
AN INVESTIGATION OF THE RELATIVE EFFICIENCIES OF

COMBINATORS AND LAMBDA EXPRESSIONS

by

Simon L Peyton Jones
Beale Electronic Systems Ltd
~itehall, Wraysbury, UK.

ABSTRACT

In 'A New Implementation Technique
for Applicative Languages' [Tu79a]
Turner uses combinators to implement
lambda expressions. This paper
describes an experimental investigation
of the efficiency of Turner's technique
compared with more traditional reducers.

OVERVIEW

The basis for comparison of the two
~ystems is discussed in Section i. This
is followed by some implementation
considerations in Section 2, while the
main results are presented in Section 3.
Section 4 presents some discussion of
the results and related issues, and
conclusions are drawn in Section 5.

1 BASIS FOR COMPARISON

i.i Background

Functional languages are
characterised by the absence of side
effects and imperative commands. They
are the focus of considerable current
interest for two main reasons

(i) Their properties of referential
transparency make them easier to
reason about than conventional
languages, and consequently

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-082-6/82/008/0150 $00.75

programming errors are less likely,
and programs are more amenable to
formal verification.

(ii) The absence of side effects means
that expressions can be concurrently
evaluated bY several cooperating
processors. This suggests
functional languages as a base for
highly parallel computing.

The two main techniques for
efficiently implementing functional
semantics are data flow and reduction.
This paper concentrates exclusively on
the implementation of reduction
techniques.

The cannonical reduction
architecture is the lambda calculus,
which has an extensive literature (eg
[Ch413, [St77b]) . However, some old
results derived by Curry and Feys [Cu583
have been used by Turner [Tu79] to
implement a reduction machine for the
combinator calculus. The combinator
calculus has the same semantics as the
lambda calculus, but has a rather
different implementation. Thus the two
calculi can be thought of as two machine
codes for a functional .igh-level
language. The question of which
implementation performs a computation
most efficiently then arises naturally,
and is the question addressed by this
paper.

1.2 Combinators

The combinator calculus is sparsely
documented, but the source text is Curry
and Feys [Cu58], while a more readable
and operational treatment is in
[Tu79a,b]. In this paper Turner
demonstrates Curry and Feys' technique
of abstracting variables from lambda
expressions to produce an expression
consisting solely of constant operators

150

(combinators) and data. Curry and Feys
have shown that two combinators (called
S and K) are sufficient to implement all
lambda expressions, where

S = LAM f. LAM g. LAM x.(f x (g x))
and

K = LAM x. LAM y.x
However Turner suggests a set of
combinators which include several simple
optimisations of S and K, together with
combinators designed to prevent an
explosion in the size of an expression
when abstracting several variables at
once.

Combinators lend themselves
naturally to 'lazy evaluation', a
technique whereby the evaluation of
arguments of a function is postponed
until the value of the argument is
required, and the result of any
evaluation is made available to other
uses of the same argument in the
function. This technique allows the
construction of entities such as
infinite lists.

It has also been suggested that
combinators are a useful basis for
program transformation and verification
[Di81].

Wand [Wa82] describes a technique
for rewriting the denotational semantics
of a language using combinators, to
obtain a compiler for the language and
the architecture for a suitable target
machine. Despite an abstract
development, the resulting operation of
the machine turns out to be similar to
that of a conventional one.

There is a commercially available
extensible combinator reducer, together
with a lambda to combinator converter,
called CRS/I [Be82a]. This system is
written in C and has so far been
installed on a microcomputer and a VAX.

A group based at Cambridge
University is at present building the
successor to SKIM [C180], a machine
specifically designed for efficient
combinator reduction. Based on bitslice
technology, SKIM is a conventional von
Neumann machine with an instruction set
and memory layout suitable for graph
operations."

1.3 Comparison

To avoid dispute over the precise
choice of the metric used to compare the
two implementations, the view taken here
is that the principle costs of the
computation should be measured, leaving

the exact metric open to choice. These
costs can be counted in terms of the
number of accesses to data structures
whose size is potentially unbounded, in
particular the stack and heap used by
both reducers. This view, which
minimises the importance of fine details
of the reducers themselves, is taken on
the grounds that

(i) The reducers, being of bounded size,
may be store@ in fast memory,
microcode4 into the processor, and
provided with special hardware, all
at fixed cost.

(ii) Intra-processor acceses will be
very much faster than accesses to a
very large global memory, which must
increase as O(cube root memory
size), and which are usually slow
for economic reasons.

Accesses to the heap and stack are
accounted separately in this
investigation since stacks are very
amenable to optimisation.

The comparison between the two
systems was therefore performed by
writing reducers for each, and counting
accesses to the heap and stack only,
ignoring elapsed runtime. The results
therefore do not depend ~I, the
efficiency of the reducers themselves,
or the machine on which the experiments
were performed. This gives a more
objective measure for the cost of
running a reducer, but there is a set of
design decisions to be made when writing
the reducers which will affect their
performance by the above criteria.
These implementation decisions will now
be ~escribed.

2 IMPLEMENTATION CONSIDERATIONS

Some of the main design decisions
made when writing the reducers are
described in this section. In addition
the main evaluation loop of each reducer
is shown in the appendix.

2.1 General

Both reducers operate with a heap
consisting solely of two cell nodes.
Stacks for the reducers are implemented
as separate entities (not as linked
lists in the heap) .The reducers are
written with entirely static variable
allocation, and explicitly save
necessary state information (including a
return address) on their control stack
during recursion (for instance when

151

evaluating operands for '+') . Recursion
in the functional expressions is handled
by using the Y operator (defned by Y f =
f (Y f)) rather than by static loops in
the expression.

2.2 Reduction order

The Church-Rosser theorem states that
normal order evaluation will terminate
if any evauation does. However for a
lambda reducer, this involves forming a
closure for the argument of a function
in order to postpone its evaluation.
This process is potentially expensive,
and in practice most lambda reducers
implement applicative order (strict)
evaluation (in which the argument is
evaluated prior to the application of
the function). This impementation will
give the same results if it terminates,
but will fail to terminate in some cases
where normal order evaluation would do
so. However, it turns out that normal
~rder is the 'natural' order for a
combinator reducer. Three reducers were
therefore written: a normal order lambda
reducer (NLR), an applicative order
lambda reducer (ALR) and a combinator
reducer (CR) .

2.3 Data types and operations

The reducers support the data types
Integer, Character, Pair, and Boolean.
Pairs behave like LISP cells, with
operations 'cons', 'car', 'cdr' . Strings
are supported as lists of characters,
while input is handled by regardng an
input stream as a string. The function
'open' takes a string identifying the
9ile as its argument, and returns a
string wich is the contents of the file.

2.4 Implementin~ the lambda reducer

The environment is implemented as a
linked list in the heap (this makes it
easy to 'capture' the environment in a
closure). Environment lookup is not
precompiled to a fixed offset in the
environment (which involves no test for
a matching name). The lambda reducer is
tail recursive [St77a], which saves
Control stack accesses in essentially
iterative situations. The applicative
order lambda reducer differs from the
normal order reducer in several respects
in addition to the immediate difference
of evaluating the argument before
applying the function to it. In
particular, a special case has to be
made for the 'if' function, and for
input streams (otherwise the system

would read in a whole file before
delivering its first character).

2.5 Implementinq the combinator reducer

Turner [Tu79a] contains a good
description of the details of
implementing a combinator reducer, and
the combinator reducer implements the
combinators S, K, I, B, C, S', B', C', Y
which he describes. Combinator reduction
involves reducing graphs, instead of
environment manipulation, and requires
an extra stack (called the Reduction
stack). The stack can also be
implemented with a pointer reversal
scheme.

3 EXPERIMENTS AND RESULTS

3.1 Test expressions

In order to perform the comparison,
it was necessary to have a number of
text expressions. These were written in
a functional language called Nose, due
to Hughes [Hu80]. The Nose compiler
transforms the test expressions into
lambda expressions, and expands
recursive calls into applications of Y.
It is difficult to meet the criticism
that the choice of test expressions
might be biassed. However an attempt was
made to pick a set of fairly 'typical'
expressions, which are described
individually below. They all share one
factor in common, in that they are all
small expressions. It might perhaps be
argued that very different results would
be obtained for larger expressions. In
particular, none of them will have very
many names in scope at any point, so the
nvironment will be small for the lambda

reducer. Unfortunately, simulations are
extremely costly in computing resources,
so investigation of 'real' sized
problems was precluded. The test
expressions used were as follows:

Factorial. Computes the
factorials recursively.

first I0

Fibonacci. Uses the doubly ~ecursive
algorithm to compute the first 7
Fibonacci numbers.

List reverse. Reverses a list of 15
elements.

Primes (I) . Computes the first 15 primes
by test division.

Primes (2). Computes the first i0 primes
by a functional Seive of Eratosthenes.

152

Permutations. Permutes 3 elements.

Towers of Hanoi. Uses 5 discs on 3
pillars.

Ackermann. A good source of deep
recursion, called with arguments 2 and
3.

Sort. Sorts a list of 7 elements by
linear insertion.

~racket abstraction. Performs the lambda
to combinator transformation on the
expression LAM x.(LAM y.(a x b y c)),
using S, K, I only.

Twice. Twice f x = f (f x) in the
expression Twice Twice Twice succ 1

Numbers. Defines and manipulates
~ o n a l numbers' . The number n is
represented as a function of two
argments, such that: n a b -> a (a (a
.... (a b) ...)) here there are n
applications of a to b. In this symbolic
arithmetic system, the expression
calculates 3 squared and the first 5
factorials.

3.2 Results

Each reducer was used to reduce each
test expression, and results were
accumulated for the following
parameters:

Size of expression (in tokens)
Number of store accesses
Amount of store claimed
Number of stack accesses
Maximum stack depth

The number of store accesses
includes all heap accesses, including
those made during cons operations, but
excluding stack accesses. The number of
stack accesses includes both control and
reduction stacks for the combinator
reducer, and the maximum stack depth is
calculated as the sum of the maximum
depths of both stacks. In some cases no
figure is supplied for the applicative
lambda reducer. This is because these
expressions involved infinite lists
which would cause it to fail to
terminate.

Table 1 shows various performance
indicators for the ALR and NLR,
normalised to those for the CR. Thus a
figure of 2 in the 'store claimed'
column means that the lambda reducer
claimed twice as much store as the
combinator reducer. Figures for the NLR
are in brackets.

Fxpression Size of Store Store
expression accesses claimed

Factorial 0.85
Fibonacci 0.8
Primes (i) 0.8
Primes (2) 0.85
List reversing 1.0
Permutations 0.9
Towers of Hanoi 0.7
Ackermann 0.75
Sort 0.75
Bracket abstr. 0.75
Twice 1.85
Numbers 1.3

Stack Stack
accesses depth

2.9(4.8) 2.2(4.6) 1.6(2.9)
2.7(4.5) 2.2(4.5) 1.6(2.8)

(4.2) (3.4) (2.4)
(5.2) (4.6) (2.9)

3.3(4.5) 1.4(3.8) 1.6(2.8)
2.7(3.8) 1.3(3.1) 1.3(2.0)
1.9(3.5) 1.4(2.8) 0.8(2.4)
1.9(3.2) 1.4(2.8) 1.3(2.2)
1.6(2.7) 0.8(2.1) 1.0(1.7)
2.6(4.7) 1.6(4.2) 1.5(2.4)
2.0(3.0) 2.1(3.0) 1.3(2.0)

(4.4) (3.4) (3.3)

2 .7(5 .0)
3 .2(5 .8)

(13 .8)
(7 .0)

3 .2(10 .3)
1 .7(6 .2)
4.3(2 .i)
3 .3(12.2)
3 .3(4 .8)
4.0(2 .8)
2 .5(4 .9)

(22 .3)

'Average' 0.9 2.4(4.0) 1 .6(3 .4) 1.3(2.5)

Table 1

3.2(8)

153

3.3 Other results

Though the full tables are not
presented here, the data analysed
suggested the following further general
conclusions:

(a) The CR does approximately 1.3 times
as many store operations as stack
operations, while both the ALR and
NLR do about 2.2 times as many store
operations as stack operations. This
means that using fast hardware to
supDort the stack(s) would have a
significant effect in both cases,
but the CR would benefit more than
the NLR or ALR.

b) Both the lambda reducers spend
roughly half their store accesses in
environment lookup. This suggests
that a really substantial
improvement in this area could make
the ALR comparable with the CR, but
the NLR would still be slower even
with free environment lookup.

c) 'Nearly a quarter of all reductions
performed by the CR are I-node
reductions. This suggests that using
the garbage collector to collect
redundant I-nodes would make a
significant improvement to the CR.

d) The Primes (i) expression was run to
produce larger lists of primes (up
to i00 primes) .The factor by which
the CR outperformed the NLR (in
terms of store accesses) reduced
from 4.0 to 3.5 and then appeared to
stabilise. This suggests that the
results hold for larger computations
as well.

4 DISCUSSION

This section discusses some further
issues involved in the choice of
implementation of a functional language.

4.10ptimi sations

It is possible that the results in
this paper are swamped ty the effects of
the various possible optimisations that
may be performed on the reducers.
However the range of possible
optimisations does not seem to strongly
favour one reducer or the other, and the
results presented in this paper may form
a basis for further work. A brief
summary of the major optimisations known
to the author will now be given.

Stack optimisations

Both reducers use a stack fairly
heavily, and there are several
well-known optimisation techniques for
stacks. The simplest is to provide a
fast hardware cache for the stack, while
other ideas include racks [St79b] (a
hardware assisted on-the-fly peephole
optimiser for stack access) and
'phantom' stacks [St79a] (which speeds
up access to stacks held as linked lists
in the heap).

Combinator optimisations

The most obvious fine tuning that
can be done to a combinator reducer is
to choose the best set of combinators
(the 'instruction set' of the machine).
Very little is known at the moment about
the effect of using different combinator
sets, but it is unlikely that the set
chosen for this investigation is
optimum. Hughes [Hu80] suggests that a
significant speed improvement can be
achieved by choosing a combinator set
specifically for the expression to be
reduced (he calls these
expression-specific combinators
super-combinators). The compilation
step to generate the super-combinators
can be done in linear time.

It is possible to use the garbage
collector to 'short out' I-nodes in a
combinator expression. These serve only
as indirection nodes and waste both
space and time. In view of the result
that almost a quarter of all reductions
are I-reductions, it seems likely that
this will give some speed increase at
very modest cost. This technique is
implemented in CRS/I and SKIM.

Lambda optimisations

A possible semi-compilation which
would have considerable benefits is the
compile-time determination of
environment search paths. The state of
the art in this and other optimisations
is probably represented by the FLIT
Scheme chip [Su81].

4.2 Compilation

It seems at first that the most
significant optimisation to both
reducers would be to compile the
expressions to the machine code of the
target machine. However, there are
really two phases to compilation. The
first preprocesses the expression, doing

1 6 4

any work that only needs to be done once
(predetermining offsets in the
environment is a classic example). The
secon4 phase generates co~e that the
target machine can execute directly.

An dlternative to the code
generation phase is to microcode a
reducer into the target machine, so that
it can execute the output of the
preprocessor directly (most machines'
instruction sets are in any case
interpreted by microcode) . This view
suggests that the benefits obtained from
code generation could equally well be
gained from re-microcoding the target
machine. The more fundamental benefits
of compilation come from the
preprocessing phase.

For conventional machines, of
course, compilation is very beneficial.
There are many LISP compilers available,
and Johnsson [Jo81] descibes a design
for a combinator compiler. However no
performance figures are available for
the latter as yet.

It is possible to regard a lambda to
combinator converter as a preprocessor
which performs the operation of
replacing references to variable names
with pointers to the relevant piece of
code. This operation is performed by
all compilers, from assemblers upward,
an~ we might expect it to give the
combinator reducer an advantage over the
lambda reducer.

4.3 Scale effects

An important auestion is whether the
results of Section 3 will continue to
hold for large expressions, and deep
recursion. For larger expressions the
CR will have to use many reductions to
work the library functions into the
middle of the expression where they are
needed, while the LR will have to search
a longer environment. However, the CR
will only have to perform these
overheads once, since the results of a
reduction (eg workina in a library
function towards the middle) are never
forgotten, whereas the LR has to look up
the name of the function every time it
is used. Thus the CR may perform even
better on larger programs. Preliminary
results (3.3 (d) above) support this
claim.

4.4 Other considerations

The raw efficiency of the two
reduction systems is not the only factor
that will be taken into account when
choosing an implementation of a
functional language.

Functional programs may be harder to
debug than imperative ones, because of
the absence of 'flow of control' and
'state' information. This is
particularly so in the case of
combinator expressions, since they have
no variables. On the other band, the
lambda model corresponds fairly well
with the 'way programmers think' and
rather sophisticated debugging systems
exist for some LISP implementations. A
considerable amount of work will need to
be done before combinator
implementations can rival such systems,
but there is no reason to suppose that
it is impossible. This matter is
further discussed in [Be82b].

Both lambda and combinator
expressions may be concurrently
evaluated by several processors.
However, in the case of the lambda
reducer, concurrent evaluation of parts
of an expression requires concurrent
access to the environment in which it is
to be evaluated. For a sufficiently
parallel expression, such accesses could
saturate the bandwidth of the memory
unit(s) in which the environment is
held. By contrast, a combinator
expression is complete in itself, and
arguments are distributed within a
function by pointer replication and
graph rearrangement. This is an
inherently more decentralised strategy,
which would be an advantage on a highly
parallel system.

5 CONCLUSIONS

An experimental investigation of the
relative efficiencies of a combinator
and a lambda reducer has been described.
The costs of a computation are counted
in terms of accesses to data structures
whose size is potentially unbounded,
since the cost of such accesses is the
only factor that must increase as larger
computations are undertaken. Three
reducers were written, a combinator
reducer (CR), a normal order lambda
reducer (NLR) and an applicative order
lambda reducer (ALR), and their
performance was measured. Some
discussion of possible ontimisations to
each reducer, the effects of
compilation, and the suitability of the
reducers for parallel processors, has

155

been presented.

The CR outperforms the NLR by a
factor between 3 and 5 (taking store
accesses as the main indicator), and the
ALR by a factor between 1.5 and 3.
Furthermore, the easiest hardware
support to provide for either system
ould be a fast stack cache, and this

would not only be cheaper for the CR
(smaller stack) but also would give the
CR an even greater advantage (since it
~pends a greater proportion of its time
in stack access).

However, it is possible that some
seemingly unimDortant design decision
has substantially affected the results,
and a factor of 3 to 5 might be swamped
by such effects. For instance there
seems some reason to believe that the
exact extent and method of optimisation
in the combinator code (eg introduction
of S', B', C') causes major effects on
the runtime of programs. This subject
would benefit greatly from a totally
independent investigation, preferably by
someone determined to prove that lambda
expressions were 'better', and with
experience of writing optimal lambda
interpreters.

Perhaps the most important
conclusion is that a combinatorial
implementation of a functional language
is at least competitive with the better
known alternatives, and thus deserves
serious consideration by those
implementing reduction architectures.

APPENDIX

This appendix shows code for the main evaluation
loop of each reducer. It is presented so that the
major design decisions made in constructing these
loops may be seen. The reducers were both written
i n BCPL.

Combinator reducer

Reduce(Zxp) = VALOP
$(

LET Result = 0
Push(CurrentExp) [I Save
Push(0) II Dummy return address
NewFrame() I[New stack frame

II Uses one push to save
II old stack depth.

11 Main loop
EnStack() REPEATWHILE Perform()
Result := UnStack()

[[Tidy up
UnFrame()
Pop()
CurrentExp := Pop()
RESULTIS Result

$)

II Uses one pop.
[[Dummy return address
II Restore

AND P e r f o r m () = VALOF
[[T h i s i s J u s t a s w i t c h o n t h e o p e r a t o r .
$(

IF C u r r e n t E x p - S 0 p THEN RESULTIS DoS()
IF CurrentExp=KOp THEN RESULTIS DoK()

IF CurrentExp=YOp THEN RESULTIS DoY()
RESULTIS CurrentExp II Default

$)

AND EnStack() BE
$(
W~ILE IsAppllcatlon(CurrentExp) DO
$(Push(CurrentExp)
CurrentExp := Read(CurrentExp)

$)S)

AND UnStack() ~ VALoF
$(

WHILE StackDepth() > 0 DO
CurrentExp :- Pop()

RESULTIS CurrentExp
$)

156

Lambda reducer

LET Reduce(Exp, Env) = VALOF
$(

LET Result = 0
Push(CurrentExp) II Save
Push(CurrentEnv)
Push(0)]I Dummy return address

]~ ~ain reduction
Result := CheapReduce(Exp, Env)

Pop() II Dummy return address
CurrentEnv := Pop() II Restore
CurrentExp := Pop()
RESULTIS Result

S)

AND CheapReduce(Exp, Env) = VALOF
$(

CurrentExp = Exp
Cur rentEnv = Env

TEST Atom(Current~xp) THEN
TEST Isldentifiev(CurrentExp) THEN

RESULTIS LookUp(CurrentExp, CurrentEnv)
ELS E

RESULTI S Cur rentExp
ELSE
$(

LET Fun = Read(CurrentExp)
SWITCHON Fun INTO
$(

CASE SuspendOp : I I Suspension
$(

LET Arg = Tail(CurrentExp)
RESULTIS Reduce(Head(CurrentExp),

Tail(CurrentExp))
$)

CASE FunArgOp : RESULTIS CurrentExp

CASE LamOp: RESULTIS ~[Lambda expression
Cons(FunArgOp,

Cons (CurrentEnv,
Tail(CurrentExp)))

DEFAULT: RESULTIS If Application
Apply(Reduce(Fun, CurrentEnv),

Cons(SuspendOp, ~I Form suspension
Cons(Tail(CurrentExp),

CurrentEnv)))
$)

$)
$)

AND A p p l y (Fun , Arg) - VALOF
$(

TEST Atom(Fun) THEN ~ ~ Must be b u i l t i n o p .
RESULTIS O p e r a t e (F un , Arg)

ELSE
TEST Head(Fun) = FunArg0p THEN
$(

LET C l o s u r e - T a i l (Fun)
LET Env - Head(Closure)
LET Value = Tail(Closure)
LET Param - Head(Value)
LET Body = Tail(Value)

LET NewEnv = Bind(Env, Param, Arg)
RESULTIS CheapReduce(Body, NewEnv)

$)
ELS E

Error()
$)

AND Operate(Fun, Arg) = VALOF
$(

IF Fun = IfOp THEN RESULTIS Dolf(Arg)

IF Fun = DivideOp THEN RESULTIS DoDivide(Arg)

If Default
RESULTIS Cons(Fun, Reduce(Arg, ClobalEnv)

$)

AND Bind(Env, Param, Arg) =
Cons(Env, Cons(Param, Arg))

AND LookUp(Ide, Env) = VALOF
$(

LET Temp = Env
UNTIL Temp ffi Nil DO
$(

LET Envltem = Tail(Temp)
IF Head(Envltem) ffi Ide THEN
$(

LET Value ffi Tail(Envltem)
Push(Temp)
Value := Reduce(Value, GlobalEnv)
Temp := Pop()
SetTail(Tail(Temp), Value)
RESULTIS Value

$)
RESULTIS Ide ~I Default

$)

157

ACKNOWLEDGEMENTS

Part of this work was carried out
while in receipt of a SERC grant, and
part with the support of Beale
Electronic Systems Ltd. The initial
motivation for the investigation was
provided by Dr Arthur Norman, while many
of the ideas clarified in discussion
with John Hughes and Gerry Sussman, and
discussions with Nicholas Beale were
very useful during preparation of the
paper itself.

BIBLIOGRAPHY

[Be82a] CRS/I specification. Available
from Beale Electronic Systems
Ltd, ~aysbury, UK.

[Be82b] Beale NCL. Compiling ADL/I to
combinators. Beale Electron~-6
Systems Ltd Tech. Rep. TR8202.

[Ch41] Church A. The calculi of lambda
conversion. Annals of
Mathematical Studies. Princeton
University Press, 1941.

[Cu58] Curry & Feys. Combinatory Logic
Vol I. North Holland, 1958.

[C180] Clarke T, Gladstone P, Maclean C
and Norman A. SKIM, the SKI
reduction machine. Proc. 1980
LISP conference, pp128-135.

[Di81] Discepolo AM, and Keaton-Williams
JD. A Practical Verification
System. ACM SEN, July 1981, Vol
6 No 3 pp50-54.

[Hu80] ~ughes RJM. The design and
implementation of an applicative
language. Cambridge University
Computer Science Diploma
Project, 1980.

[Hu82] Hughes RJM. Super-combinators.
Proc. 1982 Symposium on LISP and
Functional Programming.

[Jo81] Jonhsson T. Code 9eneration for
evaluation. Chalmers

ersity of Sweden, Nov 1981.

[Pe80] Peyton Jones SL. A comparison o_~f
the relative efficiencies of the
combinator and lambda calculus.
Cambridge University Computer
Science Diploma Project, 1980.
(Revised as Beale Electronic
Systems Technical Report TR8201)

[St79~] Stallman R. Phantom stacks.
MIT AI Memo 556, 1979.

[St79b] Steele GL, and Sussman GJ.
Dream of a lifetime. MIT AI
Memo 527, 1979.

[St77a] Steele GL. Lambda, the ultimate
9oto. MIT AI Memo 443, 1977.

[St77b] Stoy JE. Denotational semantics.
MIT Press, 1977.

[Su81] Sussman GJ, Holloway J, Steele GL
and Bell A. Scheme-79 - Lisp on
a chip. IEE-E~ Co--~-~ter JuT
~981, Vol 14 No 7, ppl0-21.

[Tu79a] Turner D. A new implementation
technique for applicative
languages. Software practice
and experience 1979, Vol 9,
pp31-44.

[Tu79b] Turner D. Another al@orithm for
bracket abstraction. Journal of
Symbolic Logic, Jun 1979, Vol
44, No 2.

[Wa82] Wand M. Semantics directed
machine architecture. Proc.
1982 ACM POPL, pp234-241.

1 5 8

