 1][k − 1];

20 Sbest ← S[1][m]. F best ← F [1][m];

21 return F best, Sbest;

need to select m best items from (a1, . . . , aJ) which maximize the objective value, i.e.,
max

(a′
1,...,a

′
m)⊆(a1,...,aJ)

f((a′1, . . . , a
′
m), u, w). (3)

Eq. (3) is a challenging combinatorial optimization problem, and costs exponential computation com-
plexity if one performs naive exhaustive search. To solve Eq. (3), we resort to dynamic programming.
For any i ∈ [J] and k ∈ [min{m,J − i+ 1}], let S[i][k] and F [i][k] denote the optimal solution and
optimal value of the problem max(a′

1,...,a
′
k)⊆(ai,...,aJ) f((a

′
1, . . . , a

′
k), u, w). Utilizing the structure

of f(A, u,w), we have

F [J][1] = u(aJ)w(aJ) + (1− u(aJ))w(a⊥),

F [i][0] = w(a⊥), 1 ≤ i ≤ J,

F [i][k] = −∞, 1 ≤ i ≤ J, J − i+ 1 < k ≤ m,

F [i][k] = max{F [i+ 1][k],

u(ai)w(ai) + (1− u(ai))F [i+ 1][k − 1]}, 1 ≤ i ≤ J − 1, 1 ≤ k ≤ min{m,J − i+ 1}.
The idea of this dynamic programming is as follows. Consider that we want to select k best items
from (ai, . . . , aJ). If we put ai into the solution, we need to further select k − 1 best items from
(ai+1, . . . , aJ). In this case, we have F [i][k] = u(ai)w(ai)+ (1−u(ai))F [i+1][k− 1]; Otherwise,
if we do not put ai into the solution, we are just selecting k best items from (ai+1, . . . , aJ), and
then F [i][k] = F [i + 1][k]. After computing this dynamic programming, we output S[1][m] and
F [1][m] as the optimal solution and optimal value of Eq. (2) (lines 9-20). Below we formally state
the correctness of BestPerm.

Lemma 2 (Correctness of Oracle BestPerm). Given any u : Aground → [0, 1] and w : Aground → R,
the permutation Sbest returned by algorithm BestPerm satisfies

f(Sbest, u, w) = max
A∈A

f(A, u,w).

BestPerm achieves O(Nm+N log(N)) computation complexity. This is dramatically better than
the computation complexity of the naive exhaustive search, which is O(|A|) = O(Nm).

6

Published as a conference paper at ICLR 2024

Algorithm 2: CascadingVI
Input: δ, δ′ := δ

14 , L := log(KHSN
δ′). For any k > 0 and s ∈ S, q̄k(s, a⊥) = qk(s, a⊥) := 1

and V̄ k
H+1(s) = V k

H+1(s) := 0. Initialize n1,q(s, a) = n1,p(s, a) := 0 for any
(s, a) ∈ S ×A.

1 for k = 1, 2, . . . ,K do
2 for h = H,H − 1, . . . , 1 do
3 for s ∈ S do
4 for a ∈ Aground \ {a⊥} do
5 bk,q(s, a)← min{2

√
q̂k(s,a)(1−q̂k(s,a))L

nk,q(s,a)
+ 5L

nk,q(s,a)
, 1};

6 q̄k(s, a)← q̂k(s, a) + bk,q(s, a). qk(s, a)← q̂k(s, a)− bk,q(s, a);

7 for a ∈ Aground do

8 bk,pV (s, a)←min{2
√

Var
s′∼p̂k

(V̄ k
h+1(s

′))L

nk,p(s,a)
+

2

√
E
s′∼p̂k

[(V̄ k
h+1(s

′)−V k
h+1(s

′))2]L

nk,p(s,a)
+ 5HL

nk,p(s,a)
, H};

9 w̄k(s, a)← r(s, a) + p̂k(·|s, a)⊤V̄ k
h+1 + bk,pV (s, a);

10 V̄ k
h (s), πk

h(s)← BestPerm(Aground, q̄k(s, ·), w̄k(s, ·));
11 V̄ k

h (s)← min{V̄ k
h (s), H}. A′ ← πk

h(s);

12 V k
h(s)← max{

∑|A′|
i=1

∏i−1
j=1(1− q̄k(s,A′(j)))qk(s,A′(i))(r(s,A′(i)) +

p̂k(·|s,A′(i))⊤V k
h+1 − bk,pV (s,A′(i))), 0};

13 for h = 1, 2, . . . ,H do
14 Observe the current state skh; // Take policy πk and observe the trajectory
15 Take action Ak

h = πk
h(s

k
h). i← 1;

16 while i ≤ m do
17 Observe if Ak

h(i) is clicked or not. Update nk,q(skh, A
k
h(i)) and q̂k(skh, A

k
h(i));

18 if Ak
h(i) is clicked then

19 Receive reward r(skh, A
k
h(i)), and transition to a next state

skh+1 ∼ p(·|skh, Ak
h(i));

20 Ik,h ← i. Update nk,p(skh, A
k
h(i)) and p̂k(·|skh, Ak

h(i));
21 break while; // Skip subsequent items
22 else
23 i← i+ 1;

24 if i = m+ 1 then
25 Transition to a next state skh+1 ∼ p(·|skh, a⊥); // No item was clicked
26 Update nk,p(skh, a⊥) and p̂k(·|skh, a⊥);

5 REGRET MINIMIZATION FOR CASCADING RL

In this section, we study cascading RL with the regret minimization objective. Building upon oracle
BestPerm, we propose an efficient algorithm CascadingVI, which is both computation and sample
efficient and has a regret bound that nearly matches the lower bound.

5.1 ALGORITHM CascadingVI

Algorithm 2 describes CascadingVI. In each episode k, we construct the exploration bonus for the
attraction probability bk,q and the exploration bonus for the expected future reward bk,pV . Then, we
calculate the optimistic attraction probability q̄k(s, a) and weight w̄k(s, a), by adding exploration
bonuses for q(s, a) and p(·|s, a)⊤V individually (lines 6 and 9). Here the weight w̄k(s, a) represents
an optimistic estimate of the expected cumulative reward that can be obtained if item a is clicked
in state s. Then, utilizing the monotonicity property of f(A, u,w) with respect to the attraction

7

Published as a conference paper at ICLR 2024

probability u and weight w, we invoke oracle BestPerm with q̄k(s, ·) and w̄k(s, ·) to efficiently
compute the optimistic value function V̄ k

h (s) and its associated greedy policy πk
h(s) (line 10).

After obtaining policy πk, we play episode k with πk (lines 14-26). At each step h ∈ [H], we first
observe the current state skh, and select the item list Ak

h = πk
h(s). Then, the environment (user)

examines the items in Ak
h and clicks the first attractive item. Once an item Ak

h(i) is clicked, the
agent receives a reward and transitions to skh+1 ∼ p(·|skh, Ak

h(i)), skipping the subsequent items.
If no item in Ak

h is clicked, the agent receives zero reward and transitions to skh+1 ∼ p(·|skh, a⊥).
In line 17, we increment the number of attraction observations nk,q(skh, A

k
h(i)) by 1, and update

the empirical attraction probability q̂k(skh, A
k
h(i)). In lines 20 and 26, we increment the number of

transition observations nk,p(skh, A
k
h(i)) (or nk,p(skh, a⊥)) by 1, and update the empirical transition

distribution p̂k(·|skh, Ak
h(i)) (or p̂k(·|skh, a⊥)) by incrementing the number of transitions to skh+1 by 1

and keeping the number of transitions to other states unchanged.

If one naively applies classical RL algorithms (Azar et al., 2012; Zanette & Brunskill, 2019) by
treating each A ∈ A as an ordinary action, one will suffer a dependency on |A| in the results. By
contrast, CascadingVI only maintains the estimates of attraction and transition probabilities for each
(s, a), and employs oracle BestPerm to directly compute V̄ k

h (s), without enumerating over A ∈ A.
Therefore, CascadingVI avoids the dependency on |A| in computation and statistical complexities.

5.2 THEORETICAL GUARANTEE OF ALGORITHM CascadingVI

In regret analysis, we need to tackle several challenges: (i) how to guarantee the optimism of the
output value by oracle BestPerm with the optimistic estimated inputs, and (ii) how to achieve the
optimal regret bound when the problem degenerates to cascading bandits (Kveton et al., 2015; Vial
et al., 2022). To handle these challenges, we prove the monotonicity property of f(A, u,w) with
respect to the attraction probability u and weight w, leveraging the fact that the items in the optimal
permutation are ranked in descending order of w. This monotonicity property ensures the optimism
of the value function V̄ k

h (s). In addition, we employ the variance-awareness of the exploration bonus
bk,q(s, a), scaling as q̂k(s, a)(1− q̂k(s, a)), to save a factor of

√
m in the regret bound. This enables

our result to match the optimal result for cascading bandits (Vial et al., 2022) in the degenerated case.

Theorem 1 (Regret Upper Bound). With probability at least 1 − δ, the regret of algorithm
CascadingVI is bounded by

Õ
(
H
√
HSNK

)
.

From Theorem 1, we see that the regret of CascadingVI depends only on the number of items N ,
instead of the number of item lists |A| = O(Nm). This demonstrates the efficiency of our estimation
scheme and exploration bonus design. When our problem degenerates to cascading bandits, i.e.,
S = H = 1, our regret bound matches the optimal result for cascading bandits (Vial et al., 2022).

Lower bound and optimality. Recall from (Jaksch et al., 2010; Osband & Van Roy, 2016) that
the lower bound for classic RL is Ω(H

√
SNK). Since cascading RL reduces to classic RL when

q(s, a) = 1 for any (s, a) ∈ S ×Aground (i.e., the user always clicks the first item), the lower bound
Ω(H

√
SNK) also holds for cascading RL.

Our regret bound matches the lower bound up to a factor of
√
H when ignoring logarithmic factors.

Regarding this gap, one possibility is that it comes from our upper bound analysis. Specifically, we add
exploration bonuses for q and p⊤V individually, which leads to a term (q+bk,q)(p̂⊤V̄ +bk,pV −p⊤V)

in regret decomposition. Here the term bk,q(p̂⊤V̄ +bk,pV −p⊤V) = Õ(Hbk,q) leads to a Õ(H
√
HK)

regret, which causes the extra
√
H gap. A straightforward idea to avoid this is to regard q and p as

an integrated transition distribution of (s,A), and construct an overall exploration bonus for (s,A).
However, this strategy forces us to maintain the estimates for all A ∈ A, and will incur a dependency
on |A| in computation and statistical complexities. Another possibility behind the gap

√
H is that it

is needed in a tight lower bound for any polynomial-time algorithm for cascading RL. Therefore, how
to close the gap

√
H while maintaining the computational efficiency remains open for future work.

8

Published as a conference paper at ICLR 2024

0 20000 40000 60000 80000 100000
The Number of Episodes K

0

5000

10000

15000

20000

25000

30000

Cu
m

ul
at

iv
e

Re
gr

et

N=10, |A|=820

CascadingVI 1194.29s
CascadingVI-Oracle 21809.87s
CascadingVI-Bonus 1099.32s
AdaptVI 28066.90s

0 20000 40000 60000 80000 100000
The Number of Episodes K

0

5000

10000

15000

20000

25000

30000

Cu
m

ul
at

iv
e

Re
gr

et

N=15, |A|=2955

CascadingVI 2291.00s
CascadingVI-Oracle 71190.59s
CascadingVI-Bonus 2144.96s
AdaptVI 53214.95s

0 20000 40000 60000 80000 100000
The Number of Episodes K

0

5000

10000

15000

20000

25000

30000

35000

Cu
m

ul
at

iv
e

Re
gr

et

N=20, |A|=7240

CascadingVI 2770.94s
CascadingVI-Oracle 145794.64s
CascadingVI-Bonus 2731.21s
AdaptVI 81135.42s

0 20000 40000 60000 80000 100000
The Number of Episodes K

0

10000

20000

30000

40000

Cu
m

ul
at

iv
e

Re
gr

et

N=25, |A|=14425

CascadingVI 5216.00s
CascadingVI-Oracle 196125.72s
CascadingVI-Bonus 5066.27s
AdaptVI 95235.55s

Figure 1: Experiments for cascading RL on real-world data.

6 BEST POLICY IDENTIFICATION FOR CASCADING RL

Now we turn to cascading RL with best policy identification. We propose an efficient algorithm
CascadingBPI to find an ε-optimal policy. Here we mainly introduce the idea of CascadingBPI,
and defer the detailed pseudo-code and description to Appendix D.1 due to space limit.

In CascadingBPI, we optimistically estimate q(s, a) and p(·|s, a)⊤V , and add exploration bonuses
for them individually. Then, we call the oracle BestPerm to compute the optimistic value function
and hypothesized optimal policy. Furthermore, we construct an estimation error to bound the deviation
between the optimistic value function and true value function. If this estimation error shrinks within
ε, we simply output the hypothesized optimal policy; Otherwise, we play an episode with this policy.
In the following, we provide the sample complexity of CascadingBPI.

Theorem 2. With probability at least 1− δ, algorithm CascadingBPI returns an ε-optimal policy,
and the number of episodes used is bounded by Õ(H

3SN
ε2 log(1δ) +

H2
√
HSN

ε
√
ε

(log
(
1
δ

)
+ S)), where

Õ(·) hides logarithmic factors with respect to N,H, S and ε.

Theorem 2 reveals that the sample complexity of CascadingBPI is polynomial in problem parameters
N , H , S and ε, and independent of |A|. Regarding the optimality, since cascading RL reduces to
classic RL when q(s, a) = 1 for all (s, a) ∈ S ×Aground, existing lower bound for classic best policy
identification Ω(H

2SN
ε2 log(1δ)) (Dann & Brunskill, 2015) also applies here. This corroborates that

CascadingBPI is near-optimal up to a factor of H when ε < H
S2 .

7 EXPERIMENTS

In this section, we present experimental results on a real-world dataset MovieLens (Harper & Konstan,
2015), which contains millions of ratings for movies by users. We set δ = 0.005, K = 100000,
H = 3, m = 3, S = 20, N ∈ {10, 15, 20, 25} and |A| ∈ {820, 2955, 7240, 14425}. We defer the
detailed setup and more results to Appendix A.

We compare our algorithm CascadingVI with three baselines, i.e., CascadingVI-Oracle,
CascadingVI-Bonus and AdaptVI. Specifically, CascadingVI-Oracle replaces the efficient ora-
cle BestPerm by a naive exhaustive search. CascadingVI-Bonus replaces the variance-aware explo-
ration bonus bk,q by a variance-unaware bonus. AdaptVI adapts the classic RL algorithm (Zanette
& Brunskill, 2019) to the combinatorial action space, which maintains the estimates for all (s,A).
As shown in Figure 1, our algorithm CascadingVI achieves the lowest regret and a fast running
time. CascadingVI-Oracle has a comparative regret performance to CascadingVI, but suffers a
much higher running time, which demonstrates the power of our oracle BestPerm in computation.
CascadingVI-Bonus attains a similar running time as CascadingVI, but has a worse regret. This
corroborates the effectiveness of our variance-aware exploration bonus in enhancing sample effi-
ciency. AdaptVI suffers a very high regret and running time, since it learns the information of all
permutations independently and its statistical and computational complexities depend on |A|.

8 CONCLUSION

In this work, we formulate a cascading RL framework, which generalizes the cascading bandit model
to characterize the impacts of user states and state transition in applications such as recommendation
systems. We design a novel oracle BestPerm to efficiently identify the optimal item list under
combinatorial action spaces. Building upon this oracle, we develop efficient algorithms CascadingVI
and CascadingBPI with near-optimal regret and sample complexity guarantees.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

The work of Yihan Du and R. Srikant is supported in part by AFOSR Grant FA9550-24-1-0002, ONR
Grant N00014-19-1-2566, and NSF Grants CNS 23-12714, CNS 21-06801, CCF 19-34986, and CCF
22-07547.

REFERENCES

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert Kappen. On the sample complexity of
reinforcement learning with a generative model. In International Conference on Machine Learning,
2012.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pp. 263–272. PMLR,
2017.

Dimitri P Bertsekas and David A Castanon. Rollout algorithms for stochastic scheduling problems.
Journal of Heuristics, 5:89–108, 1999.

Wang Chi Cheung, Vincent Tan, and Zixin Zhong. A thompson sampling algorithm for cascading
bandits. In International Conference on Artificial Intelligence and Statistics, pp. 438–447. PMLR,
2019.

Richard Combes, Stefan Magureanu, Alexandre Proutiere, and Cyrille Laroche. Learning to rank: Re-
gret lower bounds and efficient algorithms. In Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 231–244, 2015.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 2818–2826, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: uniform PAC bounds
for episodic reinforcement learning. In Advances in Neural Information Processing Systems, pp.
5717–5727, 2017.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems, 5(4):1–19, 2015.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
In Advances in Neural Information Processing Systems, pp. 4868–4878, 2018.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In International Conference on Algorithmic
Learning Theory, pp. 865–891. PMLR, 2021.

Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits: Learning
to rank in the cascade model. In International Conference on Machine Learning, pp. 767–776.
PMLR, 2015.

Shuai Li and Shengyu Zhang. Online clustering of contextual cascading bandits. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In International Conference on Machine Learning, pp. 1245–1253. PMLR, 2016.

Jérémie Mary, Romaric Gaudel, and Philippe Preux. Bandits and recommender systems. In Machine
Learning, Optimization, and Big Data: First International Workshop, MOD 2015, Taormina, Sicily,
Italy, July 21-23, 2015, Revised Selected Papers 1, pp. 325–336. Springer, 2015.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7599–7608. PMLR, 2021.

10

Published as a conference paper at ICLR 2024

Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforcement learning. arXiv
preprint arXiv:1608.02732, 2016.

Sheldon M Ross. Introduction to stochastic dynamic programming. Academic press, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Liang Tang, Romer Rosales, Ajit Singh, and Deepak Agarwal. Automatic ad format selection
via contextual bandits. In Proceedings of the ACM International Conference on Information &
Knowledge Management, pp. 1587–1594, 2013.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Daniel Vial, Sujay Sanghavi, Sanjay Shakkottai, and R Srikant. Minimax regret for cascading bandits.
In Advances in Neural Information Processing Systems, volume 35, pp. 29126–29138, 2022.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pp. 7304–7312. PMLR, 2019.

Zixin Zhong, Wang Chi Chueng, and Vincent YF Tan. Thompson sampling algorithms for cascading
bandits. Journal of Machine Learning Research, 22(1):9915–9980, 2021.

Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cascading
bandits for large-scale recommendation problems. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, pp. 835–844. AUAI Press, 2016.

11

Published as a conference paper at ICLR 2024

𝑠0

𝑠1 𝑠2

Reward 1

𝑠3 𝑠4

𝑠2 𝐻−1 −1 𝑠2(𝐻−1)

… …

Reward 0

Reward 0

ℎ = 1

ℎ = 2

ℎ = 𝐻

𝑎 ∈ 𝑎𝑁−𝑚+1, … , 𝑎𝑁 : 𝑤. 𝑝. 0.1𝑎 ∈ 𝑎𝑁−𝑚+1, … , 𝑎𝑁 : 𝑤. 𝑝. 0.9

𝑎 ∈ 𝑎1, … , 𝑎𝑁−𝑚} ∪ {𝑎⊥ : 𝑤. 𝑝. 0.1 𝑎 ∈ 𝑎1, … , 𝑎𝑁−𝑚} ∪ {𝑎⊥ : 𝑤. 𝑝. 0.9

Figure 2: The constructed cascading MDP in synthetic data.

0 2000 4000 6000 8000 10000
The Number of Episodes K

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
e

Re
gr

et

CascadingVI 76.68s
AdaptVI 128.29s

(a) Regret minimization, N = 4

0 2000 4000 6000 8000 10000
The Number of Episodes K

0

2000

4000

6000

8000

10000

12000

14000

Cu
m

ul
at

iv
e

Re
gr

et

CascadingVI 178.70s
AdaptVI 1806.26s

(b) Regret minimization, N = 8

4 5 6 7 8
The Number of Items N

5000

10000

15000

20000

Sa
m

pl
e

Co
m

pl
ex

ity

CascadingBPI - Samples
AdaptBPI - Samples

0

500

1000

1500

2000

2500

3000

3500

Ru
nn

in
g

Ti
m

e
(s

)

CascadingBPI - Time
AdaptBPI - Time

(c) Best policy identification

Figure 3: Experiments for cascading RL on synthetic data.

APPENDIX

A MORE EXPERIMENTS

In this section, we describe the setup for the experiments on real-world data (Figure 1), and present
more experimental results on synthetic data (Figure 3).

A.1 EXPERIMENTAL SETUP WITH REAL-WORLD DATA

In our experiments in Figure 1, we consider the real-world dataset MovieLens (Harper & Konstan,
2015), which is also used in prior cascading bandit works (Zong et al., 2016; Vial et al., 2022). This
dataset contains 25 million ratings on a 5-star scale for 62000 movies by 162000 users. We regard
each user as a state, and each movie as an item. For each user-movie pair, we scale the rating to
[0, 1] and regard it as the attraction probability. The reward of each user-movie pair is set to 1. For
each user-movie pair which has a rating no lower than 4.5 stars, we set the transition probability
to this state (user) itself as 0.9, and that to other states (users) as 0.9

S−1 . For each user-movie pair
which has a rating lower than 4.5 stars, we set the transition probability to all states (users) as 1

S . We
use a subset of data from MovieLens, and set δ = 0.005, K = 100000, H = 3, m = 3, S = 20,
N ∈ {10, 15, 20, 25} and |A| =

∑m
m̃=1

(
N
m̃

)
m̃! ∈ {820, 2955, 7240, 14425}.

12

Published as a conference paper at ICLR 2024

A.2 EXPERIMENTS ON SYNTHETIC DATA

For synthetic data, we consider a cascading MDP with H layers, S = 2H − 1 states and N items as
shown in Figure 2: There is only an initial state s0 in the first layer. For any 2 ≤ h ≤ H , there are a
good state s2(h−1)−1 and a bad state s2(h−1) in layer h. The reward function depends only on states.
All good states induce reward 1, and all bad states and the initial state give reward 0. The attraction
probability for all state-item pairs is 1

2 . Denote Aground = {a1, . . . , aN}. For any h ∈ [H], under a
good item a ∈ {aN−m+1, . . . , aN}, the transition probabilities from each state in layer h to the good
state and the bad state in layer h+ 1 are 0.9 and 0.1, respectively. On the contrary, under a bad item
a ∈ {a1, . . . , aN−m} ∪ {a⊥}, the transition probabilities from each state in layer h to the good state
and the bad state in layer h + 1 are 0.1 and 0.9, respectively. Therefore, in this MDP, an optimal
policy is to select good items (aN−m+1, . . . , aN) in all states.

We set δ = 0.005, H = 5, S = 9 and m = 3. Each algorithm is performed for 20 independent
runs. In the regret minimization setting, we let N ∈ {4, 8} and K = 10000, and show the
average cumulative regrets and average running times (in the legend) across runs. In the best policy
identification setting, we set ϵ = 0.5 and N ∈ {4, 5, 6, 7, 8}, and plot the average sample complexities
and average running times across runs with 95% confidence intervals.

Under the regret minimization objective, we compare our algorithm CascadingVI with AdaptVI.
From Figures 3(a) and 3(b), one can see that CascadingVI achieves significantly lower regret and
running time than AdaptVI, and this advantage becomes more clear as N increases. This result
demonstrates the efficiency of our computation oracle and estimation scheme.

Regarding the best policy identification objective, we compare our algorithm CascadingBPI with
AdaptBPI, an adaptation of a classic best policy identification algorithm in (Ménard et al., 2021)
to combinatorial actions. In Figure 3(c), as N increases, the sample complexity and running time
of AdaptBPI increase exponentially fast. By contrast, CascadingBPI has much lower sample
complexity and running time, and enjoys a mild growth rate as N increases. This matches our
theoretical result that the sample and computation complexities of CascadingBPI are polynomial in
N .

B PROOFS FOR ORACLE BestPerm

In this section, we present the proofs for oracle BestPerm.

First, we introduce two important lemmas which are used in the proof of Lemma 1.

Lemma 3 (Interchange by Descending Weights). For any u : Aground 7→ [0, 1], w : Aground 7→ R
and A = (a1, . . . , aℓ, aℓ+1, . . . , an) such that 1 ≤ ℓ < n and w(aℓ) < w(aℓ+1), denoting A′ :=
(a1, . . . , aℓ+1, aℓ, . . . , an), we have

f(A, u,w) ≤ f(A′, u, w).

Proof of Lemma 3. This proof uses a similar idea as the interchange argument (Bertsekas & Castanon,
1999; Ross, 2014). We have

f(A, u,w)− f(A′, u, w)

=

ℓ−1∏
j=1

(1− u(aj)) · (u(aℓ)w(aℓ) + (1− u(aℓ))u(aℓ+1)w(aℓ+1))

−
ℓ−1∏
j=1

(1− u(aj)) · (u(aℓ+1)w(aℓ+1) + (1− u(aℓ+1))u(aℓ)w(aℓ))

=

ℓ−1∏
j=1

(1− u(aj)) · (u(aℓ+1)u(aℓ)w(aℓ)− u(aℓ)u(aℓ+1)w(aℓ+1))

=

ℓ−1∏
j=1

(1− u(aj)) · u(aℓ)u(aℓ+1) · (w(aℓ)− w(aℓ+1))

13

Published as a conference paper at ICLR 2024

≤ 0.

Lemma 4 (Items behind a⊥ Do Not Matter). For any ordered subsets of {a1, . . . , aN}, A and A′,
such that A ∩A′ = ∅, we have

f((A, a⊥, A
′), u, w) = f((A, a⊥), u, w).

Proof. Since u(a⊥) = 1, we have
f((A, a⊥, A

′), u, w)

=

|A|∑
i=1

i−1∏
j=1

(
1− u(A(j))

)
u(A(i))w(A(i)) +

|A|∏
j=1

(
1− u(A(j))

)
u(a⊥)w(a⊥)

+

|A′|∑
i=1

(|A|∏
ℓ=1

(
1− u(A(ℓ))

)(
1− u(a⊥)

) i−1∏
j=1

(
1− u(A′(j))

))
u(A′(i))w(A′(i))

=

|A|∑
i=1

i−1∏
j=1

(
1− u(A(j))

)
u(A(i))w(A(i)) +

|A|∏
j=1

(
1− u(A(j))

)
u(a⊥)w(a⊥)

=f((A, a⊥), u, w).

Now we prove Lemma 1.

For any X ⊆ Aground, let Perm(X) denote the collection of permutations of the items in X , and
DesW(X) ∈ Perm(X) denote the permutation where items are sorted in descending order of w.

Proof of Lemma 1. First, we prove property (i) by contradiction.

Suppose that the best permutation A∗ = argmaxA∈Perm(X) f(A, u,w) does not rank items in
descending order of w. In other words, there exist some aℓ, aℓ+1 such that we can write
A∗ = (a1, . . . , aℓ, aℓ+1, . . . , a|X|) and w(aℓ) < w(aℓ+1).

Then, using Lemma 3, we have that A′ = (a1, . . . , aℓ+1, aℓ, . . . , a|X|) satisfies f(A′, u, w) ≥
f(A∗, u, w), which contradicts the supposition. Given any permutation in Perm(X), we can repeat-
edly perform Lemma 3 to obtain a better permutation as bubble sort, until all items are ranked in
descending order of w. Therefore, we obtain property (i).

Next, we prove property (ii).

For any u, w and disjoint X,X ′ ⊆ Aground \ {a⊥} such that w(a) > w(a⊥) for any a ∈ X,X ′, we
have

f((DesW(X), a⊥), u, w)
(a)
= f((DesW(X), a⊥, X

′), u, w)

(b)
≤ f((DesW(X ∪X ′), a⊥), u, w),

Here in the right-hand side of equality (a), X ′ can be in any order, and inequality (b) uses property
(i).

Furthermore, for any u, w and disjoint X,X ′ ⊆ Aground \ {a⊥} such that w(a) > w(a⊥) for any
a ∈ X , and w(a) < w(a⊥) for any a ∈ X ′, we have

f((DesW(X,X ′), a⊥), u, w)
(c)
≤ f((DesW(X), a⊥,DesW(X ′)), u, w)

= f((DesW(X), a⊥), u, w),

where inequality (c) is due to property (i).

Next, we prove Lemma 2.

14

Published as a conference paper at ICLR 2024

Proof of Lemma 2. From Lemma 1 (i), we have that when fixing a subset of Aground, the best order
of this subset is to rank items in descending order of w. Thus, the problem of finding the best
permutation in Eq. (2) reduces to finding the best subset, and then we can just sort items in this subset
by descending w to obtain the solution.

We sort the items in Aground in descending order of w, and denote the sorted sequence by
a1, . . . , aJ , a⊥, aJ+1, . . . , aN . Here J denotes the number of items with weights above a⊥.

According to Lemma 1 (ii), we have that the best permutation only consists of items in a1, . . . , aJ .
In other words, we should discard aJ+1, . . . , aN .

Case (i). If 1 ≤ J ≤ m, (a1, . . . , aJ) satisfies the cardinality constraint and is the best permutation.

Case (ii). Otherwise, if J = 0, we have to select a single best item to satisfy that there is at least
one regular item in the solution.

Why do not we select more items? We can prove that including more items gives a worse permutation
by contradiction. Without loss of generality, consider a permutation with an additional item, i.e.,
(a, a′, a⊥), where a, a′ ∈ Aground \ {a⊥} and w(a), w(a′) < w(a⊥). Using Lemma 3, we have

f((a, a′, a⊥), u, w) ≤ f((a, a⊥, a
′), u, w)

= f((a, a⊥), u, w).

In this case, the best permutation is the best single item argmaxa∈{a1,...,aN} f((a, a⊥), u, w).

Case (iii). If J > m, the problem reduces to selecting m best items from a1, . . . , aJ . For
any i ∈ [J] and k ∈ [min{m,J − i + 1}], let F [i][k] denote the optimal value of the problem
max(a′

1,...,a
′
k)⊆(ai,...,aJ) f((a

′
1, . . . , a

′
k), u, w). From the structure of f(A, u,w), we have the follow-

ing dynamic programming:

F [J][1] = u(aJ)w(aJ) + (1− u(aJ))w(a⊥),

F [i][0] = w(a⊥), 1 ≤ i ≤ J,

F [i][k] = −∞, 1 ≤ i ≤ J, J − i+ 1 < k ≤ m,

F [i][k] = max{F [i+ 1][k],

u(ai)w(ai) + (1− u(ai))F [i+ 1][k − 1]}, 1 ≤ i ≤ J − 1, 1 ≤ k ≤ min{m,J − i+ 1}.
Then, F [1][m] gives the objective value of the best permutation.

Combining the above analysis, we have that BestPerm returns the best permutation, i.e.,
f(Sbest, u, w) = maxA∈A f(A, u,w).

C PROOFS FOR CASCADING RL WITH REGRET MINIMIZATION

In this section, we provide the proofs for cascading RL with the regret minimization objective.

C.1 VALUE DIFFERENCE LEMMA FOR CASCADING MDP

We first give the value difference lemma for cascading MDP, which is useful for regret decomposition.

Lemma 5 (Cascading Value Difference Lemma). For any two cascading MDPs
M′(S, Aground,A,m,H, q′, p′, r′) and M′′(S, Aground,A,m,H, q′′, p′′, r′′), the difference in
values under the same policy π satisfies

V ′π
h (s)−V ′′π

h (s) =

H∑
t=h

Eq′′,p′′,π

[|At|∑
i=1

i−1∏
j=1

(1− q′(st, At(j)))q
′(st, At(i))r

′(st, At(i))

−
|At|∑
i=1

i−1∏
j=1

(1− q′′(st, At(j)))q
′′(st, At(i))r

′′(st, At(i))

15

Published as a conference paper at ICLR 2024

+

(|At|∑
i=1

i−1∏
j=1

(1− q′(st, At(j)))q
′(st, At(i))p

′(·|st, At(i))

−
|At|∑
i=1

i−1∏
j=1

(1− q′′(st, At(j)))q
′′(st, At(i))p

′′(·|st, At(i))

)⊤

V ′π
t+1

∣∣∣∣sh = s,Ah = πh(sh)

]
.

Proof of Lemma 5. Let A := πh(s). We have
V ′π
h (s)− V ′′π

h (s)

=

|A|∑
i=1

i−1∏
j=1

(1− q′(s,A(j)))q′(s,A(i))
(
r′(s,A(i)) + p′(·|s,A(i))⊤V ′π

h+1

)
−

|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))
(
r′′(s,A(i)) + p′′(·|s,A(i))⊤V ′′π

h+1

)
=

|A|∑
i=1

i−1∏
j=1

(1− q′(s,A(j)))q′(s,A(i))r′(s,A(i))−
|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))r′′(s,A(i))

+

(|A|∑
i=1

i−1∏
j=1

(1− q′(s,A(j)))q′(s,A(i))p′(·|s,A(i))

−
|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))p′′(·|s,A(i))

)⊤

V ′π
h+1

+

|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))p′′(·|s,A(i))⊤
(
V ′π
h+1 − V ′′π

h+1

)
=

|A|∑
i=1

i−1∏
j=1

(1− q′(s,A(j)))q′(s,A(i))r′(s,A(i))−
|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))r′′(s,A(i))

+

(|A|∑
i=1

i−1∏
j=1

(1− q′(s,A(j)))q′(s,A(i))p′(·|s,A(i))

−
|A|∑
i=1

i−1∏
j=1

(1− q′′(s,A(j)))q′′(s,A(i))p′′(·|s,A(i))

)⊤

V ′π
h+1

+ Eq′′,p′′,π

[
V ′π
h+1(sh+1)− V ′′π

h+1(sh+1)|sh = s, π
]

=Eq′′,p′′,π

[
H∑
t=h

(|At|∑
i=1

i−1∏
j=1

(1− q′(st, At(j)))q
′(st, At(i))r

′(st, At(i))

−
|At|1∑
i=1

i−1∏
j=1

(1− q′′(st, At(j)))q
′′(st, At(i))r

′′(st, At(i))

+

(|At|∑
i=1

i−1∏
j=1

(1− q′(st, At(j)))q
′(st, At(i))p

′(·|st, At(i))

−
|At|∑
i=1

i−1∏
j=1

(1− q′′(st, At(j)))q
′′(st, At(i))p

′′(·|st, At(i))

)⊤

V ′π
t+1

)∣∣∣∣sh = s,Ah = πh(sh)

]
.

16

Published as a conference paper at ICLR 2024

C.2 REGRET UPPER BOUND FOR ALGORITHM CascadingVI

Below we prove the regret upper bound for algorithm CascadingVI.

C.2.1 CONCENTRATION

For any k > 0, s ∈ S and a ∈ Aground \ {a⊥}, let nk,q(s, a) denote the number of times that the
attraction of (s, a) is observed up to episode k. In addition, for any k > 0, s ∈ S and a ∈ Aground, let
nk,p(s, a) denote the number of times that the transition of (s, a) is observed up to episode k.

Let event

E :=

{∣∣q̂k(s, a)− q(s, a)
∣∣ ≤ 2

√
q̂k(s, a)(1− q̂k(s, a)) log

(
KHSA

δ′

)
nk,q(s, a)

+
5 log

(
KHSA

δ′

)
nk,q(s, a)

,

∣∣∣∣√q̂k(s, a)(1− q̂k(s, a))−
√

q(s, a)(1− q(s, a))

∣∣∣∣ ≤ 2

√
log
(
KHSA

δ′

)
nk,q(s, a)

,

∀k ∈ [K],∀(s, a) ∈ S × (Aground \ {a⊥})

}
.

Lemma 6 (Concentration of Attractive Probability). It holds that

Pr [E] ≥ 1− 4δ′.

Proof of Lemma 6. Using Bernstern’s inequality and a union bound over nk,q(s, a) ∈ [KH], k ∈ [K]
and (s, a) ∈ S ×Aground, we have that with probability 1− 2δ′,

∣∣q̂k(s, a)− q(s, a)
∣∣ ≤ 2

√
q(s, a)(1− q(s, a)) log

(
KHSA

δ′

)
nk,q(s, a)

+
log
(
KHSA

δ′

)
nk,q(s, a)

. (4)

Moreover, applying Lemma 1 in (Zanette & Brunskill, 2019), we have that with probability 1− 2δ′,∣∣∣∣√q̂k(s, a)(1− q̂k(s, a))−
√

q(s, a)(1− q(s, a))

∣∣∣∣ ≤ 2

√
log
(
KHSA

δ′

)
nk,q(s, a)

. (5)

Combining Eqs. (4) and (5), we obtain this lemma.

Let event

F :=

{∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤
V ∗
h+1

∣∣∣≤2

√
Vars′∼p

(
V ∗
h+1(s

′)
)
log
(
KHSA

δ′

)
nk,p(s, a)

+
H log

(
KHSA

δ′

)
nk,p(s, a)

,

(6)∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ ≤

√
p(s′|s, a)(1− p(s′|s, a)) log

(
KHSA

δ′

)
nk,p(s, a)

+
log
(
KHSA

δ′

)
nk,p(s, a)

,

(7)∥∥p̂k(·|s, a)− p(·|s, a)
∥∥
1
≤

√
2S log

(
KHSA

δ′

)
nk,p(s, a)

, (8)

∀k ∈ [K],∀h ∈ [H],∀(s, a) ∈ S ×Aground

}
.

Lemma 7 (Concentration of Transition Probability). It holds that

Pr [F] ≥ 1− 6δ′.

Proof of Lemma 7. According to Bernstein’s inequality and a union bound over nk,p(s, a) ∈ [KH],
k ∈ [K], h ∈ [H] and (s, a) ∈ S ×Aground, we obtain Eqs. (6) and (7). In addition, Eq. (8) follows
from (Weissman et al., 2003) and Eq. (55) in (Zanette & Brunskill, 2019) .

17

Published as a conference paper at ICLR 2024

Let event

G :=

{∣∣∣∣√Vars′∼p̂k

(
V ∗
h+1(s

′)
)
−
√

Vars′∼p

(
V ∗
h+1(s

′)
)∣∣∣∣ ≤ 2H

√
log
(
KHSA

δ′

)
nk,p(s, a)

,

∀k ∈ [K],∀h ∈ [H],∀(s, a) ∈ S ×Aground

}
. (9)

Lemma 8 (Concentration of Variance). It holds that

Pr [G] ≥ 1− 2δ′.

Furthermore, assume event F ∩ G holds. Then, for any k ∈ [K], h ∈ [H] and (s, a) ∈ S ×Aground,
if V̄ k

h+1(s
′) ≥ V ∗

h+1(s
′) ≥ V k

h+1(s
′) for any s′ ∈ S, we have∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
log
(
KHSA

δ′

)
nk,p(s, a)

+ 2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

log
(
KHSA

δ′

)
nk,p(s, a)

+
5H log

(
KHSA

δ′

)
nk,p(s, a)

.

Proof of Lemma 8. According to Eq. (53) in (Zanette & Brunskill, 2019), we have
Pr [G] ≥ 1− 2δ′.

Moreover, assume event F ∩ G holds. Then, for any k ∈ [K], h ∈ [H] and (s, a) ∈ S ×Aground, if
V̄ k
h+1(s

′) ≥ V ∗
h+1(s

′) ≥ V k
h+1(s

′) for any s′ ∈ S, we have∣∣∣∣√Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
−
√

Vars′∼p

(
V ∗
h+1(s

′)
)∣∣∣∣

≤
∣∣∣∣√Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
−
√

Vars′∼p̂k

(
V ∗
h+1(s

′)
)∣∣∣∣

+

∣∣∣∣√Vars′∼p̂k

(
V ∗
h+1(s

′)
)
−
√

Vars′∼p

(
V ∗
h+1(s

′)
)∣∣∣∣

(a)
≤

√
Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

+ 2H

√
log
(
KHSA

δ′

)
nk,p(s, a)

, (10)

where inequality (a) comes from Eqs. (48)-(52) in (Zanette & Brunskill, 2019).

Plugging Eq. (10) into Eq. (6), we have∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
log
(
KHSA

δ′

)
nk,p(s, a)

+ 2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

log
(
KHSA

δ′

)
nk,p(s, a)

+
5H log

(
KHSA

δ′

)
nk,p(s, a)

.

For any k > 0, h ∈ [H], i ∈ [m] and (s, a) ∈ S × (Aground \ {a⊥}), let vobserve,qk,h,i (s, a) denote the
probability that the attraction of (s, a) is observed in the i-th position at step h of episode k. Let
vobserve,qk,h (s, a) :=

∑m
i=1 v

observe,q
k,h,i (s, a) and vobserve,qk (s, a) :=

∑H
h=1

∑m
i=1 v

observe,q
k,h,i (s, a).

For any k > 0, h ∈ [H], i ∈ [m + 1] and (s, a) ∈ S × Aground, let vobserve,pk,h,i (s, a) denote
the probability that the transition of (s, a) is observed (i.e., (s, a) is clicked) in the i-th posi-

18

Published as a conference paper at ICLR 2024

tion at step h of episode k. Let vobserve,pk,h (s, a) :=
∑m+1

i=1 vobserve,pk,h,i (s, a) and vobserve,pk (s, a) :=∑H
h=1

∑m+1
i=1 vobserve,pk,h,i (s, a).

Lemma 9. For any k > 0 and h ∈ [H], we have∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)q(s, a) ≤ 1.

Proof. For any k > 0, h ∈ [H], s ∈ S and A ∈ A, let wk,h(s,A) denote the probability that (s,A)
is visited at step h in episode k.

It holds that ∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)q(s, a)

=
∑

(s,a)∈S×Aground\{a⊥}

m∑
i=1

vobserve,qk,h,i (s, a)q(s, a)

=
∑

(s,a)∈S×Aground\{a⊥}

m∑
i=1

∑
A∈A

A(i)=a

wk,h(s,A)

i−1∏
j=1

(1− q(s,A(j)))q(s, a)

=
∑

(s,a)∈S×Aground\{a⊥}

m∑
i=1

Pr[(s, a) is clicked in the i-th position at step h of episode k]

=
∑

(s,a)∈S×Aground\{a⊥}

Pr[(s, a) is clicked at step h of episode k]

≤1.

Let event

K :=

{
nk,q(s, a) ≥ 1

2

∑
k′<k

vobserve,qk′ (s, a)−H log

(
HSA

δ′

)
,

∀k ∈ [K],∀(s, a) ∈ S × (Aground \ {a⊥}),

nk,p(s, a) ≥ 1

2

∑
k′<k

vobserve,pk′ (s, a)−H log

(
HSA

δ′

)
,∀k ∈ [K],∀(s, a) ∈ S ×Aground

}
Lemma 10. It holds that

Pr [K] ≥ 1− 2δ′.

Proof of Lemma 10. This lemma can be obtained by Lemma F.4 in (Dann et al., 2017).

C.2.2 VISITATION

For any k > 0, we define the following two sets:

Bq
k :=

{
(s, a) ∈ S × (Aground \ {a⊥}) :

1

4

∑
k′<k

vobserve,qk′ (s, a) ≥ H log

(
HSN

δ′

)
+H

}
,

Bp
k :=

{
(s, a) ∈ S ×Aground :

1

4

∑
k′<k

vobserve,pk′ (s, a) ≥ H log

(
HSN

δ′

)
+H

}
.

Bq
k and Bp

k stand for the sets of state-item pairs whose attraction and transition are sufficiently
observed in expectation up to episode k, respectively.

19

Published as a conference paper at ICLR 2024

Lemma 11 (Sufficient Visitation). Assume that event K holds. Then, if (s, a) ∈ Bq
k, we have

nk,q(s, a) ≥ 1

4

∑
k′≤k

vobserve,qk′ (s, a).

If (s, a) ∈ Bp
k , we have

nk,p(s, a) ≥ 1

4

∑
k′≤k

vobserve,pk′ (s, a).

Proof of Lemma 11. If (s, a) ∈ Bq
k, we have

nk,q(s, a) ≥ 1

2

∑
k′<k

vobserve,qk′ (s, a)−H log

(
HSA

δ′

)
=

1

4

∑
k′<k

vobserve,qk′ (s, a) +
1

4

∑
k′<k

vobserve,qk′ (s, a)−H log

(
HSA

δ′

)
(a)
≥ 1

4

∑
k′<k

vobserve,qk′ (s, a) +H

≥ 1

4

∑
k′<k

vobserve,qk′ (s, a) + vobserve,qk (s, a)

=
1

4

∑
k′≤k

vobserve,qk′ (s, a),

where inequality (a) is due to the definition of Bq
k.

By a similar analysis, we can also obtain the second inequality in this lemma.

Lemma 12 (Minimal Regret). It holds that
K∑

k=1

H∑
h=1

∑
(s,a)/∈Bq

k

vobserve,qk,h (s, a) ≤ 8HSA log

(
HSN

δ′

)
,

K∑
k=1

H∑
h=1

∑
(s,a)/∈Bp

k

vobserve,pk,h (s, a) ≤ 8HSA log

(
HSN

δ′

)
.

Proof of Lemma 12. We have
K∑

k=1

H∑
h=1

∑
(s,a)/∈Bq

k

vobserve,qk,h (s, a) =
∑

(s,a)∈S×Aground\{a⊥}

K∑
k=1

H∑
h=1

vobserve,qk,h (s, a)I {(s, a) /∈ Bq
k}

=
∑

(s,a)∈S×Aground\{a⊥}

K∑
k=1

vobserve,qk (s, a)I {(s, a) /∈ Bq
k}

(a)
≤

∑
(s,a)∈S×Aground\{a⊥}

(
4H log

(
HSN

δ′

)
+ 4H

)

= 4HSA log

(
HSN

δ′

)
+ 4HSA

≤ 8HSA log

(
HSN

δ′

)
,

where inequality (a) uses the definition of Bq
k.

The second inequality in this lemma can be obtained by applying a similar analysis.

20

Published as a conference paper at ICLR 2024

Lemma 13 (Visitation Ratio). It holds that
K∑

k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

nk,q(s, a)
≤ 8SA log (KH) ,

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)
≤ 8SA log (KH) .

Proof of Lemma 13. We have
K∑

k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

nk,q(s, a)
=

K∑
k=1

∑
(s,a)∈Bq

k

vobserve,qk (s, a)

nk,q(s, a)

=

K∑
k=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk (s, a)

nk,q(s, a)
I {(s, a) ∈ Bq

k}

≤ 4
∑

(s,a)∈S×Aground\{a⊥}

K∑
k=1

vobserve,qk (s, a)∑
k′≤k v

observe,q
k′ (s, a)

I {(s, a) ∈ Bq
k}

(a)
≤ 8SA log (KH) ,

where inequality (a) comes from Lemma 13 in (Zanette & Brunskill, 2019).

Using a similar analysis, we can also obtain the second inequality in this lemma.

C.2.3 OPTIMISM AND PESSIMISM

Let L := log(KHSA
δ′). For any k > 0, h ∈ [H] and s ∈ S, we define

bk,q(s, a) := min

{
2

√
q̂k(s, a)(1− q̂k(s, a))L

nk,q(s, a)
+

5L

nk,q(s, a)
, 1

}
, ∀a ∈ Aground \ {a⊥},

bk,q(s, a⊥) := 0,

bk,pV (s, a) :=min

{
2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L

nk,p(s, a)
+2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

L

nk,p(s, a)

+
5HL

nk,p(s, a)
, H

}
, ∀a ∈ Aground.

For any k > 0, h ∈ [H], s ∈ S and A ∈ A, we define

Q̄k
h(s,A) = min

{ |A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))q̄k(s,A(i))·

(
r(s,A(i)) + p̂k(·|s,A(i))⊤V̄ k

h+1 + bk,pV (s,A(i))
)
, H

}
πk
h(s) = argmax

A∈A
Q̄k

h(s,A),

V̄ k
h (s) = Q̄k

h(s, π
k
h(s)),

V̄ k
H+1(s) = 0,

21

Published as a conference paper at ICLR 2024

Qk

h
(s,A) = max

{ |A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))·

(
r(s,A(i)) + p̂k(·|s,A(i))⊤V k

h+1 − bk,pV (s,A(i))
)
, 0

}
,

V k
h(s) = Qk

h
(s, πk

h(s)),

V k
H+1(s) = 0.

We first prove the monotonicity of f , which will be used in the proof of optimism.

Lemma 14 (Monotonicity of f). For any A = (a1, . . . , an, a⊥) ∈ A, w : Aground 7→ R and
ū, u : Aground 7→ [0, 1] such that 1 ≤ n ≤ m, w(a1) ≥ · · · ≥ w(an) ≥ w(a⊥) and ū(a) ≥ u(a) for
any a ∈ A, we have

f(A, ū, w) ≥ f(A, u,w).

Proof of Lemma 14. In the following, we make the convention an+1 = a⊥ and prove
f((a1, . . . , ak), ū, w) ≥ f((a1, . . . , ak), u, w) for k = 1, 2, . . . , n+ 1 by induction.

Then, it suffices to prove that for k = 1, 2, . . . , n+ 1,
k∑

i=1

i−1∏
j=1

(1− ū(aj))ū(ai)w(ai)−
k∑

i=1

i−1∏
j=1

(1− u(aj))u(ai)w(ai)

≥ (1− ū(a1)) · · · (1− ū(ak−1))(ū(ak)− u(ak))w(ak)

+ (1− ū(a1)) · · · (1− ū(ak−2))(ū(ak−1)− u(ak−1))(1− u(ak))w(ak) + . . .

+ (ū(a1)− u(a1))(1− u(a2)) · · · (1− u(ak))w(ak), (11)
since the right-hand side of the above equation is nonnegative.

First, for k = 1, we have
ū(a1)w(a1)− u(a1)w(a1) = (ū(a1)− u(a1))w(a1),

and thus Eq. (11) holds.

Then, for any 1 ≤ k ≤ n, supposing that Eq. (11) holds for k, we prove that it also holds for k + 1.
k+1∑
i=1

i−1∏
j=1

(1− ū(aj))ū(ai)w(ai)−
k+1∑
i=1

i−1∏
j=1

(1− u(aj))u(ai)w(ai)

≥
k∑

i=1

i−1∏
j=1

(1− ū(aj))ū(ai)w(ai)−
k∑

i=1

i−1∏
j=1

(1− u(aj))u(ai)w(ai)

+(1−ū(a1)) · · · (1−ū(ak))ū(ak+1)w(ak+1)−(1−u(a1)) · · · (1−u(ak))u(ak+1)w(ak+1)︸ ︷︷ ︸
Term D

.

(12)

Here, we have
Term D = (1− ū(a1)) · · · (1− ū(ak))ū(ak+1)w(ak+1)

− (1− ū(a1)) · · · (1− ū(ak))u(ak+1)w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak))u(ak+1)w(ak+1)

− (1− u(a1)) · · · (1− u(ak))u(ak+1)w(ak+1)

= (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+
[
(1− ū(a1)) · · · (1− ū(ak))− (1− u(a1)) · · · (1− u(ak))

]
u(ak+1)w(ak+1)

= (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+
[
(1− ū(a1)) · · · (1− ū(ak))

22

Published as a conference paper at ICLR 2024

− (1− ū(a1)) · · · (1− ū(ak−1)(1− u(ak))

+ (1− ū(a1)) · · · (1− ū(ak−1)(1− u(ak))

− (1− u(a1)) · · · (1− u(ak))
]
u(ak+1)w(ak+1)

= (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−1)(u(ak)− ū(ak))u(ak+1)w(ak+1)

+
[
(1− ū(a1)) · · · (1− ū(ak−1)− (1− u(a1)) · · · (1− u(ak−1))

]
·

(1− u(ak))u(ak+1)w(ak+1)

= (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−1)(u(ak)− ū(ak))u(ak+1)w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−2)(u(ak−1)− ū(ak−1))(1− u(ak))u(ak+1)w(ak+1)

+ . . .

+ (u(a1)− ū(a1))(1− u(a2)) · · · (1− u(ak))u(ak+1)w(ak+1). (13)

Plugging Eq. (13) and the induction hypothesis into Eq. (12), we have
k+1∑
i=1

i−1∏
j=1

(1− ū(aj))ū(ai)w(ai)−
k+1∑
i=1

i−1∏
j=1

(1− u(aj))u(ai)w(ai)

≥ (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−1)(ū(ak)− u(ak))
[
w(ak)− u(ak+1)w(ak+1)

]
+ (1− ū(a1)) · · · (1− ū(ak−2)(ū(ak−1)− u(ak−1))(1− u(ak))

[
w(ak)− u(ak+1)w(ak+1)

]
+ . . .

+ (ū(a1)− u(a1))(1− u(a2)) · · · (1− u(ak))
[
w(ak)− u(ak+1)w(ak+1)

]
≥ (1− ū(a1)) · · · (1− ū(ak)) (ū(ak+1)− u(ak+1))w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−1)(ū(ak)− u(ak))(1− u(ak+1))w(ak+1)

+ (1− ū(a1)) · · · (1− ū(ak−2)(ū(ak−1)− u(ak−1))(1− u(ak))(1− u(ak+1))w(ak+1)

+ . . .

+ (ū(a1)− u(a1))(1− u(a2)) · · · (1− u(ak))(1− u(ak+1))w(ak+1).

Therefore, Eq. (11) holds for k + 1, and we complete the proof.

Now we prove the optimism of V̄ k
h (s) and pessimism of V k

h(s).

Lemma 15 (Optimism and Pessimism). Assume that event E ∩ F ∩ G holds. Then, for any k ∈ [K],
h ∈ [H] and s ∈ S,

V̄ k
h (s) ≥ V ∗

h (s) ≥ V k
h(s).

In addition, for any k ∈ [K], h ∈ [H] and (s, a) ∈ S ×Aground, it holds that∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
log
(
KHSA

δ′

)
nk,p(s, a)

+ 2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

log
(
KHSA

δ′

)
nk,p(s, a)

+
5H log

(
KHSA

δ′

)
nk,p(s, a)

.

Proof of Lemma 15. We prove this lemma by induction.

For any k ∈ [K] and s ∈ S, it holds that V̄ k
H+1(s) = V ∗

H+1(s) = V k
H+1(s) = 0.

23

Published as a conference paper at ICLR 2024

First, we prove optimism. For any k ∈ [K] and h ∈ [H], if V̄ k
h (s) = H , then V̄ k

h (s) ≥ V ∗
h (s)

trivially holds. Otherwise, supposing V̄ k
h+1(s

′) ≥ V ∗
h+1(s

′) ≥ V k
h+1(s

′) for any s′ ∈ S, we have

V̄ k
h (s) = Q̄k

h(s, π
k
h(s))

≥ Q̄k
h(s,A

∗)

=

|A∗|∑
i=1

i−1∏
j=1

(1− q̄k(s,A∗(j)))q̄k(s,A∗(i))

(
r(s,A∗(i)) + p̂k(·|s,A∗(i))⊤V̄ k

h+1

+ bk,pV (s,A∗(i))

)
(a)
≥

|A∗|∑
i=1

i−1∏
j=1

(1− q̄k(s,A∗(j)))q̄k(s,A∗(i))

(
r(s,A∗(i)) + p̂k(·|s,A∗(i))⊤V ∗

h+1

+ bk,pV (s,A∗(i))

)
(b)
≥

|A∗|∑
i=1

i−1∏
j=1

(1− q̄k(s,A∗(j)))q̄k(s,A∗(i))

(
r(s,A∗(i)) + p(·|s,A∗(i))⊤V ∗

h+1

)
(c)
≥

|A∗|∑
i=1

i−1∏
j=1

(1− q(s,A∗(j)))q(s,A∗(i))

(
r(s,A∗(i)) + p(·|s,A∗(i))⊤V ∗

h+1

)
= Q∗

h(s,A
∗).

= V ∗
h (s).

Here A∗ := argmaxA∈A
∑|A|

i=1

∏i−1
j=1(1 − q(s,A(j)))q(s,A(i))(r(s,A(i)) + p(·|s,A(i))⊤V ∗

h+1).
Inequality (a) uses the induction hypothesis. Inequality (b) applies the second statement of Lemma 8
with the induction hypothesis. Inequality (c) follows from Lemma 14 and the fact that the optimal
permutation A∗ satisfies that the items in A∗ are ranked in descending order of w(a) := r(s, a) +
p(·|s, a)⊤V ∗

h+1.

Next, we prove pessimism. For any k ∈ [K] and h ∈ [H], if V k
h(s) = 0, then V k

h(s) ≤ V ∗
h (s)

trivially holds. Otherwise, supposing V̄ k
h+1(s

′) ≥ V ∗
h+1(s

′) ≥ V k
h+1(s

′) for any s′ ∈ S, we have

Qk

h
(s,A) =

|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))·(
r(s,A(i)) + p̂k(·|s,A(i))⊤V k

h+1 − bk,pV (s,A(i))
)

(a)
≤

|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))·

(
r(s,A(i)) + p̂k(·|s,A(i))⊤V ∗

h+1 − bk,pV (s,A(i))
)

≤
|A|∑
i=1

i−1∏
j=1

(1− q(s,A(j)))q(s,A(i))
(
r(s,A(i)) + p(·|s,A(i))⊤V ∗

h+1

)
= Q∗

h(s,A),

where inequality (a) uses the induction hypothesis.

Then, we have
V k

h(s) = Qk

h
(s, πk

h(s)) ≤ Q∗
h(s, π

k
h(s)) ≤ Q∗

h(s,A
∗) = V ∗

h (s),

which completes the proof of the first statement.

Combining the first statement and Lemma 8, we obtain the second statement.

24

Published as a conference paper at ICLR 2024

C.2.4 SECOND ORDER TERM

Lemma 16 (Gap between Optimism and Pessimism). For any k > 0, h ∈ [H] and s ∈ S,

V̄ k
h (s)− V k

h(s) ≤
H∑
t=h

E(st,At)∼πk

[|At|−1∑
i=1

i−1∏
j=1

(1− qk(st, At(j)))
66H
√
L√

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− qk(st, At(j)))q(st, At(i))
20HL

√
S√

nk,p(st, At(i))

∣∣∣sh = s, πk

]
.

Proof of Lemma 16. Let A′ = πk
h(s). Recall that

V̄ k
h (s) ≤

|A′|∑
i=1

i−1∏
j=1

(1− q̄k(s,A′(j)))q̄k(s,A′(i))·

(
r(s,A′(i)) + p̂k(·|s,A′(i))⊤V̄ k

h+1 + bk,pV (s,A′(i))
)
,

and

V k
h(s) ≥

|A′|∑
i=1

i−1∏
j=1

(1− q̄k(s,A′(j)))qk(s,A′(i))·(
r(s,A′(i)) + p̂k(·|s,A′(i))⊤V k

h+1 − bk,pV (s,A′(i))
)
.

Then, we have

V̄ k
h (s)− V k

h(s) ≤
|A′|∑
i=1

i−1∏
j=1

(1− q̄k(s,A′(j))) ·
(
2r(s,A′(i))bk,q(s,A′(i))

+
(
qk(s,A′(i)) + 2bk,q(s,A′(i))

) (
p̂k(·|s,A′(i))⊤V̄ k

h+1 + bk,pV (s,A′(i))
)

− qk(s,A′(i))
(
p̂k(·|s,A′(i))⊤V k

h+1 − bk,pV (s,A′(i))
))

≤
|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j))) ·
(
q(s,A′(i))

(
p̂k(·|s,A′(i))⊤V̄ k

h+1

− p̂k(·|s,A′(i))⊤V k
h+1 + 2bk,pV (s,A′(i))

)
+ 6Hbk,q(s,A′(i))

)

=6H

|A′|−1∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))

(
2

√
q̂k(s, a)(1− q̂k(s, a))L

nk,q(s, a)
+

5L

nk,q(s, a)

)

+ 2

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i)) ·

(
2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L

nk,p(s,A′(i))

+ 2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

L

nk,p(s,A′(i))
+

5HL

nk,p(s,A′(i))

)

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))·

(
p̂k(·|s,A′(i))− p(·|s,A′(i))

)⊤ (
V̄ k
h+1 − V k

h+1

)
+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))p(·|s,A′(i))⊤
(
V̄ k
h+1 − V k

h+1

)

25

Published as a conference paper at ICLR 2024

(a)
≤6H

|A′|−1∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))

(
2

√
q(s, a)(1− q(s, a))L

nk,q(s, a)
+

9L

nk,q(s, a)

)

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))
18HL√

nk,p(s,A′(i))

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))
2H
√
SL√

nk,p(s,A′(i))

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))p(·|s,A′(i))⊤
(
V̄ k
h+1 − V k

h+1

)

≤
|A′|−1∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))
66H
√
L√

nk,q(s,A′(i))

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))
20HL

√
S√

nk,p(s,A′(i))

+

|A′|∑
i=1

i−1∏
j=1

(1− qk(s,A′(j)))q(s,A′(i))p(·|s,A′(i))⊤
(
V̄ k
h+1 − V k

h+1

)

≤
H∑
t=h

E(st,At)∼πk

[|At|−1∑
i=1

i−1∏
j=1

(1− qk(st, At(j)))
66H
√
L√

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− qk(st, At(j)))q(st, At(i))
20HL

√
S√

nk,p(st, At(i))

∣∣∣sh = s, πk

]
,

where inequality (a) is due to Eq. (8).

Lemma 17 (Cumulative Gap between Optimism and Pessimism). It holds that
K∑

k=1

H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a) · p(·|s, a)⊤
(
V̄ k
h+1 − V k

h+1

)2
≤ 152192(m+ 1)H5S2NL3.

Proof of Lemma 17. For any k > 0, h ∈ [H] and s ∈ S , let wk,h(s) denote the probability that state
s is visited at step h in episode k.

We have
K∑

k=1

H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a) · p(·|s, a)⊤
(
V̄ k
h+1 − V k

h+1

)2
=

K∑
k=1

H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)
∑
s′∈S

p(s′|s, a)
(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2

=

K∑
k=1

H∑
h=1

∑
(s,a)∈S×Aground

∑
s′∈S

vobserve,pk,h (s′, s, a)
(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2

=

K∑
k=1

H∑
h=1

∑
s′∈S

wk,h+1(s
′)
(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2

=

K∑
k=1

H∑
h=1

Esh+1∼πk

[(
V̄ k
h+1(sh+1)− V k

h+1(sh+1)
)2]

26

Published as a conference paper at ICLR 2024

≤
K∑

k=1

H∑
h=1

Esh∼πk

[(
V̄ k
h (sh)− V k

h(sh)
)2]

(a)
≤

K∑
k=1

H∑
h=1

Esh∼πk

[(
H∑
t=h

E(st,At)∼πk

[|At|−1∑
i=1

i−1∏
j=1

(1− qk(st, At(j)))
66H
√
L√

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− qk(s,At(j)))q(st, At(i))
20HL

√
S√

nk,p(st, At(i))

∣∣∣sh = s, πk

])2]
(b)
≤H

K∑
k=1

H∑
h=1

Esh∼πk

[
H∑
t=h

(
E(st,At)∼πk

[|At|−1∑
i=1

i−1∏
j=1

(1− q(st, At(j)))
66H
√
L√

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− q(s,At(j)))q(st, At(i))
20HL

√
S√

nk,p(st, At(i))

∣∣∣sh = s, πk

])2]
(c)
≤H

K∑
k=1

H∑
h=1

Esh∼πk

[
H∑
t=h

E(st,At)∼πk

[(|At|−1∑
i=1

i−1∏
j=1

(1− q(st, At(j)))
66H
√
L√

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− q(s,At(j)))q(st, At(i))
20HL

√
S√

nk,p(st, At(i))

)2∣∣∣sh = s, πk

]]
(d)
≤2(m+ 1)H

K∑
k=1

H∑
h=1

H∑
t=h

E(st,At)∼πk

[|At|−1∑
i=1

i−1∏
j=1

(1− q(st, At(j)))
2 4356H2L

nk,q(st, At(i))

+

|At|∑
i=1

i−1∏
j=1

(1− q(s,At(j)))
2q(st, At(i))

2 400H2L2S

nk,p(st, At(i))

]

=2(m+ 1)H2
K∑

k=1

H∑
h=1

(∑
(s,a)∈S×(Aground\{a⊥})

vobserve,qk,h (s, a)
4356H2L

nk,q(s, a)

+
∑

(s,a)∈S×Aground

vobserve,pk,h (s, a)
400H2L2S

nk,p(s, a)

)
(e)
≤2(m+ 1)H2 ·

(
8SN log(KH) + 8HSN log

(
HSN

δ′

))
·
(
4356H2L+ 400H2L2S

)
≤152192(m+ 1)H5S2NL3.

Here inequality (a) uses Lemma 16. Inequalities (b) and (d) are due to the Cauchy-Schwarz inequality.
Inequality (c) comes from Jensen’s inequality. Inequality (e) follows from Lemmas 12 and 13.

C.2.5 PROOF OF THEOREM 1

Proof of Theorem 1. Recall that δ′ := δ
14 . Combining Lemmas 6-10, we have Pr[E ∩ F ∩ G ∩K] ≥

1− 14δ′ = 1− δ.

In the following, we assume that event E ∩ F ∩ G ∩ K holds, and then prove the regret upper bound.

R(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)

≤
K∑

k=1

(
V̄ k
1 (sk1)− V πk

1 (sk1)
)

27

Published as a conference paper at ICLR 2024

≤
K∑

k=1

H∑
h=1

E

[|Ah|∑
i=1

i−1∏
j=1

(1− q̄k(sh, Ah(j)))q̄
k(sh, Ah(i))r(sh, Ah(i))

−
|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))r(sh, Ah(i))

+

|Ah|∑
i=1

i−1∏
j=1

(1− q̄k(sh, Ah(j)))q̄
k(sh, Ah(i))

(
p̂k(·|sh, Ah(i))

⊤V̄ k
h+1 + bk,pV (sh, Ah(i))

)
−

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))p(·|sh, Ah(i))
⊤V̄ k

h+1

]

≤
K∑

k=1

H∑
h=1

E

[
2

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))r(sh, Ah(i))b
k,q(sh, Ah(i))

+

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))
(
q(sh, Ah(i)) + 2bk,q(sh, Ah(i))

)
·

(
p̂k(·|sh, Ah(i))

⊤V̄ k
h+1 + bk,pV (sh, Ah(i))

)
−

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))p(·|sh, Ah(i))
⊤V̄ k

h+1

]

≤
K∑

k=1

H∑
h=1

E

[
2

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))r(sh, Ah(i))b
k,q(sh, Ah(i))

+

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))
(
p̂k(·|sh, Ah(i))

⊤V̄ k
h+1 + bk,pV (sh, Ah(i))

− p(·|sh, Ah(i))
⊤V̄ k

h+1

)
+ 4H

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))b
k,q(sh, Ah(i))

]
(a)
≤

K∑
k=1

H∑
h=1

E

[
6H

|Ah|−1∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))b
k,q(sh, Ah(i))

+

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))b
k,pV (sh, Ah(i))

+

|Ah|∑
i=1

i−1∏
j=1

(1− q(sh, Ah(j)))q(sh, Ah(i))
(
p̂k(·|sh, Ah(i))− p(·|sh, Ah(i))

)⊤
V ∗
h+1

+

|Ah|∑
i=1

i−1∏
j=1

(1−q(sh, Ah(j)))q(sh, Ah(i))
(
p̂k(·|sh, Ah(i))−p(·|sh, Ah(i))

)⊤(
V̄ k
h+1−V ∗

h+1

)]

≤
K∑

k=1

H∑
h=1

E

[
6H

m∑
i=1

∑
(s,a)∈S×(Aground\{a⊥})

vobserve,qk,h,i (s, a)bk,q(s, a)

+

m+1∑
i=1

∑
(s,a)∈S×Aground

vobserve,pk,h,i (s, a)bk,pV (s, a)

+

m+1∑
i=1

∑
(s,a)∈S×Aground

vobserve,pk,h,i (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤
V ∗
h+1

28

Published as a conference paper at ICLR 2024

+

m+1∑
i=1

∑
(s,a)∈S×Aground

vobserve,pk,h,i (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤ (
V̄ k
h+1 − V ∗

h+1

)]

≤
K∑

k=1

H∑
h=1

∑
(s,a)∈Bq

k

6Hvobserve,qk,h (s, a)bk,q(s, a)

+

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

(
vobserve,pk,h (s, a)bk,pV (s, a)

+ vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤
V ∗
h+1

+ vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤ (
V̄ k
h+1 − V ∗

h+1

))
+ 6H

K∑
k=1

H∑
h=1

∑
(s,a)/∈Bq

k

vobserve,qk,h (s, a) + 3H

K∑
k=1

H∑
h=1

∑
(s,a)/∈Bp

k

vobserve,pk,h (s, a)

(b)
≤

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

6Hvobserve,qk,h (s, a)bk,q(s, a)

+

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

(
vobserve,pk,h (s, a)bk,pV (s, a)

+ vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤
V ∗
h+1

+ vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤ (
V̄ k
h+1 − V ∗

h+1

))
+ 72H2SNL, (14)

where inequality (a) is due to that for any k > 0 and s ∈ S , bk,q(s, a⊥) := 0, and inequality (b) uses
Lemma 12.

We bound the four terms on the right-hand side of the above inequality as follows.

(i) Term 1:

6H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)bk,q(s, a)

= 6H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

(
2

√
q̂k(s, a)(1− q̂k(s, a))L

nk,q(s, a)
+

5L

nk,q(s, a)

)

≤ 6H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

(
2

√
q(s, a)(1− q(s, a))L

nk,q(s, a)
+

9L

nk,q(s, a)

)

≤ 12H
√
L

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)q(s, a) ·

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

nk,q(s, a)

(a)
≤ 12H

√
L ·
√
KH ·

√
8SN log (KH)

≤ 48HL
√
KHSN,

where inequality (a) is due to Lemma 9.

(ii) Term 2:
K∑

k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)bk,pV (s, a)

29

Published as a conference paper at ICLR 2024

=

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

(
2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L

nk,p(s, a)

+ 2

√√√√√Es′∼p̂k

[(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2]

L

nk,p(s, a)
+

5HL

nk,p(s, a)

)

≤2
√
L

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)
·

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)Vars′∼p̂k

(
V̄ k
h+1(s

′)
)

+ 2
√
L

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)
·

(√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)p(·|s, a)⊤
(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2

+

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a) (p̂k(·|s, a)− p(·|s, a))⊤
(
V̄ k
h+1(s

′)− V k
h+1(s

′)
)2)

+ 5HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤2
√
L ·
√
8SN log (KH) ·H

√
KH

+ 2
√
L ·
√
8SN log (KH) ·

(√
152192(m+ 1)H5S2NL3

+
√
H ·

√
1112H2S2NL2

√
(m+ 1)HL

)
+ 5HL · 8SN log (KH)

≤8HL
√
KHSN + 3428H2SNL2

√
(m+ 1)HSL.

(iii) Term 3:
K∑

k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤
V ∗
h+1

=2
√
L

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

√
Vars′∼p(·|s,a)

(
V ∗
h+1(s

′)
)

nk,p(s, a)

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤2
√
L

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)
·

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)Vars′∼p(·|s,a)
(
V ∗
h+1(s

′)
)

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤2
√
L ·
√
8SN log (KH) ·H

√
KH +HL · 8SN log (KH)

≤8HL
√
KHSN + 8HSNL2.

30

Published as a conference paper at ICLR 2024

(iv) Term 4:
K∑

k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
(
p̂k(·|s, a)− p(·|s, a)

)⊤ (
V̄ k
h+1 − V ∗

h+1

)
(a)
≤

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
∑
s′

(√
p(s′|s, a)(1− p(s′|s, a))L

nk,p(s, a)

∣∣V̄ k
h+1(s

′)− V ∗
h+1(s

′)
∣∣

+
HL

nk,p(s, a)

)

≤
√
L

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
∑
s′

√
p(s′|s, a)
nk,p(s, a)

∣∣V̄ k
h+1(s

′)− V ∗
h+1(s

′)
∣∣

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤
√
L

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

√
S
∑
s′

p(s′|s, a)
nk,p(s, a)

(
V̄ k
h+1(s

′)− V ∗
h+1(s

′)
)2

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

=
√
SL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

√
p(·|s, a)⊤

(
V̄ k
h+1 − V ∗

h+1

)2
nk,p(s, a)

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤
√
SL

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)
·

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a) · p(·|s, a)⊤
(
V̄ k
h+1 − V ∗

h+1

)2

+HL

K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)

nk,p(s, a)

≤
√
SL ·

√
8SN log (KH) ·

√
152192(m+ 1)H5S2NL3 +HL · 8SN log (KH)

≤1104H2S2NL2
√

(m+ 1)HL+ 8HSNL2

≤1112H2S2NL2
√

(m+ 1)HL,

where inequality (a) follows from Eq. (7).

Plugging the above four terms into Eq. (14), we obtain

R(K) = 48HL
√
KHSN + 8HL

√
KHSN + 3428H2SNL2

√
(m+ 1)HSL

+ 8HL
√
KHSN + 8HSNL2 + 1112H2S2NL2

√
(m+ 1)HL+ 72H2SAL

= Õ
(
H
√
KHSN

)
.

31

Published as a conference paper at ICLR 2024

D ALGORITHM AND PROOFS FOR CASCADING RL WITH BEST POLICY
IDENTIFICATION

In this section, we present algorithm CascadingBPI and proofs for cascading RL with the best policy
identification objective.

D.1 ALGORITHM CascadingBPI

Algorithm 3: CascadingBPI
Input: ε, δ, δ′ := δ

7 . For any κ ∈ (0, 1) and n > 0, L∗(κ, n) := log(HSN
κ) + log(8e(n+ 1))

and L(κ, n) := log(HSN
κ) + S log(8e(n+ 1)). For any k > 0 and s ∈ S,

q̄k(s, a⊥) = qk(s, a⊥) := 1 and V̄ k
H+1(s) = V k

H+1(s) := 0. Initialize
n1,q(s, a) = n1,p(s, a) := 0 for any (s, a) ∈ S ×A.

1 for k = 1, 2, . . . ,K do
2 for h = H,H − 1, . . . , 1 do
3 for s ∈ S do
4 for a ∈ Aground \ {a⊥} do
5 bk,q(s, a)← min{4

√
q̂k(s,a)(1−q̂k(s,a))L∗(δ′,k)

nk,q(s,a)
+ 15L∗(δ′,k)

nk,q(s,a)
, 1};

6 q̄k(s, a)← q̂k(s, a) + bk,q(s, a). qk(s, a)← q̂k(s, a)− bk,q(s, a);

7 for a ∈ Aground do

8 bk,pV (s, a)← min{4
√

Var
s′∼p̂k

(V̄ k
h+1(s

′))L∗(δ′,k)

nk,p(s,a)
+ 15H2L(δ′,k)

nk,p(s,a)
+

2
H p̂k(·|s, a)⊤(V̄ k

h+1 − V k
h+1), H};

9 w̄k(s, a)← r(s, a) + p̂k(·|s, a)⊤V̄ k
h+1 + bk,pV (s, a);

10 V̄ k
h (s), πk

h(s)← BestPerm(Aground, q̄k(s, ·), w̄k(s, ·));
11 V̄ k

h (s)← min{V̄ k
h (s), H}. A′ ← πk

h(s);

12 V k
h(s)← max{

∑|A′|
i=1

∏i−1
j=1(1− q̄k(s,A′(j)))qk(s,A′(i))(r(s,A′(i)) +

p̂k(·|s,A′(i))⊤V k
h+1 − bk,pV (s,A′(i))), 0};

13 Gk
h(s)← min{

∑|A′|
i=1

∏i−1
j=1(1− q̄k(s,A′(j)))(6Hbk,q(s,A′(i)) +

qk(s,A′(i))(2bk,pV (s,A′(i)) + p̂k(·|s,A′(i))⊤Gk
h+1)), H};

14 if Gk
1(s1) ≤ ε then

15 return πk; // Estimation error is small enough
16 for h = 1, 2, . . . ,H do
17 Observe the current state skh; // Take policy πk and observe the trajectory
18 Take action Ak

h = πk
h(s

k
h). i← 1;

19 while i ≤ m do
20 Observe if Ak

h(i) is clicked or not. Update nk,q(skh, A
k
h(i)) and q̂k(skh, A

k
h(i));

21 if Ak
h(i) is clicked then

22 Receive reward r(skh, A
k
h(i)), and transition to a next state

skh+1 ∼ p(·|skh, Ak
h(i));

23 Ik,h ← i. Update nk,p(skh, A
k
h(i)) and p̂k(·|skh, Ak

h(i));
24 break while; // Skip subsequent items
25 else
26 i← i+ 1;

27 if i = m+ 1 then
28 Transition to a next state skh+1 ∼ p(·|skh, a⊥); // No item was clicked
29 Update nk,p(skh, a⊥) and p̂k(·|skh, a⊥);

32

Published as a conference paper at ICLR 2024

Algorithm 3 gives the pseudo-code of CascadingBPI. Similar to CascadingVI, in each episode, we
estimates the attraction and transition for each item independently, and calculates the optimistic attrac-
tion probability q̄k(s, a) and weight w̄k(s, a) using exploration bonuses. Here w̄k(s, a) represents
the optimistic cumulative reward that can be received if item a is clicked in state s. Then, we call
the oracle BestPerm to compute the maximum optimistic value V̄ k

h (s) and its greedy policy πk
h(s).

Furthermore, we build an estimation error Gk
h(s) which upper bounds the difference between V̄ k

h (s)

and V πk

h (s) with high confidence. If Gk
h(s) shrinks within the accuracy parameter ε, we output the

policy πk. Otherwise, we play episode k with policy πk, and update the estimates of attraction and
transition for the clicked item and the items prior to it.

Employing the efficient oracle BestPerm, CascadingBPI only maintains the estimated attraction
and transition probabilities for each a ∈ Aground, instead of calculating Q̄k

h(s,A) for each A ∈ A as
in a naive adaption of existing RL algorithms (Kaufmann et al., 2021; Ménard et al., 2021). Therefore,
CascadingBPI achieves a superior computation cost that only depends on N , rather than |A|.

D.2 SAMPLE COMPLEXITY FOR ALGORITHM CascadingBPI

In the following, we prove the sample complexity for algorithm CascadingBPI.

D.2.1 CONCENTRATION

For any κ ∈ (0, 1) and n > 0, let L(κ, n) := log(HSN
κ) + S log(8e(n + 1)) and L∗(κ, n) :=

log(HSN
κ) + log(8e(n+ 1)).

Let event

L :=

{∣∣q̂k(s, a)− q(s, a)
∣∣ ≤ 4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)
,

∣∣∣∣√q̂k(s, a)(1− q̂k(s, a))−
√

q(s, a)(1− q(s, a))

∣∣∣∣ ≤ 4

√
L∗(δ′, k)

nk,q(s, a)
, (15)

∀k > 0,∀h ∈ [H],∀(s, a) ∈ S ×Aground \ {a⊥}

}
.

Lemma 18 (Concentration of Attractive Probability). It holds that

Pr [L] ≥ 1− 4δ′.

Proof of Lemma 18. Using a similar analysis as that for Lemma 6 and a union bound over k =
1, . . . ,∞, we have that event L holds with probability 1− 4δ′.

Let event

M :=

{
KL
(
p̂k(·|s, a)∥p(·|s, a)

)
≤ L(δ′, k)

nk,p(s, a)
,

∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤ 2

√
Vars′∼p

(
V ∗
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
+

3HL∗(δ′, k)

nk,p(s, a)
,

∀k > 0,∀h ∈ [H],∀(s, a) ∈ S ×Aground

}
.

Lemma 19 (Concentration of Transition Probability). It holds that

Pr [M] ≥ 1− 3δ′.

Furthermore, if event L ∩M holds, we have that for any k > 0, h ∈ [H] and (s, a) ∈ S ×Aground,∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤4
√

Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
+

15H2L(δ′, k)

nk,p(s, a)

33

Published as a conference paper at ICLR 2024

+
2

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
.

Proof of Lemma 19. Following Lemma 3 in (Ménard et al., 2021), we have Pr [M] ≥ 1− 3δ′.

Using Eq. (22) and (23) in Lemma 22, we have√
Vars′∼p

(
V ∗
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)

≤

√
2Vars′∼p̂k

(
V ∗
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)
+

4H2L(δ′, k)

nk,p(s, a)
· L

∗(δ′, k)

nk,p(s, a)

≤

√
4Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)
+ 4Hp̂k(·|s, a)⊤

(
V̄ k
h+1 − V ∗

h+1

)
· L

∗(δ′, k)

nk,p(s, a)

+
2HL(δ′, k)

nk,p(s, a)

(a)
≤

√
4Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)
+

√
1

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
· 4H

2L∗(δ′, k)

nk,p(s, a)

+
2HL(δ′, k)

nk,p(s, a)

≤2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)
+

1

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
+

6H2L(δ′, k)

nk,p(s, a)
,

where inequality (a) uses the induction hypothesis of Lemma 15.

Thus, we have∣∣∣(p̂k(·|s, a)− p(·|s, a)
)⊤

V ∗
h+1

∣∣∣ ≤4√Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
· L

∗(δ′, k)

nk,p(s, a)

+
2

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
+

15H2L(δ′, k)

nk,p(s, a)
.

D.2.2 OPTIMISM AND ESTIMATION ERROR

For any k > 0, h ∈ [H] and s ∈ S, we define

bk,q(s, a) := min

{
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)
, 1

}
,

∀a ∈ Aground \ {a⊥},
bk,q(s, a⊥) := 0,

bk,pV (s, a) := min

{
4

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
+

15H2L(δ′, k)

nk,p(s, a)

+
2

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
, H

}
, ∀a ∈ Aground.

34

Published as a conference paper at ICLR 2024

For any k > 0, h ∈ [H], s ∈ S and A ∈ A, we define

Q̄k
h(s,A) = min

{ |A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))q̄k(s,A(i))·

(
r(s,A(i)) + p̂k(·|s,A(i))⊤V̄ k

h+1 + bk,pV (s,A(i))
)
, H

}
πk
h(s) = argmax

A∈A
Q̄k

h(s,A),

V̄ k
h (s) = Q̄k

h(s, π
k
h(s)),

V̄ k
H+1(s) = 0,

Qk

h
(s,A) = max

{ |A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))·

(
r(s,A(i)) + p̂k(·|s,A(i))⊤V k

h+1 − bk,pV (s,A(i))
)
, 0

}
,

V k
h(s) = Qk

h
(s, πk

h(s)),

V k
H+1(s) = 0,

Gk
h(s,A) =

|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6Hmin

{
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)

+
15L∗(δ′, k)

nk,q(s, a)
, 1

}
+ qk(s,A(i)) ·

(
min

{
8

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)

+
30H2L(δ′, k)

nk,p(s, a)
+

4

H
p̂k(·|s, a)⊤Gk

h+1, 2H

}
+ p̂k(·|s, a)⊤Gk

h+1

))
,

Gk
h(s) = Gk

h(s, π
k
h(s)),

Gk
H+1(s) = 0.

Lemma 20 (Optimism). Assume that event L ∩M holds. Then, for any k > 0, h ∈ [H] and s ∈ S ,

V̄ k
h (s) ≥ V ∗

h (s).

Proof of Lemma 20. By a similar analysis as that for Lemma 15 with different definitions of
bk,q(s, a), bk,pV (s, a) and Lemmas 18, 19, we obtain this lemma.

Lemma 21 (Estimation Error). Assume that event K ∩ L ∩M holds. Then, with probability at least
1− δ, for any k > 0, h ∈ [H] and s ∈ S,

V̄ k
h (s)−min{V k

h(s), V
πk

h (s)} ≤ Gk
h(s).

Proof of Lemma 21. For any k > 0 and s ∈ S, it trivially holds that V̄ k
H+1(s) −

min{V k
H+1(s), V

πk

H+1(s)} ≤ Gk
H+1(s).

For any k > 0, h ∈ [H] and (s,A) ∈ S × A, if Gk
h(s,A) = H , then it trivially holds that

Q̄k
h+1(s,A)−min{Qk

h+1
(s,A), Qπk

h+1(s,A)} ≤ Gk
h+1(s,A).

Otherwise, supposing V̄ k
h+1(s)−min{V k

h+1(s), V
πk

h+1(s)} ≤ Gk
h+1(s), we first prove Q̄k

h(s,A)−
Qk

h
(s,A) ≤ Gk

h(s,A).

Q̄k
h(s,A)−Qk

h
(s,A)

35

Published as a conference paper at ICLR 2024

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))(qk(s,A(i)) + 2bk,q(s,A(i)))·

(
r(s,A(i))+p̂k(·|s,A(i))⊤V̄ k

h+1+bk,pV (s,A(i))
)

−
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))
(
r(s,A(i)) + p̂k(·|s,A(i))⊤V k

h+1 − bk,pV (s,A(i))
)

=

|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6Hbk,q(s,A(i))

+ qk(s,A(i))
(
2bk,pV (s,A(i)) + p̂k(·|s,A(i))⊤

(
V̄ k
h+1 − V k

h+1

)))

≤
|A|∑
i=1

i−1∏
j=1

(1−q̄k(s,A(j)))
(
6Hbk,q(s,A(i))+qk(s,A(i))

(
2bk,pV (s,A(i))+p̂k(·|s,A(i))⊤Gk

h+1

))
= Gk

h(s,A).

Now, we prove Q̄k
h(s,A)−Qπk

h (s,A) ≤ Gk
h(s,A).

Q̄k
h(s,A)−Qπk

h (s,A)

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))(qk(s,A(i))+2bk,q(s,A(i)))·

(
r(s,A(i))+p̂k(·|s,A(i))⊤V̄ k

h+1+bk,pV (s,A(i))
)

−
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))qk(s,A(i))
(
r(s,A(i)) + p(·|s,A(i))⊤V πk

h+1

)

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6Hbk,q(s,A(i)) + qk(s,A(i))

(
bk,pV (s,A(i))

+ p̂k(·|s,A(i))⊤V̄ k
h+1 − p(·|s,A(i))⊤V πk

h+1

))

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6Hbk,q(s,A(i)) + qk(s,A(i))

(
bk,pV (s,A(i))

+ p̂k(·|s,A(i))⊤
(
V̄ k
h+1 − V πk

h+1

)
+
(
p̂k(·|s,A(i))− p(·|s,A(i))

)⊤
V ∗
h+1

+
(
p(·|s,A(i))− p̂k(·|s,A(i))

)⊤ (
V ∗
h+1 − V πk

h+1

)))
(16)

In addition, for any (s, a) ∈ S ×Aground, we have(
p(·|s, a)− p̂k(·|s, a)

)⊤ (
V ∗
h+1 − V πk

h+1

)
≤2

√
Vars′∼p

(
V ∗
h+1(s

′)− V πk

h+1(s
′)
)
L(δ′, k)

nk,p(s, a)
+

3HL(δ′, k)

nk,p(s, a)

≤2

√
L(δ′, k)

nk,p(s, a)
·
(
2Vars′∼p̂k

(
V ∗
h+1(s

′)− V πk

h+1(s
′)
)
+

4H2L(δ′, k)

nk,p(s, a)

)
+

3HL(δ′, k)

nk,p(s, a)

36

Published as a conference paper at ICLR 2024

≤2

√
L(δ′, k)

nk,p(s, a)
·
(
2Hp̂k(·|s, a)⊤

(
V ∗
h+1 − V πk

h+1

)
+

4H2L(δ′, k)

nk,p(s, a)

)
+

3HL(δ′, k)

nk,p(s, a)

≤2

√
2H2L(δ′, k)

nk,p(s, a)
· 1
H

p̂k(·|s, a)⊤
(
V ∗
h+1 − V πk

h+1

)
+

4HL(δ′, k)

nk,p(s, a)
+

3HL(δ′, k)

nk,p(s, a)

≤ 2

H
p̂k(·|s, a)⊤

(
V ∗
h+1 − V πk

h+1

)
+

11H2L(δ′, k)

nk,p(s, a)
(17)

Plugging Eq. (17) into Eq. (16), we have

Q̄k
h(s,A)−Qπk

h (s,A)

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6H

(
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)

)

+ qk(s,A(i))

(
4

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)

+
15H2L(δ′, k)

nk,p(s, a)
+

2

H
p̂k(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
+ p̂k(·|s,A(i))⊤

(
V̄ k
h+1 − V πk

h+1

)
+ 2

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
+

3HL(δ′, k)

nk,p(s, a)

+
2

H
p̂k(·|s, a)⊤

(
V ∗
h+1 − V πk

h+1

)
+

11H2L(δ′, k)

nk,p(s, a)

))

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6H

(
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)

)

+ qk(s,A(i))

(
6

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)

+
29H2L(δ′, k)

nk,p(s, a)
+

(
1 +

4

H

)
p̂k(·|s, a)⊤Gk

h+1

))

By the clipping bound in Eq. (16), we have

Q̄k
h(s,A)−Qπk

h (s,A)

≤
|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6Hmin

{
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)
, 1

}

+ qk(s,A(i)) ·
(
min

{
6

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
+

29H2L(δ′, k)

nk,p(s, a)

+
4

H
p̂k(·|s, a)⊤Gk

h+1, 2H

}
+ p̂k(·|s, a)⊤Gk

h+1

))
≤Gk

h+1(s,A).

Then, we have

V̄ k
h (s)−min{V k

h(s), V
πk

h (s)} = Q̄k
h(s, π

k
h(s))−min{Qk

h
(s, πk

h(s)), Q
πk

h (s, πk
h(s))}

≤ Gk
h(s, π

k
h(s))

= Gk
h(s),

37

Published as a conference paper at ICLR 2024

which completes the proof.

D.2.3 PROOF OF THEOREM 2

Proof of Theorem 2. Recall that δ′ := δ
7 . From Lemmas 10, 18 and 19, we have Pr[K ∩ L ∩M] ≥

1− 7δ′ = 1− δ. Below we assume that event K ∩ L ∩M holds, and then prove the correctness and
sample complexity.

First, we prove the correctness. Using Lemma 20 and 21, we have that the output policy πK+1

satisfies that
V ∗
1 (s1)− V πK+1

1 (s1) ≤ V̄ K+1
1 (s1)− V πK+1

1 (s1) ≤ GK+1
1 (s1) ≤ ε,

which indicates that policy πK+1 is ε-optimal.

Next, we prove sample complexity.

For any k > 0, h ∈ [H], s ∈ S and A ∈ A,

Gk
h(s,A) ≤

|A|∑
i=1

i−1∏
j=1

(1− q̄k(s,A(j)))

(
6H

(
4

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

15L∗(δ′, k)

nk,q(s, a)

)

+ qk(s,A(i))

(
8

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s,A(i))
+

30H2L(δ′, k)

nk,p(s,A(i))

+

(
1 +

4

H

)
p̂k(·|s,A(i))⊤Gk

h+1

))

≤
|A|∑
i=1

i−1∏
j=1

(1− q(s,A(j)))

(
24H

√
q̂k(s, a)(1− q̂k(s, a))L∗(δ′, k)

nk,q(s, a)
+

90HL∗(δ′, k)

nk,q(s, a)

+ q(s,A(i))

(
8

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s,A(i))
+

30H2L(δ′, k)

nk,p(s,A(i))

+

(
1 +

4

H

)
p̂k(·|s,A(i))⊤Gk

h+1

))
(a)
≤

|A|∑
i=1

i−1∏
j=1

(1− q(s,A(j)))

(
24H

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)
+

186HL∗(δ′, k)

nk,q(s, a)

+ q(s,A(i))

(
8

√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s,A(i))
+

30H2L(δ′, k)

nk,p(s,A(i))

+

(
1+

4

H

)
p(·|s,A(i))⊤Gk

h+1 +

(
1 +

4

H

)(
p̂k(·|s,A(i))− p(·|s,A(i))

)⊤
Gk

h+1

))
,

(18)

where inequality (a) comes from Eq. (15).

Using Eq. (21) in Lemma 22, we have

(
p̂k(·|s,A(i))− p(·|s,A(i))

)⊤
Gk

h+1 ≤

√
2Vars′∼p

(
Gk

h+1(s
′)
)
L(δ, k)

nk,p(s,A(i))
+

2HL(δ, k)

3nk,p(s,A(i))

≤

√
1

H
p(·|s,A(i))⊤Gk

h+1 ·
2H2L(δ, k)

nk,p(s,A(i))
+

2HL(δ, k)

3nk,p(s,A(i))

≤ 1

H
p(·|s,A(i))⊤Gk

h+1 +
3H2L(δ, k)

nk,p(s,A(i))
(19)

38

Published as a conference paper at ICLR 2024

According to Eqs. (22) and (23) in Lemma 22, we have√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
≤

√
2Vars′∼p

(
V̄ k
h+1(s

′)
)
+

4H2L(δ, k)

nk,p(s, a)

≤

√
4Vars′∼p

(
V πk

h+1(s
′)
)
+ 4Hp(·|s, a)⊤

(
V̄ k
h+1 − V πk

h+1

)
+

4H2L(δ, k)

nk,p(s, a)

≤

√
4Vars′∼p

(
V πk

h+1(s
′)
)
+ 4Hp(·|s, a)⊤

(
V̄ k
h+1 − V k

h+1

)
+

4H2L(δ, k)

nk,p(s, a)

≤
√
4Vars′∼p

(
V πk

h+1(s
′)
)
+
√
4Hp(·|s, a)⊤Gk

h+1 +

√
4H2L(δ, k)

nk,p(s, a)

Then,√
Vars′∼p̂k

(
V̄ k
h+1(s

′)
)
L∗(δ′, k)

nk,p(s, a)
≤

√
4Vars′∼p

(
V πk

h+1(s
′)
)
L∗(δ′, k)

nk,p(s, a)

+

√
4H2L∗(δ′, k)

nk,p(s, a)
· 1
H

p(·|s, a)⊤Gk
h+1 +

2HL(δ′, k)

nk,p(s, a)

≤2

√
Vars′∼p

(
V πk

h+1(s
′)
)
L∗(δ′, k)

nk,p(s, a)
+

6H2L(δ′, k)

nk,p(s, a)

+
1

H
p(·|s, a)⊤Gk

h+1 (20)

Plugging Eqs. (19) and (20) into Eq. (18), we obtain

Gk
h(s,A) ≤

|A|∑
i=1

i−1∏
j=1

(1− q(s,A(j)))

(
24H

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)
+

186HL∗(δ′, k)

nk,q(s, a)

+ q(s,A(i))

(
16

√
Vars′∼p

(
V πk

h+1(s
′)
)
L∗(δ′, k)

nk,p(s, a)
+
42H2L(δ′, k)

nk,p(s, a)
+

8

H
p(·|s, a)⊤Gk

h+1

+
30H2L(δ′, k)

nk,p(s,A(i))
+

(
1 +

4

H

)
p(·|s,A(i))⊤Gk

h+1

+

(
1 +

4

H

)
·
(

1

H
p(·|s,A(i))⊤Gk

h+1 +
3H2L(δ, k)

nk,p(s,A(i))

)))

≤
|A|∑
i=1

i−1∏
j=1

(1− q(s,A(j)))

(
24H

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)
+

186HL∗(δ′, k)

nk,q(s, a)

+ q(s,A(i))

(
16

√
Vars′∼p

(
V πk

h+1(s
′)
)
L∗(δ′, k)

nk,p(s, a)
+

87H2L(δ′, k)

nk,p(s,A(i))

+

(
1 +

17

H

)
p(·|s,A(i))⊤Gk

h+1

))

Unfolding the above inequality over h = 1, 2, . . . ,H , we have

Gk
1(s1) ≤

H∑
h=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)

(
24H

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)
+
186HL∗(δ′, k)

nk,q(s, a)

)

+

H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)

(
16e17

√
Vars′∼p

(
V πk

h+1(s
′)
)
L∗(δ′, k)

nk,p(s, a)

39

Published as a conference paper at ICLR 2024

+
87e17H2L(δ′, k)

nk,p(s, a)

)

≤24H
H∑

h=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)

+ 186H

H∑
h=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)
L∗(δ′, k)

nk,q(s, a)

+ 16e17

√√√√ H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)Vars′∼p

(
V πk

h+1(s
′)
)
·

√√√√ H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)
L∗(δ′, k)

nk,p(s, a)

+ 87e17
H∑

h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)
H2L(δ′, k)

nk,p(s, a)

≤24H
H∑

h=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)

+ 186H

H∑
h=1

∑
(s,a)∈S×Aground\{a⊥}

vobserve,qk,h (s, a)
L∗(δ′, k)

nk,q(s, a)

+ 16e17H
√
H

√√√√ H∑
h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)
L∗(δ′, k)

nk,p(s, a)

+ 87e17H2
H∑

h=1

∑
(s,a)∈S×Aground

vobserve,pk,h (s, a)
L(δ′, k)

nk,p(s, a)
.

Let K denote the number of episodes that algorithm CascadingBPI plays. According to the stopping
rule of algorithm CascadingBPI, we have that for any k ≤ K,

ε < Gk
1(s1).

Summing the above inequality over k = 1, . . . ,K, dividing (s, a) by sets Bq
k and Bp

k , and using the
clipping construction of Gk

h(s,A), we obtain

Kε <24H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)

√
q(s, a)(1− q(s, a))L∗(δ′, k)

nk,q(s, a)

+ 186H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)
L∗(δ′, k)

nk,q(s, a)

+ 16e17H
√
H

K∑
k=1

√√√√√ H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
L∗(δ′, k)

nk,p(s, a)

+ 87e17H2
K∑

k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
L(δ′, k)

nk,p(s, a)

40

Published as a conference paper at ICLR 2024

+

K∑
k=1

H∑
h=1

∑
(s,a)/∈Bq

k

vobserve,qk,h (s, a)6H +

K∑
k=1

H∑
h=1

∑
(s,a)/∈Bp

k

vobserve,pk,h (s, a)2H

≤24H

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)q(s, a)

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)L∗(δ′, k)

nk,q(s, a)

+ 186H

K∑
k=1

H∑
h=1

∑
(s,a)∈Bq

k

vobserve,qk,h (s, a)
L∗(δ′, k)

nk,q(s, a)

+ 16e17H
√
KH

√√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
L∗(δ′, k)

nk,p(s, a)

+ 87e17H2
K∑

k=1

H∑
h=1

∑
(s,a)∈Bp

k

vobserve,pk,h (s, a)
L(δ′, k)

nk,p(s, a)
+ 64H2SA log

(
HSN

δ′

)
(a)
≤96H

√
KHSA log (KH)L∗(δ′,K) + 1488HSA log (KH)L∗(δ′,K)

+ 64e17H
√
KHSA log (KH)L∗(δ′,K) + 696e17H2SA log (KH)L(δ′,K)

+ 64H2SA log

(
HSN

δ′

)
≤160e17H

√
HSA

√
K

(
log

(
HSN

δ′

)
log (KH) + log2(8eH(K + 1))

)
+ 2248e17H2SA

(
log

(
HSN

δ′

)
log

(
KHSN

δ′

)
+ S log2

(
8eHSN(K + 1)

δ′

))
,

where inequality (a) uses Lemma 9.

Thus, we have

K <
160e17H

√
HSA

ε

√
K

(
log

(
HSN

δ′

)
log (KH) + log2(8eH(K + 1))

)
+

2248e17H2SA

ε

(
log

(
HSN

δ′

)
log

(
KHSN

δ′

)
+ S log2

(
8eHSN(K + 1)

δ′

))
Using Lemma 23 with τ = K + 1, α = 8eHSN

δ′ , A = log
(
HSN
δ′

)
, B = 1, C = 160e17H

√
HSA

ε ,
D = 2248e17H2SA

ε and E = S, we have

K + 1 ≤ O

(
H3SA

ε2
log

(
HSN

δ

)
C2

1 +

(
H2SA

ε
+

H2
√
HSA

ε
√
ε

)(
log

(
HSN

δ

)
+ S

)
C2

1

)
,

where

C1 = O

(
log

(
HSN

δε

(
log

(
HSN

δ

)
+ S

)))
.

Therefore, we obtain Theorem 2.

E TECHNICAL LEMMAS

In this section, we present two useful technical lemmas.

Lemma 22 (Lemmas 10, 11, 12 in (Ménard et al., 2021)). Let p1 and p2 be two distributions on
S such that KL(p1, p2) ≤ α. Let f and g be two functions defined on S such that for any s ∈ S,

41

Published as a conference paper at ICLR 2024

0 ≤ f(s), g(s) ≤ b. Then,∣∣p⊤1 f − p⊤2 f
∣∣ ≤√2Varp2(f)α+

2

3
bα, (21)

Varp2
(f) ≤ 2Varp1

(f) + 4b2α, Varp1
(f) ≤ 2Varp2

(f) + 4b2α, (22)

Varp1
(f) ≤ 2Varp1

(g) + 2b · p⊤1 |f − g|. (23)
Lemma 23. Let A, B, C, D, E and α be positive scalars such that 1 ≤ B ≤ E and α ≥ e. If τ ≥ 0
satisfies

τ ≤ C
√

τ
(
A log (ατ) +B log2 (ατ)

)
+D

(
A log (ατ) + E log2 (ατ)

)
,

then
τ ≤ C2 (A+B)C2

1 +
(
D + 2

√
DC

)
(A+ E)C2

1 + 1,

where
C1 =

8

5
log
(
11α2 (A+ E) (C +D)

)
.

42

	Introduction
	Related Work
	Problem Formulation
	An Efficient Oracle for Cascading RL
	Crucial Properties of Problem (2)
	Oracle BestPerm

	Regret Minimization for Cascading RL
	Algorithm CascadingVI
	Theoretical Guarantee of Algorithm CascadingVI

	Best Policy Identification for Cascading RL
	Experiments
	Conclusion
	More Experiments
	Experimental Setup with Real-world Data
	Experiments on Synthetic Data

	Proofs for Oracle BestPerm
	Proofs for Cascading RL with Regret Minimization
	Value Difference Lemma for Cascading MDP
	Regret Upper Bound for algorithm CascadingVI
	Concentration
	Visitation
	Optimism and Pessimism
	Second Order Term
	Proof of Theorem 1

	Algorithm and Proofs for Cascading RL with Best Policy Identification
	Algorithm CascadingBPI
	Sample Complexity for Algorithm CascadingBPI
	Concentration
	Optimism and Estimation Error
	Proof of Theorem 2

	Technical Lemmas

