
OneSparse: A Unified System for Multi-index Vector Search
Yaoqi Chen
Microsoft

Beijing, China

Ruicheng
Zheng
Microsoft

Beijing, China

Qi Chen∗
Microsoft

Beijing, China

Shuotao Xu
Microsoft

Shanghai, China

Qianxi Zhang
Microsoft

Beijing, China

Xue Wu
Microsoft

Beijing, China

Weihao Han
Microsoft

Beijing, China

Hua Yuan
Microsoft

Redmond, United
States

Mingqin Li
Microsoft

Redmond, United
States

Yujing Wang
Microsoft

Beijing, China

Jason Li
Microsoft

Redmond, United
States

Fan Yang
Microsoft

Beijing, China

Hao Sun
Microsoft

Beijing, China

Weiwei Deng
Microsoft

Beijing, China

Feng Sun
Microsoft

Beijing, China

Qi Zhang
Microsoft

Beijing, China

Mao Yang
Microsoft

Beijing, China

ABSTRACT

Multi-index vector search has become the cornerstone for many
applications, such as recommendation systems. Efficient search in
such a multi-modal hybrid vector space is challenging since no sin-
gle index design performs well for all kinds of vector data. Existing
approaches to processing multi-index hybrid queries either suffer
from algorithmic limitations or processing inefficiency. In this pa-
per, we propose OneSparse, a unified multi-vector index query
system that incorporates multiple posting-based vector indices,
which enables highly efficient retrieval of multi-modal data-sets.
OneSparse introduces a novel multi-index query engine design
of inter-index intersection push-down. It also optimizes the vector
posting format to expedite multi-index queries. Our experiments
show OneSparse achieves more than 6× search performance im-
provement while maintaining comparable accuracy. OneSparse
has already been integrated into Microsoft online web search and
advertising systems with 5 × + latency gain for Bing web search
and 2.0% Revenue Per Mille (RPM) gain for Bing sponsored search.
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1 INTRODUCTION

In the past few years, data mining and machine learning techniques
have converted an astronomical number of unstructured data (e.g.
images, videos, documents) into high-dimensional vectors. Dif-
ferent kinds of vectors have their own unique characteristics in
encoding different types of features on an unstructured data-set. For
example, dense vectors are particularly well-suited for extracting
semantic information while sparse vectors are suitable for keyword
matching task. Therefore, multi-index hybrid queries, such as multi-
modal queries [31] and multi-model ensemble queries [28, 33], are
widely adopted. These queries run joint search on multiple vector
indices, such as finding similar items in a hybrid data-set [29, 32],
collaborative filtering with a hybrid of sparse and dense features
[9], and etc. Multi-index hybrid queries are proven to be highly
effective in boosting query result accuracy [28, 33].

However, multi-index joint retrieval is challenging since inter-
section among multiple vector indices cannot be directly pushed
down due to the special traversal manner of vector indices. Many
vector indices are built for processing approximate Top𝐾 queries
efficiently, which can return approximate 𝐾 results close to the
optimal within milliseconds [1, 8]. They are prohibitively expen-
sive to return results in a monotonic way since they cannot sort
all vectors beforehand without query vectors. These indices tra-
verse in a manner where it first approaches the target region and
then steadily departs away approximately [35]. Therefore, it re-
mains uncertain whether a result returned from one index will be
retrieved from another index during joint traversal. As a result,
early intersection is not applicable. Intersection can only be done
after searching different indices separately, so existing solutions
either perform multi-index search in an isolated way [14, 28, 31]
or fuse multiple vectors into one large vector and then perform
single-index search [22, 23, 33].

Vector fusion [22, 23, 33] concatenates multiple vectors into one
hybrid vector, over which a single vector index is built. However,
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Figure 1: Hybrid query procedure of traditional isolated methods and OneSparse. Usually the Score and Rank operations are
combined together, we break them down here to make the comparison clearer. The single value in each grid is the data ID and

"∗/∗" in each grid are the data ID and its score (higher is better), respectively.

increasing vector dimensions caused by vector fusion will bring
additional cost, such as storage, latency, and bandwidth. Besides,
vector fusion is limited in real applications because the vector
similarity function needs to be decomposable, such as inner product.

Isolated search [14, 28, 31], on the other hand, has no limitation
on vector distance metrics but it encounters issues of processing
inefficiency. As Figure 1(a) illustrated, this kind of approach builds
separate indices for different vectors independently (e.g. inverted
index for sparse vectors and ANN index for dense vectors), and runs
queries on each of them. Then, the candidates recalled from these
indices are aggregated via data IDs and ranked to produce final
Top𝐾 results. However, such an isolated solution has two major
shortcomings that conduce to low processing efficiency:
• It is difficult to determine the optimal number of candidates that
each index needs to return (i.e. 𝐾 ′), which minimizes search
latency and achieves relatively high recall simultaneously. More
results than 𝐾 ′ lead to long latency; while fewer results than 𝐾 ′

lead to low search accuracy. 𝐾 ′ is dynamic per query, therefore
isolated search can not predetermine a fixed 𝐾 ′ to achieve high
search accuracy and high efficiency in all situations. Milvus [31]
addresses this issue by iteratively enlarging 𝐾 ′ if the number of
remaining candidates after intersection is less than the required
𝐾 . However, each iteration produces a significant amount of
redundant calculations, leading to even longer latency.

• Intersection and ranking can only be done after all isolated in-
dices complete their individual Top𝐾 ′ searches. This could lead
to a significant waste of score computation and disk I/Os to rank
Top𝐾 ′ candidates per index because a large portion of candidates
will be eventually discarded after the final inter-index intersec-
tion. Elasticsearch [14] alleviates this problem by using Top𝐾 ′

results returned from HNSW to shortlist matched inverted lists
from inverted index, reducing lots of BM25 calculations. How-
ever, ANN distance computation is not reduced since ANN search
is still completed before intersection. Besides, it also faces the
selection problem of 𝐾 ′.

Recent trend of high-performance vector index designs shows
similarity in vector data organization and query processing, which
sheds new opportunities in optimizing isolated search of multi-
index queries. Inverted index [27] for sparse vectors and state-of-
the-art ANN index for billion scale dense vectors [8] all organize
vectors as posting lists. During Top𝐾 search, these indices first find
matched posting lists, and then scan these posting lists to compute
the Top𝐾 vectors.

Based on this common design of vector indices, we observed
a key design optimization of intersection push-down, which can
effectively resolve the two major shortcomings in conventional iso-
lated search of multiple indices. After narrowing down the search
to a small number of nearest posting lists, instead of intersecting
vector candidates after each index’s Top𝐾 ′ operation, we propose
to bypass each index’s Top𝐾 ′ operation, and intersect vector can-
didates before the final stage Top𝐾 as shown in Figure 1(b). This
approach allows the system to early filter low quality data points,
therefore saving a significant amount of computations and I/Os.
Because we eliminate individual Top𝐾 ′ operations, the difficulty
of identifying the optimal 𝐾 ′ in the conventional methods is also
completely resolved.

Based on this key observation of intersection push-down, we
propose OneSparse, a unified index system for multi-index vec-
tor search. OneSparse is capable of running multi-index hybrid
queries, and generates the optimal posting merging plan on-the-fly
to enable fast inter-index intersection and intra-index union before
score calculating and ranking. OneSparse unifies sparse and dense
indices into one inverted index and re-arranging all posting lists
according to doc IDs. Therefore, during the fine-grained traversal
in candidate posting lists, when one index scans to a certain ID,
candidates smaller than this ID in the other index can skip their
BM25 score and Euclidean distance calculations, which solves the
difficulty of identifying whether a result can be filtered out during
joint traversal.
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In addition, OneSparse applies compression optimization for
posting lists of dense vectors, which greatly reduces I/Os as well
as distance computations. Instead of storing full vectors, dense
vectors in a posting are represented by their centroid, assuming
the posting list stores a tight cluster with a small radius. In this
way, only one vector is stored per posting and thus, heavy vector
distance calculation can be reduced significantly.

In short, OneSparse makes the following contributions:
• We propose a novel multi-index search design that efficiently
merge-and-rank vector results via intersection push-down. This
enables a great reduction of computation and I/O for heavy Top𝐾
calculations, thus greatly boosting the query performance.

• We further compress the posting lists for dense vectors to re-
duce high computational and I/O cost for dense vector distance
calculations.

• We implement OneSparse by incorporating two vector search
algorithms, SPANN for dense vectors, and inverted index for
sparse vectors. Our experiments show that OneSparse has more
than 6× latency improvement while achieving comparable recall
accuracy.
OneSparse has proven to be effective in speeding multi-index

vector queries in the real world. It has been successfully integrated
into Microsoft’s product lines, serving various online web search
and advertising systems with 5X+ latency gain for Bing web search
and 2.0% Revenue Per Mile (RPM) gain for Bing sponsored search.

2 BACKGROUND AND RELATEDWORK

2.1 Multi-Index Search

The prosperity of deep learning has spawned a large number of
neural network models that transform unstructured data (e.g. tex-
tual data) into dense vectors (e.g. embeddings with hundreds of
dimensions), such as word2vec [25], Bert [12], and GPT-3 [6]. Dif-
ferent representations of the data-set (i.e., sparse bag-of-words and
dense vectors) show features at different aspects. Dense vectors is
particularly well-suited for extracting semantic information, such
as when seeking docs pertaining to a specific topic, while sparse
vectors is well-suited for keyword matching task, like querying
docs associated with specific names or locations. Consequently,
multi-index hybrid queries [9, 22, 23, 28] which leverage multiple
kinds of features extracted from a single data-set has been increas-
ingly used in many scenarios and have been proven to improve
search accuracy [28, 33].

Problem Definition. Given a data-set consisting of 𝑁 data points,
we extract𝑚 different kinds of features on it, denoted as a set of vec-
tors𝑋 = {𝑋 1, 𝑋 2, · · · , 𝑋𝑚}, where𝑋 𝑖 ∈ R𝑁×𝑛𝑖 is the collections of
the 𝑖𝑡ℎ feature of the data-set with 𝑛𝑖 dimensions. Similarly, a query
𝑞 can be written as {𝑞1, 𝑞2, · · · , 𝑞𝑚}, where 𝑞𝑖 ∈ R𝑛𝑖 . For each 𝑋 𝑖 ,
we build an index to accelerate the search process. Multi-index
vector search is defined as finding Top𝐾 data items retrieved by

all indices and possessed the highest score based on the aggregate
function 𝑓 :

𝑓 (𝑋𝑖 , 𝑞) = 𝑓
(
𝑔1 (𝑋 1

𝑖 , 𝑞
1), 𝑔2 (𝑋 2

𝑖 , 𝑞
2), · · · , 𝑔𝑚 (𝑋𝑚

𝑖 , 𝑞
𝑚)

)
(1)

where 𝑔1, · · · , 𝑔𝑚 are similarity functions which can represent the
relevance between 𝑋𝑖 and 𝑞. Similarity functions can be chosen

according to the properties of feature vectors. For dense vectors
like feature embeddings, euclidean distance, cosine distance, and
inner product are widely used. For sparse representations like bag-
of-words, BM25 [18, 19] is a popular choice, which can evaluate
the relevance between queries and documents.

To accelerate the search process, indices are utilized on vectors.
Index algorithms are quite different based on the different sparsity
of vectors. For sparse data, inverted index [27] are widely used,
taking advantage of sparsity per vector to optimize retrieval speed
andmemory usage. Inverted index also provides intra-index posting
list intersection/union to avoid unnecessary computation and I/O
cost for duplication introduced by the index itself as well as low-
quality candidates which will not appear in the final results. For
dense vectors, due to the curse of dimensionality [10], dense vector
indices only offer approximate results with some query accuracy
(i.e. recall). These Approximate Nearest Neighbor (ANN) indices
are either organized as neighborhood graphs [13, 24] or partitions
(tree-based [5, 26, 30], hash-based [11, 20] and clustering-based [1,
4, 8, 15]). To support super large scale data-sets, SPANN [8] achieves
state-of-the-art performance, which has already been widely used
in real production to support billion-scale vector search. SPANN
partitions the data into a large number of posting lists (clusters)
and builds a tree-graph hybrid index called SPTAG [7] for the
centroids of posting lists to accelerate the search process of the
nearest centroids.

These indices pose a considerable computational cost when at-
tempting to retrieve results in a monotonous order, primarily be-
cause they lack the capability to pre-sort all vectors without access
to query vectors. Instead, they follow a traversal manner wherein
they initially approach the target region and then progressively
move away approximately [35]. Consequently, it remains uncertain
whether a result obtained from one index can be retrieved from
another index during joint traversal and thus unifying multi-index
joint search by simply pushing-down intersection is not applicable.

2.2 Traditional Approaches

Performingmulti-index hybrid vector search is challenging since no
single algorithm can perform well for all kinds of data. Traditional
approaches for multi-index hybrid vector search can be divided
into two categories, vector fusion and isolated search.

Vector fusion [22, 23, 33]. This kind of method assumes that the
similarity function is decomposable such as inner product and the
aggregate function is additive such as summation. By concatenat-
ing multiple vectors together into one hybrid vector, it conducts
multi-index hybrid search on this vector using a single index built
on the hybrid vectors. This kind of method is simple but has spe-
cial algorithmic limitations on similarity function and aggregate
function, which limits its usage in the real world. Besides, when
fusing multiple vectors together, the resultant increase in vector
dimensionality leads to escalating costs in terms of storage, latency,
and bandwidth. Moreover, the extremely high dimensionality of
sparse vectors makes it difficult to apply directly in vector fusion
frameworks.

Isolated Search [14, 28, 31]. This approach uses separate algo-
rithms and data structures to index and search multiple features
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respectively. Taking sparse and dense hybrid search as an example,
isolated methods utilize inverted index to manage sparse data (i.e.,
bag-of-words) and use BM25 scores to determine the similarity
between documents and queries. Meanwhile, they build ANN index
such as HNSW [24] or FAISS [15] on dense data (i.e., embeddings).
When a query comes, it will firstly search in two indices separately
and recall Top𝐾 ′ candidates from inverted index and Top𝐾 ′′ candi-
dates from ANN index. After that, these candidates will be merged
and ranked by their ANN distance and BM25 score to gain Top𝐾
final results. Figure 1(a) shows the above process.

However, predicting the size of candidates returned by the two
separate indices to minimize search latency while preserving accu-
racy is a challenging task. Let’s consider 𝑆1 and 𝑆2 as the candidate
sets retrieved from the inverted index and ANN index, respectively.
If the size of their intersection, |𝑆1 ∩ 𝑆2 |, is less than the desired
number of results, 𝐾 , some candidates will not have both ANN dis-
tance and BM25 score available for the final ranking stage, leading
to lower accuracy. On the other hand, if |𝑆1 ∩ 𝑆2 | is greater than 𝐾 ,
the results will be more accurate, but it will come at the cost of extra
index traversal. Since different queries have unique characteristics,
it is not possible to set a fixed size of 𝐾 ′ and 𝐾 ′′ for all scenarios.
Milvus [31] addresses this issue by iteratively executing isolated
search and enlarging 𝐾 ′ if the number of remaining candidates
after intersection is less than required 𝐾 . However, each iteration
results in excessive vector access and distance computation, leading
to even longer latency.

Another problem of isolated search is that intersection and rank-
ing can only be done after all of the isolated indices finish their
Top𝐾 ′ candidate search. Since many candidates traversed in each
index scan may not appear in the final inter-indices intersection,
this will lead to large unnecessary computation and I/O cost. Elas-
ticsearch [14] alleviates this problem by pushing down part of the
intersection process. It firstly generates𝐾 ′ candidates through ANN
search and then uses them to shortlist matched inverted lists from
inverted index, reducing many BM25 calculations. However, ANN
distance computation is not reduced since ANN search is still com-
pleted before intersection, and thus candidates that get removed
after the intersection still have their distances calculated. Besides,
it also faces the selection problem of 𝐾 ′.

3 SYSTEM DESIGN

In this section, we will propose the architecture of OneSparse,
introduce the key innovation of intersection push-down and op-
timization we adopt to accelerate the search process and finally
explain the reason of OneSparse’s superior performance.

3.1 OneSparse Architecture

To support multi-index hybrid queries, OneSparse builds a unified
index system by managing all kinds of data through posting lists.
The architecture of one typical scenario (one sparse index + one
dense index) of OneSparse is shown in Figure 2. OneSparse re-
quires that all vector indices store vectors in a uniform posting-list
based format.

For sparse data, OneSparse maintains one dimension of the
sparse vectors (i.e., term) per inverted posting list, which allows
fast lookup to all relevant documents of a word in a query. The

Figure 2: OneSparse architecture for one sparse index and

one dense index

values stored in an inverted posting list are pairs of ID and a single-
dimensional feature (e.g., term frequency). For dense vectors, OneS-
parse clusters them into several posting lists by SPANN. Besides,
it builds a SPTAG in-memory ANN index on cluster centroids to
quickly navigate to the nearest SPANN posting lists. The values
stored in a SPANN posting list are pairs of ID and dense vector
in this cluster. All inverted posting lists and SPANN posting lists
are saved on disk. The left two columns of Table 1 summarize the
comparison of traditional inverted posting lists and SPANN posting
lists.

Table 1: Comparison of three kinds of indices

Inverted Index SPANN SPANN in OneSparse

key term centroid centroid
value (ID, tf) (ID, vector) (ID, [vector])
list order ID distance ID

OneSparse’s solution is general and flexible. Although our im-
plementation of OneSparse incorporates sparse and dense indices
(Figure 2), the design of OneSparse is also able to support multiple
sparse indices, multiple dense indices and other index combinations
as long as they conform to the same posting-based format.

3.2 Intersection Push-down

By leveraging OneSparse’s unified architecture, we decompose the
Top𝐾 interface of each index and push the intersection operation
down to the posting list traversal process. As Figure 1 illustrates,
compared with traditional isolated methods that intersecting the
results of individual Top𝐾 ′ searches of all indices, OneSparse in-
tersects vector candidates among inter-index posting lists during
posting list traversal. Therefore, we can bypass the score computa-
tion (i.e., ANN distance calculation, BM25 score calculation, etc.)
of data points which do not show up in candidate posting lists of
all indices, enabling a great reduction of computation and I/O for
heavy Top𝐾 calculations, and thus boosting query performance
tremendously. Besides, by pushing-down intersection, we eliminate
individual Top𝐾 operations of traditional isolated methods, and
thus the difficulty of identifying the optimal 𝐾 ′ in the conventional
method is also completely resolved.
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Figure 3: An example of fast multi-way merge algorithm

However, it is hard to determine whether a data point can be
discarded or not during the joint index traversal, since it remains un-
certain whether a result located within one index will be retrieved
from another index or not because the traversal patterns of ANN
index and inverted index are not monotonous. Based on the feature
of traditional inverted index which can perform intra-index inter-
section/union during the inverted lists traversal, we address the
above problem by sorting elements in SPANN posting lists based on
their IDs, which aligns with traditional inverted index (see Table 1).
This allows us to perform fast multi-way inter-index posting list
intersection together with intra-index union simultaneously during
multi-index traversal, where when one index scans to a certain ID,
BM25 score and ANN distance calculations for candidates smaller
than this ID in the other index can be skipped, which results in
significant computational savings. We call this fast multi-way merge

algorithm.
Figure 3 illustrate the execution process of the fast multi-way

merge algorithm. In Figure 3(a), OneSparse has four posting lists
from two different indices. We take the union of 𝑙𝑖𝑠𝑡11 and 𝑙𝑖𝑠𝑡12 and
the union of 𝑙𝑖𝑠𝑡21 and 𝑙𝑖𝑠𝑡22 (intra-index union), and meanwhile
conduct intersection among the union results from two indices
(inter-intersection). Since the IDs in each posting list are ordered,
we can compute intra-index union and inter-index intersection
on four lists simultaneously. For example, we assign a pointer to
each candidate posting list, starting from the first column. Assum-
ing IDs pointed by four pointers denoted as 𝑐11, 𝑐12, 𝑐21, 𝑐22, we
compare the minimum pointed IDs from each index, which are
𝑐1 = min (𝑐11, 𝑐12) and 𝑐2 = min (𝑐21, 𝑐22).

If 𝑐1 = 𝑐2, it means this candidate is recalled by all indices and
can be considered as high-quality. Then, we compute its ranking
score according to similarity functions and aggregate function and
insert it into the a heap (marked with yellow in Figure 3). After
that, we shift all pointers to this ID backward. As Figure 3(b) shows,
we find that 𝑐1 = 𝑐2 = 1, therefore we compute the score of the
candidate whose ID = 1 and put it into a heap. Then, move the
pointers of 𝑙𝑖𝑠𝑡11, 𝑙𝑖𝑠𝑡12 and 𝑙𝑖𝑠𝑡22 to the next candidate.

If 𝑐1 ≠ 𝑐2, we choose the maximum value of 𝑐1 and 𝑐2, denoted
as 𝑐𝑚𝑎𝑥 = max (𝑐1, 𝑐2). Then, all pointers can jump directly to the
nearest candidate whose ID is no less than 𝑐𝑚𝑎𝑥 . We build skip lists
on each posting list to accelerate this seek process. In this way, we
can skip many pages read from the disk, reducing lots of I/O costs.
As Figure 3(c) shows, we find that 𝑐1 = 2 while 𝑐2 = 3, therefore,
we just shift pointers of 𝑙𝑖𝑠𝑡11 and 𝑙𝑖𝑠𝑡12 to the nearest candidate
that its ID is no less than 3, which are 10 and 5, respectively.

Repeat the above process until there is an index that all pointers
of its posting lists finish the traversal. Then, we can stop the search

process, returning the final Top-𝐾 results from the heap. As we
can see, the execution time of OneSparse is associated with the
index whose size of the union of its posting lists is the shortest.
In contrast, isolated methods must wait until all indices returned
Top𝐾 ′ results even though fast indices finished searching early.

3.3 Posting-list Compression

We find that if a SPANN posting list represents a small neighbor-
hood, the centroid of this posting list can represent all dense vectors
in it sufficiently and accurately enough in terms of calculating dis-
tances to the query vector. Therefore, to further accelerate the
search process, OneSparse uses centroids to represent the original
full-size vectors in the corresponding posting lists to greatly reduce
disk usage. Besides, since we do not need to maintain original vec-
tors in the index, the size of each posting list can be compressed
significantly, which also reduces disk I/Os when traversing indices.
More importantly, the distance between the query vector and the
original data vector can be replaced by using the distance between
the query vector and the centroid. This means that distance only
needs to be calculated once per posting list regardless of the num-
ber of elements per posting list, which further saves computations
significantly.

Interestingly, according to our experiments, using the default
settings of SPANN with 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 = 8, the search accu-
racy drops significantly after compression (e.g. recall@100 drops
from 91% to 84%). This is because the replication leads to the
growth of the cluster radius, which reduces the representative
of the centroid. Therefore, we eliminate this side effect by setting
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 = 1 and increasing the number of centroids
when building SPANN index. In this way, compression would only
slightly affect search accuracy, but it reduces query latency tremen-
dously. We will show these results in Section 5.2.

3.4 Efficiency of OneSparse

In this section, we will analyze the efficiency of OneSparse sparse
and dense hybrid search based on the computation data flow graph
in Figure 4. This will showcase the design benefits that contribute
to OneSparse’s superior performance compared with SPANN +
Inverted Index isolated approach.

In a conventional isolated search solution (Figure 4(a)), to com-
pute Top𝐾 nearest results towards query 𝑞 in sparse and dense
hybrid data-set, one first needs to locate 𝑛1 dense-vector posting
lists via SPTAG, and 𝑛2 sparse-vector posting lists via term match-
ing. Then, every element in posting lists is traversed and their
scores will be computed as either ANN distances or BM25 scores.
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In total, there are 𝑟1 ANN distance calculations and 𝑟2 BM25 score
calculations. After that, sorting is performed on 𝑟1 and 𝑟2 candi-
dates respectively based on their scores, which produces Top𝐾 ′

and Top𝐾 ′′ results. Finally, the system intersects the 𝐾 ′ and 𝐾 ′′

candidates and sorts them again by the aggregate function, produc-
ing the final Top𝐾 results. The computation cost of this process is
shown in Equation 2.

𝑡1 =𝑇𝑙𝑜𝑐𝑎𝑡𝑒 + 𝑟1 ×𝑇𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑟2 ×𝑇𝑏𝑚25

+𝑇𝑠𝑜𝑟𝑡 (𝑟1) +𝑇𝑠𝑜𝑟𝑡 (𝑟2)
+𝑇𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝐾 ′, 𝐾 ′′) +𝑇𝑠𝑜𝑟𝑡 (𝐾 ′′′)

(2)

where 𝑇𝑙𝑜𝑐𝑎𝑡𝑒 is the SPTAG ANN centroid search and term match-
ing cost, 𝑇𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is an ANN distance calculation cost, 𝑇𝑏𝑚25 is
a BM25 score calculation cost, 𝑇𝑠𝑜𝑟𝑡 (𝑥) is the cost of sorting 𝑥 ,
𝑇𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑥,𝑦) is the cost of intersecting 𝑥 and 𝑦.

Figure 4: Computation flow graph for hybrid search

Figure 4(b) showsOneSparse’s computation flow graph of sparse
and dense hybrid search. First, OneSparse locates the same 𝑛1
SPANN posting lists and 𝑛2 inverted posting lists just like the con-
ventional solution. Then it filters vectors from 𝑛1 + 𝑛2 posting lists
by fast multi-way merge algorithm introduced in 3.2, which pro-
duces𝑚 high-quality vector candidates. Then, it computes ANN
distance and BM25 score of these𝑚 candidates for the final rank-
ing phase, returning final 𝐾 results. If we adopted compression
optimization introduced in 3.3, then the number of ANN distance
calculations would be further reduced to zero, since the distance
between query and the centroid has already been computed during
locating the nearest centroids by SPTAG. The computation cost of
the above process is shown in Equation 3.

𝑡2 =𝑇𝑙𝑜𝑐𝑎𝑡𝑒 +𝑇𝑚𝑢𝑙𝑡𝑖_𝑤𝑎𝑦_𝑚𝑒𝑟𝑔𝑒 (𝑟1, 𝑟2)
+𝑚 ×𝑇𝑏𝑚25 +𝑇𝑠𝑜𝑟𝑡 (𝑚) (3)

where 𝑇𝑚𝑢𝑙𝑡𝑖_𝑤𝑎𝑦_𝑚𝑒𝑟𝑔𝑒 (𝑟1, 𝑟2) is the cost of fast multi-way merge
algorithm of 𝑟1 and 𝑟2.

Since ANN distance and BM25 score calculation are expensive
due to the high dimensionality, we can ignore the cheap intersec-
tion cost. Besides, after pre-filtering low-quality data by intersec-
tion push-down, OneSparse reduces the amount of the candidates
needed to conduct ANN distance and BM25 score calculation by

up to 99% according to our experiments, where is 𝑟1 ≫𝑚, 𝑟2 ≫𝑚.
Therefore, we have:{

𝑇𝑠𝑜𝑟𝑡 (𝑟1) +𝑇𝑠𝑜𝑟𝑡 (𝑟2) +𝑇𝑠𝑜𝑟𝑡 (𝐾 ′′′) ≫ 𝑇𝑠𝑜𝑟𝑡 (𝑚)
𝑟1 ×𝑇𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑟2 ×𝑇𝑏𝑚25 ≫𝑚 ×𝑇𝑏𝑚25

(4)

Thus, 𝑡2 ≪ 𝑡1, which proves the superiority of OneSparse over
traditional isolated methods in multi-index search performance.

4 IMPLEMENTATION

We implement OneSparse in our internal system and an open
source system (i.e., Elasticsearch).

4.1 Index Building

For sparse textual data, we firstly perform a number of operations af-
ter tokenizing such as removing punctuation, lowercasing, stemming

and stop word removal. These pre-processing operations enhance
the quality and efficiency of the inverted index. After that, these to-
kens are inserted into inverted index successively like Lucene [16].
OneSparse supports two kinds of similarity function for sparse
vectors, BM25 and IDFSum (i.e., the sum of IDF). When choosing
BM25 as similarity function, we need to store the term frequency
of tokens in the inverted lists. When choosing IDFSum score, how-
ever, there is no need to store it, which reduces the consumption of
disk. Meanwhile, compared with BM25 score, IDFSum score also re-
duces the number of multiplications during the score computation,
leading to sightly better search latency.

For dense data, SPANN [8] is applied to cluster vectors into
several posting lists. Then, we parse the original SPANN posting
lists and sort elements in each posting list by their IDs. If enabling
compression, the original vectors will be discarded. Besides, the
SPTAG index built during the construction of SPANN index is
maintained in memory to accelerate the nearest posting lists search.

4.2 Query Processing

The query procedure can be divided into two steps. Firstly, it nar-
rows down the search to a small number of nearest posting lists
by matching terms via suffix tree search and SPANN posting lists
by finding the nearest centroids via SPTAG. Then, during the fine-
grained traversal in candidate posting lists, fast multi-way merge
algorithm will be performed.Since SPANN posting lists in OneS-
parse are formatted into the same pattern as inverted lists, the
union and intersection process can be implemented by AND/OR
operators natively supported by the original inverted index. During
this stage, candidate that appears in both inverted lists and posting
lists will be scored based on the given aggregate function and then
push into the heap according to its aggregate score. Final Top𝐾
results will be popped from the heap as long as the intersection
process is completed.

4.3 Implement in Elasticsearch

We also implement the compression version of OneSparse in Elas-
ticsearch [14], a widely-used text search engine library utilizing
inverted index to serve documents, which is built on Lucene [16].

For index building, Elasticsearch supports sparse data via in-
verted index natively, therefore, what we need to do is to transform
dense data into posting lists so that we can use inverted index to
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serve it. We do this by firstly applying SPANN to cluster dense
vectors into several posting lists, obtaining the cluster ID to which
each dense vector belongs. We then insert this cluster information
along with the corresponding sparse textual data into Elasticsearch,
where they can be indexed using the inverted index.

During the search process, we initially utilize the in-memory
SPTAG index to identify several nearest clusters. This step involves
retrieving the cluster IDs and calculating the ANN distance be-
tween the cluster centroids and the dense vector of the query. Sub-
sequently, we generate a boolean query considering the information
obtained from the previous step, as well as the sparse constraint.
This query incorporates the relevant cluster IDs, corresponding
ANN distance and textual data to refine the search results further.
Appendix A shows the example code of the boolean query. Such a
boolean query simulate OneSparse’s intra-index union and inter-
index intersection manner. After executing by Elasticsearch, we
can get the final Top𝐾 results.

5 EVALUATION

In this section, we evaluate OneSparse in comparison with state-of-
the-art ANN search algorithms and hybrid search systems based on
MS MARCO [3] and Natural Questions (NQ) [21] and demonstrate
OneSparse has superior performance on sparse and dense hybrid
queries.

5.1 Experiment Setup

5.1.1 Evaluation Platform. We conduct all the experiments on a
Windows Server running Microsoft Windows Server 2019 Datacen-
ter, which has an Intel Xeon E5-2673 v3 CPU at 2400MHz with a
total of 16 CPU cores, 128GB memory, and 1.74TB HDD.

5.1.2 Data-set. We use two different data-sets:
• MS MARCO [3], a passage ranking data-set with 8,841,823 pas-
sages in total and we choose evaluation data as test data, with a
total of 6,980 queries.

• Natural Questions (NQ) [21], a question answering data-set with
152,027 documents in total and we choose evaluation data as test
data, with a total of 7,830 queries.
We utilize coCondensor [17] to extract semantic information

of sparse textual data and generate dense vectors. Then, we fol-
low [2] to order-preserving transform the original vectors extracted
from coCondensor into euclidean distance space by adding one di-
mension in order to satisfy the triangle inequality. Therefore, the
final dimension of each dense vector is 769. The ground truth of
the queries is provided by the data-set itself which was generated
by humans to label relevant passages. For each query, we return
Top-100 results from each tested algorithm.

5.1.3 Evaluation Metrics. We evaluate both the search accuracy
and performance. Recall is a commonly used metric to measure
the accuracy of query results against the ground truth. Given the
ground truth result set 𝑆 and the query results 𝑆 ′, recall is defined
as |𝑆∩𝑆 ′ |

|𝑆 | . It is widely used in both sparse and dense vector search
systems. We report recall@100 in all experiments. To evaluate the
search performance, we measure the average, 50th percentile, 90th
percentile, and 99th percentile latency from each execution of the
tested algorithms.

5.1.4 Evaluation Systems. We compare OneSparse in two systems:
our own internal system and an open-source system Elasticsearch
8.7.0 [14]. In our internal system, we evaluate Inverted Index, SPANN,
Inverted Index + SPANN with different 𝐾 ′ and 𝐾 ′′ and OneSparse

with compression or not as well as using BM25 or IDFSum All
algorithms in internal system are written in C++. In Elasticsearch,
we evaluate Inverted Index, HNSW and Inverted Index + HNSW with
different𝐾 ′, which are natively supported by Elasticsearch. Besides,
we also test the compression version of OneSparse in Elasticsearch
as introduced in Section 4.3. The aggregation function for all hybrid
search is:

𝑠𝑐𝑜𝑟𝑒 = _ × 1
1 + 𝑙2_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

+ 𝑏𝑚25_𝑠𝑐𝑜𝑟𝑒 (5)

where we set _ = 15, 000. More details of the settings of each
algorithm can be found in Appendix B.

5.2 Experiment Results

Table 2 and Table 3 show the results of different algorithms on MS
MARCO and NQ data-sets.

Hybrid Search vs. Single-index Search. Compared with the re-
sults from single-index retrieval, recall usually can be improved by
leveraging both sparse and dense representations. This is because
sparse features help to bridge the gap between dense vectors and
real semantics caused by neural model loss. Interestingly, we found
an exception: SPANN + Inverted Index has worse recall than SPANN

on MS MARCO. This is because some ground truth results have rel-
atively low BM25 scores and since MS MARCO is large, retrieving
20000 candidates from inverted index is not enough to recall them.
In contrast, HNSW + Inverted Index in Elasticsearch and OneSparse
return all passages that match the query keywords and thus, they
can achieve higher search accuracy. As for search speed, traditional
isolated methods usually perform much slower than single index
search. The extra time comes from two parts, longer traversing
time due to returning more results, and the extra intersection and
sort time. However, we observe that in the Elasticsearch, HNSW
+ Inverted Index performs faster than only Inverted Index on MS
MARCO. This speed improvement can be attributed to the can-
didates retrieved from HNSW, which help filter out low-quality
documents during the search process in the inverted index. By em-
ploying techniques such as the weak AND algorithm, the number
of BM25 score calculations can be significantly reduced, leading to
faster search performance. However, this optimization effect may
not be as significant for smaller data-sets like NQ. Consequently,
in such cases, HNSW + Inverted Index may not offer a substantial
speed advantage over using just the Inverted Index.

Traditional Isolated Search vs. OneSparse. We can see that OneS-
parse is much faster than the isolated algorithms (HNSW + Inverted

Index and SPANN + Inverted Index) in all situations while maintains
similar or even higher recall in our experiments. For example, in
the internal system, OneSparse without compression is more than
4× faster than SPANN + Inverted Index on MSMARCO and 2× faster
than SPANN + Inverted Index on NQ. The main reason for the supe-
rior performance is that we filter out more than 99% low-quality
candidates in average before conducting ANN distance and BM25
score calculation by pushing down intersection. When applying
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compression optimization, we can further reduce the search latency
without losing much accuracy. This is mainly because dense vectors
in OneSparse SPANN posting list are close enough and centroids
can already represent the relevance between query vector and origi-
nal dense vectors. In return, compression can reduce the substantial
cost of computing ANN distances and disk I/Os, leading to better
search performance. In Elasticsearch, the compression version of
OneSparse is about 20% faster than HNSW + Inverted Index on MS
MARCO and NQ. Meanwhile, in the internal system, after com-
pression, OneSparse is more than 6× faster than SPANN + Inverted

Index on MS MARCO and 3× faster than SPANN + Inverted Index

on NQ, which is 30% faster than before compression. We can also
see that using IDFSum score have little impact on search accuracy.
Therefore, in real application scenario, we choice to replace BM25
with IDFSum since the latter consumes less memory and disk and
helps to slightly decrease the search latency due to the reduced
number of multiplications.

Table 2: Hybrid search results of different algorithms in in-

ternal system

Data-set Algorithm

Latency(s)

Recall

Avg 50th 90th 99th

MS MARCO

Inverted Index 0.0319 0.0311 0.0411 0.0513 0.6514
SPANN 0.0167 0.0168 0.0192 0.0212 0.8803
SPANN(1000) + Inverted Index(10000) 0.1096 0.1083 0.1274 0.1474 0.8550
SPANN(2000) + Inverted Index(10000) 0.1170 0.1158 0.1359 0.1564 0.8566
SPANN(1000) + Inverted Index(20000) 0.1423 0.1411 0.1635 0.1873 0.8624
SPANN(2000) + Inverted Index(20000) 0.1497 0.1487 0.1714 0.1945 0.8640
OneSparse (IDFSum) 0.0312 0.0313 0.0374 0.0423 0.8982

OneSparse (BM25) 0.0314 0.0315 0.0375 0.0424 0.8971
OneSparse (IDFSum, compression) 0.0217 0.0216 0.0256 0.0295 0.8902
OneSparse (BM25, compression) 0.0219 0.0218 0.0258 0.0297 0.8888

NQ

Inverted Index 0.0010 0.0010 0.0012 0.0014 0.8161
SPANN 0.0124 0.0123 0.0135 0.0157 0.8539
SPANN(1000) + Inverted Index(10000) 0.0254 0.0257 0.0283 0.0307 0.8733
SPANN(2000) + Inverted Index(10000) 0.0324 0.0329 0.0362 0.0389 0.8739
SPANN(1000) + Inverted Index(20000) 0.0288 0.0291 0.0319 0.0344 0.8748
SPANN(2000) + Inverted Index(20000) 0.0358 0.0364 0.0398 0.0424 0.8755
OneSparse (IDFSum) 0.0128 0.0132 0.0162 0.0191 0.8861
OneSparse (BM25) 0.0129 0.0133 0.0163 0.0192 0.8870

OneSparse (IDFSum, compression) 0.0095 0.0096 0.0124 0.0144 0.8842
OneSparse (BM25, compression) 0.0096 0.0097 0.0124 0.0146 0.8862

The selection problem of 𝐾 ′
. OneSparse’s design also eliminates

the selection problem of 𝐾 ′. For traditional isolated approaches,
choosing larger 𝐾 ′ results in higher recall but will also increase
the search latency, just like the experiment results of HNSW +

Inverted Index with two different 𝐾 ′. Even we can find a good 𝐾 ′

manually that balances the search accuracy and performance for a
certain data-set, changing the data-set may also cause the optimal
𝐾 ′ to change. For example, for NQ data-set, setting 𝐾 ′ = 1000 and
𝐾 ′′ = 10000 in the SPANN + Inverted Index can already ensure
higher recall than single-index search while controlling the latency.
However, for MS MARCO, such setting is no longer applicable since
the data-set size is much larger than NQ and we need to retrieve
more intermediate results from two separate indices in order to get
better search accuracy.OneSparse, in contrast, is no need to choose
𝐾 ′ and can preserve high recall and low latency in all situations.

6 APPLICATION

OneSparse unified index and retrieval system has been successfully
deployed in Microsoft Bing web search and sponsored search to

Table 3: Hybrid search results of different algorithms in Elas-

ticsearch

Data-set Algorithm

Latency(s)

Recall

Avg 50th 90th 99th

MS MARCO

Inverted Index 0.3318 0.3020 0.4480 0.6770 0.62141
HNSW 0.2491 0.2620 0.2730 0.2830 0.8606
HNSW(1000) + Inverted Index 0.2912 0.3020 0.3340 0.3912 0.8759
HNSW(2000) + Inverted Index 0.3187 0.3300 0.3610 0.3942 0.8859

OneSparse (BM25, compression) 0.2483 0.2610 0.2696 0.2778 0.88561

NQ

Inverted Index 0.2362 0.2460 0.2550 0.2640 0.77601
HNSW 0.2425 0.2420 0.2500 0.2640 0.8779
HNSW(1000) + Inverted Index 0.2700 0.2810 0.2910 0.3000 0.9189
HNSW(2000) + Inverted Index 0.2947 0.3080 0.3220 0.3320 0.9288

OneSparse (BM25, compression) 0.2383 0.2546 0.2659 0.2753 0.88191,2

1 The difference of search recall of Inverted Index and OneSparse between Elasticsearch and the
internal system is due to the differences of corpus preprocessing when building inverted index.

2 On small data-sets like NQ, the recall of SPANN is about 2% lower than HNSW (0.8539 vs. 0.8779)
and thus, the recall of OneSparse is inferior to that of HNSW + Inverted Index. If we tune the
number of SPTAG returned nearest postings to 2000, the recall of OneSparse will be increased to
0.91, nearly same as HNSW + Inverted Index.

serve as a hybrid retrieval channel satisfying both Term-Match and
Embedding-Match with hybrid re-ranking to improve the recall
quality and performance.

For sponsored search scenario, OneSparse has been integrated
as an indispensable component in retrieval system for more than 2
years. Revenue Per Mille (RPM) and Bad Ratio are selected as mea-
surements to respectively estimate the revenue gain and searched
ads quality of online A/B testing flight. In details, RPM means the
revenue gained for every thousand search requests which is the
core KPI in sponsored search scenario, and Bad Ratio means the ra-
tio of irrelevant ad impressions which are labeled by human experts
as a quality metric. Online A/B testing showed that OneSparse
has achieved +2.0% RPM gain and −3.84% Bad Ratio improvement,
which is very significant as the original production system is al-
ready very strong, integrating many other advanced techniques, e.g.
Uni-retriever [34], TextGNN [36], etc. These metrics were tracked
hourly, and statistical significance tests were applied to ensure the
reliability of the observed improvements.

For web search scenario, we have obtained 5 × + online latency
gain with result quality on-par compared with the traditional iso-
lated search solution after deployment of OneSparse solution.

7 CONCLUSION

This paper introduces OneSparse, a novel unified index system
designed for efficiently performing multi-index vector search. It
unifies SPANN posting lists and inverted posting lists together,
supporting multi-index queries and multi-model ensemble queries.
By pushing down the intersection across all indices, OneSparse
can pre-filter over 99% low-quality candidates and reduce unnec-
essary computation. Moreover, optimizations like compression of
SPANN posting lists further reduces disk I/Os and accelerates the
search process. We implement OneSparse in our internal system
and integrated it with Elasticsearch. Through evaluation on two
data-sets involving sparse and dense hybrid queries, we show a
performance gain of over 6× compared to isolated methods. OneS-
parse has also been integrated into Microsoft online web search
and advertising systems with 5×+ latency gain for Bing web search
and 2.0% Revenue Per Mille (RPM) gain for Bing sponsored search.
We hope that OneSparse enables more retrieval systems to operate
on multi-modal hybrid data-sets much more practically.
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A DETAILS OF IMPLEMENTATION IN

ELASTICSEARCH

The following code describes the mappings of the hybrid index,
where doc refers to the textual data and cluster_id refers to the
cluster this document belongs to.

"properties": {
"doc": {"type": "text"},
"cluster_id": {"type": "keyword"},

}

The following code describes the boolean query used to simulate
hybrid search of OneSparse in Elasticsearch.

"bool": { "must": [
{

"bool": { "should": [
{

"constant_score": {
"filter": {"term": {"

cluster_id":
cluster_id_1}}

"boost": lamada*
ann_distance_1,

}
},
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...
{

"constant_score": {
"filter": {"term": {"

cluster_id":
cluster_id_n}}

"boost": lamada*
ann_distance_n,

}
}

]}
},
{

"match": {
"doc": {"query": textual_data}

},
},

]}

The outermost layer of the boolean query is a must statement, which
intersects the results of internal boolean query and the matches
retrieved from the inverted index build on sparse data. The internal
boolean query uses should statement, which unions the results of
all searched clusters with weighted scores.

B DETAILS OF EVALUATION SYSTEM

We describe the settings of each evaluated algorithm introduced in
Section 5.1.4.

Elasticsearch [14]. We conduct all experiments on Elasticsearch
8.7.0 and all data are inserted into one shard. To get better search
performance, we merge all of the indices into one segment by
𝑓 𝑜𝑟𝑐𝑒_𝑚𝑒𝑟𝑔𝑒 API after inserting data.
• Inverted Index. We apply Elasticsearch to build an inverted index
over sparse textual data and rank the documents through BM25
scores. The hyper-parameters of BM25 score are default. We
choose it as the baseline which utilizes sparse data only.

• HNSW. Elasticsearch supports Hierarchical Navigable SmallWorld
graphs (HNSW) [24] as the algorithm to index and search dense
vectors. We choose it as the baseline of graph-based dense data
search. We set 𝑚 = 16, 𝑒 𝑓 _𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 100 when building
index and set 𝑛𝑢𝑚_ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 500 when searching queries.

• Inverted Index + HNSW. Elasticsearch also supports multi-index
hybrid retrieval by isolated searching. It first retrieves Top𝐾 ′

candidates from HNSW and uses them to filter the matches from
inverted index, where those who do not appear in the Top𝐾 ′

results from HNSW will skip the BM25 score computation. After
that, candidates will be scored by their euclidean distance and
BM25 score through aggregate Equation 5, returning final Top100
results. During the search, we set 𝐾 ′ = 1000, 2000.

• OneSparse. We implement the compression version of OneS-
parse in Elasticsearch as introduced in Section 4.3. The cluster
information was generated by SPANN. As introduced in Sec-
tion 3.3, we set the replication count to 1 and select 50% data as
head to preserve the representative of the centroids. Besides, we
set 𝑇𝑃𝑇𝑁𝑢𝑚𝑏𝑒𝑟 = 128 and 𝐶𝐸𝐹 = 2000 to get better HeadIndex
quality. During the search, we firstly search 256 nearest post-
ing centroids by SPTAG. For better cluster search results, we
set 𝐸𝑛𝑎𝑏𝑙𝑒𝐵𝑓 𝑠 = 3 and 𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑖𝑣𝑜𝑡𝑠 = 100.
After getting the 256 nearest posting centroid IDs, we generate
a boolean query as describe in Section 4.3. Finally, we send it
to Elasticsearch and get the final Top100 results. The final score
function in boolean query is the same as Equation 5.

Internal System. In order to eliminate the impact of differences
in ANN search algorithm, we also conduct experiments in our own
system. To ensure fairness, all of the algorithms in this system are
written in C++.
• Inverted Index. We re-test Inverted Index for sparse-data-only
search in our own C++ version.

• SPANN. It is one of the foundation algorithms in OneSparse. We
evaluate it to show better search accuracy by leveraging both
sparse and dense features without ANN algorithm impact. We use
the hyper-parameter settings reported in the SPANN paper [8]
except that the posting page limit is expanded to 96 and the
number of nearest postings to be searched is set to 64.

• Inverted Index + SPANN.We implement this isolated algorithm
by firstly retrieving Top𝐾 ′ candidates from SPANN (using the
same settings as SPANN-only-search introduced above) and then
intersecting them with Top𝐾 ′′ candidates retrieved from in-
verted index. After merging the candidates together, we re-rank
candidates through the same aggregate function as Equation 5,
returning Top100 results. Here, we set 𝐾 ′ = 1000, 2000 and
𝐾 ′′ = 10000, 20000.

• OneSparse. The SPANN settings used here is the same as intro-
duced in Elasticsearch OneSparse. Besides, The final aggregate
function is also the same as Equation 5 except that we test both
𝑏𝑚25_𝑠𝑐𝑜𝑟𝑒 and 𝑖𝑑 𝑓 _𝑠𝑢𝑚 as similarity function for sparse data.

We exclude the vector fusion solution because it only supports
decomposable similarity functions such as inner product, which
restricts its use in real-world applications.
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