
PIM-DL: Expanding the Applicability of Commodity
DRAM-PIMs for Deep Learning via
Algorithm-System Co-Optimization

Cong Li
School of Integrated Circuits

Peking University
Beijing, China

leesou@pku.edu.cn

Zhe Zhou
School of Integrated Circuits
School of Computer Science

Peking University
Beijing, China

zhou.zhe@pku.edu.cn

Yang Wang∗
Microsoft Research

Beijing, China
yang.wang92@microsoft.com

Fan Yang
Nankai University
Tianjin, China

yangf@nbjl.nankai.edu.cn

Ting Cao
Microsoft Research

Beijing, China
ting.cao@microsoft.com

Mao Yang
Microsoft Research

Beijing, China
maoyang@microsoft.com

Yun Liang
School of Integrated Circuits

Peking University
Beijing Advanced Innovation Center

for Integrated Circuits
Beijing, China

ericlyun@pku.edu.cn

Guangyu Sun∗
School of Integrated Circuits

Peking University
Beijing Advanced Innovation Center

for Integrated Circuits
Beijing, China

gsun@pku.edu.cn

Abstract
DRAM-based processing-in-memory (DRAM-PIM) has gain-
ed commercial prominence in recent years. However, their
integration for deep learning acceleration poses inherent
challenges. Existing DRAM-PIMs are limited in computa-
tional capabilities, primarily applicable for element-wise and
GEMV operators. Unfortunately, these operators contribute
only a small portion of the execution time in most DNN
workloads. Current systems still necessitate powerful hosts
to handle a significant portion of compute-heavy operators.

To expand the applicability of commodity DRAM-PIMs
in accelerating deep learning, we introduce a novel PIM-DL
framework. The philosophy behind PIM-DL is to replace

∗Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0385-0/24/04. . . $15.00
https://doi.org/10.1145/3620665.3640376

the compute-heavy GEMM operations in linear layers with
Lookup-Tables (LUTs). Such LUT-based neural networks
(LUT-NNs) substantially reduce multiplications in DNN in-
ference, rendering them suitable for efficient execution on
DRAM-PIMs. To accurately convert DNNs into LUT-NNs
and achieve optimal inference serving performance, we first
introduce an enhanced LUT-NN (eLUT-NN) algorithm for
model calibration, then we propose an Auto-Tuner capable of
optimizing the mapping parameters on diverse DRAM-PIM
platforms. We evaluate PIM-DL on off-the-shelf UPMEM
PIM-DIMM products and simulated HBM-PIM/AiM plat-
forms across multiple contemporary DNN workloads. Com-
pared with GEMM-based inference on DRAM-PIMs, PIM-DL
achieves 22.6×~37.1× speedup. Compared with CPU/GPU-
based inference, PIM-DL achieves up to 3.54×/1.20× speedup.

CCS Concepts: • Computing methodologies→Machine
learning.

Keywords: near-memory processing, machine learning

ACM Reference Format:
Cong Li, Zhe Zhou, YangWang, Fan Yang, Ting Cao, Mao Yang, Yun
Liang, and Guangyu Sun. 2024. PIM-DL: Expanding the Applicabil-
ity of Commodity DRAM-PIMs for Deep Learning via Algorithm-
System Co-Optimization. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3620665.3640376

https://doi.org/10.1145/3620665.3640376
https://doi.org/10.1145/3620665.3640376
https://doi.org/10.1145/3620665.3640376

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

CBO

MBOCE

MKL, CuBLAS BLAS, PIM BLAS PIM-DL

GPU/CPU

ElmtWise
GEMV

GEMM
Others GPU/CPU

ElmtWise
GEMV
AMM

Others
GPU/CPU

All
Operators

(a)
Compute-Centric System

(Traditional)

(b)
PIM-Enabled System

(Existing Solution)

(c)
Memory-Centric System

(PIM-DL Solution)

Compute
Memory

Operators
Deep Learning Workloads

CBO

MBOCE

CBO

MBOCE

Figure 1. Systems Comparison. CBO: Compute-Bound Oper-
ators, MBO: Memory-Bound Operators, CE: Cost-Efficiency.

1 Introduction
In recent years, commodityDRAM-based processing-in-mem-
ory products, exemplified by UPMEM’s PIM-DIMM [18],
Samsung’s HBM-PIM [55], and SK-Hynix’s AiM [54], have
emerged to enhance DRAM bandwidth while minimizing the
data-movement energy consumption. By incorporating pro-
cessing units near memory banks, these DRAM-PIMs can of-
fer up to 8× higher memory bandwidth and facilitate the pro-
cessing of various real-world applications such as in-memory
databases [6–8, 48, 62], sparse tensor algebra [31], classic
machine learning [34], and genome analysis [21, 58], etc.
While DRAM-PIMs have found utility in deep learning appli-
cations, their focus primarily lies in memory-intensive layers
such as element-wise and GEMV operators [13, 59]. Never-
theless, for typical DNN workloads, element-wise operators
only contribute less than 15% of the end-to-end latency [23],
while GEMV operators are predominantly utilized in single-
batch GPT/LSTM inference [13, 59]. For contemporary DNN
serving scenarios in cloud, it is the GEMM operators within
linear layers that pose the main bottlenecks [23]. However,
none of these DRAM-PIM products have demonstrated the
ability to efficiently handle GEMM operators in DNNs.

A primary limitation of DRAM-PIMs in deep-learning ac-
celeration is their restricted computational ability. As DRAM-
PIMs implement compute units using the DRAM process,
the transistors are 3× slower, and the logic density is sev-
eral times lower compared to CMOS in the same technology
node [19]. Evenworse, DRAM chips usually have fewermetal
layers, leading to a lower routing density at the same time.
Due to these technical constraints, DRAM-PIMs can hardly
incorporate powerful compute units. Consequently, the peak
computational capacity of UPMEMPIM-DIMM ismerely 43.8
GOP/s per DIMM [33]. Samsung’s HBM-PIM [55] and SK
hynix’s GDDR-PIM (AiM) [54] equip dedicated vector units
to enhance their tensor-processing ability. HBM-PIM has
about 2 TB/s of bandwidth but only 1.2 TFLOP/s of comput-
ing capability per cube [55]. Similarly, using high-frequency
MAC units, SK-Hynix’s AiM reaches about 1 TFLOP/s per
chip. However, the GEMM operators widely used in DNNs

usually require more than 10 TOP/s of computational capac-
ity to ensure sufficient throughput[47]. Therefore, DRAM-
PIMs are extremely compute-bound and only applicable for
memory-bound operators, such as ReLU [68], Residual [36],
Layer-norm [5] and Matrix-Vector Multiplication, etc [59].
To compensate for the limited computational ability, ex-

isting PIM-enabled systems (Figure 1-(b)) heavily rely on
powerful hosts to handle compute-heavy GEMM operators.
Although this improves overall performance, it also leads to
higher manufacturing costs. Moreover, due to the majority
of computation still happening on the host processors, the
utilization of DRAM-PIMs becomes too low to motivate the
adoption of DRAM-PIMs in modern data-center systems.

To extend the applicability of DRAM-PIMs for deep-learni-
ng, we urgently require a PIM-friendly deep-learning para-
digm. In this context, the emerging LUT-NN (Lookup Table-
based Neural Network) algorithm [84] becomes a promising
solution. It substitutes GEMM in linear layers with table
lookups, avoiding extensive multiplications. However, there
are three fundamental challenges hindering the application
of LUT-NNs on DRAM-PIMs. First, existing LUT-NN algo-
rithms fail to provide satisfactory model accuracy when re-
placing all linear layers in a DNNwith LUTs. Second, current
deep learning frameworks do not support DRAM-PIMs as the
hardware backend. Third, due to the architectural limitations
present in existing DRAM-PIMs, translating the advantages
of LUT-NNs into actual speedup is also challenging.
In this paper, we introduce the PIM-DL framework to

tackle these challenges. PIM-DL mainly focuses on the opti-
mization of Transformer-based DNNs [87], the de-facto ap-
proach in computer vision (CV) and neural language process-
ing (NLP) areas. PIM-DL incorporates a LUT-NN conversion
front-end that transforms pre-trained DNNs to LUT-NNs
through calibration. The converted models can be efficiently
deployed on commodity DRAM-PIMs using a LUT-NN infer-
ence backend. To ensure model accuracy, we introduce the
enhanced LUT-NN (eLUT-NN) algorithm for efficient model
calibration. Unlike baseline LUT-NN algorithms, eLUT-NN
can replace all layers with LUTs using only less than 1% of the
calibration dataset. To translate the computation reduction
achieved by LUT-NNs into actual speedup on DRAM-PIMs,
we elaborate the hardware mapping of LUT-NN inference
and quantitatively model the dataflow. Then, we develop
an auto-tuner to find the best mapping automatically. As
shown in Figure 1-(c), PIM-DL enables offloading most op-
erators to DRAM-PIMs and only requires a wimpy host for
the small portion of the remaining operators. Compared to
the PIM-enabled solution in Figure 1-(b), such a memory-
centric system can potentially achieve higher cost-efficiency.
To summarize, we have made the following contributions:

• We propose PIM-DL, the first deep-learning frame-
work designed for commodity DRAM-PIMs using the
novel LUT-based deep-learning paradigm. (Section 4.1)

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• We propose an enhanced LUT-NN (eLUT-NN) algo-
rithm for model calibration, which achieves much
higher model accuracy with 100× fewer calibration
data. (Section 4.2)

• We design the mapping of LUT-NN on DRAM-PIMs
and quantitatively model the dataflow. An auto-tuning
framework is proposed to optimize the mapping on
different DRAM-PIM platforms. (Section 5)

We evaluate PIM-DL on the off-the-shelf UPMEM PIM-
DIMM platform and simulated HBM-PIM/AiM platforms.
ComparedwithGEMM-based inference on PIM-DIMM/HBM-
PIM/AiM, PIM-DL achieves up to 22.57×/37.06×/27.25× spee-
dup. Compared with CPU/GPU baselines, PIM-DL achieves
up to 3.54×/1.20× speedup. PIM-DL is open-sourced at https:
//github.com/leesou/PIM-DL-ASPLOS.

2 Background & Motivation
2.1 Memory-Centric Computing with DRAM-PIMs
To deal with the well-known "Memory-Wall" problem, re-
searches have proposed DRAM-based in-memory process-
ing architectures (DRAM-PIMs) over the past decades [2–
4, 25, 27, 28, 35, 37, 38, 50, 52, 56, 60, 63, 75, 77, 80, 90, 91, 94,
96, 101]. In recent few years, DRAM-PIMs have entered the
commercialization phase, as demonstrated by various prod-
ucts listed in Table 1. Notably, UPMEM has introduced the
first DDR4-PIM product named PIM-DIMM [18]. They place
programmable RISC cores near every DRAM memory bank,
resulting in a remarkable 8× increase in total bandwidth. Ad-
ditionally, Samsung has proposed HBM-PIM products [55],
designed to efficiently process memory-bound basic linear al-
gebra subprograms (BLAS) that do not benefit from on-chip
cache, such as scalar-vector, vector-vector, and matrix-vector
operations. SK-Hynix has also developed their PIM product
named AiM, based on GDDR6 memory, which exhibits sig-
nificant potential in accelerating LSTM models [54].

2.2 Limited Computation Ability of DRAM-PIMs
Commodity DRAM-PIMs have exhibited outstanding per-
formance in accelerating a wide range of workloads [6–
8, 21, 31, 48, 58, 62]. Despite these achievements, their ap-
plication in deep learning remains an open challenge. Prior
efforts have employed HBM-PIM [59] and AiM [13] to offload
specific types of operators, such as ReLU, Residual, Batch
Normalization, and GEMV. However, these element-wise
operators typically contribute only < 15% of the overall exe-
cution time [23]. Furthermore, while HBM-PIM and AiM can
accelerate single-batch GPT/LSTM inference, which primar-
ily involves GEMV operators for linear layers, cloud-based
scenarios often require batched inference [24, 29, 47, 81, 103]
and heavily rely on compute-heavy GEMM operators. Con-
sequently, existing DRAM-PIM systems still depend on a
powerful host to handle these computation-heavy parts in
DNNs. We refer to these systems as PIM-enabled Systems,

Table 1. Comparison of Commodity DRAM-PIMs

Product PIM-DIMM [18] HBM-PIM [55] AiM [54]
Technique DDR4 HBM2 GDDR6
PIM Units RISC Cores FP16 MAC BF16 MAC

Peak Bandwidth 80.4 GB/s per DIMM 2 TB/s per cube 1 TB/s per chip
Peak Throughput 43.8 GOP/s per DIMM 1.2 TFLOPS 1 TFLOPS

as illustrated in Figure 1-(b). When the workloads are not
PIM-friendly, a PIM-enabled system falls back to a tradi-
tional compute-centric system shown in Figure 1-(a), but
with higher manufacturing costs.

To extend the applicability of commodity DRAM-PIMs for
deep learning, a possible direction is to make DNNs more
PIM-friendly by reducing their computational requirements.
For instance, Prangon et al. [16] proposes to convert CNNs to
binary neural networks [66] to enable their deployment on
UPMEM’s PIM-DIMM. However, BNNs reduce computation
at the cost of greatly sacrificed model accuracy, which can
hardly be applied to large models such as BERT [20] and
ViT [22] models. Therefore, how to design a practical and
PIM-friendly DNN algorithm is yet to be explored.

3 LUT-based Deep Learning Paradigm
Compute-heavy GEMM operations have been identified as
the primary bottleneck for DNN inference on commodity
DRAM-PIMs. Apparently, such a challenge is eliminated if
we can substitute GEMM operators with lighter alternatives.
In this context, the recently proposed LUT-NN algorithms
emerge as a promising solution [9, 84]. The key insight of
LUT-NN is that for a given layer, the features of different
input activation matrices have block-wise semantic similar-
ity, allowing a few typical features, also named centroids, to
approximate the original values. Accordingly, the GEMM
between any inputs and the weight matrix can be converted
to the multiplication between centroids and the weight ma-
trix. By getting the centroids in advance, the partial-sums
between the centroids and the weight matrix can be pre-
computed and stored in look-up tables (LUTs). During infer-
ence, we just need to fetch and accumulate the pre-computed
data in the LUTs according to the indices of the centroids
closest to the inputs, as illustrated in Figure 2-(a). Such a
partial-sum reduction procedure can greatly reduce the com-
putation overheads compared with GEMM operators. In the
following sub-sections, we will first elaborate on LUT-NN’s
conversion and inference procedure. Then, we will analyze
the the affinity between LUT-NN and DRAM-PIMs.

3.1 LUT-NN Conversion
As shown in Figure 2-(b), LUT-NN conversion aims to trans-
form the original weight matrix (depicted as the green ma-
trix) into look-up tables (LUTs) and centroids, The centroids
are organized into several codebooks. To achieve this, the

https://github.com/leesou/PIM-DL-ASPLOS
https://github.com/leesou/PIM-DL-ASPLOS

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

𝐶𝐶𝐶𝐶

𝑀𝑀

𝐻𝐻

Codebooks

Weight
Matrix⊗

𝐿𝐿𝐶𝐶0

(b) LUT-NN Conversion (c) LUT-NN Inference

Activation Matrix

⊗

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 3

Codebooks

Pre-Computed Look-up Tables 𝐿𝐿𝐶𝐶1 𝐿𝐿𝐶𝐶2 𝐿𝐿𝐶𝐶3

⊕

Output

𝑉𝑉
𝐹𝐹

𝐹𝐹

𝑁𝑁

𝐹𝐹

𝑁𝑁𝐻𝐻/𝑉𝑉

𝑉𝑉

Activation
Matrices

Input

(a) LUT-NN Overview
Output

Centroids

Look-up Tables

LUT-NN

Indices

Dist. Calc.

Reduce

Figure 2. LUT-NN-Based Deep Learning Paradigm

0
5
10
15
20

2 4 8 16

GF
LO

PS

CT=16 V=4

64 32 16 8
0

0.15
0.3

0.45
0.6

Reduction of FLO
Ps

Add MultiplicationReduction

Sub-vector Length Centroid Number

×

×

×

×

×

Figure 3. Computation Reduction Analysis (𝑁=𝐻=𝐹=1024).

process starts by deriving codebooks through centroid clus-
tering on activation matrices (step ❶). Each𝑀×𝐻 activation
matrix, obtained by feeding calibration datasets into a DNN,
is divided into 1 ×𝑉 sub-vectors along the 𝐻 dim, resulting
in 𝐻

𝑉
columns in total. A codebook is then generated for each

column, containing 𝐶𝑇 centroids (e.g., 𝐶𝑇 = 4 in the figure).
Each centroid is a 1 ×𝑉 vector, and its values are obtained
through K-means clustering of activation sub-vectors within
the same column and across activation matrices.
Once the 𝐻

𝑉
codebooks are obtained through clustering

on the calibration datasets, we proceed to generate the LUTs
using the codebooks and weight matrix. The weight matrix
with a shape of 𝐹 × 𝐻 is also split into 1 × 𝑉 sub-vectors
along the 𝐻 dim, and inner-products are performed with the
codebooks (step ❷). For example, in the figure, the first sub-
vectors of the two rightmost codebooks are multiplied with
the two rightmost columns in the weight matrix, respectively,
which generates the 𝐹×2 results in the look-up table (step❸).
Once all results are generated, it derives 𝐶𝑇 look-up tables,
eachwith a shape of 𝐹×𝐻

𝑉
. At this stage, we have successfully

converted the 𝐹 ×𝐻 weight matrix into several LUTs, which
can be used in inference together with the codebooks.

3.2 LUT-NN Inference
The LUT-NN inference procedure is depicted in Figure 2-
(c). When given an input activation matrix with a shape of
𝑁 ×𝐻 , the conventional GEMM procedure performs matrix
multiplicationwith the𝐻×𝐹 weightmatrix, resulting in a𝑁×
𝐹 output matrix. Here, we demonstrate how an approximated
result matrix is obtained using the codebooks and look-up
tables derived from the LUT-NN conversion procedure.

Similar to the LUT-NN conversion process, the input acti-
vation matrix is divided into several 1 ×𝑉 tiles. Each tile is

1

10

100

1,000

0.1 1 10

GO
PS

Arithmetic Intensity (GOPs/Byte)

QKV O FFN1 FFN2 Bert-Base Bert-Large ViT-Huge

CPU Peak Throughput = 795.11 GOPS

0.204 0.288 15.16

0.20 0.22 0.24 0.26 0.28 0.30
0
3

6
9

12
15

Figure 4. Roofline Analysis of LUT Kernels.

then compared with the codebook of the corresponding col-
umn to determine the centroid with the closest L2-distance.
This distance estimation is achieved by performing inner-
products between the tile and the codebook (Step ❹). The
index of the best-match centroid is obtained as the argmin
value of the inner-product results (Step ❺). Based on this
index, we retrieve a column of data from the indexed look-up
table (Step ❻). For instance, in the figure, if 𝑎𝑟𝑔𝑚𝑖𝑛 = 3 and
the tile corresponds to the right-most column, then the right-
most 𝐹 × 1 vector is read from 𝐿𝑇3. These closest-centroid
searching and table look-up operations are repeated for each
tile (Step ❹-❻). For each row of the activation matrix, the
searched 𝐹 × 1 vectors are accumulated to generate a col-
umn of final results (Step ❼). After processing all 𝑁 rows by
repeating ❹-❼, the 𝐹 × 𝑁 results matrix is formed (Step ❽).

3.3 Affinity Analysis of LUT-NNs on DRAM-PIMs
LUT-NN based inference is suitable for DRAM-PIMs because
of two reasons: First, it greatly reduces the computation
overhead. For GEMM with the input shape of 𝑁 × 𝐻 and
𝐻 × 𝐹 , we need to conduct 2 × 𝑁 ×𝐻 × 𝐹 operations, half of
which are multiply operations. For LUT-NN inference with
𝐶𝑇 centroids in each codebook and the sub-vector length of
𝑉 , we need to conduct 3 × 𝑁 × 𝐻 ×𝐶𝑇 operations for index
calculation and 𝑁 × 𝐹 × 𝐻

𝑉
for result accumulation. Specifi-

cally, LUT-NN inference only incurs 𝑁 ×𝐻 ×𝐶𝑇 multiplica-
tions for index calculation. Considering 𝐶𝑇 is much smaller
than 𝐹 , LUT-NN can greatly reduce the multiplications. In
Figure 3, we plot LUT-NN’s FLOP count as the bar graphs
and use line graphs to illustrate LUT-NN’s FLOP reduction

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Calibration
Data

Target DNN

LUT-NN Converter

Other Layers

Feed Forward

Feed Forward

Other Layers

…

Cross Entropy

Model Loss
Reconstruction

Loss

BackwardForward

Auto-tuner

Analytical Model

Target
Platform

LUT-NN
Model

Auto-tuning

Tuned Mapping Parameters

Inference Engine

Host Library PIM Runtime

PIM-DL Operator Library

UPMEM HBM-PIM AiMMKL, OneDNN,… CuBLAS, CuDNN, …

PIM-DL Framework

Target
Platform

LUT-NN
Model

Codebooks, LUTs Parameters

Figure 5. PIM-DL Framework Overview

(𝐹𝐿𝑂𝑃𝐺𝐸𝑀𝑀

𝐹𝐿𝑂𝑃𝐿𝑈𝑇−𝑁𝑁
). We can find that LUT-NN greatly reduces com-

putation (3.66×-18.29×) compared with GEMM operations.
What’s more, multiplications (the green bar) only take up a
tiny fraction of LUT-NN’s total operations (2.9%-14.3%).

Second, the memory-intensive nature inherent in the LUT-
NN inference makes it suitable for DRAM-PIMs. We conduct
roofline analysis on LUT-NN based inference to reveal this
characteristic. Specifically, we convert the fully-connected
(FC) layers in Bert-Base/Large [20] and ViT-Huge [22] to
LUT-NN and evaluate their arithmetic intensity on dual-
socket Intel Xeon 4210 CPUs by using Intel Advisor tool [40].
We fuse the Q/K/V projection FC layers into one FC operator
and quantize all LUTs to INT8 datatype. The inference batch
size and sepuence length are set to 64 and 512, respectively.
As illustrated in Figure 4, we can find that the arithmetic
intensity of all operators range from 0.204 to 0.288, all of
which fall in the memory-bound region of the CPU.

3.4 Challenges of Adopting LUT-NNs
Although LUT-NNs enable the deployment of DNN serv-
ing on DRAM-PIMs, we point out that three fundamental
challenges hinder their application in practice:
C1.Unsatisfactory accuracy of the existing LUT-NN con-
version algorithm. The existing LUT-NN conversion algo-
rithm falls short of guaranteeing satisfactory model accuracy.
Therefore, [9] only replaces the GEMM in the final classifier
layer of DNNs with a lookup table. Although [84] improves
upon earlier works, it could still not replace every linear
operator. Specifically, [84] could only substitute GEMM in
6 out of the 12 layers of the BERT-base model. If we aim
to replace all layers with LUTs, the model’s accuracy will
become unacceptably low for production environments.
C2.ExistingDL frameworks do not supportDRAM-PIMs
as the backend. To deploy converted LUT-NN models on
DRAM-PIMs, a deep-learning serving framework that sup-
ports both CPU/GPUs and DRAM-PIMs as the backend is
necessary. The framework is expected to offload PIM-friendly

operations, especially table lookups to PIMs and the others
to the host processors. However, existing inference frame-
works [1, 30, 44, 73, 76] do not support commodity DRAM-
PIMs, e.g., UPMEM’s PIM-DIMM, as the backend.
C3.Tuning the performance of LUT-NNs onDRAM-PIMs
is challenging. While LUT-NNs offer promising benefits of
reduced computation, how to translate such an advantage
into real speedup on DRAM-PIMs is still challenging. This
difficulty arises due to the architectural limitations present
in existing DRAM-PIMs, such as constrained host-PIM com-
munication and inter-PE communication [33]. As a result,
processing LUT-NNs on commodity DRAM-PIMs may yield
unsatisfactory performance without taking both algorithm
and hardware characters into consideration and properly
optimizing the hardware mapping.
To overcome these challenges, we propose the PIM-DL

framework, which is introduced in the following sections.

4 PIM-DL Framework
4.1 Framework Overview
Figure 5 outlines the software stack of PIM-DL. To overcome
C1, we propose a novel LUT-NN Converter featured with an
enhanced LUT-NN calibration algorithm named eLUT-NN.
Compared to original LUT-NNs, eLUT-NN is able to replace
all linear layers in DNNs with LUTs and maintains high
accuracy. To overcome C2, we develop an Inference Engine
which implements LUT-NN operators based on host and PIM
libraries. To overcomeC3, we propose an Auto-Tuner, which
analyses the shapes of LUT-NN model and generates the
optimized LUT-NN mapping parameters on target hardware
platforms. The tuned mapping parameters are fed into the
inference engine for efficient LUT-NN serving.

4.2 LUT-NN Converter
The LUT-NN Converter is used to convert a trained DNN
model into LUT-NN by jointly calibrating the centroids and
DNNweights with calibration datasets. As introduced in Sec-
tion 3, LUT-NN’s clustering-based codebook generation may
result in approximation errors. Consequently, the previous
method [84] can only replace half of the feed-forward layers
to maintain accuracy. To deal with this dilemma, we propose
a calibration algorithm named eLUT-NN (enhanced LUT-
NN) that can correct the error with minor parameter updates.
eLUT-NN introduces two new techniques for model calibra-
tion: Reconstruction Loss for computation approximation
and Straight Through Estimator for gradient propagation.
Reconstruction Loss for computation approximation:
As illustrated in Figure 5, the reconstruction loss accumulates
the errors in all replaced layers and constructs LUT-NN’s
calibration loss 𝐿 together with the original model loss:

𝐿 = Model Loss + 𝛽
∑
𝑙 ∈𝐿

| |𝐴𝑙𝑊 −𝐴𝑙𝑊 | |2 (1)

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

In Equation (1), 𝐴 represents the original activation matrix,
and 𝐴 denotes the approximated matrix by replacing sub-
vectors with the nearest centroids, i.e., 𝐴𝑙 = 𝐻 (𝐴𝑙). Here
we use the function 𝐻 (·) to denote the closest-centroid-
replacing operation. We define the computation error as L2
distance to ensure the reconstruction loss’s differentiability,
and add a penalty term 𝛽 to balance the two loss terms.
The reconstruction loss improves model accuracy and

facilitates convergence in two main folds. First, it enables
direct gradient propagation. Unlike previous work [84] that
updates centroids through layer-by-layer back-propagation,
the reconstruction loss directly derives the centroid gradients.
This approach can overcome the gradient vanishing problem,
allowing for direct gradient updates to the centroids. Second,
introducing computation errors to the loss function enables
the centroids to learn accurate representations of activations,
thus accelerating model’s convergence.
Straight Through Estimator for gradient propagation:
Since the centroid clustering and table-lookup operators in
LUT-NN conversion are not continuously differentiable, we
use the Straight Through Estimator (STE) [93] to estimate
the gradients and enable back-propagation. Specifically, to
differentiate through the closest-centroid-replacing function
𝐻 (·) and pass the error to a function 𝐹 that generates the
inputs of a layer, we have the following chain rule:

𝜕𝐿

𝜕𝐹
=

𝜕𝐿

𝜕𝑦
· 𝜕𝑦
𝐴

· AAA
𝜕𝐴

𝜕𝐴
· 𝜕𝐴
𝐹

STE≈ 𝜕𝐿

𝜕𝑦
· 𝜕𝑦
𝐴

· 𝜕𝐴
𝐹

(2)

Where 𝑦 = 𝐴 ·𝑊 represents the approximated output of
the layer. The STE algorithm assigns 𝜕�̂�

𝜕𝐴
to identity to pass

through the gradients and enable back-propagation. Com-
pared to theGumbel-Softmax based gradient-estimation used
in previous work [84], our STE-based method ensures faster
model convergence according to our experiments.

Comprehensive evaluation results in Section 6 will demon-
strate eLUT-NN’s two advantages over the baseline method:
A1. High data efficiency. Unlike the baseline method [84],
which demands 100% training set formodel calibration, eLUT-
NN only requires less than 1% of the pre-training dataset for
calibration, and the model converges more quickly.
A2. High model accuracy.With the proposed eLUT-NN al-
gorithm, the LUT-NN converter can replace all feed-forward
layers of DNNswith LUTswith substantially higher accuracy
than the baseline LUT-NN method.

4.3 PIM-DL Engine
As depicted in Figure 6-(a), PIM-DL engine comprises a fron-
tend framework and a backend library. The frontend frame-
work encompasses both host and PIM operators, which cover
various operators required by LUT-NNs. The host operators
are implemented with high-performance tensor libraries on
CPUs/GPUs [30, 41, 42, 69, 70]. The PIM operators contain
two components: (1) The PIM kernel on the host triggers

Target Workload

Frontend Framework

Host Operators PIM Operators

Backend Library

Host Backend PIM
Kernel

Host Library PIM Runtime

PIM
Binary

Host
Processor

PIM
Driver

DRAM-
PIMs

QKV Projection

O Projection

Attention

FFN1

FFN2

GELU

Multi-Head
Attention

Add & Norm

FFNs

Add & Norm

Compound Operators

PIM Dependent Operators

PIM Operators

Host Operators

(a) Software Stack of PIM-DL Engine (b) Case Study of Transformer

Figure 6. PIM-DL Engine and a Case Study on Transformer.

PIM modules to execute workloads. (2) The PIM binary on
the PIMmodules describes the offloaded workload. Both host
and PIM operators collaborate to implement the LUT-NN’s
functions. The host processor also controls the PIM binaries’
execution via the PIM driver.

Considering transformer has become the de-facto approach
in both the neural language processing (NLP) area [11, 20,
64, 78, 79, 92] and the computer vision (CV) area [12, 22,
45, 65, 89, 95], PIM-DL currently mainly focuses on the op-
timization of transformer-based models. As illustrated in
Figure 6-(b), among the basic operators in Transformer [87]
models, the QKV projection, Output (O) projection, FFN1,
and FFN2 are linear layers. They can be converted to LUTs
and offloaded to PIM modules. The attention operator is exe-
cuted on the host operator, since it cannot be converted to
LUTs but requires GEMM operations. The other operators
like Add, Norm, GeLU are PIM-friendly element-wise oper-
ators. Their offloading choices depend on the functionality
supported by target PIM modules.

5 Hardware Mapping and Optimization
As analyzed in Section 3.4, considering several architectural
limitations of DRAM-PIMs, it is still challenging to efficiently
deploy LUT-NNs on DRAM-PIMs. To optimize LUT-NN ker-
nels on different hardware platforms, we design the LUT-
NN’s mapping strategy and propose the PIM-DL Auto-Tuner,
which can generate the best mapping parameters according
to the input LUT-NN and the target hardware platform.

In this section, we first present an architecture abstraction
of commodity DRAM-PIM products. Subsequently, we delve
into a detailed analysis of LUT-NN’s mapping on the PIM ar-
chitecture. Based on this analysis, we model the two essential
steps involved in PIM-based LUT-NN operations. We then
integrate these steps to establish the PIM-DL Auto-Tuner.

5.1 Abstraction of Commodity DRAM-PIMs
As depicted in Figure 7, a DRAM-PIM system is usually com-
posed of a host processor (e.g., CPU, GPU, FPGA) and multi-
ple PIM modules, which are connected to the host’s memory
channels. In each PIM module, there are distributed compu-
tation nodes, which share the same external data bus. Each

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Host
Processor

M
C

PI
M

 0

PI
M

 1 …
M

C

PI
M

 0

PI
M

 1 …M
C

M
C…

…

…

…

PE

Mem.

Mem.

PE

PE

Mem.

Mem.

PE

U
PM

EM
HBM

-PIM
AiM

Figure 7. Architecture Abstraction of DRAM-PIM Products.

node contains a Processing Engine (PE) and local memory
banks. The PE can be either a general CPU core [18] or a spe-
cialized computation engine [54, 55], and may also contain
on-chip buffers or registers. Since PEs can conduct memory
access concurrently, DRAM-PIMs can provide much higher
bandwidth than compute-centric architectures.
Existing commodity DRAM-PIMs adopt the offloading-

based execution model, i.e., operators in workloads are im-
plemented as PIM kernels, which are offloaded to PIMs for
execution. As notated in Figure 7, there are three steps to
drive the PIMmodules to execute the target workload: ❶ The
host processor prepares the input data and sends them to the
PIM modules. ❷ After input preparation, the host launches
the PIM kernel, which can be either a chunk of codes imple-
mented in PIM’s ISA [18] or a sequence of specified memory
commands [55]. ❸ After all PEs finish kernel execution, the
host fetches the results from PIM modules. It is worth not-
ing that when deploying applications on DRAM-PIMs, we
should consider the following architectural limitations:
L1: Constrained Host-PIM communication. As shown in
Figure 7, in each PIM module, the PEs collectively share a
commonmemory bus. For example, in UPMEM’s PIM-DIMM
architecture, each PE can access only an 8-bit data path,
and a group of eight PEs in a rank forms a 64-bit data path.
Consequently, the host must transfer data to all PEs in a rank
simultaneously to fully utilize the bandwidth. Additionally,
it has been demonstrated that broadcasting data from the
host to PIMs yields the highest bandwidth, primarily due to
the avoidance of cache miss at the host side [33].
L2:No direct inter-PE datapath.Due to the scarce on-chip
routing resources of DRAM-PIMs [19], no datapath is imple-
mented on UPMEM’s PIM-DIMM and HBM-PIM for inter-PE
communication. Therefore, PEs rely on host forwarding to
exchange data, which involves loading data from one PE to
the host’s cache, then storing it to the destination PE. Con-
sidering the poor host-PIM communication ability, inter-PE
communication can easily become the performance bottle-
neck [102]. Therefore, we should avoid costly inter-PE com-
munication when implementing kernels on DRAM-PIMs.
L3: Load-balancing problem. Considering that the PIM
kernels will be distributed and executed in thousands of PEs,
the slowest PE determines the finish time. Therefore, efficient

Table 2. Notations Used in PIM-DL Auto-Tuner

Notation Description

𝑁 Input index’s row count
𝐶𝐵 Codebook number (𝐶𝐵 = 𝐻

𝑉
)

𝐶𝑇 Centroid number
𝐹 Output feature length

𝑋𝑠−𝑡𝑖𝑙𝑒 Tiling factor of 𝑋 in sub-LUT partition
𝑋𝑚−𝑡𝑖𝑙𝑒 Tiling factor of 𝑋 in micro kernel
𝑋𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 Load factor of 𝑋 in non-static load schemes

𝐵𝑊 ℎ𝑜𝑠𝑡
𝑥 Host-PIM bandwidth when transferring tensor 𝑥

𝐵𝑊
𝑝𝑖𝑚
𝑥 Local memory bandwidth when transferring tensor 𝑥

#𝑃𝐸 PE number used during execution

𝑆𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑥 Sub-LUT tile size of tensor 𝑥 transferred to each PE
𝑀𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑥 On-chip tile size of tensor 𝑥 during kernel execution
𝐿𝐶𝑜𝑢𝑛𝑡𝑥 Load count of tensor 𝑥 during kernel execution
𝑆𝐶𝑜𝑢𝑛𝑡𝑥 Store count of tensor 𝑥 during kernel execution
𝑅𝐶𝑜𝑢𝑛𝑡 Reduce count during kernel execution

load balancing is crucial to minimize the overall execution
latency and improve resource utilization.

5.2 LUT-NN’s Inference Dataflow on DRAM-PIMs
As introduced in Section 3.2, LUT-NN’s inference involves
two operators: (1) The closest centroid search (CCS) operator
(❹-❺ in Figure 2). It computes the distance between the acti-
vation matrix and the centroids, then searches the centroids
with the shortest distance to generate the index matrix. (2)
The table lookup (LUT) operator (❻-❼ in Figure 2). It re-
trieves the lookup table and accumulates the fetched data
to derive output results. As illustrated in Figure 8-(a), when
executing LUT-NN on DRAM-PIMs, we offload the LUT oper-
ator to PIM modules and assign the CCS operator to the host.
We avoid processing CCS on PIM since CCS operators are
implemented via GEMM and not suitable for DRAM-PIMs.
Another key problem is how to distribute the LUT tasks

to thousands of DRAM-PIM PEs to fully utilize the system’s
PIM bandwidth. There are two steps to execute LUT on PIM
architectures: Step-1: split the workload into sub-LUT work-
loads, and send each sub-LUTworkload to the corresponding
PE. Step-2: launch the microkernel on each PE to compute
the sub-LUT workloads concurrently. In the following sub-
sections, we will analyze the two steps first. For each step,
we will elaborate on the detailed execution dataflow and pro-
pose the performance model used for PIM-DL Auto-Tuner.
Then, we will put them together to construct the complete
design space of LUT-NN inference. The auto-tuner’s work-
flow is finally introduced to search the optimal parameters.
To facilitate understanding, we list the notations used in
the following sub-sections in Table 2. In these notations,
𝑁,𝐶𝐵,𝐶𝑇, 𝐹 specifies the LUT operator’s workload shape.
𝑋𝑠−𝑡𝑖𝑙𝑒 , 𝑋𝑚−𝑡𝑖𝑙𝑒 , 𝑋𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 are the tiling factors of each tensor.
𝐵𝑊 ℎ𝑜𝑠𝑡

𝑥 , 𝐵𝑊
𝑝𝑖𝑚
𝑥 , #𝑃𝐸 are parameters related to the underly-

ing DRAM-PIM architecture. The other factors indicate the

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

Activation matrix

𝐻𝐻

𝑁𝑁

Host

Group 0

PE(0, 0) PE(0, 1)

Tile 0
Tile 0

Tile (0, 0)

Tile 0
Tile 1

Tile (0, 1)

Group 1

PE(1, 0) PE(1, 1)

Tile 1
Tile 0

Tile (1, 0)

Tile 1
Tile 1

Tile (1, 1)

PIM

𝐶𝐶𝐶𝐶

Codebooks

𝑉𝑉

 Closest Centroid Search

Index, LUTOutput

𝐶𝐶𝐶𝐶 = 𝐻𝐻/𝑉𝑉

𝑁𝑁
Tile 0 𝑁𝑁𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Tile 1

Index matrix

 LUT

(a) LUT-NN’s Operator Mapping and Sub-LUT Partition Scheme

𝐹𝐹
Tile 0

Tile 1

𝐹𝐹𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Lookup table𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶

𝐹𝐹

𝑁𝑁
𝑁𝑁𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Output

Tile
(0,0)

Tile
(0,1)

Tile
(1,0)

Tile
(1,1)

𝐹𝐹𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(b) Micro Kernel Tiling Strategy

Index matrix

𝐶𝐶𝐶𝐶𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Index
MTile

𝑁𝑁𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐶𝐶𝐶𝐶

Output

𝐹𝐹𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Output
MTile

𝐹𝐹𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Figure 8. Overview of LUT-NN’s Execution Dataflow.

tile sizes or operation counts, which can be deduced from
the aforementioned parameters.

5.2.1 Step-1: Sub-LUT Partition. According to the PIM
architecture abstraction discussed in Section 5.1, we propose
the sub-LUT partition scheme as illustrated in Figure 8-(a).
In this scheme, the index matrix (outputs of the host-side
CCS operation, i.e., ❺ in Figure 2) and the LUTs are evenly
divided along the index row dim (𝑁) and the feature dim (𝐹),
respectively, while the other dims remain untiled. In addition,
the PIM PEs are logically distributed into multiple groups.
PEs in the 𝑖-𝑡ℎ PE group are responsible for calculating the
results of the 𝑖-𝑡ℎ index tile. The 𝑗-𝑡ℎ PE in each group is
responsible for conducting table lookups between its index
tile and the 𝑗-𝑡ℎ LUT tile. Note that in Figure 8-(a), we use
𝐶𝐵 to denote 𝐻

𝑉
and transpose the 𝐶𝑇 and 𝐶𝐵 dims because

each index fetches one of the 𝐶𝑇 pre-computed results.
Such a partition scheme effectively avoids the limitations

discussed above. For L1: On the one hand, PEs in the same
group share the same index tile, and the 𝑗-𝑡ℎ PEs in all groups
share the same LUT tile. Tile reuse can enhance the host-PIM
communication bandwidth owing to its temporal locality.
On the other hand, the codebook dim (𝐶𝐵) is not split among
PEs, thus ensuring PEs to compute complete results of dis-
tinct output tiles and avoiding the extra overhead of partial
sum reading and merging. For L2: The centroid dim (𝐶𝑇) is
not split among PEs, so that no inter-PE communication is
required when retrieving the LUTs according to the indices.
For L3: Tiling tensors evenly ensures that each PE’s work-
load size is identical. Since all PEs execute the same micro
kernel, we can ensure the load balance among them.
In the example depicted in Figure 8-(a), we use four PEs

in total, which are evenly split into two groups. Accordingly,
❶ the index matrix is split into two tiles (𝑁 = 8, and𝑁𝑠−𝑡𝑖𝑙𝑒 =
4), and the 𝑖-𝑡ℎ tile is broadcast to all PEs in the 𝑖-𝑡ℎ PE group
(𝑖 = 0, 1). ❷ The LUT is split into two tiles (𝐹 = 8, and
𝐹𝑠−𝑡𝑖𝑙𝑒 = 4), and the 𝑗-𝑡ℎ tile is broadcast to the 𝑗-𝑡ℎ PE in
each group (𝑗 = 0, 1). There are four output tiles, and the
𝑗-𝑡ℎ PE in the 𝑖-𝑡ℎ group computes output tile (𝑖, 𝑗)’s results.

Analytical Model: After sub-LUT partition, we need to
send the index tiles and the LUT tiles to each PE before
launching the micro kernel. After PEs finishing execution,
we need to fetch the output results from them. The host-PIM
communication dominates the processing cycles. Therefore,
assuming the latency of input sending, LUT sending, and
output fetching during the sub-LUT partition stage are de-
noted as 𝑡𝑠𝑢𝑏

𝑖𝑛𝑑𝑒𝑥
, 𝑡𝑠𝑢𝑏
𝑙𝑢𝑡

, 𝑡𝑠𝑢𝑏𝑜𝑢𝑡𝑝𝑢𝑡 , respectively, the sub-LUT parti-
tion overhead (𝑡𝑠𝑢𝑏−𝑙𝑢𝑡) can be estimated as:

𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 = 𝑡𝑠𝑢𝑏
𝑖𝑛𝑑𝑒𝑥

+ 𝑡𝑠𝑢𝑏
𝑙𝑢𝑡

+ 𝑡𝑠𝑢𝑏𝑜𝑢𝑡𝑝𝑢𝑡 (3)

In Equation (3), 𝑡𝑠𝑢𝑏
𝑖𝑛𝑑𝑒𝑥

, 𝑡𝑠𝑢𝑏
𝑙𝑢𝑡

, and 𝑡𝑠𝑢𝑏𝑜𝑢𝑡𝑝𝑢𝑡 can be estimated us-
ing the transfer size and the bandwidth. Since the transfer
pattern affects the bandwidth [33], we use different notations
to represent such divergence:

𝑡𝑠𝑢𝑏𝑥 =
𝑆𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑥 × #𝑃𝐸

𝐵𝑊 ℎ𝑜𝑠𝑡
𝑥

, 𝑥 ∈ {𝑖𝑛𝑑𝑒𝑥, 𝑙𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡} (4)

Note that according to the partition scheme, each PE group
holds a index matrix’s tile, and each PE in a group is assigned
with a LUT table’s tile. Therefore, tiling factors in sub-LUT
partition should follow the constraint:

#𝑃𝐸 =
𝑁

𝑁𝑠−𝑡𝑖𝑙𝑒
× 𝐹

𝐹𝑠−𝑡𝑖𝑙𝑒
(5)

5.2.2 Step-2: Micro Kernel Execution. After sub-LUT
partition, the tile size of index matrix, lookup table, and
output result in each PE are (𝑁𝑠−𝑡𝑖𝑙𝑒 ,𝐶𝐵), (𝐶𝐵,𝐶𝑇, 𝐹𝑠−𝑡𝑖𝑙𝑒),
and (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒), respectively. To fully utilize PIM PE’s
on-chip data buffer (e.g. 64KB on each PE in UPMEM PIM-
DIMM), we need to further tile these tensors. As illustrated
in Figure 8-(b), we conduct tiling along (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒 ,𝐶𝐵)
dims with tiling factors (𝑁𝑚−𝑡𝑖𝑙𝑒 , 𝐹𝑚−𝑡𝑖𝑙𝑒 ,𝐶𝐵𝑚−𝑡𝑖𝑙𝑒), respec-
tively. In this example, all tiling factors are set to 2. The PIM
PE loads one index micro kernel tile (MTile) and the corre-
sponding output MTile each time, then retrieves the LUTs to
compute results. For each output MTile, we need to traverse
all index MTiles in the same 𝑁𝑚−𝑡𝑖𝑙𝑒 , so that we can reduce
data in all codebooks to get the complete results.
AnalyticalModel:Themicro kernel’s latency (𝑡𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙)
is the sum of memory transfer latency (𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟) and the LUT

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

𝐹𝐹𝑠𝑠−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Lookup table tile
𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶

 …
…

𝐶𝐶𝐶𝐶𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Figure 9. Illustration of LUT Load Schemes.

reduce latency (𝑡𝑟𝑒𝑑𝑢𝑐𝑒):

𝑡𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 + 𝑡𝑟𝑒𝑑𝑢𝑐𝑒 (6)

The memory transfer latency (𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟) is the sum of index
load latency (𝑡𝑙𝑑

𝑖𝑛𝑑𝑒𝑥
), LUT table load latency (𝑡𝑙𝑑

𝑙𝑢𝑡
), and the

output result load-store latency (𝑡𝑙𝑑𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑡𝑠𝑡𝑜𝑢𝑡𝑝𝑢𝑡):

𝑡𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = 𝑡𝑙𝑑
𝑖𝑛𝑑𝑒𝑥

+ 𝑡𝑙𝑑
𝑙𝑢𝑡

+ 𝑡𝑙𝑑𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑡𝑠𝑡𝑜𝑢𝑡𝑝𝑢𝑡 (7)

We can profile the load/store latency of single tile first, and
then use the load/store count induced from the tile traversal
order to estimate the total latency:

𝑡𝑙𝑑𝑥 =
𝐿𝐶𝑜𝑢𝑛𝑡𝑥 ×𝑀𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑥

𝐵𝑊
𝑝𝑖𝑚
𝑥

, 𝑥 ∈ {𝑖𝑛𝑝𝑢𝑡, 𝑙𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡} (8)

𝑡𝑠𝑡𝑥 =
𝑆𝐶𝑜𝑢𝑛𝑡𝑥 ×𝑀𝑇𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑥

𝐵𝑊
𝑝𝑖𝑚
𝑥

, 𝑥 ∈ {𝑜𝑢𝑡𝑝𝑢𝑡} (9)

Similarly, we can profile the latency of single reduce (𝑡𝑠𝑖𝑛𝑔𝑙𝑒
−𝑟𝑒𝑑𝑢𝑐𝑒) and use the total reduce count to estimate the total re-
duce latency. 𝑡𝑠𝑖𝑛𝑔𝑙𝑒−𝑟𝑒𝑑𝑢𝑐𝑒 also changes with the underlying
DRAM-PIM architecture.

𝑡𝑟𝑒𝑑𝑢𝑐𝑒 = 𝑅𝐶𝑜𝑢𝑛𝑡 × 𝑡𝑠𝑖𝑛𝑔𝑙𝑒−𝑟𝑒𝑑𝑢𝑐𝑒 (10)

5.3 PIM-DL Auto-Tuner
Search Space. PIM-DL auto-tuner utilizes four types of map-
ping parameters involved in LUT-NN’s inference dataflow
discussed above to construct the search space:
P1. Sub-LUT Tiling Factors: The tiling factors, namely
(𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒), not only affect the tile sizes assigned to each
PE, but also have influence on the communication pattern
(i.e. PE group partition) of each tensor. We can exploit these
trade-offs by searching different sub-LUT tiling factors.
P2. Micro Kernel Tiling Factors: The tile sizes of index
MTile and outputMTile are (𝑁𝑚−𝑡𝑖𝑙𝑒 ,𝐶𝐵𝑚−𝑡𝑖𝑙𝑒) and (𝑁𝑚−𝑡𝑖𝑙𝑒 ,
𝐹𝑚−𝑡𝑖𝑙𝑒).We can adjust (𝑁𝑚−𝑡𝑖𝑙𝑒 , 𝐹𝑚−𝑡𝑖𝑙𝑒 ,𝐶𝐵𝑚−𝑡𝑖𝑙𝑒) to find the
optimal buffer allocation between the two MTiles.
P3. Tile Traversal Order: Permuting the traversal order
of the MTile factors (𝑁𝑚−𝑡𝑖𝑙𝑒 , 𝐹𝑚−𝑡𝑖𝑙𝑒 ,𝐶𝐵𝑚−𝑡𝑖𝑙𝑒) changes the
sequence of tile delivery, thus affecting the tile reuse pat-
tern [74]. To exploit the effect of different reuse patterns, we
add the tile traversal order to the search space.
P4. LUT load scheme: Since the LUT’s elements are fetched
according to the input index, we can either load the LUT in
bulk or on-demand. We include three LUT load schemes into
our design space, which are illustrated in Figure 9:

Algorithm 1: Auto-tuning Workflow
1 Input:Workload Size (𝑁,𝐶𝐵,𝐶𝑇, 𝐹)
2 𝐶𝑜𝑠𝑡 = 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒

3 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑠 = {}
4 for each legal (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒) do
5 // estimate sub-LUT partition overhead
6 𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 = 𝑡𝑠𝑢𝑏

𝑖𝑛𝑑𝑒𝑥
+ 𝑡𝑠𝑢𝑏

𝑙𝑢𝑡
+ 𝑡𝑠𝑢𝑏𝑜𝑢𝑡𝑝𝑢𝑡

7 // search for the optimal micro-kernel
8 𝑡∗

𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑛𝑒𝑙 , 𝐾𝑒𝑟𝑛𝑒𝑙
∗ =

𝐾𝑒𝑟𝑛𝑒𝑙𝑆𝑒𝑎𝑟𝑐ℎ (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒 ,𝐶𝐵,𝐶𝑇)
9 // update the optimal parameters

10 if 𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 + 𝑡∗𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙 < 𝐶𝑜𝑠𝑡 then
11 𝐶𝑜𝑠𝑡 = 𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 + 𝑡∗𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙
12 𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑠 = {𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒 , 𝐾𝑒𝑟𝑛𝑒𝑙∗ }

13 return𝐶𝑜𝑠𝑡 ,𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑠

❶ Static Load. When each PE’s LUT MTile size is smaller
than the on-chip buffer size, we can place the whole LUT
on-chip statically. In this way, we can load the LUT once and
reuse it during the execution. We need to hold 𝐶𝐵𝑠−𝑡𝑖𝑙𝑒 ×
𝐶𝑇 × 𝐹𝑠−𝑡𝑖𝑙𝑒 LUT elements in the on-chip buffer.

❷ Coarse-grain Load. Since each index selects the target
element from every 𝐶𝑇 candidates, we can load these 𝐶𝑇
elements to the on-chip buffer and reuse them. In this way,
we load𝐶𝐵𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒×𝐶𝑇 ×𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 elements in the LUT each
time. In Figure 9, we set𝐶𝐵𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 = 2 and 𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 = 1 for
coarse-grain load scheme. These elements will be buffered
till the corresponding codebooks have been reduced.

❸ Fine-grain Load.We can also load the LUT’s elements on-
demand. In this way, we load 𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 LUT values along the
feature dim when we process a new index. In Figure 9, we set
𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 = 2 for fine-grain load scheme. Specifically, if the
PE can issue multiple read requests in parallel, we will hold
𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 LUT elements for each parallel slot. For example,
UPMEM’s PE contains multiple hardware threads [18], each
of which can issue independent memory requests. There-
fore, we keep a buffer with 𝐹𝑙𝑜𝑎𝑑−𝑡𝑖𝑙𝑒 LUT elements for each
activated hardware thread.
Among these parameters, the micro kernel tiling factors,

tile traversal order, and LUT load scheme jointly construct
the micro kernel’s mapping space.
Auto-TuningWorkflow: PIM-DL auto-tuner’s workflow is
listed in Algorithm 1. Given the workload size (𝑁,𝐶𝐵,𝐶𝑇, 𝐹),
PIM-DL auto-tuner traverses all legal sub-LUT tiling factors.
For each legal factor pair (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒), the auto-tuner first
calculates 𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 . Then, the auto-tuner searches the micro
kernel’s mapping space and reports the parameters with the
minimum execution latency 𝑡∗

𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙 . The total execution
latency of current sub-LUT tiling strategy is the sum of
𝑡𝑠𝑢𝑏−𝑙𝑢𝑡 and 𝑡∗𝑚𝑖𝑐𝑟𝑜−𝑘𝑒𝑟𝑛𝑒𝑙 . By comparing the total execution
latency, the auto-tuner generates the most efficient hardware
mapping. For a given model, PIM-DL auto-tuner searches
for the optimal parameters of all LUT kernels offline. Given

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

Table 3. Configuration of DRAM-PIM Platforms

DDR4-PIM Platform
Host Xeon 4210 CPU × 2

128GB DDR4 Memory

DRAM-PIM UPMEM PIM-DIMM × 8
1024 PEs, 64 GB DDR4 Memory

HBM-PIM Platform
(Simulated)

Host NVIDIA A2 GPU × 1
16 GB GDDR6 Memory

DRAM-PIM Samsung HBM-PIM Cube × 4
512 PEs, 8 GB HBM2 Memory

AiM Platform
(Simulated)

Host NVIDIA A2 GPU × 1
16 GB GDDR6 Memory

DRAM-PIM SK-Hynix AiM Chip × 16
512 PEs, 16 GB GDDR6 Memory

the input shape, each model need to be tuned only once,
which only incurs little overhead (~1s/model on dual-socket
Intel Xeon 4210 CPUs) compared with the latency of model
inference (tens of seconds/model on our UPMEM platform).

6 Evaluation
6.1 Experiment Setup
Models: For accuracy validation, we evaluate eLUT-NN on
both NLP and CV tasks. Specifically, for NLP tasks, we eval-
uate the popular BERT-base and BERT-large models [20]
on the GLUE [88] benchmark dataset. For CV tasks, we
evaluate ViT-base and ViT-huge [22] on the CIFAR-10 and
CIFAR-100 [53] datasets. For throughput comparison, since
the model size of BERT-base is identical to ViT-base, we eval-
uate the BERT-base, BERT-large, and the ViT-huge models,
whose hidden dim sizes are 768/1024/1280, respectively.
Platforms: Our main experiments are conducted on a real
DRAM-PIM platform, namely UPMEM PIM-DIMM [18]. The
configuration details are presented in Table 3. This platform
equips dual-socket Intel Xeon 4210 CPUs. Each socket des-
ignates two channels for conventional DDR4 DIMMs and
two channels for UPMEM PIM-DIMMs. Each of the 8 PIM-
DIMMs contains two ranks, and each rank equips 64 PEs. The
host operators are implemented with C++/OpenMP [14] and
GGML tensor library [30], which leverages AVX intrinsics
to accelerate inference on x86 CPUs. The PIM operators are
implemented with the UPMEM SDK [86] (Version 2021.3.0).
Given that Samsung’s HBM-PIM and SK-Hynix’s AiM

have not been available yet, our evaluation of PIM-DL on
these potential platforms is conducted through simulation.
We use the simulator officially released by Samsung [71]
and extend it to support AiM’s functionality. An NVIDIA
A2 GPU serves as the host for the two PIM products. We
implement the host operators with Pytorch [76] and conduct
simulations to estimate the PIM operators’ performance.
Baselines: We compare eLUT-NN with the baseline LUT-
NN [84] in term of accuracy. Both algorithms adopt full-layer
replacement. The original model accuracy is obtained from
BERT and ViT papers [20, 22]. For throughput evaluation,
we compare PIM-DL on DDR4-PIM with GGML [30]-based

Table 4. NLP Model Accuracy

Model Settings MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

BERT-base
Original 83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.0
LUT-NN 35.5 63.2 50.6 49.3 0.0 1.36 31.6 52.7 35.5
eLUT-NN 79.9 69.6 87.4 92.4 51.2 83.2 87.1 64.7 76.9

BERT-large
Original 85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 81.5
LUT-NN 34.7 62.7 51.3 52.2 0.0 4.40 38.7 50.5 36.8
eLUT-NN 82.1 71.0 90.2 93.1 56.8 86.7 86.1 68.4 79.3

Table 5. Vision Model Accuracy

Model Settings CIFAR-10 CIFAR-100 Model Settings CIFAR-10 CIFAR-100

ViT-base
Original 98.5 91.4

ViT-huge
Original 99.5 94.55

LUT-NN 10.1 1.07 LUT-NN 10.0 1.01
eLUT-NN 96.3 89.1 eLUT-NN 97.8 91.32

transformer inference on a CPU server which equips dual-
socket Intel Xeon Gold 5218 CPUs (8 channels, 512 GB DDR4
memory). The baselines adopt FP32/INT8 datatype, and the
INT8 baselines are optimized with AVX/AVX2 intrinsics in
GGML. We compare the HBM-PIM/AiM based PIM-DL with
a DGX-1 workstation equipping 32GB NVIDIA V100 GPUs.
On the DGX station, we implement FP32-based model in-
ference with PyTorch [76]. Besides, we also compare the
HBM-PIM/AiM based PIM-DL with GEMM-based inference
on these platforms. In these baselines, we offload all linear
layers to DRAM-PIMs, and implement other GPU-side op-
erators with PyTorch [76]. We adopt FP16 datatype on the
HBM-PIM platform and BF16 datatype on the AiM platform.
In all baselines, we use the model architectures proposed in
Bert/ViT papers [20, 22] without pruning/sparsification.

6.2 Model Accuracy
During calibration, all models are initialized using the pre-
trained model weights, and the centroids are initialized ran-
domly. We set the sub-vector length and the centroid number
to 2 and 16, and set the reconstruction loss penalty term 𝛽

to 1e-3 for BERT models, 1e-4 for ViT models. The learning
rate is 1e-5 for BERT-large and 5e-5 for other models. The
tokens used in LUT-NN calibration are randomly sampled
from the datasets using the dataloader provided by Pytorch.
Table 4 and 5 presents the accuracy results. We can find

that even though the original LUT-NN algorithm consumes
the whole training set, it still has great accuracy degrada-
tion (90.44%/44.10% average drop on CV/NLP tasks) when
all linear layers are replaced. eLUT-NN models reach con-
vergence after no more than 100k iterations and consume
only ~0.78% of tokens in the training set. Besides, eLUT-NN
greatly enhances the accuracy compared with the baseline
LUT-NN (88.09%/41.95% average improvement on CV/NLP
tasks) and also achieves accuracy close to the original models
(2.36%/2.25% average drop on CV/NLP tasks).

6.3 End-to-end Performance
Throughput: We first compare DDR4-PIM based PIM-DL’s
performance against the CPU server. For BERT-base and

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Throughput (b) Energy Efficiency

0
1.5

3
4.5

6 20

N
or

m
. S

pe
ed

up

Latency/Layer (s) En
er

gy
Ef

fic
ie

nc
y

0
1.5

3
4.5

6

Bert Base Bert Large ViT Huge

15
10
5
0

Bert Base Bert Large ViT Huge

FP32 INT8 V=2/CT=16 V=4/CT=16 Latency PIM

38.47 68.04 105.88

Figure 10. End-to-end performance comparison.

BERT-large, we set the sequence length to 512 and the batch
size to 64. For ViT-huge model, we set the shape of an input
image to 224×224×3, and the batch size is 128. Under a patch
size of 14×14, ViT-huge’s sequence length is 257. We pad
the sequence length to 264 to evenly partition the workload
among PIM PEs. Considering UPMEM’s low FP32 computa-
tion capacity, we conduct INT8 quantization on the LUTs,
which reports ≤ 0.1% accuracy drop. On the CPU server,
we evaluate the inference performance with FP32/INT8 data
precision. For PIM-DL’s inference, we set CT=16 and V=2 or
4. We also evaluate the performance by offloading all linear
layers without LUT-NN conversion.

As Figure 10-(a) shows, we plot the speedup as bar graphs
and use line graphs to illustrate the inference latency (record-
ed in second). Compared with FP32/INT8 inference on CPU
server, PIM-DL achieves 2.05×/1.14× geomean speedup un-
der the V=2/CT=16 setting and further achieves 3.07×/1.71×
geomean speedup under the V=4/CT=16 setting. Besides,
compared with the model inference performance on PIM ar-
chitecture, PIM-DL achieves 12.61×/18.91× geomean speedup
under the two settings, respectively. PIM-DL successfully
enables deep learning on UPMEM’s commodity PIM-DIMMs
and brings considerable performance improvement.
Energy Efficiency: We compare the energy consumption
(in Joules) of DDR4-PIM based PIM-DL agsinst the baselines
on the CPU server. We adopt Intel RAPL [43] to measure the
CPU’s energy. We adopt the power provided by dpu-diag
tool in UPMEM SDK [86] for PIM-DIMM’s energy estima-
tion, which reports ~13.92W/DIMM@350MHz. It is the static
power of both the PIM cores and the PIM banks. Consider-
ing PIM-DIMMs do not use dynamic voltage and frequency
scaling (DVFS), this static power is close to PIM-DIMM’s dy-
namic power. Besides, this power is also in alignment with
the power officially released by UPMEM [19]. The mem-
ory access energy between the CPU and the PIM-DIMMs is
measured using the MSR_DRAM_ENERGY_STATUS regis-
ter provided by Intel RAPL following Intel’s manual [39]. As
illustrated in Figure 10-(b), all results are normalized to FP32
CPU baseline. Compared with FP32/INT8 inference on the
CPU server, PIM-DL achieves 2.95×/1.65× (V=2/CT=16) and
4.42×/2.46× (V=4/K=16) higher energy efficiency (geomean).
Compared with PIM-based original model inference, PIM-
DL achieves 11.16× (V=2/CT=16) and 16.74× (V=4/CT=16)
higher energy efficiency (geomean).

0

1

2

3

N
or

m
. S

pe
ed

up

Bert Base Bert Large ViT Huge
 (b) Layer-wise Comparison

QKV O FFN1 FFN2

0
0.2
0.4
0.6
0.8

1

La
te

nc
y

Ra
tio

Bert Base Bert Large ViT Huge
(a) Inference Latency Breakdown

LUT OtherCCS

Figure 11. Performance analysis.

6.4 Performance Analysis
LatencyBreakdown:To better understand the performance
improvement of PIM-DL, we first breakdown the latency of
PIM-DL into LUT operator’s latency, CCS operator’s latency,
and other operators’ latency. As depicted in Figure 11-(a),
LUT-NN inference takes up 73.73% ~ 79.39% of total latency.
Specifically, the LUT operator’s latency takes up 69.88%
~ 76.10% of LUT-NN inference latency, and thus takes up
51.52% ~ 60.41% of total latency. Such results demonstrate
that PIM-DL can offload much more portion of deep learn-
ing workloads than existing PIM-enabled systems, which
considerably improves DRAM-PIM’s utilization.
Layer-wise Performance Comparison:We further anal-
yse the speedup of each linear layer with the replacement of
LUT-NN. We compare their performance between LUT-NN
inference (V=4/CT=16) and GEMM-based INT8 inference on
the CPU server. As depicted in Figure 11-(b), these layers
can bring 1.81× geomean speedup in total, and each of them
can gain 1.61×, 0.99×, 1.78×, and 2.38× geomean speedup, re-
spectively. FFN2 gains the highest performance improvement
because it has the largest inner dim in GEMM operations.
For QKV projection and FFN1, we can also gain better per-
formance because they have large output feature dims. Even
for the smallest O projection, PIM-DL’s performance is also
comparable to the CPU server’s performance.

6.5 Sensitivity Analysis
To explore the scalability of DDR4-PIM based PIM-DL, we
conduct sensitivity analysis and change four parameters:
sub-vector length (V), centroid number (CT), batch size, and
hidden dim. By default, we set V=4, CT=16, sequence length
to 512, and batch size to 64 for all models. All results are
normalized to CPU server’s INT8 inference performance.
Sub-vector Length: As depicted in Figure 12-(a), when the
sub-vector length is larger, we can gain better performance
because larger sub-vector length decreases codebook num-
ber, thus shrinking the LUTs’ size. However, the performance
improvement tends to coverage because UPMEM product’s
bandwidth decreases when transfer size shrinks [33].
Centroid Number: In Figure 12-(b), we can find that when
centroid number shrinks, we can gain better performance
because the LUTs’ memory footprints decrease. Similar to
sub-vector length, the performance improvement has slight
tendency to converge with centroid number decreasing.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

N
or

m
. S

pe
ed

up

0
1
2
3
4

(a) Sub-vector Length

1
1.5

2
2.5

3

N
or

m
. S

pe
ed

up

Bert Base Bert Large ViT Huge

0.5
1

1.5
2

2.5

N
or

m
. S

pe
ed

up

(b) Centroid Number

0
0.5

1
1.5

2

N
or

m
. S

pe
ed

up

(c) Batch Size (d) Hidden Dim
1024 2048 2560 4096 51202 4 8 16 32 128 64 32 16 8 8 16 32 64 128

Bert Base Bert Large ViT Huge Bert Base Bert Large ViT Huge

Figure 12. Sensitivity analysis of different parameters.

0.5

1

1.5

2

2.5

N
or

m
. S

pe
ed

up

S-tile (N, F)
(d) Global Optimal

1.04×

1.91×

(a) Coarse-grain LUT Load

0.5

1

1.5

2

2.5

N
or

m
. S

pe
ed

up

1.02 ×

1.88×

0.5

1

1.5

2

2.5

N
or

m
. S

pe
ed

up

(c) Static LUT Load

1.01×

1.74×
0.5

1

1.5

2

2.5
N

or
m

. S
pe

ed
up

(b) Fine-grain LUT Load

1.06×
1.29×

Illegal Mapping Best Mapping in Real Performance Best Mapping in PIM-DL Auto-Tuner Worst Mapping in Real Performance

Figure 13. Illustration of LUT-NN inference’s mapping space.

Batch Size: As Figure 12-(c) shows, when the batch size is
small, the CPU server outperforms PIM-DL. That is because
when executing small kernels on UPMEM PIM-DIMMs, the
poor host-PIM communication bandwidth becomes the main
bottleneck [31, 33, 48]. When the PIM kernel becomes larger,
such issue will be alleviated.
Hidden Dim:We also exploit the performance when chang-
ing the hidden dim size. We select several commonly used
hidden dim sizes from [99] and illustrate the results in Fig-
ure 12-(d). PIM-DL achieves 2.44× geomean speedup against
the CPU server. Specifically, when the hidden dim size comes
to 4096, PIM-DL gains much better performance because
CPU server has poorer scalability than PIM-DL.

6.6 Mapping Space Visualization
To visualize LUT-NN’s mapping space on UPMEM’s PIM-
DIMM, we take BERT-large’s FFN1 layer as a case study.
The workload shape (𝑁,𝐶𝐵,𝐶𝑇, 𝐹) is (32768, 256, 16, 4096),
and we set (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒) to (16384, 8) for static LUT load
scheme, and (512, 256) for the other LUT load schemes. As
shown in Figure 13, we illustrate the neighborhood of the
best mapping parameters under three LUT load schemes
and depict the global optimal parameters when changing
sub-LUT tiling factors and tile traversal order.
Sub-LUTTiling Factors:As depicted in Figure 13-(d), chang-
ing (𝑁𝑠−𝑡𝑖𝑙𝑒 , 𝐹𝑠−𝑡𝑖𝑙𝑒) can bring up to 1.91× performance gap.
That is because when 𝑁𝑠−𝑡𝑖𝑙𝑒 or 𝐹𝑠−𝑡𝑖𝑙𝑒 is large, the skew of
tile size leads to higher host-PIM communication overhead.
Micro Kernel Tile Size: For coarse-grain or fine-grain LUT
load schemes, the average performance gap brought by chang-
ing micro kernel tile sizes is 1.04×. However, for static LUT
load scheme, changing micro kernel tile sizes can bring up
to 1.74× performance gap. That is because under the static
scheme, 𝐹𝑚−𝑡𝑖𝑙𝑒 is bounded by 𝐹𝑠−𝑡𝑖𝑙𝑒 : To hold the LUTs on
PE’s on-chip buffer, we can only set 𝐹𝑠−𝑡𝑖𝑙𝑒 to at most 8 under

the given workload shape. PE’s DRAM bandwidth does not
saturate and increases rapidly under such a low 𝐹𝑚−𝑡𝑖𝑙𝑒 .
Tile Traversal Order: From Figure 13-(d), we can infer that
changing the tile traversal order brings little performance
divergence. That is because due to the wimpy computation
capacity of PEs in UPMEM’s product, the accumulation la-
tency takes up most of the micro kernel’s execution latency,
which diminishes the benefit of exploiting on-chip data reuse.
LUT Load Scheme: As illustrated in Figure 13-(a)~(b), ad-
justing load tile sizes can bring considerable performance gap.
That is because the offsets of on-chip tiles are also computed
by the PE. Since the on-chip buffer’s bandwidth is related to
the instruction number [33], we need to set moderate load
tile sizes to fully utilize the on-chip buffer’s bandwidth.
Auto-Tuner Analysis: As illustrated in Figure 13, the pa-
rameters provided by PIM-DL Auto-Tuner bring ≤6% per-
formance degradation. Besides, the average error of perfor-
mance estimation is 3.44%, and the max error is 13.73%. The
PIM-DL auto-tuner can help us to automatically find a near-
optimal parameter for given workloads.

6.7 PIM-DL on HBM-PIM and AiM
Apart from UPMEM PIM-DIMM, we also evaluate PIM-DL
on HBM-PIM/AiM products via simulation. We set the trans-
former’s sequence length to 128, and adjust the batch size
from 1 to 8. The hidden dims are selected from [99]. We
assume PIM instructions carry the LUT indices and drive the
execution of PEs during PIM-DL’s inference.
We first compare the performance between PIM-DL and

the normal DNN inference on the two products. As depicted
in Figure 14, PIM-DL achieves 23.94×/19.06× geomean speed-
up on HBM-PIM/AiM, respectively. When the batch size
increases, PIM-DL’s performance gain increases by up to
2.23×, because larger batch sizes are unfriendly to the two
products. On the other hand, when the hidden dim increases,

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0
10
20
30
40

N
or

m
. S

pe
ed

up HBM-PIM AiM

1024 2048 2560 4096

Batch Size=1 Batch Size=2 Batch Size=4 Batch Size=8

Hidden Dim Length
1024 2048 2560 4096

Figure 14. Normal PIM-based DNN inference VS. PIM-DL.

the speedup of PIM-DL against the baselines slightly shrinks.
This is because HBM-PIM and AiM’s dataflow is optimized
for processing matrices with flat shapes.

We also compare PIM-DL on the two products with a V100
GPU baseline running FP32 models. As illustrated in Fig-
ure 15, AiM-based PIM-DL outperform NVIDIA V100 GPU
by up to 1.20×, while HBM-PIM-based PIM-DL can only
achieve 39% of V100’s performance (geomean). That is be-
cause the huge computation capacity gap between V100 GPU
(130 TFLOPS) and HBM-PIM (4.8 TFLOPS). For AiM, since
the computation capacity is much higher than HBM-PIM
(16 TFLOPS), PIM-DL can provide comparable performance
against inference on the V100 GPU.

7 Discussion and Future Work
Finally, we list some architecture implications which can
further improve PIM-DL’s performance on DRAM-PIMs.
Adder-only PIM Design: As discussed in Section 3.3, LUT-
NN removes all multiplications in the PIM-side LUT opera-
tors. Therefore, we can equip adder-only PEs in DRAM-PIMs.
Considering adders have much lower hardware overhead
than multipliers [46], we can equip much more adders under
the same area/power constraints. PIM-DL on such adder-
only DRAM-PIMs will achieve much higher performance.
On-chip BufferManagement Support: PIM-PE’s on-chip
buffer cannot support to exploit data reuse because of the se-
vere overhead to implement caching mechanism [85]. There-
fore, we only adopt three simple LUT load schemes Since the
LUT access depends on the distribution of centroid indices,
which may skew to several "hot" items, exploiting data reuse
with better support of on-chip buffer management can bring
better performance to PIM-DL.

8 Related Work
DRAM-PIMs have been proposed for many years to address
the "Memory-Wall" problem. Many academic proposals uti-
lize DRAM-PIMs to accelerate data-intensive applications in
scenarios like graph processing [2, 15, 67, 97, 104], machine
learning [3, 28, 37, 50, 52, 56, 60, 61, 63, 75, 80, 90, 94, 101], and
general-purpose applications [4, 10, 25, 27, 32, 35, 38, 91, 96].
They can be categorized into two major types: (1) DRAM-
PIMs built with die-stacking memories, e.g., Hybrid Memory
Cube (HMC). For example, GraphP [98] and GraphQ [104]
adopts HMC to accelerate graph processing. SynCron [32]

0
0.4
0.8
1.2
1.6

N
or

m
. S

pe
ed

up HBM-PIM AiM

1024 2048 2560 4096

Batch Size=1 Batch Size=2 Batch Size=4 Batch Size=8

Hidden Dim Length
1024 2048 2560 4096

Figure 15. GPU-based inference VS. PIM-DL.

proposes efficient synchronization support on HMC for data
intensive applications. (2) DRAM-PIMs built withDual-Inline
Memory Modules (DIMMs). For example, TensorDIMM [57]
and RecNMP [51] accelerate recommendation systems with
near-memory tensor reduction. DIMM-Link [102] presents a
full-stack design to enhance the inter-DIMM communication
performance for generic DIMM-NMP architectures.
In recent few years, DRAM-PIMs have entered the com-

mercialization phase. UPMEM has proposed PIM-DIMM [18],
which equips RISC cores near DRAM banks. Samsung and
SK-Hynix have introduced HBM-PIM [55]/AiM [54] to accel-
erate memory-bound operators in deep learning applications.
Although there are various proposals customizing real-world
applications on commodity DRAM-PIMs [6–8, 16, 21, 31, 34,
48, 49, 58, 62, 72], none of them can efficiently process main-
stream DNNs such as transformers. To our best knowledge,
PIM-DL is the first full-stack framework that expands DRAM-
PIMs’ applicability under deep learning scenarios. Unlike
previous proposals implementing LUT-based operations in
DRAM circuits [17, 26, 82, 83, 100], we adopt LUTs in the
algorithm level, ensuring PIM-DL’s efficient deployment on
real-world DRAM-PIM products. Although TransPimLib [72]
implements LUT-based transcendental functions on UPMEM
PIM-DIMMs, it cannot be directly used to accelerate GEMM.
PIM-DL and provides algorithmic innovation to maintain
the model accuracy when substituting GEMM to LUT-NN
and contains efficient mapping & auto-tuning strategies to
boost the performance of model inference.

9 Conclusion
This paper proposes PIM-DL, the first full-stack framework
to expand the applicability of commodity DRAM-PIMs for
deep learning. We adopt the eLUT-NN algorithm for model
calibration and design the PIM-based inference backend,
including the PIM-DL Engine and the Auto-Tuner. Com-
pared with GEMM-based inference on DRAM-PIMs, PIM-DL
achieves 22.6×~37.1× speedup. Compared with inference on
CPU/GPU, PIM-DL achieves up to 3.54×/1.20× speedup.

Acknowledgments
We thank all the reviewers and our shepherd for their valu-
able comments.We also thank Yiqi Chen for his help on proof
reading. This work is supported by NSF China (62032001)
and 111 Project (B18001).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

A Artifact Appendix
A.1 Abstract
This artifact contains the source code of PIM-DL, including
the implementation of model calibration, auto-tuner, and the
inference engine. In addition, this artifact provides config
files and scripts to reproduce the key experimental results
reported in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: LUT-based neural network (LUT-NN).
• Program: Python3, C, C++.
• Compilation: The compiler provided in UPMEM SDK (Ver-
sion 2021.3.0), which is based on clang 10.0.0.

• Run-time environment:The system is developed and tested
in Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-184-generic x86_64).

• Hardware: The experiments were run on a machine with
Intel Xeon 4210 CPU (dual-socket), 128 GB memory, and
8 UPMEM PIM-DIMMs (8GB/DIMM, DPU running at 350
MHz).

• Execution:Make sure no other workloads are running on
the system during the experiment.

• Metrics: Normalized speedup and energy efficiency.
• Output: The resulting figures shown in paper for key exper-
iments.

• Experiments: Scripts are included in the asplos24-ae folder.
Detailed instructions are provided in asplos24-ae/README.md.

• Howmuchdisk space required (approximately)?:About
1GB.

• How much time is needed to prepare workflow (ap-
proximately)?: About 10 minutes.

• How much time is needed to complete experiments
(approximately)?: About 3 hours.

• Publicly available?: Yes. Github link: https://github.com/
leesou/PIM-DL-ASPLOS.

• Code licenses (if publicly available)?:MIT License.
• Archived (provide DOI)?: Yes. DOI link: https://doi.org/10.
5281/zenodo.10531532

A.3 Description
A.3.1 How to access. For AE reviewers, considering it
might be difficult to prepare a server equipped with UPMEM
PIM-DIMMs, we provide ssh access to our server. For others
who want to reproduce these experiments, we provide the
open-sourced project on Github (Link: https://github.com/
leesou/PIM-DL-ASPLOS), but the following dependencies
should be satisfied.

A.3.2 Hardware dependencies. All experiments are run
on a machine with Intel Xeon 4210 CPU (dual-socket), 128
GB memory, and 8 UPMEM PIM-DIMMs (8GB/DIMM, DPU
running at 350 MHz).

A.3.3 Software dependencies. To use UPMEMPIM-DIM-
Ms, UPMEM’s SDK toolchain needs to be installed on the
server. The SDK version on our server is 2021.3.0. Besides,

our server runs on Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0-
184-generic x86_64).

A.4 Installation
Installation instructions are provided in the asplos24-ae
folder. Please check asplos24-ae/README.md for more de-
tails.

A.5 Experiment workflow
Experiment scripts are provided in the asplos24-ae folder.
Please check asplos24-ae/README.md for more details.

A.6 Evaluation and expected results
After finishing execution, all plotted results are saved in
the asplos24-ae/results folder. These results should be
in correspondence with Figure 10, 11, 12, and 13. Note that
the results might be slightly different from that in the pa-
per due to the runtime perturbation, but the trends should
be similar. Please check asplos24-ae/README.md for more
information on result validation.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 105–117, 2015.

[3] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Sung-Kyu Lim, Hyesoon
Kim, et al. Fafnir: Accelerating sparse gathering by using efficient
near-memory intelligent reduction. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), pages
908–920. IEEE, 2021.

[4] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and
Nam Sung Kim. Chameleon: Versatile and practical near-dram accel-
eration architecture for large memory systems. In 2016 49th annual
IEEE/ACM international symposium on Microarchitecture (MICRO),
pages 1–13. IEEE, 2016.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv preprint arXiv:1607.06450, 2016.

[6] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler.
Accelerating large table scan using processing-in-memory technology.
BTW 2023, 2023.

[7] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler.
Processing-in-memory for databases: Query processing and data
transfer. In Proceedings of the 19th International Workshop on Data
Management on New Hardware, pages 107–111, 2023.

[8] Arthur Bernhardt, Andreas Koch, and Ilia Petrov. pimdb: From main-
memory dbms to processing-in-memory dbms-engines on intelligent
memories. In Proceedings of the 19th International Workshop on Data
Management on New Hardware, pages 44–52, 2023.

[9] Davis W. Blalock and John V. Guttag. Multiplying matrices without
multiplying. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 992–1004. PMLR, 2021.

https://github.com/leesou/PIM-DL-ASPLOS
https://github.com/leesou/PIM-DL-ASPLOS
https://doi.org/10.5281/zenodo.10531532
https://doi.org/10.5281/zenodo.10531532
https://github.com/leesou/PIM-DL-ASPLOS
https://github.com/leesou/PIM-DL-ASPLOS

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[10] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Ha-
jinazar, Krishna T Malladi, Hongzhong Zheng, et al. Conda: Efficient
cache coherence support for near-data accelerators. In Proceedings
of the 46th International Symposium on Computer Architecture, pages
629–642, 2019.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[12] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detec-
tion with transformers. In European conference on computer vision,
pages 213–229. Springer, 2020.

[13] Jason Cong, Zhenman Fang, Michael Gill, Farnoosh Javadi, and Glenn
Reinman. AIM: accelerating computational genomics through scal-
able and noninvasive accelerator-interposed memory. In Proceedings
of the International Symposium on Memory Systems, MEMSYS 2017,
Alexandria, VA, USA, October 02 - 05, 2017, pages 3–14. ACM, 2017.

[14] Leonardo Dagum and RameshMenon. Openmp: an industry standard
api for shared-memory programming. IEEE computational science
and engineering, 5(1):46–55, 1998.

[15] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,
Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A
processing-in-memory architecture for large-scale graph processing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(4):640–653, 2018.

[16] Prangon Das, Purab Ranjan Sutradhar, Mark Indovina, Sai
Manoj Pudukotai Dinakarrao, and Amlan Ganguly. Implementation
and evaluation of deep neural networks in commercially available
processing in memory hardware. In 2022 IEEE 35th International
System-on-Chip Conference (SOCC), pages 1–6, 2022.

[17] Quan Deng, Youtao Zhang, Minxuan Zhang, and Jun Yang. Lacc:
Exploiting lookup table-based fast and accurate vector multiplication
in dram-based cnn accelerator. In Proceedings of the 56th Annual
Design Automation Conference 2019, pages 1–6, 2019.

[18] Fabrice Devaux. The true processing in memory accelerator. In 2019
IEEE Hot Chips 31 Symposium (HCS), pages 1–24. IEEE Computer
Society, 2019.

[19] Fabrice Devaux. The true processing in memory accelerator. In 2019
IEEE Hot Chips 31 Symposium (HCS), pages 1–24. IEEE Computer
Society, 2019.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[21] Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna,
Onur Mutlu, and Izzat El Hajj. A framework for high-throughput
sequence alignment using real processing-in-memory systems. Bioin-
formatics, 39(5):btad155, 2023.

[22] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning
Representations, 2021.

[23] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotrans-
formers: an efficient gpu serving system for transformer models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 389–402, 2021.

[24] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotrans-
formers: an efficient gpu serving system for transformer models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 389–402, 2021.

[25] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and
Nam Sung Kim. Nda: Near-dram acceleration architecture leveraging
commodity dram devices and standard memory modules. In 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 283–295. IEEE, 2015.

[26] João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed
Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S Kim, Geraldo F
Oliveira, Taha Shahroodi, Anant Nori, et al. pluto: Enabling mas-
sively parallel computation in dram via lookup tables. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 900–919. IEEE, 2022.

[27] MingyuGao, Grant Ayers, and Christos Kozyrakis. Practical near-data
processing for in-memory analytics frameworks. In 2015 International
Conference on Parallel Architecture and Compilation (PACT), pages
113–124. IEEE, 2015.

[28] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and efficient neural network acceleration
with 3d memory. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 751–764, 2017.

[29] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low latency rnn
inference with cellular batching. In Proceedings of the Thirteenth
EuroSys Conference, pages 1–15, 2018.

[30] Georgi Gerganov. Ggml tensor library for machine learning. https:
//github.com/ggerganov/ggml.

[31] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. Towards efficient sparse
matrix vector multiplication on real processing-in-memory architec-
tures. ACM SIGMETRICS Performance Evaluation Review, 50(1):33–34,
2022.

[32] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou,
Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa,
Nectarios Koziris, Georgios Goumas, and Onur Mutlu. Syncron: Effi-
cient synchronization support for near-data-processing architectures.
In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 263–276. IEEE, 2021.

[33] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Gian-
noula, Geraldo F Oliveira, and Onur Mutlu. Benchmarking a new
paradigm: An experimental analysis of a real processing-in-memory
architecture. arXiv preprint arXiv:2105.03814, 2021.

[34] Juan Gómez-Luria, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F Oliveira, Gagandeep Singh, and Onur Mutlu.
Machine learning training on a real processing-in-memory system.
In 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pages 292–295. IEEE, 2022.

[35] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang,
Dimin Niu, and Yuan Xie. ipim: Programmable in-memory image pro-
cessing accelerator using near-bank architecture. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pages 804–817. IEEE, 2020.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages 770–778. IEEE
Computer Society, 2016.

[37] Byungchul Hong, Yeonju Ro, and John Kim. Multi-dimensional paral-
lel training of winograd layer onmemory-centric architecture. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 682–695. IEEE, 2018.

[38] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W
Keckler. Transparent offloading and mapping (tom) enabling
programmer-transparent near-data processing in gpu systems. ACM
SIGARCH Computer Architecture News, 44(3):204–216, 2016.

https://github.com/ggerganov/ggml
https://github.com/ggerganov/ggml

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

[39] Intel. Intel 64 and ia-32 architectures software developer manual
volume 3b. https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[40] Intel. Intel advisor. https://www.intel.cn/content/www/cn/zh/
developer/tools/oneapi/advisor.html#gs.2g5qlq.

[41] Intel. Intel oneapi math kernel library (mkl). https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html.

[42] Intel. oneapi deep neural network library. https://github.com/oneapi-
src/oneDNN.

[43] Intel. Rapl power meter. https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/advisory-
guidance/running-average-power-limit-energy-reporting.html.

[44] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[45] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two
pure transformers can make one strong gan, and that can scale up.
Advances in Neural Information Processing Systems, 34:14745–14758,
2021.

[46] Norman P Jouppi, Doe Hyun Yoon, MatthewAshcraft, Mark Gottscho,
Thomas B Jablin, George Kurian, James Laudon, Sheng Li, Peter
Ma, Xiaoyu Ma, et al. Ten lessons from three generations shaped
google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pages 1–14.
IEEE, 2021.

[47] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international sym-
posium on computer architecture, pages 1–12, 2017.

[48] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala,
Yan Gu, Charles McGuffey, and Phillip B Gibbons. Pim-tree: A
skew-resistant index for processing-in-memory. arXiv preprint
arXiv:2211.10516, 2022.

[49] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan
Gu, Charles McGuffey, and Phillip B Gibbons. Pim-trie: A skew-
resistant trie for processing-in-memory. In Proceedings of the 35th
ACM Symposium on Parallelism in Algorithms and Architectures, pages
1–14, 2023.

[50] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,
Hsien-Hsin S Lee, et al. Recnmp: Accelerating personalized recom-
mendation with near-memory processing. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
pages 790–803. IEEE, 2020.

[51] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,
Hsien-Hsin S Lee, et al. Recnmp: Accelerating personalized recom-
mendation with near-memory processing. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
pages 790–803. IEEE, 2020.

[52] Duckhwan Kim, Taesik Na, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. Deeptrain: A programmable embedded platform for
training deep neural networks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2360–2370, 2018.

[53] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[54] Yongkee Kwon, Kornijcuk Vladimir, Nahsung Kim, Woojae Shin,
Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Guhyun
Kim, Byeongju An, et al. System architecture and software stack for
gddr6-aim. In 2022 IEEE Hot Chips 34 Symposium (HCS), pages 1–25.
IEEE, 2022.

[55] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je-
Min Ryu, Jong-Pil Son, Seongil O, Hak-soo Yu, Haesuk Lee, Soo Young
Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyunsung Shin,
Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun Song, Ahn
Choi, Daeho Kim, Sooyoung Kim, Eun-Bong Kim, David Wang, Shin-
haeng Kang, Yuhwan Ro, Seungwoo Seo, Joon-Ho Song, Jaeyoun
Youn, Kyomin Sohn, and Nam Sung Kim. 25.4 A 20nm 6gb function-
in-memory dram, based on HBM2 with a 1.2tflops programmable
computing unit using bank-level parallelism, for machine learning ap-
plications. In IEEE International Solid-State Circuits Conference, ISSCC
2021, San Francisco, CA, USA, February 13-22, 2021, pages 350–352.
IEEE, 2021.

[56] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A prac-
tical near-memory processing architecture for embeddings and ten-
sor operations in deep learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 740–
753, 2019.

[57] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensordimm: A prac-
tical near-memory processing architecture for embeddings and ten-
sor operations in deep learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 740–
753, 2019.

[58] Dominique Lavenier, Remy Cimadomo, and Romaric Jodin. Vari-
ant calling parallelization on processor-in-memory architecture. In
2020 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 204–207. IEEE, 2020.

[59] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin
Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim,
Hyunsung Shin, et al. Hardware architecture and software stack for
pim based on commercial dram technology: Industrial product. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 43–56. IEEE, 2021.

[60] Young Sik Lee and Tae Hee Han. Task parallelism-aware deep
neural network scheduling on multiple hybrid memory cube-based
processing-in-memory. IEEE Access, 9:68561–68572, 2021.

[61] Cong Li, Zhe Zhou, Xingchen Li, Guangyu Sun, and Dimin Niu. Nm-
explorer: An efficient exploration framework for dimm-based near-
memory tensor reduction. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2023.

[62] Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon
Park, Hanjun Kim, Jinho Lee, and Youngsok Kim. Design and analysis
of a processing-in-dimm join algorithm: A case study with upmem
dimms. Proceedings of the ACM on Management of Data, 1(2):1–27,
2023.

[63] Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. Enmc: Extreme
near-memory classification via approximate screening. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 1309–1322, 2021.

[64] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[65] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022, 2021.

[66] Bradley McDanel, Surat Teerapittayanon, and H. T. Kung. Embedded
binarized neural networks. CoRR, abs/1709.02260, 2017.

[67] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, and Hyesoon Kim. Graphpim: Enabling instruction-level pim
offloading in graph computing frameworks. In 2017 IEEE International
symposium on high performance computer architecture (HPCA), pages
457–468. IEEE, 2017.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/advisor.html#gs.2g5qlq
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/advisor.html#gs.2g5qlq
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

PIM-DL: Expanding the Applicability of Commodity DRAM-PIMs for Deep Learning
via Algorithm-System Co-Optimization ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[68] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmannmachines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[69] Nvidia. Cublas. https://developer.nvidia.com/cublas.
[70] Nvidia. Cudnn. https://developer.nvidia.com/cudnn.
[71] Samsung Advanced Institute of Technology. Pimsimulator. https:

//github.com/SAITPublic/PIMSimulator.
[72] Geraldo F Oliveira, Juan Gómez-Luna, Mohammad Sadrosadati, Yuxin

Guo, and Onur Mutlu. Transpimlib: Efficient transcendental func-
tions for processing-in-memory systems. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 235–247. IEEE, 2023.

[73] Open Neural Network Exchange (ONNX). https://github.com/onnx/
onnx.

[74] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A
systematic approach to dnn accelerator evaluation. In 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS), pages 304–315. IEEE, 2019.

[75] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu,
and Jung Ho Ahn. Trim: Enhancing processor-memory interfaces
with scalable tensor reduction in memory. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 268–
281, 2021.

[76] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information
processing systems, 32, 2019.

[77] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent ram.
IEEE Micro, 17(2):34–44, 1997.

[78] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[79] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Explor-
ing the limits of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research, 21(1):5485–5551,
2020.

[80] Fabian Schuiki, Michael Schaffner, Frank K Gürkaynak, and Luca
Benini. A scalable near-memory architecture for training deep neu-
ral networks on large in-memory datasets. IEEE Transactions on
Computers, 68(4):484–497, 2018.

[81] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video analysis. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 322–337, 2019.

[82] Purab Ranjan Sutradhar, Sathwika Bavikadi, Mark Connolly, Savanku-
mar Prajapati, Mark A Indovina, Sai Manoj Pudukotai Dinakarrao,
and Amlan Ganguly. Look-up-table based processing-in-memory
architecture with programmable precision-scaling for deep learning
applications. IEEE Transactions on Parallel and Distributed Systems,
33(2):263–275, 2021.

[83] Purab Ranjan Sutradhar, Mark Connolly, Sathwika Bavikadi, Sai
Manoj Pudukotai Dinakarrao, Mark A Indovina, and Amlan Gan-
guly. ppim: A programmable processor-in-memory architecture with
precision-scaling for deep learning. IEEE Computer Architecture Let-
ters, 19(2):118–121, 2020.

[84] Xiaohu Tang, Yang Wang, Ting Cao, Li Lyna Zhang, Qi Chen, Deng
Cai, Yunxin Liu, and Mao Yang. Lut-nn: Empower efficient neural
network inference with centroid learning and table lookup. In ACM

MobiCom ’23: The 29th Annual International Conference on Mobile
Computing and Networking, Madrid, Spain, October 2 - 6, 2023. ACM,
2023.

[85] UPMEM. Upmem pim-dimm runtime library. https://sdk.upmem.
com/2023.1.0/202_RTL.html.

[86] UPMEM. Upmem software development kit (sdk). https://sdk.upmem.
com/.

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[88] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[89] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding
Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer:
A versatile backbone for dense prediction without convolutions. In
Proceedings of the IEEE/CVF international conference on computer vi-
sion, pages 568–578, 2021.

[90] Yi Wang, Weixuan Chen, Jing Yang, and Tao Li. Towards memory-
efficient allocation of cnns on processing-in-memory architecture.
IEEE Transactions on Parallel and Distributed Systems, 29(6):1428–1441,
2018.

[91] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling
Liang, Xing Hu, and Yuan Xie. Spacea: Sparse matrix vector mul-
tiplication on processing-in-memory accelerator. In 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), pages 570–583. IEEE, 2021.

[92] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R
Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pre-
training for language understanding. Advances in neural information
processing systems, 32, 2019.

[93] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingy-
ong Qi, and Jack Xin. Understanding straight-through estimator in
training activation quantized neural nets. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[94] Shouyi Yin, Shibin Tang, Xinhan Lin, Peng Ouyang, Fengbin Tu,
Jishen Zhao, Cong Xu, Shuangcheng Li, Yuan Xie, ShaoJun Wei, et al.
Parana: A parallel neural architecture considering thermal problem
of 3d stacked memory. IEEE Transactions on Parallel and Distributed
Systems, 30(1):146–160, 2018.

[95] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang
Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-
token vit: Training vision transformers from scratch on imagenet.
In Proceedings of the IEEE/CVF international conference on computer
vision, pages 558–567, 2021.

[96] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L
Greathouse, Lifan Xu, andMichael Ignatowski. Top-pim: Throughput-
oriented programmable processing in memory. In Proceedings of
the 23rd international symposium on High-performance parallel and
distributed computing, pages 85–98, 2014.

[97] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei
Wu, Kang Chen, Christos Kozyrakis, and Xuehai Qian. Graphp: Re-
ducing communication for pim-based graph processing with efficient
data partition. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 544–557. IEEE, 2018.

[98] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei
Wu, Kang Chen, Christos Kozyrakis, and Xuehai Qian. Graphp: Re-
ducing communication for pim-based graph processing with efficient

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://github.com/SAITPublic/PIMSimulator
https://github.com/SAITPublic/PIMSimulator
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://sdk.upmem.com/2023.1.0/202_RTL.html
https://sdk.upmem.com/2023.1.0/202_RTL.html
https://sdk.upmem.com/
https://sdk.upmem.com/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, Guangyu Sun

data partition. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 544–557. IEEE, 2018.

[99] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya
Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[100] Ranyang Zhou, Arman Roohi, Durga Misra, and Shaahin Angizi.
Red-lut: Reconfigurable in-dram luts enabling massive parallel com-
putation. In Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, pages 1–8, 2022.

[101] Zhe Zhou, Cong Li, XuechaoWei, XiaoyangWang, and Guangyu Sun.
Gnnear: Accelerating full-batch training of graph neural networks
with near-memory processing. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, pages

54–68, 2022.
[102] Zhe Zhou, Cong Li, Fan Yang, andGuangyu Sun. Dimm-link: Enabling

efficient inter-dimm communication for near-memory processing. In
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 302–316, 2023.

[103] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun. PetS: A
unified framework for Parameter-Efficient transformers serving. In
2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
489–504, Carlsbad, CA, July 2022. USENIX Association.

[104] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu,
Yanzhi Wang, and Xuehai Qian. Graphq: Scalable pim-based graph
processing. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 712–725, 2019.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Memory-Centric Computing with DRAM-PIMs
	2.2 Limited Computation Ability of DRAM-PIMs

	3 LUT-based Deep Learning Paradigm
	3.1 LUT-NN Conversion
	3.2 LUT-NN Inference
	3.3 Affinity Analysis of LUT-NNs on DRAM-PIMs
	3.4 Challenges of Adopting LUT-NNs

	4 PIM-DL Framework
	4.1 Framework Overview
	4.2 LUT-NN Converter
	4.3 PIM-DL Engine

	5 Hardware Mapping and Optimization
	5.1 Abstraction of Commodity DRAM-PIMs
	5.2 LUT-NN's Inference Dataflow on DRAM-PIMs
	5.3 PIM-DL Auto-Tuner

	6 Evaluation
	6.1 Experiment Setup
	6.2 Model Accuracy
	6.3 End-to-end Performance
	6.4 Performance Analysis
	6.5 Sensitivity Analysis
	6.6 Mapping Space Visualization
	6.7 PIM-DL on HBM-PIM and AiM

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

