Epidermal Electronics


August 15, 2013


John Rogers


University of Illinois at Urbana-Champaign


Materials, mechanics designs and manufacturing systems are now available for electronic systems with thicknesses, effective elastic moduli, bending stiffnesses and areal mass densities matched to the epidermis. Laminating such ‘epidermal’ electronic devices onto the skin leads to conformal contact, and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. In this talk, we describe recent advances in this type of technology, with an emphasis on materials that enable (1) direct printing of the electronics onto the skin, (2) bonding and encapsulation for robust, long-term wearability, (3) advanced sensors, ranging from temperature detectors with ~mK precision to hydration monitors with the ability for multiplexed spatial mapping and (4) human/machine interfaces, including examples in real-time control of helicopter drones via electromyography.


John Rogers

Professor John A. Rogers obtained BA and BS degrees in chemistry and in physics from the University of Texas, Austin, in 1989. From MIT, he received SM degrees in physics and in chemistry in 1992 and the PhD degree in physical chemistry in 1995. From 1995 to 1997, Rogers was a Junior Fellow in the Harvard University Society of Fellows. During this time he also served as a founder and Director of Active Impulse Systems, a company that commercialized technologies developed during his PhD work. He joined Bell Laboratories as a Member of Technical Staff in the Condensed Matter Physics Research Department in 1997, and served as Director of this department from the end of 2000 to 2002. He currently holds the Swanlund Chair, the highest chaired position at the University of Illinois at Urbana/Champaign. He has a primary appointment in the Department of Materials Science and Engineering, with joint appointments in the Departments of Chemistry, Bioengineering, Mechanical Science and Engineering, and Electrical and Computer Engineering. He served as the Director of a Nanoscale Science and Engineering Center on nanomanufacturing, funded by the National Science Foundation, from 2009-2012. He is currently Director of the Seitz Materials Research Laboratory.

Rogers’ research includes fundamental and applied aspects of nano and molecular scale fabrication as well as materials and patterning techniques for unusual electronic and photonic devices, with an emphasis on bio-integrated and bio-inspired systems. He has published more than 350 papers, and is an inventor on over 80 patents and patent applications, more than 50 of which are licensed or in active use by large companies and startups that he has co-founded. His research has been recognized with many awards including, most recently, the Robert Henry Thurston Award from the American Society of Mechanical Engineers (2013), the Mid-Career Researcher Award from the Materials Research Society (2013), the Lemelson-MIT Prize (2011), a MacArthur Fellowship from the John D. and Catherine T. MacArthur Foundation (2009), the George Smith Award from the IEEE (2009), the National Security Science and Engineering Faculty Fellowship from the Department of Defense (2008), the Daniel Drucker Eminent Faculty Award from the University of Illinois (2007) and the Leo Hendrick Baekeland Award from the American Chemical Society (2007). Rogers is a member of the National Academy of Engineering (NAE; 2011) and a Fellow of the Institute for Electrical and Electronics Engineers (IEEE; 2009), the American Physical Society (APS; 2006), the Materials Research Society (MRS; 2007) and the American Association for the Advancement of Science (AAAS; 2008).

For more info on John and his work, see: http://rogers.matse.illinois.edu/