
A SCAN LINE ALGORITHM FOR
DISPLAYING PARAMETRICALLY DEFINED SURFACES

James F. Blinn
Caltech/JPL

ABSTRACT

This paper presents a scan line algorithm for drawing
pictures of parametrically defined surfaces. A scan line
algorithm is characterized by the order in which it generates the
picture elements of the image. These are generated left to
right, top to bottom in much the same way as a picture is scanned
out on a TV screen. Parametrically defined surfaces are those
generated by a set of bivariate functions defining the X,Y, and Z
position of points on the surface. The primary driving mechanism
behind such an algorithm is the inversion of the functions used
to define the surface. To keep the algorithm general enough to
apply to a wide variety of functional forms, this inversion is
done numerically. It is only required to provide a mechanism for
evaluating the function and its derivatives at any parametric
location.

The algorithm proceeds in two phases. First, a numerical
search is made to find the local maxima of the Y definition
function within the desired parameter ranges. These determine
when portions of the surface first become visible as the scan
plane progresses down the screen. Secondly, the actual scan
conversion process is performed, maintaining a list of segments
of the surface intersecting the current scan plane. As the scan
plane passes local maxima of the Y function, new segments are
added to the list. In additon, any existing segments are updated
to reflect their intersection with the updated scan plane. All
intersection calculations are performed by a bivariate
Newton-Raphson solution of the defining equations. If the
solution does not converge, it is due to the scan plane passing a
local minimum, causing segments to be deleted from the active
list. Finally, within one scan line, an X scan must be performed
to generate the Z information about the surface for each picture
element. This is also performed by a bivariate Newton-Raphson
iteration with a different set of defining functions.

i. INTRODUCTION

Computer aided design has long been concerned
with the design of surfaces represented
parametrically. Such surfaces are those defined
by three bivariate functions:

X = X(u,v)
Y = Y(u,v)
Z = Z(u,v)

As the parameters vary between 0 and I, the
functions sweep out the surface in question. The
mathematical representation of these surfaces
provides shapes with pleasing properites of
continuity and smoothness. Until recently, the
only method for drawing shaded pictures of such a
surface has been to divide it into many polygonal
facets and to apply any of several polygon drawing
algorithms. A few years ago, Catmull[3] devised
one of the first algorithms for drawing bicubic
parametric surfaces directly from the mathematical
surface formulation. While this algorithm
generates images of superior quality, it still has
some drawbacks. These have to do with speed and
memory requirements and the ease of performing
anit-aliasing operations. These drawbacks are
eliminated by the class of algorithms known as
scan line algorithms. Such algorithms generate

the picture elements in order from left to right,
top to bottom on the screen, much as a television
might scan them out. The algorithm described here
is a scan line based algorithm for generating such
images which removes some of the dificulties of
Catmull's algorithm without sacrificing
substantially in picture quality. It is similar
in form and intent to that of Whitted [8].

This paper presents a highly abbreviated
version of the algorithm described in [l]. For
further details on the algorithm and derivations
of the equations the reader is referred to this
publication. The presentation here will mainly
consist of the overall process and show the
special cases which must be considered.

2. SCAN LINE ALGORITHMS

The new algorithm is a generalization of more
conventional scan line algorithms for drawing
polygonal objects. It is therefore worth while to
examine conceptually what is happening during a
scan line algorithm for polygons. It is assumed
for both the polygonal case and the parametric
curve case that the objects to be drawn have been
transformed to a screen space with X going to the
right, Y going up and Z going into the screen.
Furthermore, the perspective transformation is

1

assumed to have been performed on all objects as
described in [6] so that an orthographic
projection of X and Y onto the screen is
appropriate. In the case of parametric curved
surfaces this serves to alter the form of the
functions somewhat but the processing performed
upon those functions remains the same.

A scan line algorithm basically consists of
two nested loops, one for the Y coordinate going
down the screen and one for the X coordinate going
across each scan line of the current Y. For each
execution of the Y loop, a plane is defined by the
eyepoint and the scan line on the screen. All
objects to be drawn are intersected with this
plane. The result is a set of line segments in
XZ, one (or more) for each potentially visible
polygon on that scan line. These line segments
are then processed by the X scan loop. For each
execution of this loop a scan ray is defined by
the eyepoint and a picture element on the screen.
All segments are intersected with this ray to
yield a set of points, one for each potentially
visible polygon at that picture element. These
points are then sorted by their Z position. The
point with the smallest Z is deemed visible and an
intensity is computed from it. The processing
during the X scan is, then, fundamentally the same
as the processing during the Y scan except for the
change in dimensionality. During the Y scan, 3D
polygons are intersected with a plane to produce
2D line segments. During the X scan, 2D line
segments are intersected with a line to produce ID
points.

Many enhancements must be added to this basic
scheme to make it practical. Most of these are
referred to as taking advantage of the "coherance"
of the picture. This basically means that many of
the calculations are made incremental rather than
absolute. The opportunity to do this is, indeed,
much of the reason for generating pictures in scan
line order in the first place. For example, the Y
scan is responsible for constructing a list of all
potentially visible segments which will be
processed by the X scan. Rather than construct
this list from scratch for each Y coordinate it is
usual to keep the list around between scan lines
and update it according how it has changed.
Changes to this "active segment list" take three
forms. As the scan plane drops below a vertex of
the polygon which represents a local maximum, a
new segment must be created and added to the list,
figure la. As the scan plane drops below a vertex
which represents a local minimum a segment must be
deleted frem the list, figure lb. Finally, for
those segments which remain in the list, the XZ
coordinates of the endpoints of the segments must
be updated
Ic.

to reflect their new position, figure

" Z - - - .

Figure 1 - Incremental Scan Line Operations

This latter operation can also be computed
incrementally. The endpoint of an active segment
is generated by the intersection of an edge of the
polygon (a straight line segment) with the scan
plane. The amounts of change in X and Z for a
unit step in Y are constants along the entirety of
the edge. The increments can be computed once
when the edge first becomes active and just added
to the XZ position for each step in Y.

The computation for the Y loop then reduces
to the following processes. All endpoints are
initially sorted in Y to determine the order in
which they will pass through the Y scan plane.
For each ne w Y, the X and Z coordinates of all
existing segments are updated. If any polygon
vertices have been passed new segments are created
or old ones deleted according to the type of
vertex. The calculations are analagously made
incranental for the X scan. As it proceeds it
maintains its own "active point list" of
intersections.

It is useful to note an interpretation of the
list of segment endpoints. Major events in the Y
scan (indicating that elements are to be added or
deleted from the active list) are signalled by the
scan plane passing polygon vertices which are
local extrema (maxima or minima) in Y. Similarly,
major events in the X scan are signalled by the
scan ray passing endpoints in the active segment
list which are local extrema in X.

3. CURVED SURFACES

The generalization of the above algorithm to
curved surfaces requires the handling of several
new special cases. This section describes these
cases and how to handle them. Most of the section
is devoted to the Y scan portion of the algorithm.
The X scan portion is handled similarly but is
simpler due to its reduction in dimensionality.

3.1 Intersection Curves

The first new item about dealing with curved
surfaces is that their intersection with the scan
plane is not necessarily a straight line. For the
parametric surfaces of interest here, the
intersection curve in XZ space is defined in two
stages. First we must find all parametric values
(u,v) which satisfy:

Y (u,v) = Yscan

This equation defines some general curve in (u,v)
space, called a "level curve". The actual XZ
intersection curve is then generated by
substituting all (u,v) values from the level curve
into the X(u,v) and Z(u,v) surface definition
functions. The big problem comes frem the fact
that, for most useful types of surface definition
functions, there is no easy closed form
representation for either of these curves.

The solution to the representation problem
can best be done by examining what information
about the curve is most desirable to represent.
In the planar polygon case the intersections were
all straight line segments and were represented by
their endpoints. This list of endpoints was then
used by the X scan to trigger changes in the

active point list. They were thus used in two
capacities; to represent the intersection curves
and as a list of local extrema in X. For general
intersection curves, of course, the endpoints are
not sufficient to describe the entire curve. In
particular there can be local extrema in X other
than at the endpoints. These occur at the, so
called, "silhouette edges" of a surface, figure 2.

t 5ilh~ae~'.e

Figure 2 - Two Types of Edges For Curved Surfaces

The silhouette edge is defined mathematically as
the locus of points on the surface which have a
normal vector with a Z component of zero. A list
of all points on the intersection curve which are
the intersection of either silhouette edges or
patch edges gives a good rough estimate of the
shape of the curve and gives those locations in X
where the X scan needs to change the contents of
its X active list. These locations are most
easily stored in ten~s of their (u,v) values.
Each such point will be updated in (u,v) as the
scan plane moves down the screen to track either a
patch boundary edge or a silhouette edge. They
will henceforth be referred to as "edge trackers".
In the (u,v) space, the level curves are
intersected by two kinds of lines, the patch
boundaries and the Zn=0 curves. The edge trackers
represent the intersections of these lines with
the level curves as the Y scan plane moves down
the screen. Several examples of typical sets of
level curve intersections are shown in subsequent
figures 6,7,8 and 9.

3.2 Operations On Intersection Curves

We now discuss the three major operations to
be performed on intersection curves (and hence on
the edge trackers whicn represent them) during the
Y scan and how they are accomplished for curved
surfaces. These will be described more in the
order of their complexity rather than in their
execution order.

3.2.1 Updating Edge Trackers Between Scan Lines

When the scan plane moves down by one raster
element the (u,v) values of all edge trackers must
be updated to represent the new Y position. For
boundary edge trackers, e.g. for the v=0 edge,
this requires solution of a univariate equation:

Y(u,0) = Yscan

In general we are not assuming this is solvable
analytically. It can be easily solved
numerically, however, by such common techniques as
Newton-Raphson iteration. We even have a good
value to use for the initial guess at the
solution, viz. the u value on the previous scan
line. The Newton iteration then refines this
guess by the iterative scheme

unew = u - f(u)/f'(u)

where f(u) = Y(u,0)-Yscan

Various criteria can be used to determine when to
stop iterating. The one used here is to iterate
unti f(u) is less than one tenth raster element.

The silhouette edge trackers can be handled
similarly. This time, however, there are two
parameters to solve for and two defining
equations:

Y (u,v) =Yscan

Zn(u,v) = 0

This can be solved by bivariate Newton-Raphson
iteration using the current (u,v) values as
initial guesses. This yields an iterative scheme

unew = u - (F Gv - Pv G)/(Fu Gv - Fv Gu)

vn~.; = v - (Fu G - F Gu)/(Fu Gv - Fv Gu)

v~nere F(u,v) = Y(u,v) - Yscan
G(u,v) : Zn(u,v)

Again, this refinement of u and v is repeated
until some convergance criterion is met.

3.2.2 Creating Edge Trackers

We now come to the question of where these
edge trackers come from in the first place. The
creation of intersection curves in general comes
from the Y scan plane passing a local maximum of
the surface. Strict local maxima occur only at
(u,v) values where both the u and v derivatives of
F(u,v) are zero. Several other things can happen
instead at Fu=Fv=0 however. There might be a
local minimum or a saddle point. These can be
distinguished from local maxima by examining the
second derivatives of P(u,v).

Saddle Point FZuv - PuuFw > 0

Local Maximum P~uv - Fuu Fw < 0; Puu,Fvv<0

Local Minimum P~uv - Putt Fvv < 0; Puu,Fvv>0

All points where Fu=Fv=0 are called "stationary
points" and are illustrated in figure 3.

L0~ai Max i'm~ 5~ddk~ Po~n~ toc,xi Mb~imaro

Figure 3 - Types of Stationary Points

Since the surface patch is bounded by the
u=0, u=l, v=0, v=l constant edges there can be
local maxg~la within these boundaries that are not
strict local maxima.

3

Figure 4 - Types of Constrained Local Maxima

For, e.g. the u=0 edge, these are characterized
by Fv(0,v)=0 and Fu(0,v)<0 with similar relations
for the other edges.

Finally a local maximum may occur at the
corner of a patch. (These are the only kind which
occur for flat polygons). These are characterized
at, e.g. the (0,0) corner, by Fu(0,0)<0 and
Fv(0,0)<0 with similar relations for the other
corners.

Given that we know what to look for we now
need to know how to find them and what to do when
the Y scan plane passes one.

3.2.2.1 Finding Local Maxima

This process can again be solved numerically.
The iterative scheme here is a combination of two
techniques. One, commonly called "hill climbing"
involves moving some initial guess uphill in the
direction of the gradient of the function,
(Fu,Fv). The second is a Newton iteration on the
derivatives of the function to solve the two
equations

Fu(u,v)=0
Fv(u,v)=0

The first technique is appropriate when the
current guess is far from the local maximum and
the second is appropriate to refine the guess when
it gets close. Dahlquist et al. [4] gives a good
algorithm for carrying this out. Such an
algorithm must be modified, however, to take into
consideration the constraints on the values of u
and v. Whenever an iteration tries to move the
current guess outside the patth boundaries the
increment must be clipped at the boundaries. If
the current guess lies on a boundary and the
iteration tries to drive it outside then an edge
maximum or a corner maximum is suspected. The
appropriate criteria are checked to see if this is
indeed the case. After running this process on
several initial guesses (e.g. the corners of the
patch and the center point) a list of local maxima
in Y can be constructed to be referenced during
the Y scan.

3.2.2.2 Passing Local Maxima

When the Y scan passes one of these local
maxima some new edge trackers must be created to
represent the new intersection curve. What types
to create depends on the type of local maximum.
For strict local maxima the new intersection curve
will be (locally) elliptical and will contain two
silhouette edge trackers. For edge maxima the new
intersection curve will be (locally) parabolic and
will result in two edge trackers. For corner

maxima the new intersection curve will be roughly
linear and will result in an edge tracker for two

different edges.

L ~ . , .

-,, ~ IA ~ , ~ , - 1 ~ LI.

Figure 5 - Level Curves Just Below Local Maxima

An initial (u,v) value for these points must be
found to be used for the Newton iteration which
updates them to the next Y scan line. For the
corner maxima this can just be the coordinates of
the maximum itself (i.e. the coordinates of the
corner). For the strict maxima and edge maxima
this will not work. The Newton iteration which
will operate on these points ultimately divides by
derivatives of F and, at these maxima, these
derivatives are zero. At such entering points,
the second derivatives of F must be used to
locally approximate the level curve of F, at the Y
of the next scan line, by a parabola or an ellipse
and solve this for an initial guess at (u,v).

3.2.2.3 Folded Edges

There is a case where a new edge tracker must
be created other than at a local maximum in Y.
This is the case where a new silhouette edge
tracker coming within the patch boundaries due to
a silhouette edge intersecting with a boundary
edge. This is illustrated in figure 6.

y L~wl C~ve;

i . ..L.-~

Figure 6 - Folded Edge Creating New Silhouette Tracker

To detect such cases, there must be a check of the
sign of the Z component of the normal of each
boundary edge tracker. If the sign changes from
one scan line to the next the above situation has
occurred. The new silhouette edge tracker may be
created using the coordinates of the boundary edge
tracker as its initial guess.

3.2.2.4 Saddle Points

Another place where silhouette edge trackers
must be created is at saddle points of the Y
function. Depending upon orientation silhouette
edge trackers must be created or be deleted there.
This is indicated by examining some second
derivatives of the Y function at the saddle point.

v I F'# L~vel C~.ve~

Figure 7 - Creation of Silhouette Edges at Saddle Point

3.2.3 Deleting Edge Trackers

An edge tracker is created either by passing
a local maximum in Y or having a silhouette edge
crawl in across the boundary. The edge trackers
must be deleted in just the inverse situations,
when passing a local minimum in Y or when a
silhouette edge crawls out of the boundaries. The
second of these is easy to detect. For each
update of a silhouette edge tracker the resultant
(u,v) values are checked against the patch
boundaries. If either of them lies outside the
range [0,I] the tracker is deleted. The local
minimum case can be solved in sevaral ways. A
list of local minima of Y can be made similarly to
the local maxima, qhen, upon updating Yscan, this
list can be checked for the occurrence of points
to delete. There are two problems with this.
First, the list technique only tells where the
local minimum is in (u,v) space. A matching
process must be used to find the corresponding
point in the list of edge trackers. Second,
numerical operations on points near local minima
can fail to converge. The problem has been solved
in this algorithm by a modification to the Newton
iteration. A few simple checks can be added to
the iteration to detect failure to converge. Any
points whichh fail to converge are then removed
from the list of edge trackers.

3.3 The X Scan

The X scan is responsible for maintaining a
list of active intersection points as a scan ray
sweeps from left to rJ@ht across the screen.
Intersection points are those formed by the
intersection of the X scan ray with a cross
section curve in XZ. Points enter and exit at
boundary edges and silhouette edges of the patch.
These are just those points generated by the Y
scan portion of the algorithm. These points
should then be kept sorted according to their X
values to ease the X scan. Between entering and
exiting, points are updated in (u,v) (and thus in
Z) by a similar bivariate Newton iteration as that
for silhouette edges during the Y scan. In this
case, however, the two functions which must be
solved for zero are:

F(u,v) = Y(u,v) - Yscan

G(u,v) = X(u,v) - Xscan

3.4 Singularities

There are still some cases which can cause
problems with the algorithm. These typically
occur at singularities of the Y function. A
singularity is basically a place where some
quantity goes to zero where it needs to be divided
by later. The most common of these is the

parabolic cylinder maximum. This occurs when FZuv
- Fuu Fvv equals zero. It is thus an intermediate
case between a strict local maximum and a saddle
point, see figure 8.

VI___

Figure 8 - Parabolic Cylinder

When this occurs, the level curve just below it
consists of two straight lines. Thus, rather than
two silhouette edge trackers, four boundary edge
trackers must be created. The trick here is to
determine how close to zero the above quantity
must be in order to be considered a parabolic
cylinder.

Another tricky case is the curtain fold
problem. This is illustrated in figure 9.

~ t . L

Figure 9 - Curtain Fold Singularity

This occurs when the Zn=0 curve in (u,v) space
comes tangent to a level curve somewhere within
[0,i]. The only correct way to solve this is to
provide another pre-scan for such locations
similar to the scan for local maxima in Y. A
heuristic for avoiding this is given in section 4.

Finally, there is the general problem of
singularities intersecting other singularities.
For example a strict local maximum may lie on the
boundary edge of a patch. The initial creation of
silhouette edge trackers or boundary edge trackers
is not so straightforward. Attempts to make such
situations fall naturally out of their general
cases have so far proven unsuccessful.

3.5 Accellerating Convergance

The average number of iterations necessary
for convergance of the edge trackers has proven to
be roughly 2.5. This can be improved
substantially by an extrapolation process on the
path of the point in (u,v) space. If the (u,v)
position of the point on the provious Yscan value
is saved an initial guess fed to the Newton
iteration is computed, not as the current position
byt as the the position extrapolated from the
previous two. The result is an average number of
iterations per point of less than 1 since some
initial guesses already satisfy the termination
criterion.

5

4. SPEEDING THE X SCAN

The X scan portion of the above process,
while completely accurate, is quite time
consuming. A refinement of the algorithm replaces
this X iteration with the dynamic selection of a
set of sample points in this dimension and
interpolating the intensity (Gouraud [5]) or
surface normal (Phong [7]) between them. This
section tells how these sample points are defined
and manipulated and some of the implications of
using them.

4.1 Definition of X sample points

The effect of the selection of sample points
is to approximate the intersection curve in XZ
with straight line segments. We wish to choose
these in a manner which most closely approximates
the curve. A good technique is to chose them at
equally spaced intervals of the angle of the
normal to the curve. This tends to cluster the
sample points at areas of high curvature. For
example, a circle will be approximated by a
regular polygon while an ellipse will have its
points clustered near the sharp ends.

t

Figure i0 - X Z Sample Point Definition

The normal to the intersection curve can be found
from just the X and Z components of the surface
normal. The mathematical definition of a normal
pointing at angle ~ is

or

~= atan (Zn/Xn)
or Xn tan~9 + Zn

Xn sine- Zn cos~ = 0

This is a generalization of the concept of the
silhouette edge tracker where the angle<~ is 0~and
180 ° . We then define new types of edge trackers
for equal spaced increments of ~ from 0 ° to 360~
For the pictures shown here, ~ is in increments of
22.5 degrees giving 16 samples around a complete
circle. Each new type of edge tracker has its own
defining G function calculated as above with the
appropriate value ofF. It is not necessary, of
course, to re-evaluate thhe sines and cosines
whenever G is evaluated. They can be pre-computed
and stored in a table. The index into this table
then labels the type of edge tracker. (A somewhat
different formulation for the Gi is necessary,as
detailed in [l], if perspective pictures are
desired.) When a local maximum in Y is passed an
edge tracker must be created for each G function
in the same manner as silhouette edge trackers
were created before.

4.2 Linking Edge Trackers Together

The set of edge trackers for all the Gi
functions are the sample points of the
intersection curve. A list of just their
locations in X,Z does not, however, provide
sufficient information to reconstruct a polygonal
approximation to the curve. Information about how
the trackers are connected together must be
maintained explititly by a set of likns between
them. In particular, they must be linked together
in the order in which they occur while tracing
along the curve. This is easily done when new
curves are created at local maxima since the
curves are simple ellipses with one of each type
of G function around the perimiter. When the scan
plane passes over a saddle point or other such
singularity some of the edge trackers will cease
to exist. This is because a saddle point is a
local minimum in Y for some normal vector
directions. This results in some broken chains of
level curve spans. These breaks are repaired by a
"sideways" iteration, so named because it moves
along the level curves of constant Y but varying
~. THis is sideways from the ordinary iteration
which follows curves of constant ~ but varying Y.
Whenever this sideways iteration encounters a
value of ~ corresponding to one of the tabulated
directions (and thus a G functions) it creates a
new edge tracker and links it to the broken chain.
The process stops when it encounters an already
existing edge tracker. This process, while slow,
only needs to be performed when the scan plane
passes some singularity of the Y function.

4.3 Turn Points

The level curves at a particular scan line
are represented by a chain of edge trackers, each
one corresponding to an index into a table of
sines and cosines of ~. This angle rotates
continuously as the level curve is traced out. We
therefore expect that the index flags of the edge
trackers will differ by exactly i between any two
connected points (except for the end of the table
wrapping around to the beginning)° One other case
that can occur, however, is that the function~
can have local maxima/minima along the level
curve, in which case the index value changes by 0
between the points which straddle this location.
This change in the direction of rotation of the
angle will occur at inflection points in the cross
section curve. This often happens in the vicinity
of saddle points where the curve could appear as
below.

The mathematical definition of such turnabout
points is derived from setting the directional
derivative of ~ (in the direction tangent to the
level curve) to zero. This leads to the
definition function:

T(u,v) = Fu(Zn Xnv - Xn Znv) + Fv(Xn Znu - Zn Xnu)

By creating trackers which follow along the zeroes
of this function we can ensure that various
crinkles and folds in the XZ curve are accurately
represented. These are also the points at which
the curtain fold problem occurs so watching the
Xn,Zn direction there can enable detection of this
problem.

Z

6 6

6

4

Z

2

o

~ i s f a~ce ~lon@ c ~ r Y e

Figure ii - Turn Point Definition

4.4 Results

The X sampling version of the algorithm may
be thought of as dynamically slicing the surface
up into one picture element high polygons. It can
still yield some noticable errors in the image in
some circumstances. This occurs notably at
intersections of surfaces where the straight line
approximateion to the intersections curves becomes
obvious. In general, however, the approach
combines some of the speed of polygon algorithms
with some of the accuracy of full blown numeric
patch algorithms to yield good pictures in a
reasonable amount of time. For smooth shading,
most of the time is spent in the Y iteration
routines. This causes the computation time to be
proportional to the number of active edge trackers
times the number of scan lines during which they
are active. The time to draw a sphere, for
example, was roughly .4 seconds per scan line.
Some of the more interesting applications of
parametric surfaces, however, is the use of
texture mapping, see [2]. In this case, there is
a term in the timing which is proportional to the
number of pixels covered by the object, and thus
the square of the number of scan lines. For
objects larger than about]00 pixels, this term
dominates the timing of the algorithm and the time
taken in the Y iteration becomes lost in the
noise.

5. CONCLUSIONS

The curved patch algorithm generates much
smoother looking pictures of curved surfaces than
can be generated by polygonal approximation. Some
pictures resulting from the algorithm appear in
[2]. One disadvantage of the algorithm is its
complexity. Several more special cases can arise
than there is roc~ to report on here, These are
more thoroughly covered in [1]. The complexity
issue can be improved considerably by further work
on refining the techniques involved. There are
still some heuristics involved in the algorithm
which could be made more rigorous.

One final advantage of experimenting with
such algorithms is that, by looking at scan line
algorithms in a more general light, new insight
may be gained in the properties of polygon based
algorithms.

REFERENCES

[I] Blinn, J. F., "Computer Display of Curved
Surfaces", Computer Science Department,
University of Utah, Thesis, 1978.

[2] Blinn, J. F., "Simulation of Wrinkled
Surfaces", Proc. 5th Conference on Computer
Graphics and Interactive Techniques, 1978.

[3] Catmull, E. E., "Computer Display of Curved
Surfaces", Proc. IEEE Conf. on Computer
Graphics, Pattern Recognition and Data
Structures, Los Algeles (May 1975),11.

[4] Dahlquist, G., Bjorck, A., and Anderson, T.,
Numerical Methods, Prentice Hall, 1974.

[5] Gouraud, H., "Continuous Shading of Curved
Surfaces", IEEE Transactions, C-20, (June
1971) 623.

[6] Newman, W. M. and Sproull, R. F.,
Principles of Interactive Computer Graphics,
New York, McGraw Hill, 1973.

[7] Phong, Bui-Tuong, "Illumination for Computer
Generated Pictures", Comm. ACM, 18 6(June
1975) 311.

[8] Whitted, J. T., "A Scan Line Algorithm for
Computer Display of Curved Surfaces", Proc.
5th Conference on Computer Graphics and
Interactiive Techniques, 1978o

7

