
RUBICON: Rubric-Based Evaluation of Domain-Specific
Human-AI Conversations

Param Biyani*
t-pbiyani@microsoft.com

Microsoft, India

Yasharth Bajpai*†

ybajpai@microsoft.com
Microsoft, India

Arjun Radhakrishna
arradha@microsoft.com

Microsoft, Redmond

Gustavo Soares
gustavo.soares@microsoft.com

Microsoft, Redmond

Sumit Gulwani
sumitg@microsoft.com

Microsoft, Redmond

ABSTRACT
The evaluation of conversational assistants, such as GitHub Copilot
Chat, poses a significant challenge for tool builders in the domain
of Software Engineering. These assistants rely on language models
and chat-based user experiences, making evaluating them according
to the quality of the Human-AI conversations complicated. Exist-
ing general-purpose conversational quality metrics from literature
are inadequate for assessing domain-specific dialogues due to their
lack of context sensitivity. In this paper, we present RUBICON, a
technique for evaluating domain-specific Human-AI conversations.
RUBICON leverages large language models to generate rubrics
for assessing conversation quality. It employs a selection process to
choose the subset of rubrics based on their performance in scoring
conversations. In our experiments, RUBICON effectively learns
to differentiate conversation quality, achieving higher accuracy and
yield rates than existing baselines.

ACM Reference Format:
Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit
Gulwani. 2024. RUBICON: Rubric-Based Evaluation of Domain-Specific
Human-AI Conversations. In Proceedings of ACM Conference (Manuscript
Submitted to ACM). ACM, New York, NY, USA, 12 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
With the introduction of ChatGPT [1], AI assistants for software
developers, such as Github Copilot [11], have started to adopt chat-
based interfaces as one of the primary means for enabling interactive
AI assistance for developers. However, evaluating the quality of
these chat-based AI assistants has proven to be highly challenging
due to the diverse range of tasks developers seek help with and the
multi-turn nature of Human-AI conversations, making it difficult
to determine the success of the interaction with the assistant. As a
result, developers who build applications with chat interfaces often

*Equal Contribution; more junior author listed earlier
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Manuscript Submitted to ACM, April 2024, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

lack sufficient information regarding the performance and quality of
the interactions facilitated by their tools [22].

Recently, Lin et al. [16] introduced SPUR, a technique designed
to estimate User Satisfaction for open-domain conversations con-
ducted with Bing Copilot. First, SPUR leverages a large language
model to analyze past labelled conversations, capturing user satis-
faction signals from upvoted conversations and user dissatisfaction
signals from downvoted conversations. These signals are then uti-
lized to iteratively generate a set of rubrics. Next, SPUR empowers
a large language model to assess the quality of new conversations by
scoring them against the learned set of rubrics. While user satisfac-
tion rubrics learned by SPUR can be effective in assessing Human-AI
conversations that contain user prompts indicating satisfaction or
dissatisfaction, such as compliments or rephrased questions, they
may be less effective in conversations where such signals are absent.

For example, consider Figure 1 where we have two similar con-
versations evaluated against some rubrics generated from cues from
the conversation. The left conversation is an example of the user
being unable to get the required help from the assistant as the as-
sistant does not have access to certain information it asked for in
the previous step. While in the conversation on the right, the user
gets the assistant to get code-fix suggestions on their further clari-
fication about help in solving the issue which works for them. The
rubrics are generated from relevant conversational cues to gauge the
quality of conversation. These cues encompass repetition of infor-
mation, progress towards task, adherence to user requests, provision
of requisite information, etc. Domain-specific rubrics like ‘provides
a code snippet as solution’ and ‘does not provide new or specific
debugging guidance’ appear to be more contextual and definitive
in capturing the essence of the conversation compared to generic
counterparts like ‘provides a solution’ and ‘helps the user’ available
from SPUR [16]. Nevertheless, the ability of large language models
to identify signals and generate rubrics to assess conversations has
inspired further exploration of different types of signals beyond user
satisfaction, particularly in task-oriented settings where notions of
satisfaction are tied to the task’s specific needs.

In this paper, we propose RUBICON, a technique for evaluating
domain-specific Human-AI conversations. RUBICON comprises
three main components: (1) rubric set generation, (2) rubric selec-
tion, and (3) conversation evaluation. In the first step, RUBICON
follows the approach of SPUR to identify signals in conversations la-
belled as negative and positive, generating a set of rubrics. However,
RUBICON extends SPUR by providing instructions to the model
regarding domain-specific signals (DS) and conversation design

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

Help me analyze the current exception
[exception info]

This error happens because the system
cannot find the specified file. This might
be happening because...

Try the following steps:
[Some Troubleshooting Steps]

If the problem persists, please share
additional information like the file path
and relevant code snippets for further
diagnosis.

Can you provide more information
about the file that is missing?

Without more details, it is difficult to determine
which file is missing. However, the file is likely
related to the UwpSurfaceDesigner project.
[Details]

To troubleshoot ...
[Same Troubleshooting Steps]

If the issue persists, provide additional
information like the file path and relevant code
snippets for further assistance.

RUBICON Generated
Rubrics

DISSATISFACTION RUBRICS

Agree ✔
The assistant does not specifically

point out where in the user's code the
error was happening.

❌ Disagree

✔
The assistant repeats the same

diagnostic steps without providing
new or more specific information.

✔ AgreeAgree

Strongly
Disagree ❌

The assistant's response does not
provide new or more specific

debugging guidance to the user.
❌

Strongly
Disagree

SATISFACTION RUBRICS

Disagree ❌

The user cooperates and provides
the necessary information when

asked by the assistant.
❌ Disagree

Strongly
Disagree ❌ ✔ Strongly

Agree

The assistant provides a code snippet
to illustrate the solution, aiding the

user in implementing the fix.

Strongly
Disagree ❌

The user expresses gratitude
towards the assistant, indicating
successful resolution of the bug.

✔ Agree

Help me analyze the current exception
[exception info]

This error happens because the
`DisplayFor` method is being used with a
lambda expression that calls ...

To fix this error, you can create ...
[Some error fix instructions]

To further diagnose the issue, please
provide the TipoCambio class definition
and related code that might be contributing
to the error.

yes that should help, how can I solve it?

As mentioned earlier, you can solve this error
by creating a ...
[Same error fix instructions]

Here's how to add a property to the
TipoCambio class for the formatted date
string:
[Code snippet]

This should resolve your error.

thanks, that works

Figure 1: Two analogous conversations facilitated by the Debugger AI assistant evaluated against some representative rubrics. The
conversation on the right was deemed better, while the one on the left was considered subpar.

principles (CDP) in the form Gricean maxims [30], which capture
four dimensions of conversation effectiveness: quantity, quality, rele-
vance, and manner. Additionally, while SPUR combines the rubrics
produced in each batch of examples without evaluating the effective-
ness of the final rubric set, RUBICON generates fresh rubrics for
each batch to create a pool. In the second step, RUBICON, inspired
by prompt optimization using multi-arm bandit selection in Pryzant
et al. [25], iteratively selects rubrics based on two data-driven loss
functions. This step yields the final set of rubrics and a score thresh-
old for classifying conversations as negative or positive. Finally, in
the last step, RUBICON employs a large language model to grade
and classify the conversation under test using the generated rubric
set and threshold.

For our evaluation, we instantiated RUBICON to assess conver-
sations between developers and a widely used chat-based assistant
designed for C# developers. To create a labelled dataset, we col-
lected 100 conversations where developers sought assistance from
the chat-based assistant to resolve an exception while debugging
their code. To power RUBICON, we utilized GPT-4[20], a state-of-
the-art language model. GPT-4 was employed to generate rubrics,
select the most relevant ones, and assess the conversations based on
the learned rubric set and scoring threshold.

The rubrics generated using RUBICON exhibited superior per-
formance, creating a 9x higher delta in the score of negative and
positive conversations, compared to three alternative sets of rubrics:
the original set from [16], a manually adapted set, and a set learned
from our debugging dataset using SPUR. We are able to predict
conversation labels with an almost perfect (> 0.9) precision for 84%
of conversations on unlabelled data. Additionally, we conducted ab-
lation studies to show the effect of each component of our technique.

Overall, we present the following contributions:

• We propose RUBICON a technique to automatically generate
rubrics and score conversations for AI Assistants for specific
domains;

• We compare the rubric performance when generated by RUBI-
CON and SPUR, using a dataset of 100 real conversations be-
tween developers and an AI assistant in the context of debugging
exceptions;
• We evaluate the impact and effectiveness of the different compo-

nents within RUBICON.

2 RELATED WORK
Natural language conversations have become the staple interface
for modern AI applications [8, 13, 29]. Traditional NLP techniques
have employed many metrics, but in the LLM age, not many have
matured in comparison to the advancement in the use cases [7, 15,
21]. Metrics like BLEU [21], RoBERTA [17], and Perplexity are
often found short on being able to measure long-form conversations,
particularly due to lack of ideal references and underlying intent. [18,
26, 34, 36].

In the broader sense, conversation quality analysis is not a new
problem, and domains, particularly sales and marketing, have em-
ployed various ways of measuring the quality of conversation their
end-users experience when interacting with agents [3]. User sat-
isfaction estimation has been used as a proxy for evaluating con-
versational quality from a user experience-led approach [16]. User
satisfaction through surveys and manual post-analysis of the conver-
sation has been the most important of all other indicators. However,
manual post-analysis of conversations has both privacy and resource
implications, thus difficult to carry out at scale [10, 14, 32]. Hu-
man annotations of conversations themselves are subjective and are
known to be prone to bias [6, 9, 12, 19].

Given that data annotation and large-scale user study is a tedious
and resource consuming task. Recent works have explored using
language models to replace human subjects in answering evaluation-
related questions. These works propose scoring systems built around
judging conversations against some assertions [10, 16, 19, 27]. Asser-
tions are natural language sentences framed to ask specific questions
about any conversation. These assertions can be designed to detect
the presence of themes ranging from user experience - frustration, cu-
riosity, satisfaction, impatience, etc., to more sophisticated/abstract

2

RUBICON: Rubric-Based Evaluation of Domain-Specific Human-AI Conversations Manuscript Submitted to ACM, April 2024, USA

themes like engagement, inconsistency, interestingness, understand-
ing, etc.

This paper also discusses SPUR’s [16] proposed automatic tech-
nique, which uses general open domain conversations with thumbs
up/down user response signals to generate assertions for user satisfac-
tion estimation. However, this approach and other domain-agnostic
user satisfaction estimation policies like [35] are only designed for
open-ended conversations. The assertions generated in SPUR are
designed to measure only the signals of user satisfaction and serve as
its proxy. However, for a complete conversational quality evaluation,
the literature in HCI and other relevant fields focusing on Human-AI
conversations advocate for a holistic approach to designing con-
versational AI systems, emphasizing factors such as naturalness,
engagement, trust, empathy, and context awareness to create mean-
ingful interactions that go beyond mere user satisfaction. Cathy [23]
and Semnick [28] emphasize the importance of understanding user
needs, expectations, and conversational norms to create engaging
and satisfying experiences. A more well-rounded conversational
evaluation, especially for task-oriented interactions, would account
for understanding expectations and the progress the interaction en-
ables in that direction [4, 7].

Evaluating multi-turn conversations typically uses scoring over
a Likert scale after a conversation is over [5, 10, 27, 32, 37]. Some
works also explore using continuous scales to rate conversations per
assertion [16]. However, we find that LLMs are usually inconsistent
and biased when giving numeric ratings to natural language asser-
tions. In this paper, we briefly discuss this trade-off and other than
for comparison purposes, we only use the Likert scale throughout.

In this work, we also explore the problem of selecting an optimal
subset of prompts from a larger set of prompts and compare our
approach with some bandit selection methods [25]. The selection
policy is optimised for two metrics related to binary classification:
distance between the means of the distribution of the two classes,
and the percentage of the conversations that can be evaluated with
some minimum confidence threshold. Since it is challenging to per-
form binary classification on dialogues due to their subjectivity,
we only consider conversations classified with high confidence af-
ter the scoring. Similar techniques have been applied in problems
like credit default prediction or fraud detection where the precision
requirements of classification are very strict [31, 33].

3 TECHNIQUE
We propose RUBICON to estimate conversation quality for domain-
specific conversational assistants. To enable this, we learn rubrics
capturing Satisfaction (SAT) & Dissatisfaction (DSAT) for a given
conversation set with binary ground labels - positive & negative;
which are then used to obtain a score 𝑁𝑒𝑡𝑆𝐴𝑇 in an online fashion
while classifying them on a learned threshold 𝜃 . Fig 2 outlines three
major components in our technique - (1) Generating a diverse rubric
set from conversation data; (2) Selecting an optimized set of rubrics
for online evaluation; (3) Scoring conversations and predicting labels.
We refer to (1) and (2) as the Generate & Select paradigm of learning
rubrics which are carried out in an offline setting.

The Generation step is inspired from SPUR to support learning
of attributes and patterns of Satisfaction/Dissatisfaction from the

available trainable conversations 𝐶𝑡𝑟𝑎𝑖𝑛 . We adapt Supervised Ex-
traction proposed in SPUR to include domain sensitization as well
as conversation design insights, while the manipulated Rubric Sum-
marization adheres to standards of conversation while accumulating
the set of diverse assertions. Secondly, our novel selection policy
optimizes the number of assertions to help converge to rubric subsets
of restricted sizes making online evaluation feasible. The policy
incorporates components to address concerns in a data-scarce envi-
ronment while providing a better opportunity for labelling with high
precision and coverage. Each rubric is a natural language assertion
evaluated against a 5-segment Likert scale using an instruction-tuned
LLM. SAT/DSAT rubrics in the optimized set 𝑅𝑆 with a fixed 𝑁

rubrics of each undergo assessment in the wild to produce 𝑁𝑒𝑡𝑆𝐴𝑇

score, with the premise that an ideally positive conversation should
exhibit a higher overall SAT score and a lower DSAT score.

3.1 Rubrics and Conversation Quality
The core component of our system is a rubric 𝑟 , i.e., a natural
language assertion of some property of a human-AI assistant conver-
sation. For example, “the user explicitly thanks the assistant” and
“the information provided by the AI assistant was generic, and did
not consider the user’s current problem” are both rubrics. We classify
rubrics into satisfaction rubrics and dissatisfaction rubrics (denoted
SAT and DSAT) to say whether the rubric expresses a positive or
a negative sentiment about the conversation. We use the symbols 𝑠
and 𝑑 to represent SAT and DSAT rubrics respectively.

Given a conversation 𝑐, we can evaluate 𝑐 with respect to a rubric
𝑟 by providing both of them to a language model and asking it to rate
the match on a 5-point Likert scale. This 5 point score ranging from
Strongly Disagree to Strongly Agree is converted into a normalized
score in the [0, 10] range. For ease of discussion, the score is negated
(i.e., in the range [−10, 0]) for DSAT rubrics to ensure that a larger
score is always better. We denote this normalized score as eval(𝑟, 𝑐).

Rather than using a generic prompt for evaluation, we provide
domain & task sensitized instructions regarding the evaluation of a
rubric with respect to a conversation with an instruction-tuned LLM.
Our experiments (ref 4.5.4) show that these changes help the model
score the rubrics in a more aligned way. Given input size limitations
for the LLM and varying sizes of conversation to be scored, the
evaluations are carried out in batches of ≤ 10 rubrics at a time with
SAT & DSAT scored separately.

For a set of Rubrics 𝑅𝑆 comprising of SAT and DSAT rubrics
(𝑁 each), we define the conversation score, which we refer to as
𝑁𝑒𝑡𝑆𝐴𝑇 . Similar to [16], the score measures the net satisfaction by
subtracting (magnitude) the total from the DSAT rubrics from the
total from the SAT rubrics.

𝑁𝑒𝑡𝑆𝐴𝑇 (𝑅𝑆 , 𝑐) =
∑︁
𝑠∈𝑅𝑆

eval(𝑠, 𝑐) +
∑︁
𝑑∈𝑅𝑆

eval(𝑑, 𝑐)

3.2 Generation of Rubrics
The first component of the technique, as shown in Figure 2, is to
generate a rubric pool, given a training dataset of conversations
C partitioned into positive and negative conversations C+ and C− .
Inspired by SPUR [16], we use a two phase strategy. First, we
perform a supervised extraction of conversation quality reasonings
and patterns. Then, we summarize these reasonings in batches and

3

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

Figure 2: Representative Overview of the RUBICON.
(1) Extract task-specific patterns aligned with conversation design principles from each conversation. (2) Generate a large rubric pool

from extracted reasons in the context of Gricean Maxims & the task. (3) Use data-driven loss to select optimal rubrics over
conversation data for online evaluation (4) Score the quality of each conversation over the learnt rubrics and thresholds

put them into a large rubric pool. Both the supervised extraction
step and the rubric summarization steps are modified significantly
from the versions in [16], and we compare them experimentally and
report the results in Section 4.

3.2.1 Supervised Extraction. Given a conversation 𝑐 ∈ Ctrain,
the supervised extraction step attempts to capture patterns 𝑟𝑖 for par-
ticular satisfaction and dissatisfaction aspects of the conversation. In
the conversation is annotated as positive in the ground-truth training
set, we extract satisfaction patterns 𝑠𝑖 and dissatisfaction patterns
𝑑𝑖 otherwise. Like in [16], we extract the top-𝑘 patterns from each
conversation (𝑘 = 3 in the experiments).

Example 3.1. Sample Reasonings for conversations from Fig. 1.
When the user asked for further clarification, the assistant provided a
comprehensive and actionable plan in form of a detailed step-by-step
guide on how to implement the solution, including code examples.
(SAT, right conversation)
The assistant was unable to provide more specific information about
the missing file, which was the user’s direct question, due to lack of
additional information from the user. (DSAT, left conversation)

As evident in 3.1, these reasonings are picked from localized
patterns in the exchanges that the user had an understanding of why
they might be satisfied/dissatisfied with this conversation.

The outline of the prompt we use for supervised extraction is
presented in Figure 3(a). Below, we discuss the salient, novel aspects
of our supervised extraction.

User behaviour and Conversational Responsibility(CDP). The
field of classical conversation analysis assigns responsibility for
conversation quality to both parties involved [23, 24]. In a conversa-
tional AI assistant setting, it is easy to ignore the responsibility of
the user as a first-class participant in the conversation, and assign
the full responsibility of driving a positive conversation towards
completing the task to the assistant and in turn, the tool builder. In
fact, prior works have done so [19, 27]. However, the prompt shown
in Figure 3, presented a dedicated block for us to add conversation

responsibility. In our study, we explicitly ask the model to take into
account how both the user and the assistant took steps to either
progress or hinder the conversation towards task completion. Fig 1
(left) shows a redacted conversation where the user fails to provide
the relevant information the assistant asks for.

Reasonings may point out issues with the user experience of the
tool and in the user’s understanding of its capabilities. For exam-
ple, based on the following user-related reasoning - “The assistant
was unable to access the file linked by the user, which hindered the
progress of the conversation and likely caused frustration for the
user.", the builders of the debugging assistant we test in our experi-
ments are able to identify two shortcomings in the design of the tool:
(a) there were insufficient UX affordances for users to provide new
files to the assistant, and (b) The interface design sometimes lead to
users confusing the debugging assistant with other IDE assistants
and trying to ask non-debugging related questions of the assistant.

Domain Sensitization and Task Orientation (DS). We aim to pro-
duce rubrics that measure the quality of a conversation that is specif-
ically about achieving a domain-specific goal (for example, debug-
ging to fix an exception). That is, it does not matter if the assistant
and user have an engaging conversation about the weather in Berlin
if it is not goal-directed. Hence, it is important that the prompt to
extract reasonings specifically mentions aspects of what the task
is, expectations, and desired goals of the interaction. For example,
in the debugging domain, our prompt contains specific describing
expectations from the assistant as “designed to hold a conversation
to understand, ask for more information, and investigate the bug,
then provide solutions to aid the user in their debugging tasks.” This
matches the intuition that for a task-oriented Human-Human con-
versation to be positive, it needs to both have good “conversational”
qualities (e.g., participants know their roles, neither participant is
frustrated, or dominating the conversation, etc) and task-specific
qualities (e.g., progress made towards fixing the bug, etc).

3.2.2 Rubric Summarization. Here, we consolidate the patterns
generated in the Supervised Extraction step into SAT and DSAT

4

RUBICON: Rubric-Based Evaluation of Domain-Specific Human-AI Conversations Manuscript Submitted to ACM, April 2024, USA

Boilerplate Persona

User behavior and Conversational
Responsibility

Task Description and Instructions:

Localization of sentiment

Output Format

•

•

•

Conversation

Domain Sensitization

...

(a) Supervised Extraction

Boilerplate Persona

Gricean maxims

Instructions:

Rubric Complexity Constraints•

•

Output Format

Reasoning MiniBatch

•

...

Task Orientation

(b) Rubric Summarization
Figure 3: Rubric Generation Prompt Outlines.

rubrics. Unlike in [16], we do not aim to produce a small and usable
set of rubrics updated at each step, but instead to produce a large
pool of diverse rubrics. The next step will select a smaller optimized
subset of good quality rubrics from this pool.

This step incrementally generates new rubrics by processing a
mini-batch of patterns identified in the step. Let the 𝑖𝑡ℎ minibatch be
denoted as {𝑟𝑚∗(𝑖−1) , ..., 𝑟𝑚∗𝑖 }. For every minibatch, we prompt the
LLM to generate a rubric set 𝑅𝑖 based on its reasoning minibatch
while also providing rubrics generated until the previous minibatch
{𝑅1, ..𝑅𝑖−1}. The goal is to have the generated rubric set 𝑅𝑖 cover
all the patterns in the minibatch while diversify over and beyond
the previously generated rubrics. The SAT and DSAT patterns are
batched separately, with corresponding changes in the prompts to
generate either SAT or DSAT rubrics respectively. An important
point of difference with SPUR is that we do not update a restricted
set of 𝑁 current rubrics 𝑅𝑖 at each turn and instead augment the
rubric pool with fresh rubrics at each batch. A restricted set is then
selected from a larger pool in a data-driven manner, instead of asking
the LLM to update the rubrics based on reasonings in each batch.

After obtaining the pool of rubrics 𝑅 consisting of all SAT/D-
SAT rubrics, we conduct a post-processing step to semantically
de-duplicate the set removing rubrics that exhibit semantic similar-
ity to others. This is done to avoid any redundancy and bias in the
final rubric set after selection. If 𝑟 and 𝑟 ′ are two well performing
semantically equivalent rubrics in the pool, they might likely end up
in the final rubric set after selection (ref 3.3), which may overpower
and skew the resultant scores for the conversations using this set.
To execute this, we use the reasoning capabilities of GPT4 with a
curated instruction prompt (details in [2]) to remove any duplicate
rubrics that cover similar reasonings, ideas or questions.

Gricean Maxims (CDP). We provide Grice’s maxims as a frame-
work of a cooperative principle for an effective conversation. These
rational principles for improving conversation quality are encapsu-
lated within four maxims: quantity, quality, relevance, and manner.
These enable the summarizer to gauge different aspects of the con-
versation while generating the rubrics, particularly aspects like lapse
on the part of any user, digression, confusion and lack of a proper
structure in the conversation. The example 3.2 portrays how the
first rubrics expresses the mismatch between user requests and AI
responses but fails to explain why this is problematic or how it
impacts the interaction. In contrast, the second statement, framed

Figure 4: Positive & Negative Precision vs threshold for two hy-
pothetical rubric sets. A narrower uncertainty window provides
for larger ranges for high-confidence labels.

with Grice’s maxim of relevance, provides a more thorough and
fundamental explanation of the communication breakdown.

Example 3.2. The following rubrics below express the same idea:
Without CDP: The assistant does not adhere to the user’s specific
request for the format or structure of the response.
With CDP: The assistant’s responses are not aligned with the user’s
expectations.

Domain Sensitization & Rubric Complexity (DS). The prompt incor-
porates instructions for the LLM to focus on the aspects that make
a conversation positive/negative in the cognizance of the domain.
For the Debugging use case, this includes progress towards the de-
bugging task, localization of the bug, answering user queries, or
providing an outright code snippet as the solution. Given that very
complex rubrics are difficult to reason about and often lead to non-
determinism in response even at low-temperature levels, we restrict
the assertions to be short and clean. The instruction prompt limits
the generation of complex rubrics by a natural language insight that
simple assertive statements tend to have a single verb.

3.3 Selecting Optimized Rubrics
The generation procedure from Section 3.2 generates a large pool of
rubrics {𝑟1, . . . , 𝑟𝑛}. Here, we select a subset of rubrics RS from this
pool that is both of a reasonable size and that is usable in practice. We
want RS to correlate with the training data, i.e., it should score posi-
tive conversations higher than negative conversations. Going from
a real-valued score given by a set of rubrics to a boolean positive-
negative classification requires selecting a threshold 𝜃–scores over
and under 𝜃 will be classified as positive and negative, respectively.
However, selecting a threshold is often problematic: varying the
threshold slightly can lead to different results, and the selection is
often ad-hoc. To aid with this issue, we propose a selection technique
that automatically produces a robust pair of rubric-set and threshold.

Correctness and correctness loss. Given a set of rubric R and a
conversation 𝑐, we first define the score Score(R, 𝑐) to be the sum∑
𝑟 ∈R Eval𝑟 (𝑐) where Eval𝑟 (𝑐) is the normalized [0, 10] Likert score

for a single rubric and conversation described in Section 3.2. Intu-
itively, R should separate positive and negative conversations, i.e.,
positive conversations should be scored significantly higher than neg-
ative conversations. Hence, we define the correctness loss LossC (R)
to be: LossC (R) = mean𝑐∈C+ Score(R, 𝑐) −mean𝑐∈C− Score(R, 𝑐)

Sharpness and Sharpness loss. Apart from correctness, we want
the rubric-set R to be easily convertible into a binary classifier us-
ing a threshold. The correctness loss from above only accounts for

5

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

Figure 5: Positive & Negative Precision v Score(Threshold) plot
for RUBICON, comparing the 𝑇𝑎𝑛ℎ curves centered at test
threshold and the corresponding precision curves post selection.

having a high average separation of score between positive and neg-
ative conversations but does not account for the sharpness of the
separation. To understand the notion of sharpness, let us first define
some basic terminology. Given a threshold 𝜃 , we call a conversation
𝑐 positive if Score(R, 𝑐) > 𝜃 , and negative otherwise. The positive
precision Prec+ (R, 𝜃) (resp. negative precision Prec− (R, 𝜃)) is de-
fined as the fraction of conversations that are labelled as positive
(resp. negative) that are also positive (resp. negative) by ground truth.
There is a trade-off between Prec+ and Prec− : we can get very high
positive precision by setting a high threshold (i.e., labelling almost
all conversations negative) and vice-versa.

Figure 4 shows two hypothetical plots of threshold against posi-
tive and negative precision for two hypothetical rubric sets R1 and
R2. The plot on the left shows a single narrow range of candidate
thresholds which gives high positive and negative precision, while
the one on the right does not.

The sharpness loss quantifies this idea of sharpness of a rubric-
set precisely: we fit a tanh function for both positive and negative
precision curves while ensuring the mid-point 𝜃𝑐 for both curves is
the same. Given a rubric-set R, let

𝜃𝑐 =
1
2
·
(∑

𝑐∈C+ Score(R, 𝑐)
|C+ |

+
∑
𝑐∈C− Score(R, 𝑐)
|C− |

)
We define the sharpness loss as:

LossS (R) = SOSError𝜃 [tanh(𝜃 − 𝜃𝑐), Prec+ (R, 𝜃)]
+ SOSError𝜃 [tanh(−(𝜃 − 𝜃𝑐)), Prec− (R, 𝜃)]

Note that we elide from the notation the scaling factors that ensure
that both the precision curves and tanh are in the same range.

Iterative selection of rubrics. Algorithm 1 depicts an algorithm
for selecting a set of rubrics R𝑆 from a rubric pool R𝑃 . It proceeds
by starting with an empty set R𝑆 (line 1), and iteratively growing
the set by adding the rubric 𝑟∗ that minimizes the (weighted) sum
of correctness and sharpness loss as defined above (lines 2- 4). The
weight 𝛼 (line 11) is a hyperparameter selected based on the best
average performing configuration in a 5-fold cross-validation over
the training conversation data.

In practice, we also modify Algorithm 1. Rather than a combined
budget 𝑛, we instead have separate 𝑛SAT and 𝑛DSAT budgets for the
SAT & DSAT rubrics as defined in Section 3.2. We stop selecting
either SAT or DSAT rubrics as soon as the respective budget is hit.

4 EVALUATION
In order to evaluate RUBICON, we aim to answer the following
research questions:

Algorithm 1 Selecting rubrics from rubric pool
Require: Training dataset of conversations C = C+ ∪ C− partitioned into

positive and negative conversations
Require: Rubric pool R𝑃
Require: Rubric budget 𝑛
Require: Sharpness loss weight 𝛼 ∈ R>0
Ensure: Selected rubric set R𝑆
Ensure: Threshold 𝜃

1: R𝑆 ← ∅
2: while |R𝑆 | ≠ 𝑛 ∧ |R𝑃 \ R𝑆 | > 0 do
3: 𝑟 ∗ ← argmax𝑟 ∈R𝑃 \R𝑆 Loss(R𝑆 ∪ {𝑟 },C+,C−)
4: R𝑆 ← R𝑆 ∪ {𝑟 ∗}
5: return ⟨R𝑆 ,GetThreshold(R𝑆 ,C+,C−) ⟩
6:
7: procedure Loss(R,C+,C−)
8: LC← mean𝑐∈C+ Score(R, 𝑐) − mean𝑐∈C− Score(R, 𝑐)
9: 𝜃𝑐 ← GetThreshold(R,C+,C−)

10: LS← LossS (R, 𝜃𝑐 ,C+,C−)
11: return LC + 𝛼 · LS
12:
13: procedure GetThreshold(R,C+,C−)
14: return 1

2 ·
(
mean𝑐∈C+ Score(R, 𝑐) +mean𝑐∈C− Score(R, 𝑐)

)
• RQ1: How does the effectiveness of RUBICON compare to the

other rubric-backed baseline methods?
• RQ2: What is the extent of the impact of Domain Sensitization

(DS) and Conversation Design Principles (CDP) instructions on
the performance of RUBICON?

• RQ3: How does the effectiveness of the proposed selection policy
compare to other baselines in selecting the final set of rubrics?

• RQ4: How does the effectiveness of Numeric values for rubrics
compare to that of Likert Scales?

4.1 Data
Collection & Sanitization. The conversation data was sourced from a
C# Debugger Copilot assistant deployed in an IDE at a large software
company that was mined over 30 calendar days of deployment. All
conversations have a unique Conversation ID and were collected
anonymously with no link back to the user. Of 127 conversations,
after clean-up of logging & data corruption issues, we have a total
of 100 conversations carried out by actual users of the debugging
copilot. The deployed assistant is aware of the context around the
exceptions like the error message, stack trace, etc., and source code
details like exception location, current file etc. The deployment was
controlled and limited to maintain user access across the spectrum
of proficiency and experience in software development in C#.
Annotation. The filtered set of 100 conversations are then annotated
for ground truth of being Positive or Negative in reference to concrete
aid to the user with the debugging task. Two authors with experience
of over 2 & 4 years of professional software development in the
industry annotate the data in the binary classification task. In the
initial phase, the first 20 conversations were annotated together while
discussing themes for annotation. Post these insights, both engineers
annotated another set of 20 conversations independently, which were
then tested for Inter-Rater Reliability (IRR). We found that the
annotators agreed on 17 conversations, giving us an IRR of 0.85,
which is an ‘almost perfect’ agreement. We split the remaining set

6

RUBICON: Rubric-Based Evaluation of Domain-Specific Human-AI Conversations Manuscript Submitted to ACM, April 2024, USA

between both the raters to label independently while communicating
in case of doubts or need for discussion.
Split. Given the limited data availability, we carry out a 50:50 train-
test split on the filtered conversation data. Both classification labels
are homogeneously represented in the splits.

4.2 Metrics
Accuracy, Precision, Recall and F1 Score are calculated on the test
set 𝐶𝑡𝑒𝑠𝑡 based on threshold 𝜃 learned from the 𝐶𝑡𝑟𝑎𝑖𝑛 for each final
set of rubrics. We define two additional metrics of Δ𝑁𝑒𝑡𝑆𝐴𝑇 and
𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒.
Δ𝑁𝑒𝑡𝑆𝐴𝑇 score measures how well a rubric set separates the clus-
ters of positive and negative conversations across the score axis.
The metric is the difference between the mean of NetSAT score of
positive conversations and mean of NetSAT score of the negative
conversations i.e. Δ𝑁𝑒𝑡𝑆𝐴𝑇 = 𝑁𝑒𝑡𝑆𝐴𝑇 + − 𝑁𝑒𝑡𝑆𝐴𝑇 −

The higher the Δ𝑁𝑒𝑡𝑆𝐴𝑇 , the higher the separation between the
two distributions, which means that the rubric is able to differentiate
positive and negative conversations better.
Yield Rate measures what fraction of the test set𝐶𝑡𝑒𝑠𝑡 can be labelled
with a certain precision. Classifying conversations as distinctly posi-
tive or negative is a difficult and subjective task, even for humans. To
be confident about our generated labels, we only consider conversa-
tions which can be classified with a minimum acceptable precision.
𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@𝑃 is the percentage of conversations that fall above the
𝑃 precision threshold. For the purpose of our experiments, we fix
𝑃 to be 0.9 and refer to the metric as 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90. We calculate
the Prec− and Prec+ as a function of threshold 𝜃 . Prec− (𝜃) is the
percentage of negative labels classified with a threshold 𝜃 , similarly
for Prec+. By setting a 0.9 precision threshold, we divide the scores
into three windows. The first window with Prec− > 0.9, the second
with Prec− < 0.9 and Prec+ < 0.9, which we call the uncertainty
window, and the third with Prec+ > 0.9. Only the conversations with
scores outside of the uncertainty window are considered, and the
yield rate measures the ratio of these conversations. Figure 4 shows
the positive and negative precision curves based on a 0.9 precision
cutoff. Note: A high overall precision does not translate to high
Yield Rate as the latter depends on the spread of the score and the
uncertainty window. One may have high precision values for more
data with low confidence in the uncertainty interval; however, this
performance does not translate to practical deployment scenarios.

4.3 Baselines
We compare the RUBICON against the other baselines for the end-
to-end task of generating score-able rubric sets. We further compare
dedicated baselines for Rubric Selection policy separately.

BING. SPUR investigates and generates rubrics for the Bing
Copilot [16] generated with the SPUR in their paper. These SAT/
DSAT rubrics were learned from training data for open-domain
question-answering of Bing Copilot.

BING (Domain Adapted). For this baseline, we manually adapted
the 𝐵𝐼𝑁𝐺 rubrics to be more inclusive of our domain and expecta-
tions. This is accomplished by an independent Software Engineer
who works on the Debugger Copilot with over 6 years of profes-
sional development experience. We ask them to completely replace

some rubrics that did not apply to the use case & the intent of Copi-
lot with some domain-aware rubrics for both SAT/DSAT based on
their intuition and understanding. The 𝑩𝑰𝑵𝑮𝑫𝑨 rubric set finally
received had 3 replacements in SAT and 4 replacements in DSAT.

SPUR. We re-implemented the SPUR technique [16] using the
prompts and strategies provided in the paper. We ran this pipeline
on our training data to get the final set of rubrics for evaluation.

4.3.1 Selection Policy. Given a rubric pool and some validation
data, the selection policy chooses a subset of rubrics optimised for
performance on the validation dataset.

UCB Bandits. This policy treats rubric selection as a bandit
selection problem, and UCB has been explored as a solution to select
a subset of prompts based on their performance [25]. We define the
reward score of a rubric as the sum of scores it receives over the
respective batch of conversations. Reinforcement Learning methods
assume that prompt evaluations are limited and costly, creating a
trade-off between exploration and exploitation. However, this may
not necessarily be the case in domain-specific conversations where
data may be scarce, rendering evaluating all rubrics over the smaller
data size manageable.

Brute Force. We also compare this with a brute force approach
where the score of each rubric is defined the same as in UCB Bandits.
This assumes that complete evaluation over the rubric and conversa-
tion is manageable, akin to RUBICON.

4.4 Experimental Setup
We use GPT-4 to power RUBICON and SPUR. Two authors of the
paper created the domain sensitization instructions as discussed in 3
(exact instructions in [2]) For all these configurations, we maintain
a consistent selection policy for the final rubrics, as proposed in
algorithm 1, with both SAT & DSAT rubric set to 𝑁 = 10.

To evaluate RQ2, we conduct an ablation study to differentiate
the contribution of each component in the prompts. We establish
four configurations by systematically excluding instructions related
to DS, CDP, and both from the final proposed prompts.

For RQ3, For all selection policies, we fix the rubric pool to the
one acquired on executing the augmentation as described in 3.2.

Finally, for RQ4, we take rubrics generated from SPUR baseline
and score them with different evaluators.

4.5 Results
4.5.1 RQ1: How does the effectiveness of RUBICON com-
pare to the other rubric-backed baseline methods? Table 1
summarises the results. RUBICON demonstrates superior perfor-
mance across all metrics except for precision, where 𝐵𝐼𝑁𝐺𝐷𝐴 was
slightly superior. The improvement of RUBICON over other meth-
ods is readily apparent in Δ𝑁𝑒𝑡𝑆𝐴𝑇 . This highlights the effectiveness
of our tool in distancing positive conversations from negative ones in
terms of 𝑁𝑒𝑡𝑆𝐴𝑇 which creates the highest separation as compared
to other baselines. In particular, SPUR, which is unable to generalize
over our data to create differences in scores of positive and negative
conversations. Furthermore, we observed that RUBICON also out-
performs in terms of 𝑌𝑅@90, scoring 20 points (abs.) higher than the
next best. This indicates that our tool offers a high precision (>0.9)
in classifying 84% of conversations. SPUR only classifies 28% of
conversations with this level of precision. While 𝐵𝐼𝑁𝐺𝐷𝐴 achieved

7

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

𝐵𝐼𝑁𝐺 11.0 58.0 70.0 64.7 88.0 74.6
𝐵𝐼𝑁𝐺𝐷𝐴 11.3 64.0 76.0 70.9 88.0 78.6
𝑆𝑃𝑈𝑅 3.0 28.0 58.0 55.9 76.0 64.4
𝑹𝑼𝑩𝑰 𝑪𝑶𝑵 27.4 84.0 76.0 68.6 96.0 80.0

Table 1: Rubric performance across different techniques.
Δ𝑁𝑆 = Δ𝑁𝑒𝑡𝑆𝐴𝑇 , 𝑌𝑅@90 = 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90%, 𝐴 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃 =

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 = 𝐹1𝑠𝑐𝑜𝑟𝑒

a slightly higher precision score, it classified far fewer conversations
(64%) with the minimum acceptable level of precision. Our results
suggest that RUBICON rubrics perform better than SPUR rubrics
and rubrics manually written by experts.

4.5.2 RQ2: What is the extent of the impact of Domain Sen-
sitization (DS) and Conversation Design Principles (CDP) in-
structions on the performance of RUBICON?. Table 2 show-
cases the various configurations for the ablation of the augmentation
step. We observe that domain sensitization plays a crucial role in
recognizing patterns and thus significantly improves metrics across
the board. Notably, the removal of both DS and CDP resulted in the
steepest decline, confirming that these components play a pivotal
role in the proposed technique. This also suggests that DS and CDP
are complementary in nature, and their combination optimizes the
performance of our technique. A higher recall in the absence of DS
could indicate over-generalization, leading to more true positives but
also more false positives. This means that DS helps the RUBICON
recognize more nuanced and specific patterns within the domain,
thus becoming more selective in identifying positive instances.

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

𝑹𝑼𝑩𝑰𝑪𝑶𝑵 27.4 84.0 76.0 68.6 96.0 80.0
−𝐶𝐷𝑃 23.7 72.0 64.0 58.5 96.0 72.7
−𝐷𝑆 17.9 66.0 52.0 51.0 100.0 67.6
−𝐶𝐷𝑃 − 𝐷𝑆 15.7 62.0 50.0 50.0 100.0 66.67

Table 2: Ablation study of Rubric Augmentation

4.5.3 RQ3: How does the effectiveness of the proposed se-
lection policy compare to that of other baselines in selecting
the final set of rubrics? The experimental results, as shown in
Table 3, reveal several key insights about the performance of our
selection policy. Firstly, our policy outperforms all baseline meth-
ods in terms of Δ𝑁𝑒𝑡𝑆𝐴𝑇 score and 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑒@90% precision with
clear contributions from both components of loss as hypothesized.
These results suggest that our selection policy is particularly effec-
tive in separating positive and negative conversations while also
being able to confidently label a larger proportion of conversations
compared to the baselines. Interestingly, even though 𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒

and 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝐿𝑜𝑠𝑠 consider all possibilities, the objective allows
the latter to have a better accuracy and separation while maintaining
a similar confidence. The last row suggests that 𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠𝐿𝑜𝑠𝑠 in
RUBICON enables us to classify confidently without losing on per-
formance as compared to other baselines with respect to the 𝑁𝑒𝑡𝑆𝐴𝑇

separation, counter balancing effects of overfitting tendencies from
the other loss component.

Technique Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

UCB 23.6 68.0 72.0 65.7 92.0 76.7
BruteForce 24.2 74.0 74.0 67.7 92.0 78.0
CorrectnessLoss 29.7 74.0 76.0 69.7 92.0 79.3
RUBICON 27.4 84.0 76.0 68.6 96.0 80.0

Table 3: Comparative analysis of Selection policies.

4.5.4 RQ4: How does the effectiveness of Numeric values
for rubrics compare to that of Likert Scales? Our experiment
results, as shown in Table 4, demonstrated that the Likert based
evaluator significantly improved the performance of rubrics from
SPUR across all performance metrics. This reinforces the ability of
LLMs to perceive Agreement/Disagreement better than numerical
values for the purpose of rubric or assertion scoring. However, the
experiment also revealed an important insight: while the Likert
scoring system can enhance performance, incorporating domain-
specific knowledge into the rubric evaluation process can yield even
better performance improvements for the downstream task.

Evaluator Δ𝑁𝑆 𝑌𝑅@90 𝐴 𝑃 𝑅 𝐹1

𝑁𝑢𝑚𝑒𝑟𝑖𝑐 3.0 28.0 58.0 55.9 76.0 64.4
Likert 14.5 48.0 70.0 67.9 76.0 71.7
LikertDA 16.1 58.0 80.0 77.8 84.0 80.8

Table 4: Likert scale vs Numeric scale

5 THREATS TO VALIDITY
Internal Validity The ground truth labels for the binary classifi-
cation of conversations into positive or negative were manually
assigned. Despite our high inter-annotator agreement, this process is
inherently subjective and prone to errors or inconsistencies, which
might impact the rubric learning process.
External Validity The data used in our experiments were collected
over a month from a C# debugger copilot assistant deployed in an
IDE at a large software company. The limitation in the dataset’s di-
versity in terms of the number of conversations, we could collect due
to ethical limitations might lead to biases in the results. Additionally,
our study is conducted in the context of software debugging tasks,
making the results to domain-specific to software engineering (SE).
We make debugging specific sensitization in our experiments and
the resultant rubrics and evaluator may not directly translate to other
domains or tasks. While the concept and technique are transferable,
generalizing the results to other areas within SE or other domains
might require additional research and validation.
Construct Validity Our research leverages automated scoring of
rubrics based on instructions tuned LLM. However, the performance
of the automated scoring is optimized with respect to the task, its
accuracy is not directly evaluated. Changes to the underlying scoring
model including inherent training biases could influence our results.

The use of Likert scale and its arithmetic manipulations make
several implied assumptions. We assume the difference between
’Neutral’ and ’Disagree’ to be numerically the same as ’Agree’ and
’Strongly Agree’, since Likert is an ordinal scale, and we convert it
to [0-10] (arbitrary) scale. We also do not have a separate category
for ’Not Applied’, and it is clubbed with ’Neutral’.

8

RUBICON: Rubric-Based Evaluation of Domain-Specific Human-AI Conversations Manuscript Submitted to ACM, April 2024, USA

6 CONCLUSION
We introduced RUBICON, a novel methodology for automated eval-
uation of AI-assisted debugging conversations. We’ve shown that by
incorporating domain knowledge and conversational design princi-
ples, we can considerably enhance the quality of generated rubrics.
Furthermore, we’ve demonstrated that our proposed selection policy
effectively differentiates between good and bad conversations and
surpasses baseline methods. A domain-adapted Likert scale scoring
system also proved effective in scoring rubrics. We share the prompts
used in the pipeline as well as the rubrics generated at [2]

RUBICON has been successfully deployed in a popular IDE
at a large software company to monitor two Software Engineering
focused AI Assistant Copilots, with promising results. The insights
gained from this study open new avenues for future research, em-
phasizing that the synergistic application of AI and human expertise
can lead to robust and effective tools for evaluating and improving
conversational debugging experiences.

REFERENCES
[1] Open AI. [n. d.]. ChatGPT. https://chat.openai.com
[2] Anonymous Authors. [n. d.]. Supplementary Material for RUBICON.

https://docs.google.com/document/d/e/2PACX-1vTqlC7TrNnJx_yfJtNuul-
FGYa30vCeWIxK6N7M0EhIu1aZLTtXxCTOtGfDH8Hmw_Gqwjg_
ieBLW5rA/pub

[3] Praveen Kumar Bodigutla, Lazaros Polymenakos, and Spyros Matsoukas.
2019. Multi-domain Conversation Quality Evaluation via User Satis-
faction Estimation. In NeurIPS 2019 Workshop on Conversational AI.
https://www.amazon.science/publications/multi-domain-conversation-quality-
evaluation-via-user-satisfaction-estimation

[4] Bhavya Chopra, Yasharth Bajpai, Param Biyani, Gustavo Soares, Arjun Radhakr-
ishna, Chris Parnin, and Sumit Gulwani. 2024. Exploring Interaction Patterns
for Debugging: Enhancing Conversational Capabilities of AI-assistants. arXiv
preprint arXiv:2402.06229 (2024).

[5] Ondrej Dusek, Jekaterina Novikova, and Verena Rieser. 2017. Referenceless
Quality Estimation for Natural Language Generation. ArXiv abs/1708.01759
(2017). https://api.semanticscholar.org/CorpusID:37763454

[6] Wieland Eckert, Esther Levin, and R. Pieraccini. 1998. User modeling for spoken
dialogue system evaluation. 80 – 87. https://doi.org/10.1109/ASRU.1997.658991

[7] Ryan Fellows, H. Ihshaish, Steve Battle, Ciaran Haines, Peter Mayhew, and
J. Ignacio Deza. 2021. Task-oriented Dialogue Systems: performance vs. quality-
optima, a review. ArXiv abs/2112.11176 (2021). https://api.semanticscholar.org/
CorpusID:245353758

[8] Nah Fiona Fui-Hoon, Zheng Ruilin, Cai Jingyuan, Siau Keng, and Chen Langtao.
2023. Generative AI and ChatGPT: Applications, challenges, and AI-human
collaboration. Journal of Information Technology Case and Application Research
25, 3 (2023), 277–304. https://doi.org/10.1080/15228053.2023.2233814

[9] Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural
language generation: core tasks, applications and evaluation. J. Artif. Int. Res. 61,
1 (jan 2018), 65–170.

[10] Marco Gerosa, Bianca Trinkenreich, Igor Steinmacher, and Anita Sarma. 2024.
Can AI serve as a substitute for human subjects in software engineering research?
Automated Software Engg. 31, 1 (jan 2024), 12 pages. https://doi.org/10.1007/
s10515-023-00409-6

[11] GitHub. 2023. GitHub Copilot. https://github.com/features/copilot
[12] Ilya Kulikov, Alexander H. Miller, Kyunghyun Cho, and Jason Weston. 2018.

Importance of a Search Strategy in Neural Dialogue Modelling. ArXiv
abs/1811.00907 (2018). https://api.semanticscholar.org/CorpusID:53297919

[13] Sivaraju Kuraku, Fnu Samaah, Dinesh Kalla, and Nathan Smith. 2023. Study and
Analysis of Chat GPT and its Impact on Different Fields of Study. (03 2023).

[14] Margaret Li, Jason Weston, and Stephen Roller. 2019. ACUTE-EVAL: Im-
proved Dialogue Evaluation with Optimized Questions and Multi-turn Compar-
isons. ArXiv abs/1909.03087 (2019). https://api.semanticscholar.org/CorpusID:
202538657

[15] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[16] Ying-Chun Lin, Jennifer Neville, Jack W. Stokes, Longqi Yang, Tara Safavi,
Mengting Wan, Scott Counts, Siddharth Suri, Reid Andersen, Xiaofeng Xu,

Deepak Gupta, Sujay Kumar Jauhar, Xia Song, Georg Buscher, Saurabh Ti-
wary, Brent Hecht, and Jaime Teevan. 2024. Interpretable User Satisfac-
tion Estimation for Conversational Systems with Large Language Models.
arXiv:2403.12388 [cs.IR]

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[18] Clara Meister and Ryan Cotterell. 2021. Language Model Evaluation Beyond
Perplexity. arXiv:2106.00085 [cs.CL]

[19] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 2018. RankME: Reliable
Human Ratings for Natural Language Generation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), Marilyn
Walker, Heng Ji, and Amanda Stent (Eds.). Association for Computational Lin-
guistics, New Orleans, Louisiana, 72–78. https://doi.org/10.18653/v1/N18-2012

[20] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[21] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https://doi.org/10.3115/
1073083.1073135

[22] Chris Parnin, Gustavo Soares, Rahul Pandita, Sumit Gulwani, Jessica Rich, and
Austin Z. Henley. 2023. Building Your Own Product Copilot: Challenges, Oppor-
tunities, and Needs. arXiv:2312.14231 [cs.SE]

[23] Cathy Pearl. 2016. Designing Voice User Interfaces: Principles of Conversational
Experiences (1st ed.). O’Reilly Media, Inc.

[24] Diana Perez-Marin and Ismael Pascual-Nieto. 2011. Conversational Agents and
Natural Language Interaction: Techniques and Effective Practices. Information
Science Reference - Imprint of: IGI Publishing, Hershey, PA.

[25] Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng.
2023. Automatic Prompt Optimization with “Gradient Descent” and Beam Search.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 7957–7968. https://doi.org/10.18653/v1/
2023.emnlp-main.494

[26] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

[27] Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. 2019. What makes
a good conversation? How controllable attributes affect human judgments. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.).
Association for Computational Linguistics, Minneapolis, Minnesota, 1702–1723.
https://doi.org/10.18653/v1/N19-1170

[28] Olga Seminck. 2023. Conversational AI: Dialogue Systems, Conversational
Agents, and Chatbots by Michael McTear. Computational Linguistics 49, 1
(March 2023), 257–259. https://doi.org/10.1162/coli_r_00470

[29] Sakib Shahriar and Kadhim Hayawi. 2023. Let’s Have a Chat! A Conversa-
tion with ChatGPT: Technology, Applications, and Limitations. Artificial In-
telligence and Applications 2, 1 (June 2023), 11–20. https://doi.org/10.47852/
bonviewaia3202939

[30] Itamar Shatz. [n. d.]. Grice’s Maxims of Conversation: The Principles of Ef-
fective Communication. https://effectiviology.com/principles-of-effective-
communication/

[31] Usneek Singh, Piyush Arora, Shamika Ganesan, Mohit Kumar, Siddhant Kulkarni,
and Salil Rajeev Joshi. 2024. Comparative Analysis of Transformers for Modeling
Tabular Data: A Casestudy using Industry Scale Dataset. In Proceedings of the
7th Joint International Conference on Data Science & Management of Data (11th
ACM IKDD CODS and 29th COMAD) (Bangalore, India) (CODS-COMAD ’24).
Association for Computing Machinery, New York, NY, USA, 449–453. https:
//doi.org/10.1145/3632410.3632456

[32] Eric Smith, Orion Hsu, Rebecca Qian, Stephen Roller, Y-Lan Boureau, and Jason
Weston. 2022. Human Evaluation of Conversations is an Open Problem: compar-
ing the sensitivity of various methods for evaluating dialogue agents. In Proceed-
ings of the 4th Workshop on NLP for Conversational AI, Bing Liu, Alexandros Pa-
pangelis, Stefan Ultes, Abhinav Rastogi, Yun-Nung Chen, Georgios Spithourakis,
Elnaz Nouri, and Weiyan Shi (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 77–97. https://doi.org/10.18653/v1/2022.nlp4convai-1.8

[33] Abhinav Srivastava, Amlan Kundu, Shamik Sural, and Arun Majumdar. 2008.
Credit Card Fraud Detection Using Hidden Markov Model. IEEE Transactions on
Dependable and Secure Computing 5, 1 (2008), 37–48. https://doi.org/10.1109/
TDSC.2007.70228

[34] Elior Sulem, Omri Abend, and Ari Rappoport. 2018. BLEU is Not Suitable for
the Evaluation of Text Simplification. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Ellen Riloff, David Chiang,

9

https://chat.openai.com
https://docs.google.com/document/d/e/2PACX-1vTqlC7TrNnJx_yfJtNuul-FGYa30vCeWIxK6N7M0EhIu1aZLTtXxCTOtGfDH8Hmw_Gqwjg_ieBLW5rA/pub
https://docs.google.com/document/d/e/2PACX-1vTqlC7TrNnJx_yfJtNuul-FGYa30vCeWIxK6N7M0EhIu1aZLTtXxCTOtGfDH8Hmw_Gqwjg_ieBLW5rA/pub
https://docs.google.com/document/d/e/2PACX-1vTqlC7TrNnJx_yfJtNuul-FGYa30vCeWIxK6N7M0EhIu1aZLTtXxCTOtGfDH8Hmw_Gqwjg_ieBLW5rA/pub
https://www.amazon.science/publications/multi-domain-conversation-quality-evaluation-via-user-satisfaction-estimation
https://www.amazon.science/publications/multi-domain-conversation-quality-evaluation-via-user-satisfaction-estimation
https://api.semanticscholar.org/CorpusID:37763454
https://doi.org/10.1109/ASRU.1997.658991
https://api.semanticscholar.org/CorpusID:245353758
https://api.semanticscholar.org/CorpusID:245353758
https://doi.org/10.1080/15228053.2023.2233814
https://doi.org/10.1007/s10515-023-00409-6
https://doi.org/10.1007/s10515-023-00409-6
https://github.com/features/copilot
https://api.semanticscholar.org/CorpusID:53297919
https://api.semanticscholar.org/CorpusID:202538657
https://api.semanticscholar.org/CorpusID:202538657
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2403.12388
https://arxiv.org/abs/2106.00085
https://doi.org/10.18653/v1/N18-2012
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2312.14231
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/N19-1170
https://doi.org/10.1162/coli_r_00470
https://doi.org/10.47852/bonviewaia3202939
https://doi.org/10.47852/bonviewaia3202939
https://effectiviology.com/principles-of-effective-communication/
https://effectiviology.com/principles-of-effective-communication/
https://doi.org/10.1145/3632410.3632456
https://doi.org/10.1145/3632410.3632456
https://doi.org/10.18653/v1/2022.nlp4convai-1.8
https://doi.org/10.1109/TDSC.2007.70228
https://doi.org/10.1109/TDSC.2007.70228

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for Computational
Linguistics, Brussels, Belgium, 738–744. https://doi.org/10.18653/v1/D18-1081

[35] Stefan Ultes, Paweł Budzianowski, Iñigo Casanueva, Nikola Mrksic, Lina Maria
Rojas-Barahona, Pei hao Su, Tsung-Hsien Wen, Milica Gašić, and Steve J. Young.
2017. Domain-Independent User Satisfaction Reward Estimation for Dialogue
Policy Learning. In Interspeech. https://api.semanticscholar.org/CorpusID:649649

[36] Yequan Wang, Jiawen Deng, Aixin Sun, and Xuying Meng. 2023. Perplexity from
PLM Is Unreliable for Evaluating Text Quality. arXiv:2210.05892 [cs.CL]

[37] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and
Jason Weston. 2018. Personalizing Dialogue Agents: I have a dog, do you have
pets too?. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Iryna Gurevych and Yusuke
Miyao (Eds.). Association for Computational Linguistics, Melbourne, Australia,
2204–2213. https://doi.org/10.18653/v1/P18-1205

A APPENDIX
We provide the prompts we use for generating our rubrics used and
evaluated in our experiments.

A.1 Supervised Extraction Prompt

Your job is to understand and elaborate on the signals
of a conversation which are indicative of a **good
** conversation. The conversation is between a user
and an AI debugging assistant designed to work on
codebases with the task of debugging an exception
for the user. The AI is designed to hold a
conversation to understand, ask for more
information, and investigate the bug, then provide
solutions to aid the user in their debugging tasks.
You will be given a conversation that a user had
with an AI agent where the user provided a signal
of satisfaction through a like button.

You should think of what constitutes a good
conversation, where the user makes progress in
their task, and summarize how a user expresses that
they are **satisfied** with their interaction with
an AI agent. You should consider how much either
party takes active steps to achieve their goals in
the conversation, and compare it with an idealized
version of the conversation. Your summary on the
good characteristics and user satisfaction of the
conversation will be later used to generate a
diverse and holistic feedback on the conversation,
so focus on the factors that determine the
interaction's success or failure.

Your task is to summarize signals indicative of a good
conversation.

Instructions:
- First write a paragraph summarizing the conversation

and highlighting the moment where the user would
feel satisfied with the interaction.

- Following that, provide your answer in xml format
between <REASONS></REASONS> tags.

- Return NONE if you can't think of any part of the
conversation that indicates a good conversation.

- The reasons you summarized should be grounded on the
conversation history only. You should **NOT**
extrapolate, imagine, or hallucinate beyond the
text of the conversation that is given.

- The reasons should be mutually exclusive and simple.
- Your summary should be concise, use bullet points,

and provide no more than 3 reasons.
- Your reasons can begin with "The user ..." or "The

assistant ...". The user's responses can also
contribute to a good conversation, and if present,
you must capture that aspect as well.

<CONVERSATION>
{conversation}
</CONVERSATION>
The main reasons why the interaction is a good

conversation are:

A.2 Rubric Summarization Prompt

Task
Your job is to summarize why an interaction between a

user and an AI is a **good** conversation and
provide a rubric for evaluation of a single
conversation. You will be given a list of example
explanations from conversations that users had with
an AI agent.

Instruction
Your task is to provide a rubric to identify a user's

expectations and requirements, and how much the AI
was able to understand and meet them. You must
think how much either parties take active steps to
achieve their goals in the conversation.

Generate the rubrics based on the following maxims of
what an ideal conversation is supposed to look like
:
1. The maxim of quantity, where one tries to be as

informative as one possibly can, and gives as
much information as is needed, and no more.

2. The maxim of quality, where one tries to be
truthful, and does not give information that is
false or that is not supported by evidence.

3. The maxim of relation, where one tries to be
relevant, and says things that are pertinent to
the discussion.

10

https://doi.org/10.18653/v1/D18-1081
https://api.semanticscholar.org/CorpusID:649649
https://arxiv.org/abs/2210.05892
https://doi.org/10.18653/v1/P18-1205

RUBICON: Rubric-Based Evaluation of Domain-Specific Human-AI Conversations Manuscript Submitted to ACM, April 2024, USA

4. The maxim of manner, when one tries to be as
clear, as brief, and as orderly as one can in
what one says, and where one avoids obscurity
and ambiguity.

As the maxims stand, there may be an overlap, as
regards the length of what one says, between the
maxims of quantity and manner; this overlap can be
explained (partially if not entirely) by thinking
of the maxim of quantity (artificial though this
approach may be) in terms of units of information.
In other words, if the listener needs, let us say,
five units of information from the speaker, but
gets less, or more than the expected number, then
the speaker is breaking the maxim of quantity.
However, if the speaker gives the five required
units of information, but is either too curt or
long-winded in conveying them to the listener, then
the maxim of manner is broken.

Example Explanations of Good Conversations
{self_reflection_cases}

Previous Rubrics
{documentation_description}

Now summarize these examples into a rubric to
identify a good conversation. Requirements:

* Provide your answer as a numbered list of up to {
num_rubric} bullet items.

* The rubric should be user-centric, concise, and
mutually exclusive.

* The rubric should be mutually exclusive with respect
to the previous rubrics as well. If a point is
already covered in the previous rubrics, you must
skip it in the generated rubric.

* The rubric should **NOT** directly refer to the
maxims.

* The rubric should consist of simple sentences. Each
item must contain only one verb.

* Keep making the rubric diverse enough so that it
covers most of the characteristics of good
conversations.

* Provide your answer as a numbered list of bullet
items in <Rubric></Rubric>. The output format is as
follows:

```
# Output
<Rubric>
1. [item 1]
2. [item 2]
3. [item 3]
...

</Rubric>
```

Output

A.3 Rubric Evaluation Prompt

You are a highly skilled technical conversation
evaluation system designed to evaluate
conversations between users and an AI copilot
assistant for debugging tasks.

You are tasked to go over a text or C# code from Visual
Studio conversation and then give a specific

answer to questions about the reference
conversation.

There are only two parties in the conversation:
USER: Is a human software developer who has encountered

a bug in their code.
ASSISTANT: Is an AI code debugging agent trained

specifically to diagnose, investigate and assist
towards fixing an issue.

A roughly ideal conversation should look like this:
USER gives description of a bug.
ASSISTANT tries to diagnose the error and provide steps

to the USER to solve/ investigate the issue.
The USER can ask follow up questions or reply back to

any suggestions or information requests from the
ASSISTANT.

The overall goal of the conversation is to reach a
point where you can isolate and create a fix for
the given bug.

Here are a few things you should keep in mind:
1. You must think step by step, and first justify

how you approach the answer before selecting
your final option.

2. Then, you select a final answer, which is
selected based on the justification you
presented. The final answer is always from the
list of possible answers provided along with
each question in English, irrespective of the
conversation being in any other language.

3. The conversations are tagged with "USER" for the
human developer and "ASSISTANT" for the AI

assistant.
4. Your answer evaluates the conversation

objectively, without any assumptions.
5. The shared conversation starts right from the

first prompt given by the user.
11

Manuscript Submitted to ACM, April 2024, USA Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani

6. You are not the AI assistant, you are a third
party independent evaluator.

7. If the question is not applicable answer with '
Neutral' option.

MANDATORY RESPONSE FORMAT:
```
1. <Question 1 without the options>
<only one option from the list> Strongly Disagree/

Disagree/Neutral/Agree/Strongly Agree
2. <Question 2 without the options>
<only one option from the list> Strongly Disagree/

Disagree/Neutral/Agree/Strongly Agree
...
<end>
```
Each question should only take up two lines.

Given the conversation, answer the following questions
with just one option from the given list which MUST
be followed by the end marker "<end>":

A.4 Semantic Deduplication Prompt (Post
processing)

You are an AI assistant that processes assertion
rubrics. Each assertion is a question with respect
to a conversation. A rubric must be concise, well-
rounded, and all assertions must be mutually
exclusive in their ideas.

Return the below set of rubrics after removing the
duplicate assertions. Remove anything which are
similar in ideas:

<RUBRICS>

12

	Abstract
	1 Introduction
	2 Related Work
	3 Technique
	3.1 Rubrics and Conversation Quality
	3.2 Generation of Rubrics
	3.3 Selecting Optimized Rubrics

	4 Evaluation
	4.1 Data
	4.2 Metrics
	4.3 Baselines
	4.4 Experimental Setup
	4.5 Results

	5 Threats to Validity
	6 Conclusion
	References
	A Appendix
	A.1 Supervised Extraction Prompt
	A.2 Rubric Summarization Prompt
	A.3 Rubric Evaluation Prompt
	A.4 Semantic Deduplication Prompt (Post processing)

