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ABSTRACT 

In 'A New Implementation Technique 
for Applicative Languages' [Tu79a] 
Turner uses combinators to implement 
lambda expressions. This paper 
describes an experimental investigation 
of the efficiency of Turner's technique 
compared with more traditional reducers. 

OVERVIEW 

The basis for comparison of the two 
~ystems is discussed in Section i. This 
is followed by some implementation 
considerations in Section 2, while the 
main results are presented in Section 3. 
Section 4 presents some discussion of 
the results and related issues, and 
conclusions are drawn in Section 5. 

1 BASIS FOR COMPARISON 

i.i Background 

Functional languages are 
characterised by the absence of side 
effects and imperative commands. They 
are the focus of considerable current 
interest for two main reasons 

(i) Their properties of referential 
transparency make them easier to 
reason about than conventional 
languages, and consequently 
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programming errors are less likely, 
and programs are more amenable to 
formal verification. 

(ii) The absence of side effects means 
that expressions can be concurrently 
evaluated bY several cooperating 
processors. This suggests 
functional languages as a base for 
highly parallel computing. 

The two main techniques for 
efficiently implementing functional 
semantics are data flow and reduction. 
This paper concentrates exclusively on 
the implementation of reduction 
techniques. 

The cannonical reduction 
architecture is the lambda calculus, 
which has an extensive literature (eg 
[Ch413, [St77b]) . However, some old 
results derived by Curry and Feys [Cu583 
have been used by Turner [Tu79] to 
implement a reduction machine for the 
combinator calculus. The combinator 
calculus has the same semantics as the 
lambda calculus, but has a rather 
different implementation. Thus the two 
calculi can be thought of as two machine 
codes for a functional .igh-level 
language. The question of which 
implementation performs a computation 
most efficiently then arises naturally, 
and is the question addressed by this 
paper. 

1.2 Combinators 

The combinator calculus is sparsely 
documented, but the source text is Curry 
and Feys [Cu58], while a more readable 
and operational treatment is in 
[Tu79a,b]. In this paper Turner 
demonstrates Curry and Feys' technique 
of abstracting variables from lambda 
expressions to produce an expression 
consisting solely of constant operators 
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(combinators) and data. Curry and Feys 
have shown that two combinators (called 
S and K) are sufficient to implement all 
lambda expressions, where 

S = LAM f. LAM g. LAM x.(f x (g x)) 
and 

K = LAM x. LAM y.x 
However Turner suggests a set of 
combinators which include several simple 
optimisations of S and K, together with 
combinators designed to prevent an 
explosion in the size of an expression 
when abstracting several variables at 
once. 

Combinators lend themselves 
naturally to 'lazy evaluation', a 
technique whereby the evaluation of 
arguments of a function is postponed 
until the value of the argument is 
required, and the result of any 
evaluation is made available to other 
uses of the same argument in the 
function. This technique allows the 
construction of entities such as 
infinite lists. 

It has also been suggested that 
combinators are a useful basis for 
program transformation and verification 
[Di81]. 

Wand [Wa82] describes a technique 
for rewriting the denotational semantics 
of a language using combinators, to 
obtain a compiler for the language and 
the architecture for a suitable target 
machine. Despite an abstract 
development, the resulting operation of 
the machine turns out to be similar to 
that of a conventional one. 

There is a commercially available 
extensible combinator reducer, together 
with a lambda to combinator converter, 
called CRS/I [Be82a]. This system is 
written in C and has so far been 
installed on a microcomputer and a VAX. 

A group based at Cambridge 
University is at present building the 
successor to SKIM [C180], a machine 
specifically designed for efficient 
combinator reduction. Based on bitslice 
technology, SKIM is a conventional von 
Neumann machine with an instruction set 
and memory layout suitable for graph 
operations." 

1.3 Comparison 

To avoid dispute over the precise 
choice of the metric used to compare the 
two implementations, the view taken here 
is that the principle costs of the 
computation should be measured, leaving 

the exact metric open to choice. These 
costs can be counted in terms of the 
number of accesses to data structures 
whose size is potentially unbounded, in 
particular the stack and heap used by 
both reducers. This view, which 
minimises the importance of fine details 
of the reducers themselves, is taken on 
the grounds that 

(i) The reducers, being of bounded size, 
may be store@ in fast memory, 
microcode4 into the processor, and 
provided with special hardware, all 
at fixed cost. 

(ii) Intra-processor acceses will be 
very much faster than accesses to a 
very large global memory, which must 
increase as O(cube root memory 
size), and which are usually slow 
for economic reasons. 

Accesses to the heap and stack are 
accounted separately in this 
investigation since stacks are very 
amenable to optimisation. 

The comparison between the two 
systems was therefore performed by 
writing reducers for each, and counting 
accesses to the heap and stack only, 
ignoring elapsed runtime. The results 
therefore do not depend ~I, the 
efficiency of the reducers themselves, 
or the machine on which the experiments 
were performed. This gives a more 
objective measure for the cost of 
running a reducer, but there is a set of 
design decisions to be made when writing 
the reducers which will affect their 
performance by the above criteria. 
These implementation decisions will now 
be ~escribed. 

2 IMPLEMENTATION CONSIDERATIONS 

Some of the main design decisions 
made when writing the reducers are 
described in this section. In addition 
the main evaluation loop of each reducer 
is shown in the appendix. 

2.1 General 

Both reducers operate with a heap 
consisting solely of two cell nodes. 
Stacks for the reducers are implemented 
as separate entities (not as linked 
lists in the heap) .The reducers are 
written with entirely static variable 
allocation, and explicitly save 
necessary state information (including a 
return address) on their control stack 
during recursion (for instance when 
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evaluating operands for '+') . Recursion 
in the functional expressions is handled 
by using the Y operator (defned by Y f = 
f (Y f)) rather than by static loops in 
the expression. 

2.2 Reduction order 

The Church-Rosser theorem states that 
normal order evaluation will terminate 
if any evauation does. However for a 
lambda reducer, this involves forming a 
closure for the argument of a function 
in order to postpone its evaluation. 
This process is potentially expensive, 
and in practice most lambda reducers 
implement applicative order (strict) 
evaluation (in which the argument is 
evaluated prior to the application of 
the function). This impementation will 
give the same results if it terminates, 
but will fail to terminate in some cases 
where normal order evaluation would do 
so. However, it turns out that normal 
~rder is the 'natural' order for a 
combinator reducer. Three reducers were 
therefore written: a normal order lambda 
reducer (NLR), an applicative order 
lambda reducer (ALR) and a combinator 
reducer (CR) . 

2.3 Data types and operations 

The reducers support the data types 
Integer, Character, Pair, and Boolean. 
Pairs behave like LISP cells, with 
operations 'cons', 'car', 'cdr' . Strings 
are supported as lists of characters, 
while input is handled by regardng an 
input stream as a string. The function 
'open' takes a string identifying the 
9ile as its argument, and returns a 
string wich is the contents of the file. 

2.4 Implementin~ the lambda reducer 

The environment is implemented as a 
linked list in the heap (this makes it 
easy to 'capture' the environment in a 
closure). Environment lookup is not 
precompiled to a fixed offset in the 
environment (which involves no test for 
a matching name). The lambda reducer is 
tail recursive [St77a], which saves 
Control stack accesses in essentially 
iterative situations. The applicative 
order lambda reducer differs from the 
normal order reducer in several respects 
in addition to the immediate difference 
of evaluating the argument before 
applying the function to it. In 
particular, a special case has to be 
made for the 'if' function, and for 
input streams (otherwise the system 

would read in a whole file before 
delivering its first character). 

2.5 Implementinq the combinator reducer 

Turner [Tu79a] contains a good 
description of the details of 
implementing a combinator reducer, and 
the combinator reducer implements the 
combinators S, K, I, B, C, S', B', C', Y 
which he describes. Combinator reduction 
involves reducing graphs, instead of 
environment manipulation, and requires 
an extra stack (called the Reduction 
stack). The stack can also be 
implemented with a pointer reversal 
scheme. 

3 EXPERIMENTS AND RESULTS 

3.1 Test expressions 

In order to perform the comparison, 
it was necessary to have a number of 
text expressions. These were written in 
a functional language called Nose, due 
to Hughes [Hu80]. The Nose compiler 
transforms the test expressions into 
lambda expressions, and expands 
recursive calls into applications of Y. 
It is difficult to meet the criticism 
that the choice of test expressions 
might be biassed. However an attempt was 
made to pick a set of fairly 'typical' 
expressions, which are described 
individually below. They all share one 
factor in common, in that they are all 
small expressions. It might perhaps be 
argued that very different results would 
be obtained for larger expressions. In 
particular, none of them will have very 
many names in scope at any point, so the 
nvironment will be small for the lambda 

reducer. Unfortunately, simulations are 
extremely costly in computing resources, 
so investigation of 'real' sized 
problems was precluded. The test 
expressions used were as follows: 

Factorial. Computes the 
factorials recursively. 

first I0 

Fibonacci. Uses the doubly ~ecursive 
algorithm to compute the first 7 
Fibonacci numbers. 

List reverse. Reverses a list of 15 
elements. 

Primes (I) . Computes the first 15 primes 
by test division. 

Primes (2). Computes the first i0 primes 
by a functional Seive of Eratosthenes. 
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Permutations. Permutes 3 elements. 

Towers of Hanoi. Uses 5 discs on 3 
pillars. 

Ackermann. A good source of deep 
recursion, called with arguments 2 and 
3. 

Sort. Sorts a list of 7 elements by 
linear insertion. 

~racket abstraction. Performs the lambda 
to combinator transformation on the 
expression LAM x.(LAM y.(a x b y c)), 
using S, K, I only. 

Twice. Twice f x = f (f x) in the 
expression Twice Twice Twice succ 1 

Numbers. Defines and manipulates 
~ o n a l  numbers' . The number n is 
represented as a function of two 
argments, such that: n a b -> a (a (a 
.... ( a b) ...)) here there are n 
applications of a to b. In this symbolic 
arithmetic system, the expression 
calculates 3 squared and the first 5 
factorials. 

3.2 Results 

Each reducer was used to reduce each 
test expression, and results were 
accumulated for the following 
parameters: 

Size of expression (in tokens) 
Number of store accesses 
Amount of store claimed 
Number of stack accesses 
Maximum stack depth 

The number of store accesses 
includes all heap accesses, including 
those made during cons operations, but 
excluding stack accesses. The number of 
stack accesses includes both control and 
reduction stacks for the combinator 
reducer, and the maximum stack depth is 
calculated as the sum of the maximum 
depths of both stacks. In some cases no 
figure is supplied for the applicative 
lambda reducer. This is because these 
expressions involved infinite lists 
which would cause it to fail to 
terminate. 

Table 1 shows various performance 
indicators for the ALR and NLR, 
normalised to those for the CR. Thus a 
figure of 2 in the 'store claimed' 
column means that the lambda reducer 
claimed twice as much store as the 
combinator reducer. Figures for the NLR 
are in brackets. 

Fxpression Size of Store Store 
expression accesses claimed 

Factorial 0.85 
Fibonacci 0.8 
Primes (i) 0.8 
Primes (2) 0.85 
List reversing 1.0 
Permutations 0.9 
Towers of Hanoi 0.7 
Ackermann 0.75 
Sort 0.75 
Bracket abstr. 0.75 
Twice 1.85 
Numbers 1.3 

Stack Stack 
accesses depth 

2.9(4.8) 2.2(4.6) 1.6(2.9) 
2.7(4.5) 2.2(4.5) 1.6(2.8) 

(4.2) (3.4) (2.4) 
(5.2) (4.6) (2.9) 

3.3(4.5) 1.4(3.8) 1.6(2.8) 
2.7(3.8) 1.3(3.1) 1.3(2.0) 
1.9(3.5) 1.4(2.8) 0.8(2.4) 
1.9(3.2) 1.4(2.8) 1.3(2.2) 
1.6(2.7) 0.8(2.1) 1.0(1.7) 
2.6(4.7) 1.6(4.2) 1.5(2.4) 
2.0(3.0) 2.1(3.0) 1.3(2.0) 

(4.4) (3.4) (3.3) 

2 .7(5 .0) 
3 .2(5 .8) 

(13 .8) 
(7 .0) 

3 .2(10 .3) 
1 .7(6 .2) 
4.3(2 .i) 
3 .3(12.2) 
3 .3(4 .8) 
4.0(2 .8) 
2 .5(4 .9) 

(22 .3) 

'Average' 0.9 2.4(4.0) 1 .6(3 .4) 1.3(2.5) 

Table 1 

3.2(8) 
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3.3 Other results 

Though the full tables are not 
presented here, the data analysed 
suggested the following further general 
conclusions: 

(a) The CR does approximately 1.3 times 
as many store operations as stack 
operations, while both the ALR and 
NLR do about 2.2 times as many store 
operations as stack operations. This 
means that using fast hardware to 
supDort the stack(s) would have a 
significant effect in both cases, 
but the CR would benefit more than 
the NLR or ALR. 

b) Both the lambda reducers spend 
roughly half their store accesses in 
environment lookup. This suggests 
that a really substantial 
improvement in this area could make 
the ALR comparable with the CR, but 
the NLR would still be slower even 
with free environment lookup. 

c) 'Nearly a quarter of all reductions 
performed by the CR are I-node 
reductions. This suggests that using 
the garbage collector to collect 
redundant I-nodes would make a 
significant improvement to the CR. 

d) The Primes (i) expression was run to 
produce larger lists of primes (up 
to i00 primes) .The factor by which 
the CR outperformed the NLR (in 
terms of store accesses) reduced 
from 4.0 to 3.5 and then appeared to 
stabilise. This suggests that the 
results hold for larger computations 
as well. 

4 DISCUSSION 

This section discusses some further 
issues involved in the choice of 
implementation of a functional language. 

4.10ptimi sations 

It is possible that the results in 
this paper are swamped ty the effects of 
the various possible optimisations that 
may be performed on the reducers. 
However the range of possible 
optimisations does not seem to strongly 
favour one reducer or the other, and the 
results presented in this paper may form 
a basis for further work. A brief 
summary of the major optimisations known 
to the author will now be given. 

Stack optimisations 

Both reducers use a stack fairly 
heavily, and there are several 
well-known optimisation techniques for 
stacks. The simplest is to provide a 
fast hardware cache for the stack, while 
other ideas include racks [St79b] (a 
hardware assisted on-the-fly peephole 
optimiser for stack access) and 
'phantom' stacks [St79a] (which speeds 
up access to stacks held as linked lists 
in the heap). 

Combinator optimisations 

The most obvious fine tuning that 
can be done to a combinator reducer is 
to choose the best set of combinators 
(the 'instruction set' of the machine). 
Very little is known at the moment about 
the effect of using different combinator 
sets, but it is unlikely that the set 
chosen for this investigation is 
optimum. Hughes [Hu80] suggests that a 
significant speed improvement can be 
achieved by choosing a combinator set 
specifically for the expression to be 
reduced (he calls these 
expression-specific combinators 
super-combinators). The compilation 
step to generate the super-combinators 
can be done in linear time. 

It is possible to use the garbage 
collector to 'short out' I-nodes in a 
combinator expression. These serve only 
as indirection nodes and waste both 
space and time. In view of the result 
that almost a quarter of all reductions 
are I-reductions, it seems likely that 
this will give some speed increase at 
very modest cost. This technique is 
implemented in CRS/I and SKIM. 

Lambda optimisations 

A possible semi-compilation which 
would have considerable benefits is the 
compile-time determination of 
environment search paths. The state of 
the art in this and other optimisations 
is probably represented by the FLIT 
Scheme chip [Su81]. 

4.2 Compilation 

It seems at first that the most 
significant optimisation to both 
reducers would be to compile the 
expressions to the machine code of the 
target machine. However, there are 
really two phases to compilation. The 
first preprocesses the expression, doing 
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any work that only needs to be done once 
(predetermining offsets in the 
environment is a classic example). The 
secon4 phase generates co~e that the 
target machine can execute directly. 

An dlternative to the code 
generation phase is to microcode a 
reducer into the target machine, so that 
it can execute the output of the 
preprocessor directly (most machines' 
instruction sets are in any case 
interpreted by microcode) . This view 
suggests that the benefits obtained from 
code generation could equally well be 
gained from re-microcoding the target 
machine. The more fundamental benefits 
of compilation come from the 
preprocessing phase. 

For conventional machines, of 
course, compilation is very beneficial. 
There are many LISP compilers available, 
and Johnsson [Jo81] descibes a design 
for a combinator compiler. However no 
performance figures are available for 
the latter as yet. 

It is possible to regard a lambda to 
combinator converter as a preprocessor 
which performs the operation of 
replacing references to variable names 
with pointers to the relevant piece of 
code. This operation is performed by 
all compilers, from assemblers upward, 
an~ we might expect it to give the 
combinator reducer an advantage over the 
lambda reducer. 

4.3 Scale effects 

An important auestion is whether the 
results of Section 3 will continue to 
hold for large expressions, and deep 
recursion. For larger expressions the 
CR will have to use many reductions to 
work the library functions into the 
middle of the expression where they are 
needed, while the LR will have to search 
a longer environment. However, the CR 
will only have to perform these 
overheads once, since the results of a 
reduction (eg workina in a library 
function towards the middle) are never 
forgotten, whereas the LR has to look up 
the name of the function every time it 
is used. Thus the CR may perform even 
better on larger programs. Preliminary 
results (3.3 (d) above) support this 
claim. 

4.4 Other considerations 

The raw efficiency of the two 
reduction systems is not the only factor 
that will be taken into account when 
choosing an implementation of a 
functional language. 

Functional programs may be harder to 
debug than imperative ones, because of 
the absence of 'flow of control' and 
'state' information. This is 
particularly so in the case of 
combinator expressions, since they have 
no variables. On the other band, the 
lambda model corresponds fairly well 
with the 'way programmers think' and 
rather sophisticated debugging systems 
exist for some LISP implementations. A 
considerable amount of work will need to 
be done before combinator 
implementations can rival such systems, 
but there is no reason to suppose that 
it is impossible. This matter is 
further discussed in [Be82b]. 

Both lambda and combinator 
expressions may be concurrently 
evaluated by several processors. 
However, in the case of the lambda 
reducer, concurrent evaluation of parts 
of an expression requires concurrent 
access to the environment in which it is 
to be evaluated. For a sufficiently 
parallel expression, such accesses could 
saturate the bandwidth of the memory 
unit(s) in which the environment is 
held. By contrast, a combinator 
expression is complete in itself, and 
arguments are distributed within a 
function by pointer replication and 
graph rearrangement. This is an 
inherently more decentralised strategy, 
which would be an advantage on a highly 
parallel system. 

5 CONCLUSIONS 

An experimental investigation of the 
relative efficiencies of a combinator 
and a lambda reducer has been described. 
The costs of a computation are counted 
in terms of accesses to data structures 
whose size is potentially unbounded, 
since the cost of such accesses is the 
only factor that must increase as larger 
computations are undertaken. Three 
reducers were written, a combinator 
reducer (CR), a normal order lambda 
reducer (NLR) and an applicative order 
lambda reducer (ALR), and their 
performance was measured. Some 
discussion of possible ontimisations to 
each reducer, the effects of 
compilation, and the suitability of the 
reducers for parallel processors, has 
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been presented. 

The CR outperforms the NLR by a 
factor between 3 and 5 (taking store 
accesses as the main indicator), and the 
ALR by a factor between 1.5 and 3. 
Furthermore, the easiest hardware 
support to provide for either system 
ould be a fast stack cache, and this 

would not only be cheaper for the CR 
(smaller stack) but also would give the 
CR an even greater advantage (since it 
~pends a greater proportion of its time 
in stack access). 

However, it is possible that some 
seemingly unimDortant design decision 
has substantially affected the results, 
and a factor of 3 to 5 might be swamped 
by such effects. For instance there 
seems some reason to believe that the 
exact extent and method of optimisation 
in the combinator code (eg introduction 
of S', B', C') causes major effects on 
the runtime of programs. This subject 
would benefit greatly from a totally 
independent investigation, preferably by 
someone determined to prove that lambda 
expressions were 'better', and with 
experience of writing optimal lambda 
interpreters. 

Perhaps the most important 
conclusion is that a combinatorial 
implementation of a functional language 
is at least competitive with the better 
known alternatives, and thus deserves 
serious consideration by those 
implementing reduction architectures. 

APPENDIX 

This appendix shows code for the main evaluation 
loop of each reducer. It is presented so that the 
major design decisions made in constructing these 
loops may be seen. The reducers were both written 
i n  BCPL. 

Combinator reducer 

Reduce( Zxp ) = VALOP 
$( 

LET Result = 0 
Push( CurrentExp ) [I Save 
Push( 0 ) II Dummy return address 
NewFrame() I[ New stack frame 

II Uses one push to save 
II old stack depth. 

11 Main loop 
EnStack() REPEATWHILE Perform() 
Result := UnStack() 

[[ Tidy up 
UnFrame() 
Pop() 
CurrentExp := Pop() 
RESULTIS Result 

$) 

II Uses one pop. 
[[ Dummy return address 
II Restore 

AND P e r f o r m ( )  = VALOF 
[[ T h i s  i s  J u s t  a s w i t c h  o n  t h e  o p e r a t o r .  
$( 

IF  C u r r e n t E x p - S 0 p  THEN RESULTIS DoS()  
IF CurrentExp=KOp THEN RESULTIS DoK() 

IF CurrentExp=YOp THEN RESULTIS DoY() 
RESULTIS CurrentExp II Default 

$) 

AND EnStack() BE 
$( 
W~ILE IsAppllcatlon( CurrentExp ) DO 
$( Push( CurrentExp ) 
CurrentExp := Read( CurrentExp ) 

$)S) 

AND UnStack() ~ VALoF 
$( 

WHILE StackDepth() > 0 DO 
CurrentExp :- Pop() 

RESULTIS CurrentExp 
$) 
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Lambda reducer 

LET Reduce( Exp, Env ) = VALOF 
$( 

LET Result = 0 
Push( CurrentExp ) II Save 
Push( CurrentEnv ) 
Push( 0 ) ]I Dummy return address 

]~ ~ain reduction 
Result := CheapReduce( Exp, Env ) 

Pop() II Dummy return address 
CurrentEnv := Pop() II Restore 
CurrentExp := Pop() 
RESULTIS Result 

S) 

AND CheapReduce( Exp, Env ) = VALOF 
$( 

CurrentExp = Exp 
Cur rentEnv = Env 

TEST Atom( Current~xp ) THEN 
TEST Isldentifiev( CurrentExp ) THEN 

RESULTIS LookUp( CurrentExp, CurrentEnv ) 
ELS E 

RESULTI S Cur rentExp 
ELSE 
$( 

LET Fun = Read( CurrentExp ) 
SWITCHON Fun INTO 
$( 

CASE SuspendOp : I I Suspension 
$( 

LET Arg = Tail( CurrentExp ) 
RESULTIS Reduce( Head( CurrentExp ), 

Tail( CurrentExp ) ) 
$) 

CASE FunArgOp : RESULTIS CurrentExp 

CASE LamOp: RESULTIS ~[ Lambda expression 
Cons( FunArgOp, 

Cons ( CurrentEnv, 
Tail( CurrentExp ) ) ) 

DEFAULT: RESULTIS If Application 
Apply( Reduce( Fun, CurrentEnv), 

Cons( SuspendOp, ~I Form suspension 
Cons( Tail( CurrentExp ), 

CurrentEnv ) ) ) 
$) 

$) 
$) 

AND A p p l y (  Fun ,  Arg ) - VALOF 
$( 

TEST Atom( Fun ) THEN ~ ~ Must  be  b u i l t  i n  o p .  
RESULTIS O p e r a t e (  F un ,  Arg ) 

ELSE 
TEST Head(  Fun ) = FunArg0p THEN 
$( 

LET C l o s u r e  - T a i l (  Fun ) 
LET Env - Head( Closure ) 
LET Value = Tail( Closure ) 
LET Param - Head( Value ) 
LET Body = Tail( Value ) 

LET NewEnv = Bind( Env, Param, Arg ) 
RESULTIS CheapReduce( Body, NewEnv ) 

$) 
ELS E 

Error() 
$) 

AND Operate( Fun, Arg ) = VALOF 
$( 

IF Fun = IfOp THEN RESULTIS Dolf( Arg ) 

IF Fun = DivideOp THEN RESULTIS DoDivide( Arg ) 

If Default 
RESULTIS Cons( Fun, Reduce( Arg, ClobalEnv ) 

$) 

AND Bind( Env, Param, Arg ) = 
Cons( Env, Cons( Param, Arg ) ) 

AND LookUp( Ide, Env ) = VALOF 
$( 

LET Temp = Env 
UNTIL Temp ffi Nil DO 
$( 

LET Envltem = Tail( Temp ) 
IF Head( Envltem ) ffi Ide THEN 
$( 

LET Value ffi Tail( Envltem ) 
Push( Temp ) 
Value := Reduce( Value, GlobalEnv ) 
Temp := Pop() 
SetTail( Tail( Temp ), Value ) 
RESULTIS Value 

$) 
RESULTIS Ide ~I Default 

$) 
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