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Abstract
Most distributed graph analytics systems such as Gemini,
Gluon, and SympleGraph support a computational model in
which node properties are updated iteratively using prop-
erties of adjacent neighbors of those nodes. However, there
are many algorithms that cannot be expressed in this model,
such as the Louvain algorithm for community detection and
the Shiloach-Vishkin algorithm for connected components.
These algorithms may be more efficient or may produce
better quality output than simpler algorithms that can be
expressed using updates only from adjacent vertices.

This paper describes Kimbap, a distributed graph analytics
programming framework, and its high-performance imple-
mentation that addresses this problem. Kimbap supports
general vertex-centric algorithms by permitting the compu-
tation at a node to read and write properties of any node
in the graph, not just its adjacent neighbors. The program-
ming model allows programmers to specify iterative graph
analytics applications, while the Kimbap compiler automati-
cally generates the required communication code, and the
Kimbap runtime organizes and synchronizes node-property
pairs across the distributed-memory machines. The under-
lying system uses a distributed node-property map that is
optimized for highly concurrent sparse reductions by us-
ing a graph-partition-aware sparse representation and by
avoiding thread conflicts, thereby eliminating a major bot-
tleneck that throttles performance in systems like Pregel
that also support general vertex programs. Our experiments
on CPU clusters with up to 256 machines (roughly 12000
threads total) show that (1) Louvain clustering algorithm
in Kimbap is on average 4× faster than the state-of-the-art
hand-optimized implementation for the same algorithm and
(2) Kimbap matches or outperforms the state-of-the-art dis-
tributed graph analytics system for algorithms that can be
expressed in both systems.
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1 Introduction
Graph analytics systems today need to process graphs with
billions of nodes and trillions of edges. Graphs of this size
do not fit in the main memory of a single machine, so sys-
tems like Pregel [58], GraphLab [56], PowerGraph [41], Gem-
ini [92], Gluon [27], and SympleGraph [93] have been de-
veloped to perform graph analytics on large clusters. These
systems partition the graph so that each partition fits in
the memory of a single host and support a vertex-centric
programming framework that hides the details of partition-
ing and synchronization. In Pregel, a node in the graph
can send or receive messages from any other node (we use
node and vertex interchangeably). Several subsequent sys-
tems [27, 41, 56, 92, 93] restricted the dissemination of in-
formation to adjacent nodes. In these systems, nodes have
properties and the property value at a node is updated by
applying an operator that reads and/or writes properties of
adjacent neighbors of that node [67, 70]. We call such op-
erators adjacent-vertex operators and algorithms that can
be expressed using only such operators adjacent-vertex pro-
grams [41]. By exploiting this restriction, these systems cache
or mirror adjacent neighbors in a partition to optimize com-
putation and communication, while supporting more ad-
vanced partitioning policies like vertex-cuts [27, 41]. Thus,
these systems trade-off expressiveness for implementation
efficiency.
Adjacent-vertex operators are not sufficient to express

many graph algorithms for problems such as connected
components [76], community detection [13, 79], spanning
forests [15], clustering [55, 88], vertex covers [9, 31], sim-
ilarity [49], etc. These algorithms access the properties of
a node whose ID is computed dynamically; e.g., by using
another node’s property or by walking multiple hops in the
topology. The operator in these algorithms requires access-
ing properties of any node in the graph. In this paper, we
call such operators trans-vertex operators. Reductions (like
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sum or minimum) on the node properties are common in
trans-vertex operators.
Algorithms that use trans-vertex operators may be more

efficient or may produce better quality output than adjacent-
vertex programs for the same graph problem. For connected
components for example, algorithms that use trans-vertex op-
erators like Shiloach-Vishkin [76] are faster [53, 64] for high-
diameter graphs than adjacent-vertex programs. Similarly,
for minimum spanning forest, Boruvka’s algorithm [15] uses
trans-vertex operators and variants of it are faster [44, 59] on
parallel hardware than algorithms limited to adjacent-vertex
operators like Prim’s algorithm [68]. On the other hand,
for community detection, different algorithms may produce
different outputs, and the quality of the output is a key de-
termining factor in choosing the algorithm. The Louvain
algorithm [13] uses trans-vertex operators, whereas the la-
bel propagation algorithm for community detection [72] uses
only adjacent-vertex operators. Many studies [34, 52, 87, 91]
have shown that Louvain produces better quality commu-
nities than the label propagation algorithm, so it is used in
applications such as discovering structures in biological net-
works [60], financial networks [71], social networks [45],
and citation networks [89].

NetworkX [43] has functions for many trans-vertex oper-
ators but is limited to a single machine. Distributed-memory
implementations exist for some trans-vertex operators [12,
38, 78], but they are hand-optimized for specific algorithms
and do not provide general systems support for trans-vertex
operators. Graph databases like Neo4j [3] and TigerGraph [6]
include some trans-vertex programs in their library but their
languages like Cypher [36], GSQL [30], and GQL [66] do not
support trans-vertex programs.

Trans-vertex operators can be implemented using general-
purpose distributed key-value store systems [4, 35] or dis-
tributed shared memory systems [22, 62]. These systems do
not natively support reductions but support atomic compare-
and-swap (CAS) operations that can be used to implement
reductions. For power-law graphs that have a small number
of very high degree vertices, a large number of threads might
be reducing property values for the same key or vertex.When
CAS operations are used for such highly concurrent reduc-
tions, theymay lead to conflicts. Consequently, these systems
are not efficient for global, sparse, highly concurrent reduc-
tions. While Pregel supports trans-vertex operators [86], its
implementation also suffers from conflicts during such re-
ductions for power-law graphs [41].
The main challenge in building systems for trans-vertex

operators is to support highly concurrent reads and reduc-
tions of properties of dynamically computed nodes, while
exploiting the locality inherent in adjacent-vertex opera-
tors. In this paper, we present Kimbap, a general vertex-
centric programming framework that supports general par-
titioning policies and is optimized for both adjacent-vertex
and trans-vertex operators. The Kimbap system provides a

novel distributed, concurrent node-property map that ex-
ploits locality for efficient reads, writes, and conflict-free
reductions of arbitrary node properties. Kimbap supports
the bulk-synchronous parallel (BSP) programming model,
which allows node properties to be requested, read, or re-
duced efficiently in a “bulk” fashion. The property accesses
can be sparse and at the end of each BSP step, reductions to
node properties are performed collectively.

Kimbap provides a shared-memory vertex-centric abstrac-
tion for modifying node-property maps. Kimbap’s compiler
splits the computation operator specified by the program-
mer, generates BSP code along with the required request and
reduce synchronization, and optimizes the generated code
by detecting and removing unnecessary requests and their
synchronization. The compiler also detects adjacent-vertex
operators and specializes the generated code for them.
We implement seven graph algorithms in total for four

graph problems using Kimbap. Five of them cannot be ex-
pressed using only adjacent-vertex operators. Ours is the
first distributed implementation for the Leiden algorithm.
Kimbap is evaluated using four graphs including the largest
publicly available graph [61]. We demonstrate that Kimbap
scales well on CPU clusters with up to 256 hosts. Kimbap is
on average 4× faster than the state-of-art hand-optimized
implementation [38] of the Louvain algorithm. This shows
that Kimbap’s abstraction does not come at the cost of per-
formance. We also compare the Kimbap and Gluon [27] im-
plementations of an adjacent-vertex program for connected
components. Kimbap’s performance is comparable, showing
that Kimbap is efficient even for the simpler case of adjacent-
vertex programs.

In summary, the paper makes the following contributions:

• We propose Kimbap, which is a programming frame-
work for writing general vertex-centric programs at a
high level of abstraction and executing them efficiently
on distributed-memory machines (Section 3).

• We present a runtime and distributed execution model
that efficiently manages reductions to node-property
maps and their synchronization (Section 4).

• We implement a novel distributed, concurrent node-
property map: (1) a novel representation for locality-
optimized reads that leverages graph partitioning in-
formation and (2) a novel implementation for conflict-
free reductions that allows reading the reduced values
in the next BSP round (Section 4).

• We introduce a compiler that automatically generates
the required, optimized communication and synchro-
nization code from shared-memory Kimbap programs
(Section 5).

• We evaluate our system on CPU clusters with up to 256
hosts and show that it significantly outperforms hand-
optimized graph analytics implementations (Section 6).
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Figure 1. Illustration of executing Shiloach-Vishkin [76]
connected components (CC-SV) on an example graph.

2 Background
This section presents background on distributed graph an-
alytics by briefly describing vertex-centric programming
frameworks and their implementations. This section also
provides a brief description of the control-flow analysis that
is used in our system.

2.1 Vertex-Centric Programming Frameworks
Pregel [58] introduced the vertex-centric programming frame-
work for distributed graph analytics. Execution occurs in
rounds and in each round, a node can process messages re-
ceived in the previous round and send messages to any other
node. Nodes have properties (a state in custom data types)
but a node can access only its own properties. Subsequent
frameworks like GraphLab [56] and Gluon [27] raised the
level of abstraction from message passing to shared-memory
while also restricting the dissemination of information to
adjacent nodes. In these frameworks, node properties are
updated by operators that iterate over active nodes, and read
and write the properties of a node and its adjacent neighbors.
Some frameworks like PowerGraph [41] and Gemini [92]
retain the notion of message passing but restrict them to ad-
jacent neighbors. We call both these variants, adjacent-vertex
frameworks.
Adjacent-vertex frameworks have been used to design

algorithms for many graph analytics problems but it has its
limitations. Consider pointer jumping, which is also known as
the 𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡 operation. Each node 𝑛1 has a property consist-
ing of the ID of some other node𝑛2 in the graph, which is said
to be the parent of𝑛1. The shortcut operation sets 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛1)
to 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛1)), i.e., 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛2). As 𝑛2 can be any
node in the graph, the shortcut operator for 𝑛1 may need
to read the parent of a non-adjacent node, which cannot be
expressed in adjacent-vertex frameworks. Figure 1 shows an
example. Black edges in this figure correspond to edges in the
input graph and red edges show the 𝑝𝑎𝑟𝑒𝑛𝑡 property of each
node. In the third graph from the left (𝑖 = 2), 𝑝𝑎𝑟𝑒𝑛𝑡 (4) = 2
and 𝑝𝑎𝑟𝑒𝑛𝑡 (2) = 0. Applying the shortcut operation to node
4 sets 𝑝𝑎𝑟𝑒𝑛𝑡 (4) to 0, as shown in the fourth graph (𝑖 = 3).

Pointer-jumping is frequently used as a basic operation in
efficient algorithms for problems such as minimum spanning
forest [15, 26] and connected components [76, 78]. Here we
describe the Shiloach-Vishkin algorithm [76] for connected
components, which we use as the running example in this

paper. Each node 𝑛 has a parent property which is set to 𝑛 at
the start of the algorithm, as shown in the first graph from the
left (𝑖 = 0) in Figure 1. At the end of the algorithm, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛)
is the smallest ID of any node in the same component as 𝑛.
In Figure 1, there is a single component and the smallest ID
is 0, so at the end of the algorithm, the 𝑝𝑎𝑟𝑒𝑛𝑡 property of
all nodes is 0, as shown in the fourth graph (𝑖 = 3).

The Shiloach-Vishkin algorithm works in rounds. In each
round, the shortcut operation is applied to each node after
the application of the hook operation to each node. To apply
the ℎ𝑜𝑜𝑘 operator to a node 𝑛, all directed edges 𝑛 → 𝑚

of a symmetric graph are examined. Let 𝑝 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑛); if
𝑝 > 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑚), then 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝) ismin-reduced by 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑚);
i.e., the minimum of 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝) and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑚) is written to
𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝). The algorithm terminates when no 𝑝𝑎𝑟𝑒𝑛𝑡 value
is updated in a round. The hook operator for 𝑛 may need to
read and write the parent value of 𝑝 , which may be any node
in the graph, not necessarily a neighbor of 𝑛. This algorithm
clearly cannot be expressed in adjacent-vertex frameworks.

2.2 Vertex-Centric Distributed Graph Systems
To implement vertex-centric frameworks on distributed clus-
ters, the graph is partitioned between the hosts of the clus-
ter [73]. Each host performs computations on nodes in its
own partition but must communicate with other hosts to
ensure that the properties of nodes on the boundaries of
partitions are synchronized. To highlight the implementa-
tion differences that arise due to expressiveness, we will use
Gluon [27] and Pregel [58] as examples of adjacent-vertex
frameworks and general vertex-centric frameworks respec-
tively.
In Gluon, edges are partitioned among hosts and proxy

nodes are created for their end points. Gluon provides several
partitioning policies. These are classified into edge-cut poli-
cies, which assign all incoming edges or all outgoing edges
of a node to the same partition, and vertex-cut policies, in
which edges of a node can be on different partitions.

Since the edges connected to a given node may be parti-
tioned between different hosts, there may be several proxy
nodes for a given node in the graph. One of these proxies
is selected as the master node and the others are called mir-
ror nodes. Intuitively, the master node holds the canonical
property value for that node, and it is responsible for updat-
ing the values at mirror nodes if its property value changes.
In this way, each partition of the graph is a small graph in
itself, and the operator can be executed without worrying
about the fact that the graph is partitioned across machines,
thereby exploiting locality and decoupling computation and
communication.
To ensure that mirror node properties are updated ef-

ficiently, Gluon uses the bulk-synchronous parallel (BSP)
computing model. The algorithm is executed in rounds, and
each round consists of a computation phase followed by a
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communication phase. In the communication phase, prop-
erty values at mirror nodes are reduced at the master node,
and the resulting value is broadcast to the mirror nodes.
This general mechanism works for all partitioning policies.
Gluon includes an optimization to elide reduce or broadcast
depending on the graph algorithm by exploiting the struc-
tural invariant in the partitioning policy. An example is the
following: if the partitioning policy is an outgoing edge-cut
(OEC), then mirror nodes have no outgoing edges; a push-
style graph algorithm only reads the property values for
nodes that have outgoing edges, so property values of mirror
nodes are not read; Gluon therefore reinitializes a mirror
node’s value at the end of the BSP step to the identity value
of the reduction, instead of updating it to the value at the
master node, which would require communication. There
are similar optimizations for other structural invariants in
partitioning policies. Gluon also exploits the temporal invari-
ant in the partitioning policy (that the partitioning does not
change during algorithm execution) to only send the node
property values that have been updated while minimizing
the metadata for those nodes. Gluon’s partitioning invariant
optimizations reduce both the number of communication
messages and the communication volume, thereby reducing
communication overheads.
In Pregel, nodes are partitioned among hosts and each

node can directly access the edges adjacent to it; i.e., it only
supports edge-cut policies. Messages are buffered for de-
livery to a particular host and they are combined/reduced
when they are added to the buffer. This could lead to se-
vere contention for very high-degree vertices in power-law
graphs [41]. Computation and communication are thus tightly
coupled. Even if the property values have not been updated,
messages between nodes must be resent for the property
values to be accessed, which can significantly hurt perfor-
mance for some adjacent-vertex operators. Pregel’s mes-
sage passing framework prevents it from caching mirror
node properties and providing direct access to master or mir-
ror node properties. Pregel also does not support vertex-cut
policies that can help scaling out execution on power-law
graphs [25, 40, 41, 46].

2.3 Control-Flow Analysis
We briefly describe some standard terms in control-flow anal-
ysis that are used in the exposition of the Kimbap compiler
described in Section 5.
A control-flow graph is a representation of all paths that

might be traversed in a program during its execution [8].
In this paper, we consider the statement-level control-flow
graph in which each node represents a single statement, and
a directed edge represents control-flow between statements.
A node may have more than one immediate successor if there
is conditional flow of control from that node to its immediate
successors.

1 template <typename PropTy>
2 class NodePropMap {
3 public:
4 NodePropMap(Graph& graph);
5
6 PropTy Read(Node key);
7
8 void Reduce(Node key, PropTy value,
9 function<PropTy(PropTy, PropTy)>& op);
10
11 void Set(Node key, PropTy value);
12
13 ...
14 }

Figure 2. Node-property map API exposed to developers.

There are two special blocks in the control-flow graph: (1)
the entry block through which all control flow enters, and
(2) the exit block through which all control flow leaves. A
node 𝑀 dominates a node 𝑁 if every path from the entry
block to 𝑁 passes through𝑀 (the entry block does not have
a dominator by definition). Dominance is a tree-structured
relation, and the tree is called the dominator tree. The root
of this tree is the entry node. The parent of a node 𝑁 in this
tree is called the immediate dominator of 𝑁 (this relation is
not defined for the entry node). Similarly, a node 𝑁 is a post-
dominator of a node𝑀 if every path from𝑀 to the exit block
passes through 𝑁 . Post-dominance is also a tree-structured
relation, and the immediate post-dominance relation can be
defined analogously.

3 Kimbap Programming Framework
Section 3.1 describes the API for the node-property map.

Section 3.2 describes a parallel construct we introduce for
writing vertex-centric programs in Kimbap. Section 3.3 il-
lustrates this programming framework using the Shiloach-
Vishkin algorithm [76] for connected components (CC-SV).

3.1 Node-Property Map API
In Kimbap, programmers use a concurrent map, called node-
property map, to store node IDs and properties as key-value
pairs. A node property for a master node is called master
node property; for any other node, it is called remote node
property. A mirror node property is a special case of a remote
node property. A node-property map maintains canonical
values of master node properties, and caches remote node
properties. The API provided to programmers has a shared-
memory view and hides the complexity of the distributed
implementation by exposing only the functions shown in
Figure 2.

• The constructor takes the graph as an input to enable
each host to determine masters and mirrors on that
host.

• Read() returns the property value of a given node.
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1 KimbapWhile (<NodePropMap>) Updated
2 ParFor (<Node-Iterator>) {
3 <Operator>
4 }

Figure 3. Parallel construct for vertex-centric programs.

• Reduce() reduces a given value onto the property value
of a given node; the third parameter specifies the re-
duction function that takes two values as inputs and
returns a combined value. This function must be asso-
ciative and commutative.

• Set() assigns a specified value to a node. It is meant to
be used only during initialization of the map, which
does not have data races. If multiple values are written
to the same node’s property, the runtime is free to pick
any one of them.

3.2 Parallel Construct for Vertex-Centric Programs
Figure 3 shows the parallel construct for specifying it-

erative vertex-centric shared-memory programs. The Kim-
bap compiler performs analysis and generates optimized
code to run on distributed clusters. The construct has three
programmer-defined components:

• Quiescence condition: this is specified by providing a
node-property map. The parallel-for loop is executed
repeatedly until there are no updates to that map. Ex-
tending the quiescence condition to other constructs is
straightforward but is not needed for the applications
of interest in this paper.

• Node iterator : in most applications, this is an iteration
over all nodes in the graph but it is also possible to
specify iteration over a subset of nodes.

• Operator : the operator can read and write properties
of any node. To enable generating efficient code, we re-
quire the operator to be a cautious operator [67], which
means that writes to property values must occur after
all reads in the operator (similar to eliminating hold
and wait for deadlock prevention). The only edges that
can be accessed from the graph object are the edges
connected to the active node. If programmers need
to access other edges, they can store the edges them-
selves as a property on the nodes in a node-property
map and use that map to access edges of any node.

While the writes to the node-property map are concurrent,
the semantics of reads require only eventual consistency; i.e.,
the operator is resilient to stale reads because the operator
will be applied until there are no updates.

Prior distributed vertex-centric graph systems also require
cautious operators [27, 39, 41, 58] and require only eventual
consistency [27–29, 81]. For adjacent-vertex operators, Kim-
bap is as programmable as prior works. Its abstraction is
similar to that of Abelian [39] but unlike Abelian, Kimbap

1 type ParentTy = Node;
2 type ParentNPM = NodePropMap<ParentTy>;
3
4 void Hook(ParentNPM& parent_npm,
5 Graph& graph, BoolReducer& work_done) {
6 KimbapWhile (parent_npm) Updated
7 ParFor (Node src : graph.Nodes()) {
8 ParentTy src_parent = parent_npm.Read(src);
9 for (Edge edge : graph.Edges(src)) {
10 Node dst = edge.DestinationNode();
11 ParentTy dst_parent = parent_npm.Read(dst);
12 if (src_parent > dst_parent) {
13 work_done.Reduce(true, logical_or);
14 parent_npm.Reduce(
15 src_parent, dst_parent, min);
16 }
17 }
18 }
19 }
20
21 void Shortcut(ParentNPM& parent_npm, Graph& graph){
22 KimbapWhile (parent_npm) Updated
23 ParFor (Node node : graph.Nodes()) {
24 ParentTy parent = parent_npm.Read(node);
25 ParentTy grand_parent = parent_npm.Read(parent);
26 if (parent != grand_parent) {
27 parent_npm.Reduce(node, grand_parent, min);
28 }
29 }
30 }
31
32 void CC_SV() {
33 Graph graph = /* load graph */;
34 ParentNPM parent_npm(graph);
35 BoolReducer work_done;
36
37 // Initialization.
38 ParFor (Node node : graph.Nodes()) {
39 parent_npm.Set(node, node);
40 }
41
42 do {
43 work_done.Set(false);
44 Hook(parent_npm, graph, work_done);
45 Shortcut(parent_npm, graph);
46 } while (work_done.Read())
47 }

Figure 4. Shiloach-Vishkin algorithm [76] for connected
components (CC-SV) in Kimbap’s programming framework.

supports trans-vertex operators. Pregel [58] is the only prior
distributed graph system that is as expressive as Kimbap be-
cause it is the only one that supports trans-vertex operators.
However, Kimbap’s shared-memory abstraction enables op-
timizations (Section 4.2) that cannot be accomplished using
Pregel’s message passing abstraction.

3.3 Shiloach-Vishkin Connected Components
(CC-SV) in Kimbap

Figure 4 shows the CC-SV algorithm written in Kimbap.
ParentNPM is the node-property map that keeps track of the
parent of each node (Line 2). This property map is initialized
in Lines 38 to 40 using the set operator of the property map.
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1 template <typename PropTy>
2 class NodePropMap {
3 public:
4 ... // user visible functions
5
6 // functions used by a compiler; hidden from users
7 void ResetUpdated();
8 void IsUpdated();
9 void Request(Node key);
10 void RequestSync();
11 void ReduceSync();
12 // functions used by a compiler to optimize
13 void BroadcastSync();
14 void PinMirrors();
15 void UnpinMirrors();
16 }

Figure 5. Node-property map API for the compiler.

The hook operator in CC-SV is specified in Lines 8 to 17.
The edges connected to each node src are examined (Line 9),
and if a neighbor’s parent is smaller than the parent of node
src (Line 12), the operator reduces src’s parent’s parent with
the neighbor’s parent. To express this in Kimbap, Reduce() is
used with amin function (Line 15). This operator is executed
for all nodes (Line 7) until there are no updates to the parent
of any node (Line 6). The shortcut vertex operator can be
specified similarly (Lines 24 to 28). The node reads its parent
and its parent’s parent (Lines 24 and 25) and updates its
parent to its parent’s parent if they are different (Line 26),
using Reduce()with themin operator (Line 27). This operator
is executed for all nodes (Line 23) until there are no updates
to the parent property of any node (Line 22). Both hook
and shortcut may need to be repeated if any of the nodes’
component was updated during hook. The user can track this
using a BoolReducer that provides a (distributed) concurrent
reducer for a boolean value (details are omitted for brevity).

4 Kimbap Runtime
Section 4.1 describes the execution model of Kimbap and
introduces the low-level node-property map API. Section 4.2
describes the optimized implementation of the node-property
map and extends the API to enable compiler optimizations.

4.1 Distributed Execution Model
An asynchronous execution model may hide communi-

cation overheads, but may generate a large number of mes-
sages, generate duplicate messages, and yield high material-
ization overheads. Kimbap instead batches and de-duplicates
messages, and minimizes costs for materializing the node-
property maps. Consequently, Kimbap adopts a bulk syn-
chronous parallel (BSP) execution model.
To exploit locality, Kimbap not only decouples compu-

tation and communication but also decouples reads of the
node-property map from reductions to it. By caching remote
node properties read during compute (instead of materializ-
ing them on-the-fly whenever they are accessed), Kimbap

minimizes the materialization costs. Kimbap also includes
optimizations (Section 4.2) to further reduce the overhead
of materialization for both read and written remote node
properties. As a result, the overhead of communication is
also reduced.

The Kimbap compiler, described in Section 5, implements
each KimbapWhile loop as a BSP program, using the low-level
API shown in Figure 5. The BSP rounds are iterations of
KimbapWhile and they are synchronized using IsUpdated().
Each round of this BSP program consists of 4 kinds of phases:
request-compute, request-sync, reduce-compute, and reduce-
sync. The reduced values in a round can only be read in the
next round. Kimbap uses non-blocking sends and receives
within each phase to reduce communication overheads.

In request-compute, a parallel loop on each host generates
requests using Request() for properties of remote nodes. We
use a concurrent bitset and set the ith bit if node i is requested,
which avoids duplicate requests. Then each host calls the col-
lective RequestSync(). In request-sync, we aggregate requests
from the bitset, and send a single request message to every
other host. As requests are received from the other hosts, a
parallel loop on each host serves them by reading the canon-
ical property values from the corresponding master nodes.
Each host receives a single request from any individual host,
and produces a single corresponding response message. Each
host then materializes the memory required only for all the
requested remote nodes. As responses are received from the
other hosts, each host copies or caches properties in the ma-
terialized memory and can now read them directly in the
reduce-compute phase.

In reduce-compute, a parallel loop on each host reads cached
node property values using Read() and reduces them onto
new node property values using Reduce(), which computes
partially reduced values that cannot be read in this phase.
Then each host calls the collective ReduceSync(). In reduce-
sync, we perform scatter-gather-reduce (SGR). Partial results
for nodes are scattered by each host to their owner hosts (one
message between every pair of hosts). Each host then gathers
these partial results (without explicit ordering) and reduces
them in a parallel loop onto their master node property val-
ues. This SGR is further optimized as detailed in Section 4.2.
After this, cached remote node properties on each host be-
come stale, so they are dropped and they must be requested
again before being read.

Adjacent-vertex frameworks like Gluon [27] do not have
request-compute and request-sync phases because remote ac-
cesses are restricted to mirror nodes and they always cache
mirror node properties. They also read and reduce to the
cached values directly (using atomics) during reduce-compute.
On the other hand, general vertex-centric frameworks like
Pregel [58] use message passing instead of Kimbap’s shared-
memory node-property maps. As a consequence, (1) applica-
tion programmers need to write operators for requests and
responses explicitly; (2) they cannot decouple compute and
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Figure 6. Graph-partition-aware representation (GAR) of
node-property map on each host for read accesses.

sync for both request and reduce; and (3) they cannot pro-
vide direct access to cached remote node properties during
compute. Pregel also does not de-duplicate requests.

4.2 Optimizations in Node-Property Map
Node-property maps can be implemented using off-the-shelf
distributed in-memory key-value stores [4, 35]. Kimbap in-
stead includes a custom implementation with novel domain-
specific optimizations: (1) graph-partition-aware representa-
tion (GAR), (2) conflict-free reductions (CF), and (3) pinned
mirrors (PM). These optimizations cannot be implemented in
general key-value stores because they are specific to graph
analytics. General vertex-centric frameworks like Pregel [58]
can implement CF but the message passing abstraction in
Pregel prevents it from implementing GAR and PM.
Graph-Partition-Aware Representation (GAR).We mea-
sured the node property reads in seven graph algorithms
and two input graphs on 4 and 32 hosts (experimental setup
details are presented in Section 6.1). On 4 hosts, 65% of the
reads were on average for master node properties. On 32
hosts, 50% of the reads were on average for master node
properties. This is very high since on 32 hosts, only about
3% of the nodes of the graph are master nodes on a given
host. In addition, all of the master node properties were ac-
cessed at least once. Thus, there is significant locality in
node properties accessed on a host. To leverage this locality,
each host owns master node properties and caches remote
node properties to read in Kimbap. As a consequence, a mas-
ter node property is always materialized on a node-property
map, but a remote node property should have been requested
and is materialized during RequestSync() and dropped after
ReduceSync(). We also use different in-memory layouts for
master and remote node properties, as shown in Figure 6.
For master nodes, we use a vector for their properties and
do random access to read a value.
We use a custom map for remote nodes: a vector stores

the nodes and another vector stores their properties. These
vectors are sorted by the nodes and we do a binary search
to read a property value.
Conflict-Free (CF) In-Memory Reductions. To avoid con-
flicts in distributed-memory, the node-property map uses

Thread
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Maps

Thread 0

Reduce()

ReduceSync()

Thread 1 Thread t

...

...

K0 KNK0 KN~ K0 KN~

Kn1 ~K0
Kn1 - 1

~
Kn2 - 1

~

Kn(t-1) ~
KN

Map

Map

...

Thread
-local 
Maps

Figure 7. Node-property map on each host for concurrent
write accesses: dataflow between its thread-local maps for
conflict-free (CF) reductions (𝐾𝑖 ∼ 𝐾 𝑗 is the range of potential
keys for that map).

scatter-gather-reduce (SGR) (Section 4.1). The implementa-
tion of the concurrent map on each host is further optimized
to reduce access conflicts between threads. During the reduce-
compute phase, each thread maintains its own thread-local
map that is updated on Reduce() of both master and remote
nodes, as shown in Figure 7. The same node or key can be
present in multiple thread-local maps and each thread-local
map can contain a value for any node in the graph. As the
accesses are sparse, only a few nodes (that have high-degree)
are expected to be in multiple thread-local maps. During the
reduce-sync phase, these thread-local maps are combined in
ReduceSync() before communication. This combining step is
also optimized to reduce access conflicts. The runtime as-
signs a disjoint node range to each thread, and each thread
traverses all the thread-local maps, combines partial results
for its assigned nodes, and writes the final value to its new
thread-local map. These new thread-local maps are thus con-
strained such that a node may be present in only one of the
thread-local maps. These maps are then passed to the com-
munication runtime for scatter-gather-reduce, which yields
the updated values on the master node properties.
Pinned Mirrors (PM). The runtime also provides methods
(Figure 5) that the compiler can use to further exploit locality.
BroadcastSync() broadcasts each master node property value
to all its mirror nodes. PinMirrors() materializes or caches
the mirror node property values in the node property map
and calls BroadcastSync(). UnpinMirrors() drops the mirror
nodes from the node property map. These functions can
be used to replace the two-way request-response for read-
ing mirror node properties with one-way broadcast, which
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reduces the communication volume and the number of com-
munication messages. When pinned mirrors are enabled by
the compiler, Kimbap incorporates Gluon’s [27] partitioning
invariant optimizations during broadcast to further decrease
communication overheads. For adjacent-vertex operators,
pinned mirrors are always enabled and they are essential for
matching the performance of adjacent-vertex frameworks
like Gluon. Pinned mirrors can also be enabled for some
trans-vertex operators like the hook operator in Figure 8.

5 Kimbap Compiler
Kimbap’s compiler relies on the node-property map API
and the (implicit) graph API (such as Nodes() and Edges()) to
analyze the operators. Figure 8 shows the optimized code
generated by the Kimbap compiler from the CC-SV code in
Figure 4. We use this as a running example to describe the
required transformations and the conditional optimizations.

5.1 Transformations
The compiler builds a control-flow graph for the user-provided
code and transforms it to: (i) introduce iterative loops with a
termination condition, (ii) split the operator and introduce
the required requests for the node properties, and (iii) insert
the required request or reduce synchronization of node prop-
erties. Abelian [39], a compiler for adjacent-vertex programs,
has similar transformations but it does not handle requests
required for trans-vertex operators. These transformations
are not applicable to Pregel [58] due to its abstraction.
DoWhile: The compiler translates Kimbap’s parallel con-
struct into a ParFor loop within a do ... while. ParFor is an
OpenMP-style parallel-for loop. The termination condition
for the while loop uses the IsUpdated() function of the given
node-property map (Line 40 in Figure 8).
Split operator and request: The compiler analyzes each
operator to find all Read() calls to any node property map. It
iterates over these calls such that if 𝑅1 dominates 𝑅2, then
𝑅1 will be iterated before 𝑅2. For each call 𝑅, it finds the
ParFor 𝑃𝐹 that dominates 𝑅 but does not dominate any other
ParFor. It then finds all operations𝑂 that dominate 𝑅 and are
dominated by 𝑃𝐹 . After the immediate dominator of 𝑃𝐹 , it
inserts copies of 𝑃𝐹 , 𝑅, and all operations 𝑂 replicating the
dominance between them. It then replaces 𝑅’s copy with the
corresponding Request(). This ensures that (1) all accesses
to the node property map are requested in a previous ParFor
before being read and (2) if 𝑅1 dominates 𝑅2, 𝑅1 will execute
before the request corresponding to 𝑅2 in the same ParFor.
The second ParFor generated for the shortcut operator is
shown in Lines 27 to 30. The first ParFor is optimized out,
which is described in Section 5.2.
RequestSync and ReduceSync: After the request trans-
formation, the compiler analyzes each operator (including
new operators) to find all Request() or Reduce() calls. For
each such call 𝑅, it finds the ParFor 𝑃𝐹 that dominates 𝑅 and

1 void Hook(ParentNPM &parent_npm, Graph& graph,
2 BoolReducer& work_done) {
3 parent_npm.PinMirrors();
4 do {
5 parent_npm.ResetUpdated();
6 ParFor (Node src : graph.Nodes()) {
7 ParentTy src_parent = parent_npm.Read(src);
8 for (Edge edge : graph.Edges(src)) {
9 Node dst = edge.DestinationNode();
10 ParentTy dst_parent = parent_npm.Read(dst);
11 if (src_parent > dst_parent) {
12 work_done.Reduce(true, logical_or);
13 parent_npm.Reduce(
14 src_parent, dst_parent, min);
15 }
16 }
17 }
18 parent_npm.ReduceSync();
19 parent_npm.BroadcastSync();
20 } while (parent_npm.IsUpdated());
21 parent_npm.UnpinMirrors();
22 }
23
24 void Shortcut(ParentNPM &parent_npm, Graph &graph) {
25 do {
26 parent_npm.ResetUpdated();
27 ParFor (Node node : graph.MasterNodes()) {
28 ParentTy parent = parent_npm.Read(node);
29 parent_npm.Request(parent);
30 }
31 parent_npm.RequestSync();
32 ParFor (Node node : graph.MasterNodes()) {
33 ParentTy parent = parent_npm.Read(node);
34 ParentTy grand_parent = parent_npm.Read(parent);
35 if (parent != grand_parent) {
36 parent_npm.Reduce(node, grand_parent, min);
37 }
38 }
39 parent_npm.ReduceSync() ;
40 } while (parent_npm.IsUpdated());
41 }

Figure 8. Compiler-generated code for hook and shortcut
functions of CC-SV in Figure 4.

inserts a RequestSync() (Line 31) or ReduceSync() (Line 39) re-
spectively before the immediate post-dominator of 𝑃𝐹 . This
ensures that the requests and the reductions to the node-
property map are synchronized.

5.2 Optimizations
The compiler uses novel domain-specific optimizations for
two cases: (i) when edges are not accessed in the opera-
tor, like the shortcut operator of CC-SV, and (ii) when all
reads in the operator are only to the active node and its
adjacent neighbors, like the hook operator of CC-SV. These
optimizations are not applicable to Abelian [39] as it does
not handle requests. In Pregel [58], the first optimization can
be implemented (by programmers) but the message passing
abstraction prohibits the second optimization.
Master nodes RequestSync elision: Before the request
transformation, the compiler analyzes the original operator
to detect whether the operator accesses any edge of the
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active node. Different partitions may contain different edges
for the same node but if the edges are not accessed, then the
computation only depends on properties of the nodes, which
are consistent (synchronized) across partitions. Therefore,
all partitions that contain the mirror node would compute
the same updates as the master node, which is redundant
computation and would lead to redundant communication.
Hence, the compiler modifies the iterator to filter-out mirror
nodes and restrict the iterator to master nodes (Line 27).
After the request transformation, the compiler analyzes each
operator and if the Request() call is only to master nodes,
it deletes that operator and the corresponding ParFor and
RequestSync(). The first ParFor for the shortcut operator is
removed because of this optimization.
Adjacent neighbors RequestSync elision: Before the re-
quest transformation, the compiler analyzes the operator
to detect whether all Read() accesses are to the node and
its adjacent neighbors only. If so, it is more efficient to pin
mirrors and broadcast every update rather than to request
node properties. Therefore, the compiler inserts PinMirrors()
before the immediate-dominating do-while loop (Line 3) and
UnpinMirrors() after the loop (Line 21). After the ReduceSync
transformation, the compiler inserts a BroadcastSync() (Line 19)
after every ReduceSync(). Note that the writes/reduces could
be to any node, not necessarily only to an adjacent neighbor
of the active node. Due to this, requests are elided for the
hook operator in CC-SV.

6 Evaluation
We evaluate Kimbap and compare it with the state-of-the-
art implementations and frameworks1: distributed Louvain
clustering in Vite [38], distributed connected components
in Gluon [27], and a shared-memory graph analytics frame-
work, Galois [64]. We also evaluate Kimbap programs imple-
mented using an in-memory key-value store,Memcached [35].

6.1 Experimental Setup
We performed all experiments on the Stampede2 SKX clus-
ter [77] at the Texas Advanced Computing Center (TACC) [7]
which has a 2.1GHz Intel Xeon Platinum 8160 Skylake ar-
chitecture, 28 cores each on two sockets (hyperthreading
disabled), 192GB DDR4 RAM, 32KB L1 data cache per core,
and 100Gbps Intel Omni-Path (OPA) network. The Kimbap
1Pregel [58] is the only prior distributed graph processing system that sup-
ports trans-vertex operators, but it is not available publicly. Giraph [1], the
open-source counterpart to Pregel, requires Hadoop, which is not supported
on the Stampede2 cluster that we use for evaluation. Furthermore, the MIS
and CC algorithms in the Giraph’s library use only adjacent-vertex opera-
tors, and there are no implementations for Louvain, Leiden, or MSF in its
library. Prior works [27, 41, 92] show that for adjacent-vertex programs,
Gluon is faster than Gemini, Gemini is faster than PowerGraph, and Power-
Graph is faster than Pregel. Pregel and Giraph also provide fault-tolerance
and other features that are orthogonal to Kimbap’s contributions and that
may have high runtime overheads. Due to these reasons, we did not evaluate
Pregel or Giraph.

road-
europe

friendster clueweb12 wdc12

|𝑉 | 173M 41M 978M 3B
|𝐸 | 365M 2B 85B 256B
|𝐸 |/|𝑉 | 2 58 87 72
Max Degree 16 3M 7K 95B
Size (GB) 3 9 325 1K

Table 1. Input graphs and their statistics.

Application Adjacent-Vertex Operator Trans-Vertex Operator

LV • •
LD • •
MSF •
CC-LP •
CC-SCLP • •
CC-SV •
MIS •

Table 2. Operator types used in each application.

system is implemented in C++ and was compiled with g++
9.4.0. We used up to 256 CPU hosts with 48 threads per host.
Table 1 lists the input graphs that we tested in our eval-

uations and their statistics. road-europe [37] is a road net-
work graph, friendster [54] is a social network graph, and
clueweb12 [69] and wdc12 [61] are web-crawl graphs. wdc12
is the largest publicly available graph. road-europe has a high
diameter with roughly uniform and small node degrees. Oth-
ers are power-law graphs that have a small number of very
high-degree nodes. All graphs are symmetrized by adding re-
verse edges to represent undirected graphs. We categorized
road-europe and friendster as medium size, and clueweb12
and wdc12 as large size. The medium size and the large size
graphs were evaluated with up to 16 hosts and 256 hosts
respectively.

We consider 7 graph algorithms in total for 4 graph prob-
lems: community detection, connected components (CC),
minimum spanning forest (MSF), and maximal independent
sets (MIS). As Louvain (LV) and Leiden (LD) algorithms for
community detection produce different outputs, we discuss
their results separately. The adjacent-vertex and/or trans-
vertex operators used in the algorithms are shown in Table 2.
We report the execution time of each graph algorithm, ex-
cluding graph loading/partitioning time, as an average of 3
runs.
LV: We implemented the deterministic LV algorithm [13].
LV consists of two main phases: a clustering refinement and
a graph coarsening based on clusters. In clustering refine-
ment, each node calculates a score called the modularity
gain [63] for each neighbor’s cluster, by reading both the
node’s and the neighbor’s clusters’ properties, to determine
whether it should move to that cluster. In Kimbap, a cluster’s
property is stored in its representative node’s property. Both
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Figure 9. Strong scaling (log-log scale) of Kimbap, Vite, and Gluon for medium size graphs (each host has 48 cores); missing
points (LD) are due to out-of-memory (OOM).
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Figure 10. Strong scaling (log-log scale) of Kimbap and Gluon for large size graphs; Vite timed-out after 9000 seconds.

Vite [38] and Kimbap use the same algorithm but Vite uses
the early termination runtime optimization that excludes
nodes from computation with 75% probability if they stay in
the same cluster for 4 consecutive refinement phases. We did
not implement this in Kimbap as our focus is on application-
agnostic optimizations.
LD: We implemented the deterministic LD algorithm [79].
LD improves clustering quality from LV by splitting clus-
ters into subclusters, calculating connectivity of the subclus-
ters, and moving loosely connected subclusters to neighbor
clusters. We use five node property maps for cluster and
subcluster information. Our LD is the first distributed imple-
mentation.
CC: We implemented three CC algorithms: Shiloach-Vishkin
(SV) [76], shortcutting label propagation (SCLP) [78], and
label propagation (LP) [26]. Each node keeps track of its
parent in a node-property map. We compare these with the
state-of-the-art distributed LP implementation in Gluon [27].
MSF: We implemented Boruvka’s [15, 26] MSF algorithm.
The Boruvka algorithmfindsminimum spanning trees (MSTs)
through successive union-find and shortcut operations. We
use two node-property maps in Kimbap. The first one keeps
track of a parent node for each node and the second one
stores a MST (value) that will be merged with the another
MST (key).
MIS: We implemented a priority-based maximal indepen-
dent sets (MIS) [17]. It calculates a score for each node by
using its degree, and chooses a node having the highest
score among its immediate neighbor nodes as a member of

the independent set. Kimbap’s MIS uses two node-property
maps.

For a fair comparison, graphs are partitioned using (1) the
same Cartesian vertex-cut policy [14] for CC, MSF, and MIS
in Kimbap or Gluon; and (2) the same edge-cut policy for LV
and LD in Kimbap or Vite (as Vite only supports edge-cuts).

6.2 Strong Scaling of Kimbap, Vite, and Gluon
Figure 9 and Figure 10 show strong scaling of Kimbap on
medium size graphs with up to 16 hosts and large size graphs
with up to 256 hosts respectively. They also show Vite for
LV and Gluon for CC-LP. In most cases, Kimbap scales well
and shows better or comparable performance to these third-
party implementations; MIS needs more hosts to outperform
1 host due to higher communication-to-computation ratio.

In Figure 9a, Kimbap’s LV is on average 4× faster than Vite,
a hand-optimized LV implementation. Vite did not finish on
large size graphs (Figure 10a) in 2.5 hours, so Kimbap is on
average at least 8× faster. The main difference between Vite
and Kimbap is in how they handle reductions. Vite runs
an inspection phase using a single thread to construct a
single shared map after communication among machines.
During the execution phase, all threads concurrently perform
atomic reductions on the shared-map. In contrast, Kimbap
trades-off memory for performance and elides reduction
conflicts among threads by using thread-local maps (Figure 7,
Section 4.2). Primarily due to more (thread-local) maps, the
max resident-set size (RSS) of Kimbap is on average 10%
higher than that of Vite. However, Kimbap is significantly
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faster than Vite in both computation and communication.
The difference is higher for larger, power-law graphs due
to more atomic write conflicts among threads in Vite (more
details in Figure 11).
Figures 9b and 10b show strong scaling of Kimbap’s LD.

LD runs out-of-memory in some cases because it consumes
more memory to store additional information for subclusters
compared to LV. LD is on average 7× slower than LV because
LD requires more edge iterations for cluster refining.
Figure 9c and 10c show the execution time of the CC

algorithms in Kimbap and CC-LP in Gluon. CC-LP imple-
mentations of Kimbap and Gluon show comparable execu-
tion times as the Kimbap compiler applies communication
optimizations of Gluon to adjacent-vertex operators (Sec-
tion 5.2); although Kimbap uses more (thread-local) maps
than Gluon, Kimbap’s max RSS is similar to that of Gluon.
On road-europe, CC-SCLP and CC-SV show a speedup of
14× and 2× over CC-LP on average, respectively. This is
expected as road-europe has a high diameter and pointer
jumping skips over multiple edges at a time. In contrast,
CC-LP propagates a label only to the adjacent neighbors.
CC-LP shows the fastest execution time on the power-law
graphs because it propagates node properties fast through
very high-degree nodes. CC-SCLP and CC-SV do not scale
well as the communication cost for pointer-jumping out-
weighs the benefit of more compute threads.

6.3 Single Host Comparison
Table 3 compares Galois, a shared-memory (1 host) graph
analytics system, with Kimbap for medium size graphs that
fit in thememory of a single host. Kimbap andGalois perform
comparably for LV, CC-LP, and MIS on 1 host. Kimbap on 16
hosts is on average 5×, 5×, and 3× faster than Galois on one
host for LV, CC-LP, and MIS respectively.

On LD, Galois timed out at 9000s, so Kimbap is at least 4×
and 14× faster on 1 host and 16 hosts respectively. Galois
uses atomics to reduce the node property values in-place, so
suffers from thread-conflicts for subcluster (node) property
updates in LD. Kimbap avoid such conflicts entirely. Given
sufficient memory, we expect Kimbap to be much faster than
Galois for LD on friendster too.
On MSF and CC-SV, Galois is typically faster than Kim-

bap due to implementation differences. These algorithms
use pointer jumping. To implement this, Galois uses atomic
operations and asynchronously updates node property val-
ues. On the contrary, to update the node property values,
the Kimbap implementations use BSP execution for better
distributed execution efficiency. On road-europe, MSF and
CC-SV in Galois are on average 28× faster than Kimbap due
to the high diameter of road-europe. On friendster, MSF and
CC-SV in Galois are on average 4× faster than Kimbap.

Application Input Galois (sec) Kimbap (sec)
1 host 1 host 16 hosts

LV road-europe 399 413 85
friendster 839 842 140

LD road-europe 9000 2337 638

MSF road-europe 2 78 29
friendster 10 56 24

CC-LP road-europe 329 331 94
friendster 6 5 0.8

CC-SV road-europe 3 60 46
friendster 17 45 22

MIS road-europe 1 2 1
friendster 8 9 1

Table 3. Execution time of Galois and Kimbap; LD in Galois
on road-europe timed-out at 9000s; both Galois and Kimbap
run OOM for LD on friendster; the best execution time is
highlighted in red.

6.4 Impact of Runtime Optimizations
As described in Sections 4.1 and 4.2, Kimbap optimizes dis-
tributed reductions to node property maps in three ways
primarily: (1) SGR: each host performs local reductions and
these partial values are then reduced onto the owner’s values,
(2) CF : each thread performs conflict-free local reductions
by leveraging thread-local maps, and (3) GAR: keys (nodes)
are distributed such that each host owns the values (prop-
erties) for its master nodes and those values are stored in
a vector while remote node properties are cached in a cus-
tom map. Pregel [58] and Vite [38] use SGR but they lack
CF and GAR. General-purpose key-value store systems like
Memcached [35] lack all three optimizations. To demonstrate
the impact of each of these optimizations, we implement 4
variants of Kimbap runtime: Memcached (MC), SGR-only,
SGR+CF, and SGR+CF+GAR. We chooseMC as it is a publicly
available in-memory key-value system which is well-known,
active, and stable. All variants run the same Kimbap compiler
generated programs.

In MC, we implemented and replaced request and reduce
operations using libMemcached [2] (v1.6.17), which is a C
client library for Memcached. Memcached uses modulo hash-
ing to distribute keys. We use multiple get operations, mget(),
for requesting master and remote values, and cache them in a
custommap (similar to that for remote node properties in Fig-
ure 6). Parallelism among threads is exploited similar to that
in the default Kimbap runtime. Memcached does not support
a reduction operation, so we implemented it by exploiting
Memcached’s distributed CAS (compare-and-swap) opera-
tion; reduction operations repeat fetching canonical values
from owner hosts, performing local reductions, and attempt-
ing CAS operations until they succeed. As a consequence,
ReduceSync() is a no-op. To match Kimbap’s experimental
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Figure 11. Execution time of Kimbap runtime variants and Vite (compcomm: computation with communication).
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Figure 12. Execution time of Kimbap with and without compiler optimizations; missing bars timed-out at 9000 seconds
(NO-OPT: without compile-time optimizations, OPT: with compile-time optimizations).

setup, each host executes both a single server and a single
client. We empirically choose the best configuration of 48
threads and 160GB for the store size for each server.

SGR-only uses the SGR optimization but similar to MC, it
uses modulo hashing to distribute nodes and a custommap to
cache both master and remote node properties. On each host,
it uses a single concurrent flat_hash_map from phmap [5]
(parallel-hashmap v1.33), a general-purpose shared-memory
concurrent map library. All threads concurrently write par-
tial reduction results to it. SGR+CF builds on top of SGR-only
to useCF ’s thread-local maps instead of the single concurrent
map. SGR+CF+GAR uses partition-aware key distribution
and separate representations for master and remote node
properties (Figure 6); that is, it is the default node property
map that leverages all the optimizations.

Figure 11 shows the execution time of these variants and
Vite on the medium size graphs for LV and CC-SV (we
omit the other algorithms due to lack of space). We break
the execution time into computation and communication
(ReduceSync and RequestSync) times, except for Vite and MC
(computation and communication are overlapped in them).

Vite is a hand-optimized graph implementation that uses
SGR, so it outperforms MC which lacks any domain-specific
optimizations. Vite is however 3× slower than SGR-only pri-
marily because it uses a single thread to construct a local,
shared map. SGR-only outperforms MC by 11× on average.
MC spends 71% of the execution time on loops that mainly
perform distributed CAS operations and 26% of the execution
time on mget(). This is because MC (1) requires more retries
whereas SGR-only minimizes such retries by using the SGR
optimization for distribution communication (retries are re-
stricted to the local flat_hash_map); (2) requires string keys
instead of Kimbap’s integer keys for nodes; and (3) sends
more messages per round (more metadata in volume) as op-
posed to one message between each pair of hosts in a round
of SGR-only.
SGR+CF is on average 1.7× faster than SGR-only. CF im-

proves computation time by 36% and 81% on LV and CC-SV
with 6% and 12% communication overheads. SGR-only amor-
tizes combining partial reduction results to the local compu-
tation phase as the partial reduction results are immediately
combined to the concurrent map. For LV on road-europe,
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both variants perform roughly the same on a local computa-
tion step but for LV on friendster, SGR+CF is on average 2.6×
faster than SGR-only. The main reason is that most nodes in
road-europe have a low degree, so there are few conflicting
concurrent reductions to the same location. In contrast, the
power-law graph, friendster, has many high-degree nodes,
and the conflict-free design of CF pays off. In CC-SV, SGR+CF
shows 24× and 3× faster computation time than SGR-only
on both road-europe and friendster. In this case, road-europe
requires more pointer-jumping as it has a high diameter,
and therefore, causes more frequent concurrent reduction
conflicts. SGR+CF+GAR is on average 3× faster than SGR+CF
because it exploits node property locality by always caching
the master node properties locally in a vector. This reduces
the number of memory accesses to look up master node
properties and the time needed to do so, thereby improving
request, reduce, and their synchronization time.

6.5 Impact of Compile-Time Optimizations
We compare Kimbap compiler-generated codes with and
without compiler optimizations for the adjacent-vertex pro-
grams, CC-LP and MIS. Figure 12 shows the results on the
medium size graphs. The optimizations improve the compu-
tation time, communication time, and total runtime by 41×,
102×, and 79× on average respectively. This is a lower-bound
as CC-LP without optimizations timed-out at 9000s for road-
europe on more than 1 host. This shows that RequestSync
elision and pinned mirrors (PM) are critical for performance.

7 Related work
Distributed graph processing frameworks. Similar to
Kimbap, Pregel [58] (and Giraph [1], its open-source coun-
terpart) provides a general vertex-centric distributed system
that supports both adjacent-vertex and trans-vertex oper-
ators. Unlike Kimbap’s shared-memory abstraction, Pregel
uses a message passing abstraction that prevents it from
decoupling computation and communication, and support-
ing optimizations like GAR and PM in Kimbap. Pregel also
lacks Kimbap’s CF reduction optimization and it suffers
from conflicts during reductions. Kimbap supports vertex-
cut policies that can help to scale out, but Pregel is restricted
to edge-cut policies. Many distributed graph analytics sys-
tems [25, 25, 27, 28, 41, 47, 57, 74, 80, 82, 84, 85, 92, 93] provide
a programming framework restricted to adjacent-vertex op-
erators. Kimbap builds on top of them and includes a novel
compiler and runtime optimizations that enable it to match
or outperform these systems for adjacent-vertex programs.
Compilers for graph analytics. IrGL [65] generates a
CUDA program for a GPU from a given sequential graph
specification. Abelian [39] extends IrGL to translate shared-
memory code to code that can run on distributed and het-
erogeneous platforms. GraphIt [16, 90] provides a high-level

domain-specific language that separates algorithm and sched-
ule specification, and includes a compiler that generates high-
performance code for a shared-memory multi-core CPU or
GPU. Grafs [48] provides a declarative specification language
for path-based graph analytics and generates code to target
existing shared-memory and distributed-memory graph pro-
cessing systems. GraphIt and Grafs provide a higher-level
abstraction than Kimbap. Except IrGL, all the other compilers
are restricted to adjacent-vertex operators. The languages
and compilation techniques in these compilers are orthog-
onal to that in Kimbap. Kimbap translates shared-memory
code for both adjacent-vertex and trans-vertex operators
into distributed-memory code.
Distributed Shared Memory (DSM) frameworks. DSM
and Partitioned Global Address Space (PGAS) systems im-
plement a shared address space in software on distributed
clusters [10, 18, 20, 21, 24, 32, 33, 50, 62, 75]. DSM systems
cache remote data and implement coherence in software,
whereas PGAS systems do not implement caching of remote
data. While DSM and PGAS systems support trans-vertex
operators, they do so using general-purpose mechanisms,
which are not as efficient as Kimbap’s domain-specific op-
timizations. In particular, the SGR and CF reductions are
optimized for highly concurrent sparse reductions, and this
cannot easily be emulated in these systems.
Distributed key-value store frameworks. Distributed
key-value store systems provide a data storage and inter-
faces to store, manage, read, and write key-value pairs across
distributed-memory machines. Trans-vertex operators can
be implemented in these systems, but many systems [19,
22, 23, 42, 51, 83] are out-of-core systems and optimize I/O
operations, which is orthogonal to our work as we focus on
in-memory workloads. LinkBench [11] is designed to pro-
cess data in social networks and it supports graph morph
operations such as node/edge addition/deletion, whereas
Kimbap focuses on read/reduce operations on node-property
maps. Redis [4] andMemcached [35] are widely used general-
purpose in-memory key-value store systems. Kimbap in-
cludes a custom in-memory key-value store for node-property
maps that leverage domain-specific optimizations such as
GAR, CF reductions, and SGR. Our evaluation shows the
impact of these optimizations compared to Memcached.
Hand-optimized distributed graph analytics. Behnezhad
et al. [12] implement minimum spanning forest by exploit-
ing a generic key-value store system [22]. It caches graph
topologies in the key-value store and accesses arbitrary node
properties (it does not use reductions on the key-value store).
In contrast, Kimbap only uses node property maps and lever-
ages reduction operations that are more lightweight and
efficient. Vite [38] and SCLP [78] implement new Louvain
clustering and connected components algorithms respec-
tively on distributed-memory systems with algorithm-level
optimizations. These hand-optimized implementations re-
quire the programmer to handle distributed communication.
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8 Conclusion
This paper presented Kimbap, a distributed graph analyt-
ics system optimized for both adjacent-vertex and trans-
vertex operators. A novel distributed node-property map
implements conflict-free reductions and efficient reads by
leveraging partitioning information. The compiler hides the
complexity of the distributed-memory from application pro-
grammers and permits generation of specialized code for
adjacent-vertex programs. In this way, the Kimbap system
enables application programmers to write programs at a
high level of abstraction while outperforming state-of-the-
art, hand-optimized programs even for complex algorithms
like Louvain clustering.
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