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ABSTRACT 

This paper presents a scan line algorithm for drawing 
pictures of parametrically defined surfaces. A scan line 
algorithm is characterized by the order in which it generates the 
picture elements of the image. These are generated left to 
right, top to bottom in much the same way as a picture is scanned 
out on a TV screen. Parametrically defined surfaces are those 
generated by a set of bivariate functions defining the X,Y, and Z 
position of points on the surface. The primary driving mechanism 
behind such an algorithm is the inversion of the functions used 
to define the surface. To keep the algorithm general enough to 
apply to a wide variety of functional forms, this inversion is 
done numerically. It is only required to provide a mechanism for 
evaluating the function and its derivatives at any parametric 
location. 

The algorithm proceeds in two phases. First, a numerical 
search is made to find the local maxima of the Y definition 
function within the desired parameter ranges. These determine 
when portions of the surface first become visible as the scan 
plane progresses down the screen. Secondly, the actual scan 
conversion process is performed, maintaining a list of segments 
of the surface intersecting the current scan plane. As the scan 
plane passes local maxima of the Y function, new segments are 
added to the list. In additon, any existing segments are updated 
to reflect their intersection with the updated scan plane. All 
intersection calculations are performed by a bivariate 
Newton-Raphson solution of the defining equations. If the 
solution does not converge, it is due to the scan plane passing a 
local minimum, causing segments to be deleted from the active 
list. Finally, within one scan line, an X scan must be performed 
to generate the Z information about the surface for each picture 
element. This is also performed by a bivariate Newton-Raphson 
iteration with a different set of defining functions. 

i. INTRODUCTION 

Computer aided design has long been concerned 
with the design of surfaces represented 
parametrically. Such surfaces are those defined 
by three bivariate functions: 

X = X(u,v) 
Y = Y(u,v) 
Z = Z(u,v) 

As the parameters vary between 0 and I, the 
functions sweep out the surface in question. The 
mathematical representation of these surfaces 
provides shapes with pleasing properites of 
continuity and smoothness. Until recently, the 
only method for drawing shaded pictures of such a 
surface has been to divide it into many polygonal 
facets and to apply any of several polygon drawing 
algorithms. A few years ago, Catmull[3] devised 
one of the first algorithms for drawing bicubic 
parametric surfaces directly from the mathematical 
surface formulation. While this algorithm 
generates images of superior quality, it still has 
some drawbacks. These have to do with speed and 
memory requirements and the ease of performing 
anit-aliasing operations. These drawbacks are 
eliminated by the class of algorithms known as 
scan line algorithms. Such algorithms generate 

the picture elements in order from left to right, 
top to bottom on the screen, much as a television 
might scan them out. The algorithm described here 
is a scan line based algorithm for generating such 
images which removes some of the dificulties of 
Catmull's algorithm without sacrificing 
substantially in picture quality. It is similar 
in form and intent to that of Whitted [8]. 

This paper presents a highly abbreviated 
version of the algorithm described in [l]. For 
further details on the algorithm and derivations 
of the equations the reader is referred to this 
publication. The presentation here will mainly 
consist of the overall process and show the 
special cases which must be considered. 

2. SCAN LINE ALGORITHMS 

The new algorithm is a generalization of more 
conventional scan line algorithms for drawing 
polygonal objects. It is therefore worth while to 
examine conceptually what is happening during a 
scan line algorithm for polygons. It is assumed 
for both the polygonal case and the parametric 
curve case that the objects to be drawn have been 
transformed to a screen space with X going to the 
right, Y going up and Z going into the screen. 
Furthermore, the perspective transformation is 
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assumed to have been performed on all objects as 
described in [6] so that an orthographic 
projection of X and Y onto the screen is 
appropriate. In the case of parametric curved 
surfaces this serves to alter the form of the 
functions somewhat but the processing performed 
upon those functions remains the same. 

A scan line algorithm basically consists of 
two nested loops, one for the Y coordinate going 
down the screen and one for the X coordinate going 
across each scan line of the current Y. For each 
execution of the Y loop, a plane is defined by the 
eyepoint and the scan line on the screen. All 
objects to be drawn are intersected with this 
plane. The result is a set of line segments in 
XZ, one (or more) for each potentially visible 
polygon on that scan line. These line segments 
are then processed by the X scan loop. For each 
execution of this loop a scan ray is defined by 
the eyepoint and a picture element on the screen. 
All segments are intersected with this ray to 
yield a set of points, one for each potentially 
visible polygon at that picture element. These 
points are then sorted by their Z position. The 
point with the smallest Z is deemed visible and an 
intensity is computed from it. The processing 
during the X scan is, then, fundamentally the same 
as the processing during the Y scan except for the 
change in dimensionality. During the Y scan, 3D 
polygons are intersected with a plane to produce 
2D line segments. During the X scan, 2D line 
segments are intersected with a line to produce ID 
points. 

Many enhancements must be added to this basic 
scheme to make it practical. Most of these are 
referred to as taking advantage of the "coherance" 
of the picture. This basically means that many of 
the calculations are made incremental rather than 
absolute. The opportunity to do this is, indeed, 
much of the reason for generating pictures in scan 
line order in the first place. For example, the Y 
scan is responsible for constructing a list of all 
potentially visible segments which will be 
processed by the X scan. Rather than construct 
this list from scratch for each Y coordinate it is 
usual to keep the list around between scan lines 
and update it according how it has changed. 
Changes to this "active segment list" take three 
forms. As the scan plane drops below a vertex of 
the polygon which represents a local maximum, a 
new segment must be created and added to the list, 
figure la. As the scan plane drops below a vertex 
which represents a local minimum a segment must be 
deleted frem the list, figure lb. Finally, for 
those segments which remain in the list, the XZ 
coordinates of the endpoints of the segments must 
be updated 
Ic. 

to reflect their new position, figure 
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Figure 1 - Incremental Scan Line Operations 

This latter operation can also be computed 
incrementally. The endpoint of an active segment 
is generated by the intersection of an edge of the 
polygon (a straight line segment) with the scan 
plane. The amounts of change in X and Z for a 
unit step in Y are constants along the entirety of 
the edge. The increments can be computed once 
when the edge first becomes active and just added 
to the XZ position for each step in Y. 

The computation for the Y loop then reduces 
to the following processes. All endpoints are 
initially sorted in Y to determine the order in 
which they will pass through the Y scan plane. 
For each ne w Y, the X and Z coordinates of all 
existing segments are updated. If any polygon 
vertices have been passed new segments are created 
or old ones deleted according to the type of 
vertex. The calculations are analagously made 
incranental for the X scan. As it proceeds it 
maintains its own "active point list" of 
intersections. 

It is useful to note an interpretation of the 
list of segment endpoints. Major events in the Y 
scan (indicating that elements are to be added or 
deleted from the active list) are signalled by the 
scan plane passing polygon vertices which are 
local extrema (maxima or minima) in Y. Similarly, 
major events in the X scan are signalled by the 
scan ray passing endpoints in the active segment 
list which are local extrema in X. 

3. CURVED SURFACES 

The generalization of the above algorithm to 
curved surfaces requires the handling of several 
new special cases. This section describes these 
cases and how to handle them. Most of the section 
is devoted to the Y scan portion of the algorithm. 
The X scan portion is handled similarly but is 
simpler due to its reduction in dimensionality. 

3.1 Intersection Curves 

The first new item about dealing with curved 
surfaces is that their intersection with the scan 
plane is not necessarily a straight line. For the 
parametric surfaces of interest here, the 
intersection curve in XZ space is defined in two 
stages. First we must find all parametric values 
(u,v) which satisfy: 

Y (u,v) = Yscan 

This equation defines some general curve in (u,v) 
space, called a "level curve". The actual XZ 
intersection curve is then generated by 
substituting all (u,v) values from the level curve 
into the X(u,v) and Z(u,v) surface definition 
functions. The big problem comes frem the fact 
that, for most useful types of surface definition 
functions, there is no easy closed form 
representation for either of these curves. 

The solution to the representation problem 
can best be done by examining what information 
about the curve is most desirable to represent. 
In the planar polygon case the intersections were 
all straight line segments and were represented by 
their endpoints. This list of endpoints was then 
used by the X scan to trigger changes in the 



active point list. They were thus used in two 
capacities; to represent the intersection curves 
and as a list of local extrema in X. For general 
intersection curves, of course, the endpoints are 
not sufficient to describe the entire curve. In 
particular there can be local extrema in X other 
than at the endpoints. These occur at the, so 
called, "silhouette edges" of a surface, figure 2. 
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Figure 2 - Two Types of Edges For Curved Surfaces 

The silhouette edge is defined mathematically as 
the locus of points on the surface which have a 
normal vector with a Z component of zero. A list 
of all points on the intersection curve which are 
the intersection of either silhouette edges or 
patch edges gives a good rough estimate of the 
shape of the curve and gives those locations in X 
where the X scan needs to change the contents of 
its X active list. These locations are most 
easily stored in ten~s of their (u,v) values. 
Each such point will be updated in (u,v) as the 
scan plane moves down the screen to track either a 
patch boundary edge or a silhouette edge. They 
will henceforth be referred to as "edge trackers". 
In the (u,v) space, the level curves are 
intersected by two kinds of lines, the patch 
boundaries and the Zn=0 curves. The edge trackers 
represent the intersections of these lines with 
the level curves as the Y scan plane moves down 
the screen. Several examples of typical sets of 
level curve intersections are shown in subsequent 
figures 6,7,8 and 9. 

3.2 Operations On Intersection Curves 

We now discuss the three major operations to 
be performed on intersection curves (and hence on 
the edge trackers whicn represent them) during the 
Y scan and how they are accomplished for curved 
surfaces. These will be described more in the 
order of their complexity rather than in their 
execution order. 

3.2.1 Updating Edge Trackers Between Scan Lines 

When the scan plane moves down by one raster 
element the (u,v) values of all edge trackers must 
be updated to represent the new Y position. For 
boundary edge trackers, e.g. for the v=0 edge, 
this requires solution of a univariate equation: 

Y(u,0) = Yscan 

In general we are not assuming this is solvable 
analytically. It can be easily solved 
numerically, however, by such common techniques as 
Newton-Raphson iteration. We even have a good 
value to use for the initial guess at the 
solution, viz. the u value on the previous scan 
line. The Newton iteration then refines this 
guess by the iterative scheme 

unew = u - f(u)/f'(u) 

where f(u) = Y(u,0)-Yscan 

Various criteria can be used to determine when to 
stop iterating. The one used here is to iterate 
unti f(u) is less than one tenth raster element. 

The silhouette edge trackers can be handled 
similarly. This time, however, there are two 
parameters to solve for and two defining 
equations: 

Y (u,v) =Yscan 

Zn(u,v) = 0 

This can be solved by bivariate Newton-Raphson 
iteration using the current (u,v) values as 
initial guesses. This yields an iterative scheme 

unew = u - (F Gv - Pv G)/(Fu Gv - Fv Gu) 

vn~.; = v - (Fu G - F Gu)/(Fu Gv - Fv Gu) 

v~nere F(u,v) = Y(u,v) - Yscan 
G(u,v) : Zn(u,v) 

Again, this refinement of u and v is repeated 
until some convergance criterion is met. 

3.2.2 Creating Edge Trackers 

We now come to the question of where these 
edge trackers come from in the first place. The 
creation of intersection curves in general comes 
from the Y scan plane passing a local maximum of 
the surface. Strict local maxima occur only at 
(u,v) values where both the u and v derivatives of 
F(u,v) are zero. Several other things can happen 
instead at Fu=Fv=0 however. There might be a 
local minimum or a saddle point. These can be 
distinguished from local maxima by examining the 
second derivatives of P(u,v). 

Saddle Point FZuv - PuuFw > 0 

Local Maximum P~uv - Fuu Fw < 0; Puu,Fvv<0 

Local Minimum P~uv - Putt Fvv < 0; Puu,Fvv>0 

All points where Fu=Fv=0 are called "stationary 
points" and are illustrated in figure 3. 
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Figure 3 - Types of Stationary Points 

Since the surface patch is bounded by the 
u=0, u=l, v=0, v=l constant edges there can be 
local maxg~la within these boundaries that are not 
strict local maxima. 
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Figure 4 - Types of Constrained Local Maxima 

For, e.g. the u=0 edge, these are characterized 
by Fv(0,v)=0 and Fu(0,v)<0 with similar relations 
for the other edges. 

Finally a local maximum may occur at the 
corner of a patch. (These are the only kind which 
occur for flat polygons). These are characterized 
at, e.g. the (0,0) corner, by Fu(0,0)<0 and 
Fv(0,0)<0 with similar relations for the other 
corners. 

Given that we know what to look for we now 
need to know how to find them and what to do when 
the Y scan plane passes one. 

3.2.2.1 Finding Local Maxima 

This process can again be solved numerically. 
The iterative scheme here is a combination of two 
techniques. One, commonly called "hill climbing" 
involves moving some initial guess uphill in the 
direction of the gradient of the function, 
(Fu,Fv). The second is a Newton iteration on the 
derivatives of the function to solve the two 
equations 

Fu(u,v)=0 
Fv(u,v)=0 

The first technique is appropriate when the 
current guess is far from the local maximum and 
the second is appropriate to refine the guess when 
it gets close. Dahlquist et al. [4] gives a good 
algorithm for carrying this out. Such an 
algorithm must be modified, however, to take into 
consideration the constraints on the values of u 
and v. Whenever an iteration tries to move the 
current guess outside the patth boundaries the 
increment must be clipped at the boundaries. If 
the current guess lies on a boundary and the 
iteration tries to drive it outside then an edge 
maximum or a corner maximum is suspected. The 
appropriate criteria are checked to see if this is 
indeed the case. After running this process on 
several initial guesses (e.g. the corners of the 
patch and the center point) a list of local maxima 
in Y can be constructed to be referenced during 
the Y scan. 

3.2.2.2 Passing Local Maxima 

When the Y scan passes one of these local 
maxima some new edge trackers must be created to 
represent the new intersection curve. What types 
to create depends on the type of local maximum. 
For strict local maxima the new intersection curve 
will be (locally) elliptical and will contain two 
silhouette edge trackers. For edge maxima the new 
intersection curve will be (locally) parabolic and 
will result in two edge trackers. For corner 

maxima the new intersection curve will be roughly 
linear and will result in an edge tracker for two 

different edges. 
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Figure 5 - Level Curves Just Below Local Maxima 

An initial (u,v) value for these points must be 
found to be used for the Newton iteration which 
updates them to the next Y scan line. For the 
corner maxima this can just be the coordinates of 
the maximum itself (i.e. the coordinates of the 
corner). For the strict maxima and edge maxima 
this will not work. The Newton iteration which 
will operate on these points ultimately divides by 
derivatives of F and, at these maxima, these 
derivatives are zero. At such entering points, 
the second derivatives of F must be used to 
locally approximate the level curve of F, at the Y 
of the next scan line, by a parabola or an ellipse 
and solve this for an initial guess at (u,v). 

3.2.2.3 Folded Edges 

There is a case where a new edge tracker must 
be created other than at a local maximum in Y. 
This is the case where a new silhouette edge 
tracker coming within the patch boundaries due to 
a silhouette edge intersecting with a boundary 
edge. This is illustrated in figure 6. 
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Figure 6 - Folded Edge Creating New Silhouette Tracker 

To detect such cases, there must be a check of the 
sign of the Z component of the normal of each 
boundary edge tracker. If the sign changes from 
one scan line to the next the above situation has 
occurred. The new silhouette edge tracker may be 
created using the coordinates of the boundary edge 
tracker as its initial guess. 

3.2.2.4 Saddle Points 

Another place where silhouette edge trackers 
must be created is at saddle points of the Y 
function. Depending upon orientation silhouette 
edge trackers must be created or be deleted there. 
This is indicated by examining some second 
derivatives of the Y function at the saddle point. 
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Figure 7 - Creation of Silhouette Edges at Saddle Point 

3.2.3 Deleting Edge Trackers 

An edge tracker is created either by passing 
a local maximum in Y or having a silhouette edge 
crawl in across the boundary. The edge trackers 
must be deleted in just the inverse situations, 
when passing a local minimum in Y or when a 
silhouette edge crawls out of the boundaries. The 
second of these is easy to detect. For each 
update of a silhouette edge tracker the resultant 
(u,v) values are checked against the patch 
boundaries. If either of them lies outside the 
range [0,I] the tracker is deleted. The local 
minimum case can be solved in sevaral ways. A 
list of local minima of Y can be made similarly to 
the local maxima, qhen, upon updating Yscan, this 
list can be checked for the occurrence of points 
to delete. There are two problems with this. 
First, the list technique only tells where the 
local minimum is in (u,v) space. A matching 
process must be used to find the corresponding 
point in the list of edge trackers. Second, 
numerical operations on points near local minima 
can fail to converge. The problem has been solved 
in this algorithm by a modification to the Newton 
iteration. A few simple checks can be added to 
the iteration to detect failure to converge. Any 
points whichh fail to converge are then removed 
from the list of edge trackers. 

3.3 The X Scan 

The X scan is responsible for maintaining a 
list of active intersection points as a scan ray 
sweeps from left to rJ@ht across the screen. 
Intersection points are those formed by the 
intersection of the X scan ray with a cross 
section curve in XZ. Points enter and exit at 
boundary edges and silhouette edges of the patch. 
These are just those points generated by the Y 
scan portion of the algorithm. These points 
should then be kept sorted according to their X 
values to ease the X scan. Between entering and 
exiting, points are updated in (u,v) (and thus in 
Z) by a similar bivariate Newton iteration as that 
for silhouette edges during the Y scan. In this 
case, however, the two functions which must be 
solved for zero are: 

F(u,v) = Y(u,v) - Yscan 

G(u,v) = X(u,v) - Xscan 

3.4 Singularities 

There are still some cases which can cause 
problems with the algorithm. These typically 
occur at singularities of the Y function. A 
singularity is basically a place where some 
quantity goes to zero where it needs to be divided 
by later. The most common of these is the 

parabolic cylinder maximum. This occurs when FZuv 
- Fuu Fvv equals zero. It is thus an intermediate 
case between a strict local maximum and a saddle 
point, see figure 8. 

VI___ 

Figure 8 - Parabolic Cylinder 

When this occurs, the level curve just below it 
consists of two straight lines. Thus, rather than 
two silhouette edge trackers, four boundary edge 
trackers must be created. The trick here is to 
determine how close to zero the above quantity 
must be in order to be considered a parabolic 
cylinder. 

Another tricky case is the curtain fold 
problem. This is illustrated in figure 9. 
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Figure 9 - Curtain Fold Singularity 

This occurs when the Zn=0 curve in (u,v) space 
comes tangent to a level curve somewhere within 
[0,i]. The only correct way to solve this is to 
provide another pre-scan for such locations 
similar to the scan for local maxima in Y. A 
heuristic for avoiding this is given in section 4. 

Finally, there is the general problem of 
singularities intersecting other singularities. 
For example a strict local maximum may lie on the 
boundary edge of a patch. The initial creation of 
silhouette edge trackers or boundary edge trackers 
is not so straightforward. Attempts to make such 
situations fall naturally out of their general 
cases have so far proven unsuccessful. 

3.5 Accellerating Convergance 

The average number of iterations necessary 
for convergance of the edge trackers has proven to 
be roughly 2.5. This can be improved 
substantially by an extrapolation process on the 
path of the point in (u,v) space. If the (u,v) 
position of the point on the provious Yscan value 
is saved an initial guess fed to the Newton 
iteration is computed, not as the current position 
byt as the the position extrapolated from the 
previous two. The result is an average number of 
iterations per point of less than 1 since some 
initial guesses already satisfy the termination 
criterion. 
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4. SPEEDING THE X SCAN 

The X scan portion of the above process, 
while completely accurate, is quite time 
consuming. A refinement of the algorithm replaces 
this X iteration with the dynamic selection of a 
set of sample points in this dimension and 
interpolating the intensity (Gouraud [5]) or 
surface normal (Phong [7]) between them. This 
section tells how these sample points are defined 
and manipulated and some of the implications of 
using them. 

4.1 Definition of X sample points 

The effect of the selection of sample points 
is to approximate the intersection curve in XZ 
with straight line segments. We wish to choose 
these in a manner which most closely approximates 
the curve. A good technique is to chose them at 
equally spaced intervals of the angle of the 
normal to the curve. This tends to cluster the 
sample points at areas of high curvature. For 
example, a circle will be approximated by a 
regular polygon while an ellipse will have its 
points clustered near the sharp ends. 

t 

Figure i0 - X Z Sample Point Definition 

The normal to the intersection curve can be found 
from just the X and Z components of the surface 
normal. The mathematical definition of a normal 
pointing at angle ~ is 

or 

~= atan (Zn/Xn) 
or Xn tan~9 + Zn 

Xn sine- Zn cos~ = 0 

This is a generalization of the concept of the 
silhouette edge tracker where the angle<~ is 0~and 
180 ° . We then define new types of edge trackers 
for equal spaced increments of ~ from 0 ° to 360~ 
For the pictures shown here, ~ is in increments of 
22.5 degrees giving 16 samples around a complete 
circle. Each new type of edge tracker has its own 
defining G function calculated as above with the 
appropriate value ofF. It is not necessary, of 
course, to re-evaluate thhe sines and cosines 
whenever G is evaluated. They can be pre-computed 
and stored in a table. The index into this table 
then labels the type of edge tracker. (A somewhat 
different formulation for the Gi is necessary,as 
detailed in [l], if perspective pictures are 
desired.) When a local maximum in Y is passed an 
edge tracker must be created for each G function 
in the same manner as silhouette edge trackers 
were created before. 

4.2 Linking Edge Trackers Together 

The set of edge trackers for all the Gi 
functions are the sample points of the 
intersection curve. A list of just their 
locations in X,Z does not, however, provide 
sufficient information to reconstruct a polygonal 
approximation to the curve. Information about how 
the trackers are connected together must be 
maintained explititly by a set of likns between 
them. In particular, they must be linked together 
in the order in which they occur while tracing 
along the curve. This is easily done when new 
curves are created at local maxima since the 
curves are simple ellipses with one of each type 
of G function around the perimiter. When the scan 
plane passes over a saddle point or other such 
singularity some of the edge trackers will cease 
to exist. This is because a saddle point is a 
local minimum in Y for some normal vector 
directions. This results in some broken chains of 
level curve spans. These breaks are repaired by a 
"sideways" iteration, so named because it moves 
along the level curves of constant Y but varying 
~. THis is sideways from the ordinary iteration 
which follows curves of constant ~ but varying Y. 
Whenever this sideways iteration encounters a 
value of ~ corresponding to one of the tabulated 
directions (and thus a G functions) it creates a 
new edge tracker and links it to the broken chain. 
The process stops when it encounters an already 
existing edge tracker. This process, while slow, 
only needs to be performed when the scan plane 
passes some singularity of the Y function. 

4.3 Turn Points 

The level curves at a particular scan line 
are represented by a chain of edge trackers, each 
one corresponding to an index into a table of 
sines and cosines of ~. This angle rotates 
continuously as the level curve is traced out. We 
therefore expect that the index flags of the edge 
trackers will differ by exactly i between any two 
connected points (except for the end of the table 
wrapping around to the beginning)° One other case 
that can occur, however, is that the function~ 
can have local maxima/minima along the level 
curve, in which case the index value changes by 0 
between the points which straddle this location. 
This change in the direction of rotation of the 
angle will occur at inflection points in the cross 
section curve. This often happens in the vicinity 
of saddle points where the curve could appear as 
below. 

The mathematical definition of such turnabout 
points is derived from setting the directional 
derivative of ~ (in the direction tangent to the 
level curve) to zero. This leads to the 
definition function: 

T(u,v) = Fu(Zn Xnv - Xn Znv) + Fv(Xn Znu - Zn Xnu) 

By creating trackers which follow along the zeroes 
of this function we can ensure that various 
crinkles and folds in the XZ curve are accurately 
represented. These are also the points at which 
the curtain fold problem occurs so watching the 
Xn,Zn direction there can enable detection of this 
problem. 
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Figure ii - Turn Point Definition 

4.4 Results 

The X sampling version of the algorithm may 
be thought of as dynamically slicing the surface 
up into one picture element high polygons. It can 
still yield some noticable errors in the image in 
some circumstances. This occurs notably at 
intersections of surfaces where the straight line 
approximateion to the intersections curves becomes 
obvious. In general, however, the approach 
combines some of the speed of polygon algorithms 
with some of the accuracy of full blown numeric 
patch algorithms to yield good pictures in a 
reasonable amount of time. For smooth shading, 
most of the time is spent in the Y iteration 
routines. This causes the computation time to be 
proportional to the number of active edge trackers 
times the number of scan lines during which they 
are active. The time to draw a sphere, for 
example, was roughly .4 seconds per scan line. 
Some of the more interesting applications of 
parametric surfaces, however, is the use of 
texture mapping, see [2]. In this case, there is 
a term in the timing which is proportional to the 
number of pixels covered by the object, and thus 
the square of the number of scan lines. For 
objects larger than about ]00 pixels, this term 
dominates the timing of the algorithm and the time 
taken in the Y iteration becomes lost in the 
noise. 

5. CONCLUSIONS 

The curved patch algorithm generates much 
smoother looking pictures of curved surfaces than 
can be generated by polygonal approximation. Some 
pictures resulting from the algorithm appear in 
[2]. One disadvantage of the algorithm is its 
complexity. Several more special cases can arise 
than there is roc~ to report on here, These are 
more thoroughly covered in [1]. The complexity 
issue can be improved considerably by further work 
on refining the techniques involved. There are 
still some heuristics involved in the algorithm 
which could be made more rigorous. 

One final advantage of experimenting with 
such algorithms is that, by looking at scan line 
algorithms in a more general light, new insight 
may be gained in the properties of polygon based 
algorithms. 
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