
Distributing the Power of a Government

to Enhance the Privacy of Voters

(Extended Abstract)

Josh Cohen Benaloh

�

Yale University

Moti Yung

y

Columbia University

1 Introduction

In this paper, we distribute the functions of the

government in the cryptographic election scheme of

[CoFi85]. In so doing, we are able to achieve privacy

of individual votes in a much stronger sense without

giving up any of the previously attained properties

of robustness or veri�ability. This gives an electronic

mechanism for holding a large-scale election amongst

untrusted parties which is far more useful in \real-

world" applications than the previous scheme.

The combination of distributed computing and

cryptography has become increasingly important.

Applications of cryptography to distributed comput-

ing have been seen recently in [Bro85], [FeMi85], and

[CGMA85]. Secret-ballot elections seem to be a nat-

ural problem in distributed computing. [DLM82],

[Mer83], and [Yao82] proposed completely distrib-

uted boardroom election schemes in which partici-

pants pass encrypted messages around a room and

then decrypt the messages to reveal the election

tally. These schemes su�er from a lack of robustness

in that if any of the participants fails or otherwise

misbehaves during the election process, the scheme

fails to produce any tally whatsoever.

Chaum in [Cha81] proposed a centralized scheme

using a \mix" which scrambles messages to protect

the identities of the senders. Chaum also comments

�

Supported in part by the National Security Agency under

Grant MDA904{84{H{0004.

y

Supported in part by the National Science Foundation un-

der Grant MCR-83-03139and by an IBM graduate fellowship.

0

about the possibility of cascading several mixes to

enhance the security of his system. The idea of a

mix provides an elegant solution to the election prob-

lem. However, no work has yet been done towards

proving such a scheme secure with respect to some

underlying set of cryptographic assumptions.

The centralized election scheme proposed in

[CoFi85] achieves the desirable robustness and veri-

�ability properties, and these properties are proven

to hold with high probability. The privacy prop-

erty, however, is not as strong as is required for a

practical election because votes, while being secure

from other voters, are easily readable by the central

government.

By distributing the functionality of the central

government of [CoFi85], the scheme presented here

protects the privacy of individual votes. No one com-

ponent of the government can determine how an in-

dividual voter voted. Furthermore, even if only one

component of the government is honest, a conspir-

acy of all remaining government components is still

not su�cient to compromise the privacy of individ-

ual votes. The accuracy of the ultimate tally can be

veri�ed by all participants, and no set of voters can

prevent such a tally from being produced.

In addition, the scheme presented here achieves

a higher con�dence than the prior scheme. Previ-

ously, the chance of an incorrect tally being pro-

duced was inversely proportional to a security pa-

rameter which was polynomially related to the run

time of the scheme. In this scheme, the chance of

an incorrect tally is inversely proportional to an ex-

ponential function of the same security parameter.

The previous scheme also made extensive use of a

trusted \beacon" to generate public random bits.

We show here how this function can be distributed

among the agents already acting in the scheme. Fi-

nally, we present an alternate mechanism for carry-

ing out multiway elections which is simpler than in

the original work.

1

As has been the standard in cryptographic proto-

cols, our security is dependent on a number-theoretic

assumption. The privacy property in this scheme is

reduced to a weak version of the so called residue

problem. The reduction is proved rigorously, and

the reduction is valid regardless of the actual com-

plexity of the residue problem | a problem which

has no known e�cient solution. Other cryptographic

applications have been based on versions of this

number-theoretic problem. (See [Rab79], [GoMi84],

[LMR83], [GMR85], and [GHY85] for just a few of

the many examples.) The robustness and veri�abil-

ity properties are proven independently of any cryp-

tographic assumptions.

2 Model

We assume here that the agents of the protocol

include a set of ! voters V = fv

1

; v

2

; : : : ; v

!

g,

a set of � tellers (government components) T =

ft

1

; t

2

; : : : ; t

�

g. Each of these agents is assumed

to be a probabilistic polynomial-time process with

added communication abilities.

The processes communicate by means of a broad-

cast network which can be regarded as a set of pub-

lically readable bulletin boards | one board owned

by each process. Only the owner of a bulletin board

can write to it, and no message can be erased from

a board.

We also assume the existence of a global clock

which is used to indicate a concluding time for each

round of the protocol.

Extensive use is made of the existence of a gen-

erally trusted source of randomness. Such a source

may be obtained either by the use of a \beacon"

(see [Rab83]) or by a sub-protocol executed by some

subset of the participants of the protocol.

The scheme depends upon the value of a security

parameter N . By increasing N , the security of the

scheme can be increased arbitrarily, but the running

time of the scheme may also be dependent on N .

The scheme de�nes a Boolean predicate G on the

space of all possible message sequences produced by

a voter process. Informally, G describes whether or

not the message sequence appears to be consistent

with an actual run of the protocol.

Each voter protocol actually consists of two pro-

tocols: a no-protocol and a yes-protocol. A voter

which follows a no-protocol is said to cast a no-vote.

A voter which follows a yes-protocol is said to cast

a yes-vote.

The actual tally (t) of an election is the number of

processes on which G evaluates to \true" and which

cast yes-votes in the election.

Some value (�) produced by the election scheme

is denoted as the tally. An election scheme is said to

be correct if the tally computed by the protocol (�)

matches the actual tally (t).

Privacy in an election is not absolute, as in a unan-

imous election, for example, everyone knows how

everyone voted. All that can be claimed is that

an honest yes-vote and an honest no-vote cannot be

distinguished. More precisely, an election scheme is

"-secure if there is no probabilistic polynomial-time

procedure which if given a pair of honest voters in an

election | one of whom cast a yes-vote and one of

whom cast a no-vote | can tell which is the yes-vote

with probability greater than

1

2

+ ".

Given this de�nition, it is easy to show that for

an "-secure election scheme, there is no probabilistic

polynomial-time procedure which can, with proba-

bility greater than

1

2

+", distinguish between any two

assignments of votes to voters among any subset of

honest voters with the same sub-tally over that set.

3 A Distributed Election

Scheme

We extend the election paradigm of [CoFi85] by dis-

tributing the government into a set of tellers. The

paradigm has eight basic phases. In phase 1, each

teller selects and posts a pair of election parame-

ters. In phase 2, each voter selects and reveals a

set of unmarked \test ballots" | each consisting of

an encrypted yes-vote and an encrypted no-vote. In

phase 3, each voter \marks" each test ballot by ran-

domly selecting one of the two votes. In phase 4, the

tellers decrypt all voters' test votes. In phase 5, each

voter releases its own decryptions of its test votes.

Any discrepancies between a voter's decryptions in

phase 5 and a teller's decryptions in phase 4 indicate

the invalidity of that teller and void the election. At

this point, we may assume that if an election con-

tinues beyond phase 5, then with very high proba-

bility, all tellers' parameters are valid. In phase 6,

each voter selects and reveals an unmarked \mas-

ter ballot" again consisting of an encrypted yes-vote

and an encrypted no-vote. In phase 7, each voter

\marks" its master ballot by designating one of the

two votes as desired. Finally, in phase 8, the tellers

compute the tally of the master votes, and release

information to prove that the tally is correct.

The key new idea which allows the government

to be distributed comes from considering the gov-

ernment as holding a counter which each voter has

the opportunity to increment or leave unchanged.

2

Such a counter may be distributed by having each

of the � tellers hold a single counter. The global in-

terpretation is that the sum of values held by all of

the local counters, when considered modulo a �xed

prime, gives the value of the global counter. Votes

are constrained so as to either increment the global

counter by 1 (modulo the �xed prime) or to leave it

unchanged.

To give very high con�dence that the election pa-

rameters, ballots, and tally are of the required form,

extensive use is made of interactive proofs. Interac-

tive proofs are becoming a common tool for multi-

party protocols. These \proofs" are themselves pro-

tocols which employ random selection to convince

users of speci�ed properties while protecting addi-

tional private information. For details and formal

de�nitions of interactive proof methods, the reader

is referred to [GMR85].

3.1 De�nitions and Overview

Let r be prime. Fix n and let y be relatively prime

to n such that y is not an r

th

-residue modulo n (i.e.

there exists no x such that y � x

r

(mod n)). Such

an (n; y) pair is said to be a valid pair. If (n; y) is a

valid pair, an integer z which is relatively prime to

n is expressible in the form y

e

x

r

for at most one e in

the range 0 � e < r. Let type[z; (n; y)] be de�ned on

such z to be this unique value e (if de�ned). De�ne

n to be admissible if n = pq where p and q are prime,

rj(p�1), and r6 j(q�1). If n is admissible and (n; y) is

valid, then type[z; (n; y)] is de�ned for all z which are

relatively prime to n. It is believed that deciding r

th

-

residuosity modulo n is hardest when n is admissible.

Let P = h(n

1

; y

1

); (n

2

; y

2

); : : : ; (n

�

; y

�

)i be a vec-

tor of pairs such that each y

i

is relatively prime to n

i

and is not an r

th

-residue modulo n

i

. Such a P is said

to be a valid parameter set. Let Z = hz

1

; z

2

; : : : ; z

�

i

be a vector of integers such that each z

i

is relatively

prime to n

i

. We de�ne

TYPE[Z;P] =

�

X

i=1

type[z

i

; (n

i

; y

i

)]

!

mod r:

Such a vector Z is called a vote.

A vote Z is said to be valid (relative to a given P)

if TYPE[Z;P] 2 f0; 1g. A vote Z of type 0 (relative

to P) is called a no-vote, and a vote Z of type 1

(relative to P) is called a yes-vote, A pair of votes

is called a ballot. An (i; j)-ballot is de�ned to be a

ballot containing a vote of type i and a vote of type

j. A ballot is said to be valid if it consists of one

no-vote and one yes-vote | i.e. a (0; 1)-ballot.

Two integers z

1

and z

2

which are of the same type

with respect to a valid (n; y) pair can be proven so

by releasing an x such that z

2

� z

1

x

r

(mod n).

Two votes Z

1

and Z

2

can be shown to be of the

same type with respect to P by showing that the

vote formed as the componentwise quotient of Z

1

and Z

2

is of type 0. Two ballots B

1

and B

2

may be

shown to be of the same (i; j)-type (type-equivalent)

by showing that one of the votes in B

1

is of the

same type as the �rst vote in B

2

and the other vote

in B

1

is of the same type as the second vote of B

2

.

The technical details of proving that two ballots are

type-equivalent without revealing undesirable infor-

mation are actually somewhat subtle and will be

given in section 3.4.

To conduct an election, each teller t

i

begins by

producing a valid (n

i

; y

i

) pair. A voter votes in

an election by preparing a valid ballot, interactively

proving its validity, and selecting one of the two

votes as its actual vote. Each teller \collects" all

vote components corresponding to its chosen para-

meters and computes the sum of their types. The

sum (taken modulo r) of all of the tellers' \sub-

tallies" represents the total number of yes-votes cast

in the election.

In the following sections, we will describe in de-

tail how such an election can be conducted. By

adding appropriate restrictions and incorporating

interactive proofs in various stages of the process,

we will show how the validity of the election tally

can be veri�ed by all participants. We prove this

result and also prove that under a number-theoretic

assumption about the di�culty of deciding residu-

osity, the votes of voters remain private even un-

der strong assumptions about possible conspiracies

among agents.

If a trusted source of random bits is assumed, then

the tally of an election is proved to be correct with

very high probability, and no further assumptions

are required. If, instead, participants follow a sub-

protocol to generate bits, then some sort of proba-

bilistic one-way function is required. The assump-

tion about the di�culty of deciding residuosity is

su�cient for this purpose.

The following lemma is an immediate consequence

of the properties of residue classes and the de�nition

of the TYPE function. It shows that the sum of the

types of two votes is given by the type of their com-

ponentwise product. Thus, the type of the compo-

nentwise product of all valid votes cast in an election

will give the tally of the election.

Lemma 1 If P is a valid parameter set and if A =

ha

1

; a

2

; : : : ; a

�

i and B = hb

1

; b

2

; : : : ; b

�

i are votes of

type � and �, respectively, then TYPE[A � B;P] �

�+� (mod r) where A �B is de�ned to be the vote

3

given by the componentwise product of A and B with

the i

th

component take modulo n

i

.

3.2 The Scheme

We divide the actual protocol into eight phases cor-

responding to the outline described above. Fix a

prime number r such that r is greater than the num-

ber of potential voters. Let N be the security para-

meter of the system. Assume that a set T of tellers

and a set V of eligible voters are �xed in advance.

(Note that not all eligible voters need participate.)

Phase 1:

Each teller t

i

2 T randomly selects an admissible

n

i

= p

i

q

i

with the additional constraint that each

of p

i

and q

i

are N -bit primes. Each teller t

i

then

randomly selects a y

i

such that gcd(n

i

; y

i

) = 1 and

y

i

is not an r

th

-residue modulo n

i

.

Each teller then posts this (n

i

; y

i

) pair.

Phase 2:

Each voter randomly selectsN valid \test" ballots of

the form previously de�ned. The voter then demon-

strates that each of theseN ballots is indeed valid by

engaging in N interactive proofs with the beacon.

1

To interactively prove that a given \primary" test

ballot is valid, a voter prepares N valid \auxiliary"

ballots at random and a bit from the beacon is then

associated with each. For those auxiliary ballots for

which the beacon's bit is 0, the voter decrypts the

ballot to demonstrate that it is valid. The voter

then proves that all auxiliary ballots for which the

beacon's bit is 1 are type-equivalent by proving that

each is type-equivalent to the given primary ballot.

By showing that all undecrypted auxiliary ballots

are type-equivalent and all decrypted auxiliary bal-

lots are valid, the voter demonstrates that, with very

high probability, at least one (and therefore all) of

the undecrypted auxiliary ballots are valid. Since

these undecrypted auxiliary ballots have been shown

to be type-equivalent to the given primary ballot,

there is also very high con�dence that it too is valid.

The details of proving ballots type-equivalent are

given in section 3.4.

Phase 3:

Each voter designates one vote from each of its test

ballots. Whether to designate the no-vote or the

yes-vote is decided randomly for each ballot.

Phase 4:

1

We will show in section 3.5 how the beacon can be simu-

lated by a sub-protocol executed by the tellers.

Each teller t

i

decrypts and reveals the type of the

i

th

component of each of the test votes. This proves,

with very high probability, the teller's ability to

distinguish between vote-types and thereby demon-

strates that the y

i

selected by teller t

i

is in fact not

an r

th

-residue modulo n

i

, as required.

Phase 5:

Each voter reveals the decryption of all of its test

votes. If any voter reveals a vote decryption which

di�ers from a teller's decryption (i.e. a teller asserts

that a vote component is of type e

1

and a voter

later decrypts it showing it to be of type e

2

6� e

1

(mod r)), then that teller's parameters may be

assumed invalid, and the election is voided.

The election is continued beyond phase 5 only if no

discrepancies among the test votes are revealed.

Phase 6:

Each voter randomly selects a valid \master" bal-

lot of the form previously de�ned. The voter then

demonstrates that this master ballot is valid by en-

gaging in an interactive proof as in phase 2.

Phase 7:

Each voter designates one vote from its master bal-

lot. To vote \no", the voter designates the no-vote.

To vote \yes", the voter designates the yes-vote.

Phase 8:

Each teller compiles the portions of votes corre-

sponding to its parameters as follows:

Teller t

i

computes W

i

�

Q

z

(i;j)

(mod n

i

),

where z

(i;j)

is the i

th

component of voter v

j

's des-

ignated vote from its master ballot. This product,

however, is taken over only those votes cast by vot-

ers which have satis�ed the consistency predicate G.

Teller t

i

then releases a �

i

such thatW

i

is expressible

as

W

i

� y

�

i

i

X

i

(mod n

i

)

where X

i

is an r

th

-residue modulo n

i

. Finally

teller t

i

engages in an interactive proof to show

that X

i

is in fact an r

th

-residue. This shows that

type[W

i

; (n

i

; y

i

)] = �

i

. The method for proving in-

teractively that an integer is an r

th

-residue modulo

a given n is shown in section 3.3.

This completes the protocol.

The tally of an election is

� �

�

X

i=1

�

i

(mod r):

4

The consistency predicate G is de�ned to be true

for voter v

j

if and only if both of the following con-

ditions hold:

In phase 6 of the election, voter v

j

posts

a master ballots together with N auxiliary

ballots as prescribed, successfully demon-

strates that each auxiliary ballot which was

required to be opened is valid, and also

demonstrates that each remaining auxil-

iary ballot is type-equivalent to the master

ballot.

In phase 7 of the election, voter v

j

des-

ignates one vote from its master ballot.

Note that we do not require that a voter partake

in phases 2, 3, or 5 to satisfy G. These phases are de-

signed to test the validity of the tellers' parameters,

and the consistency predicate G is only required to

ensure that, with very high probability, the actual

master vote cast by a voter is valid.

3.3 Proving that a Given Integer is

an r

th

-residue

In order to prove that a given integer z is an r

th

-

residue modulo n, an agent which possesses an x

such that z � x

r

(mod n) could, by releasing such

an x, easily demonstrate that z is an r

th

-residue.

Releasing this r

th

-root of z could, however, give an

adversary additional information which might aid in

factoring n. Instead, the agent can engage in the

following sub-protocol using a beacon to facilitate

an interactive proof.

The agent begins by randomly selecting N in-

tegers c

i

, 1 � i � N , such that all c

i

are rela-

tively prime to n. The agent then forms C

i

� c

r

i

(mod n), for all i and releases the C

i

. Next a bea-

con bit b

i

is associated with each C

i

. For each i such

that b

i

= 0, the agent reveals c

i

. For each i such that

b

i

= 1, the agent reveals c

i

x.

By releasing c

i

such that C

i

� c

r

i

(mod n) for

each i such that b

i

= 0, the agent gives observers

very high con�dence that at least one of the re-

maining C

i

is also an r

th

-residue. When C

i

is an

r

th

-residue relatively prime to n, z is an r

th

-residue

if and only if C

i

z is an r

th

-residue. By releasing

c

i

x, the agent releases an r

th

-root of C

i

z, thereby

demonstrating that C

i

z, and therefore z, is an r

th

-

residue. Since the C

i

z formed in this way repre-

sent random r

th

-residues, releasing random roots of

random residues gives an adversary no information

which it could not compute by itself. The formal

proof that this interactive sub-protocol does not re-

lease undue information is subsumed by the proof of

privacy given in section 5.

Proving that an integer z is an r

th

-residue modulo

n demonstrates that type[z; (n; y)] = 0 for any given

y which is not an r

th

-residue modulo n. To show

that type[z; (n; y)] = e for some e, 0 � e < r, it

su�ces to show that type[zy

�e

; (n; y)] = 0. Thus,

an agent which possesses an x such that z � y

e

x

r

(mod n) can, by proving interactively that zy

�e

is

an r

th

-residue, demonstrate that z is of type e (with

respect to n and y).

3.4 Proving Type-Equivalence of Bal-

lots

Recall that a vote Z is a vector hz

1

; z

2

; : : : ; z

�

i of

integers such that each z

i

is relatively prime to

n

i

. Two votes A = ha

1

; a

2

; : : : ; a

�

i and B =

hb

1

; b

2

; : : : ; b

�

i are type-equivalent if and only if

(when considered modulo r)

�

X

i=1

(type[a

i

; (n

i

; y

i

)]� type[b

i

; (n

i

; y

i

)]) � 0:

This equivalence can be demonstrated by reveal-

ing the di�erence e

i

(taken modulo r) between

the type of each a

i

and of each b

i

and show-

ing that

P

�

i=1

e

i

� 0 (mod r). Each e

i

is, in

turn, equivalent to the type (modulo r) of a

i

=b

i

(mod r). (If a � y

e

a

x

r

a

and b � y

e

b

x

r

b

, then

a=b � y

e

a

�e

b

(x

a

=x

b

)

r

(mod n).)

Section 3.3 describes how a given integer z can be

shown to be of a given type e when given an x such

that z � y

e

x

r

. This case is somewhat simpler, how-

ever, since there is no harm in releasing the known

root x. Thus, a given a

i

=b

i

is shown to be of type e

by releasing an x such that a

i

=b

i

� y

e

x

r

(mod n),

but there is a subtlety here.

The mechanism by which a voter generates the

requisite a

i

and b

i

gives the voter x

a

, x

b

, e

a

, and

e

b

such that a

i

� y

e

a

x

r

a

(mod n) and b

i

� y

e

b

x

r

b

(mod n). Thus,

a

i

b

i

� y

e

a

�e

b

�

x

a

x

b

�

r

(mod n);

and x

a

=x

b

su�ces as a root which can be released.

However, if type[a

i

; (n

i

; y

i

)] < type[b

i

; (n

i

; y

i

)], then

the associated e

a

�e

b

, the type of their quotient (be-

fore being normalized modulo r), is less than 0. It

would not be wise to reveal this information, since

it does give an adversary information about the rel-

ative types of a

i

and b

i

and could thereby give an

adversary an estimate of the type of a

i

.

5

To avoid this problem, when type[a

i

; (n

i

; y

i

)] <

type[b

i

; (n

i

; y

i

)], we observe that

a

i

b

i

� y

e

a

�e

b

�

x

a

x

b

�

r

� y

e

a

�e

b

y

r

�

x

a

x

b

y

�

r

(mod n):

Thus, it is still possible to reveal an e with 0 � e < r

such that (a

i

=b

i

)y

�e

can be demonstrated to be an

r

th

-residue modulo n by using x = x

a

=(x

b

y).

The type of a

i

=b

i

is released (and proven) for all

i such that 1 � i � �. If the sum of these types is 0

modulo r, A and B are type-equivalent.

Recall, �nally, that a ballot is a pair of votes. To

show that two ballots are type-equivalent then, it is

necessary only to show that the �rst vote of the �rst

ballot is type-equivalent to one of the votes of the

second ballot and the second vote of the �rst bal-

lot is type-equivalent to the other vote of the second

ballot. The use of ballots here and the means by

which they are shown to be equivalent actually de-

scribe a special case of cryptographic capsules. For

a discussion of cryptographic capsules, see [Coh86b].

3.5 The Beacon and its Simulation

Various aspects of the election scheme (including the

sub-protocols of sections 3.3 and 3.4) made exten-

sive use of a generally trusted source of random bits.

Such bits are required both in phases 2 and 6 of the

election (in order to verify the validity of ballots)

and in phase 8 (allowing the tellers to prove that

their sub-tallies are of the claimed type).

Rabin in [Rab83] introduces the notion of a bea-

con. A beacon is a physical device which generates

and broadcasts bits (either at �xed intervals or upon

demand) which are truly random and which can be

read by all participants to a protocol. The use of

such a device makes the model and election scheme

simpler to understand; however, the beacon is not

strictly necessary to this scheme.

Instead of using a beacon, the tellers can execute

a sub-protocol which e�ectively simulates a beacon

and generates random bits. Recall that the tellers

(as well as the voters) are probabilistic polynomial-

time processes and therefore have private sources of

random bits. We assume, as already required to en-

sure privacy of votes, that at least one teller is hon-

est.

Each time a random bit b is required, each teller t

i

generates a random bit b

i

and a random x

i

relatively

prime to its n

i

. If b

i

= 0, teller t

i

releases a z

i

= x

r

i

,

otherwise, t

i

releases z

i

= y

i

x

r

i

.

After all tellers have posted their z

i

's, each teller

releases its x

i

. From this, everyone can compute all

b

i

's. The desired random bit b is then the XOR of

the b

i

's.

Under the assumption about weak residue prob-

lem, b is a random bit if no y

i

is an r

th

-residue mod-

ulo n

i

and at least one teller is honest. If at least

one voter is honest, then a teller t

i

whose y

i

is an

r

th

-residue modulo n

i

will be, with very high proba-

bility, exposed as dishonest before the conclusion of

the protocol, regardless of the random bits selected

by this protocol. In addition, if the tellers challenge

each other with test ballots (as did the voters), then

even the assumption of an honest voter becomes un-

necessary.

The use of such a sub-protocol, however, makes

the correctness of the tally (as well as the privacy of

the votes) dependent on the cryptographic assump-

tion about the di�culty of computing r

th

-residues.

3.6 Multiway Elections

Although the discussion thus far has been limited

to elections with only two possible choices, elections

between multiple choices are also possible with very

minor modi�cations to the scheme. The basic idea

is to provide one counter for each choice.

Let C be the number of choices presented to the

voters in an election. A valid ballot now consists of

C votes, one of which is of type 1 and the remaining

C�1 of which are of type 0. Once the validity of its

ballot has been veri�ed, a voter votes by assigning

one vote from its ballot to each counter. The counter

to which the vote of type 1 is assigned corresponds

to the choice which the voter designates.

The resulting tally left in a given counter repre-

sents the total number of votes cast in favor of the

corresponding choice.

4 Correctness

It is easy to see that all phases of the election pro-

tocol can be completed in time bounded by a small

polynomial in N | the security parameter | and

with a constant number of communication rounds.

It must be shown that if the tellers follow their pre-

scribed protocols, then the tally computed will rep-

resent the number of yes-votes cast in the election.

The following theorem depends on the existence

of a trusted source of random bits. If a beacon is

to be simulated, as in section 3.5, then the simu-

lated beacon bits are random if at least one teller

and at least one voter are honest and if there exist

no probabilistic polynomial-time algorithm to decide

residuosity.

6

Theorem 1 If all tellers follow their protocols and

at least one voter is honest, then, with very high

probability, the tally � produced by the protocol is

equal to the actual tally of the election. If the tally

is not of this form, then with very high probability it

will be detected.

Proof:

First, if some teller t

i

releases an (n

i

; y

i

) pair such

that y

i

is not an r

th

-residue modulo n

i

, then the

probability that a given honest voter will detect a

discrepancy on one of its test ballots is 1 � 2

�N

.

There is, by assumption, at least one honest voter,

and since more than one dishonest teller merely

increases the likelihood of exposure, we may con-

clude that in an election which has not been voided

in phase 5, the probability that all y

i

's are not

r

th

-residues modulo their respective n

i

's is at least

1� 2

�N

.

Recall next that the actual tally of an election (as

de�ned in section 2) is the number of processes on

which G evaluates to \true" and which cast yes-votes

in the election.

In phase 6, each voter completes an interactive

proof that its master ballot is valid | contains one

no-vote and one yes-vote. If all tellers' parameters

are valid, then a voter who attempts to prepare an

invalid master ballot will be detected and excluded

from the election with probability at least 1� 2

�N

.

Thus, a voter for which the G predicate answers true

has, with probability at least 1 � 2

�N

, cast a valid

vote. The probability that valid votes have been

cast by all voters for which the G predicate is true

is therefore at least 1� !2

�N

.

Each teller t

i

then computes the product W

i

of

the i

th

component of each vote cast by each voter

for which G evaluates to true. By lemma 1, the type

of this product has the unique type which is the

sum (modulo r) of the types of the components. The

interactive proof used here gives very high con�dence

(at least 1 � 2

�N

) that the claimed type of W

i

is

in fact its actual type. We denote this type by �

i

.

Thus, given that all tellers' parameters are valid and

that all votes cast are valid, the probability that all

tellers release �

i

's which correctly represent the types

of their respective W

i

's is at least 1� �2

�N

.

If some teller fails to behave as described in the

preceding paragraph, the teller is presumed to be

faulty, and the tally (if produced at all) cannot be

expected to be correct.

� =

P

�

i

(mod r) now represents, with proba-

bility at least

(1�2

�N

)(1�!2

�N

)(1��2

�N

) � 1�(1+!+�)2

�N

;

the type (with respect to the selected parameter

set P) of the vector W =< W

1

;W

2

; : : : ;W

�

>.

TYPE[W;P] is in turn the sum of the types of the

votes cast in the election by voters on which G eval-

uated to true. This is therefore the number of yes-

votes cast.

5 Privacy

Finally, we must show that the privacy of votes re-

mains secure even in the face of possible conspiracy

by other voters and tellers. The only assumption we

make here is that at least one teller is honest and

does not take part in such a conspiracy.

The following theorem gives a reduction showing

that an algorithm which can in general compromise

voter privacy in an election can be used to develop

an algorithm which can solve a slightly weakened

version of the residuosity problem | a problem for

which no e�cient solution is known. This problem

amounts to the problem of distinguishing between

numbers which are r

th

-residues and numbers which

are not r

th

-residues modulo an admissible n. A pre-

cise formulation of the weak r

th

-residue assumption

is given in [CoFi85].

The proof described here is almost identical to

that in [CoFi85]. By assuming the existence of one

honest teller, we can view that teller as a central gov-

ernment and use the prior proof almost unchanged.

The only change which is required (other than that

just described) emanates from slight changes in this

version of the scheme (phases 1 through 5) and from

the use of tellers to replace the beacon.

The appendix describes an alternate proof ap-

proach which, although no easier than the proof

given here, is of interest in its own right and de-

velops machinery which may be of use elsewhere.

Theorem 2

If there exists a probabilistic polynomial-time algo-

rithm which, for all admissible n, can distinguish

with probability at least

1

2

+ "

n

between some two

honest voters' votes | one of which is a no-vote and

one of which is a yes-vote | in elections in which at

least one teller is honest and selects n as its modu-

lus, then there exists a probabilistic polynomial-time

algorithm which can, for all admissible n, correctly

decide r

th

-residuosity modulo n with probability at

least

1

2

+ "

n

.

Proof: (sketch)

An algorithm which can distinguish between votes

can be regarded as a procedure P which controls

7

some number of voter processes (excepting the two

voters whose votes are in question) and as many as

all but one of the teller processes (by assumption at

least one teller is honest). This procedure \partic-

ipates" in elections and outputs one of two values

indicating its guess as to which of the two selected

voters cast a yes-vote. Under the assumption that

such a procedure P exists, we show how to simulate

elections for P 's bene�t and make use of its output

(or lack of output) to gain an advantage in deciding

residuosity.

Now, suppose we are given an (n; z) pair, where

n is admissible, and we wish to determine whether

or not z is an r

th

-residue modulo n. Suppose fur-

ther that P has a probability of at least

1

2

+ "

n

of

correctly distinguishing a yes-vote from a no-vote in

an election in which one of the tellers it does not

control has selected n as its modulus.

We run, together with P , a \pseudo-election" by

allowing each teller and voter not controlled by P

to run its normal protocol with the following excep-

tions.

� One teller not controled by P is to use as its

election parameters (n; z

0

) where n is the given

modulus and z

0

� z

i

x

r

(mod n) for randomly

chosen chosen integers i and x such that 0 <

i < r and x is relatively prime to n. Assume,

without loss of generality, that this is teller t

1

.

� Of the two voters in question, exactly one is to

follow a yes-protocol and the other is to follow

a no-protocol with the choice of which is to do

each decided randomly.

The computation of z

0

described above is designed

to ensure that z

0

is an r

th

-residue modulo n if and

only if z is and that z

0

is uniformly chosen among

the residues (resp. non-residues) relatively prime to

n. (This is where n is required to be admissible.)

The only di�culty we encounter in simulating

such an election is that we do not have the factor-

ization of n and therefore cannot (directly) convince

the voters controlled by P that we know the types of

the �rst components of their votes. Such knowledge

is required by t

1

to decrypt test votes in phase 4 and

to compute its sub-tally �

1

in phase 8.

To overcome this problem, we observe that P , as a

probabilistic algorithm, may be regarded as a deter-

ministic algorithm with an external random source.

By �xing this source, we may run P to a certain

point, freeze P , and then complete this run of P

with two or more di�erent continuations of the pro-

tocol. In this manner, we may see what P does in

response to several di�erent inputs at the same time.

Thus, by changing the random bit selected by t

1

at various stages, we may attempt to change vari-

ous global bits required in the interactive proofs of

phases 2 and 6. If ever a voter answers any auxiliary

ballot both by decrypting it (as required if the global

bit is 0) and (on a di�erent continuation of P) by

proving it type-equivalent to its associated primary

ballot (as required if the global bit is 1), then the

associated primary ballot is easily decrypted.

There are now two cases to be considered. First,

if we succeed in decrypting all primary ballots of

voters controlled by P , then we may complete the

simulation and observe the output of P .

By a symmetry argument, if the election simu-

lation is completed and if z

0

(and hence z) were a

residue there would be no way for P to distinguish

a yes-vote from a no-vote with probability greater

than

1

2

(since, in this case, every vote can be de-

crypted as both a yes-vote and a no-vote). Of course,

P may be able to recognize that this is the case,

but it is impossible for P to determine which voter

was assigned the yes-vote, and therefore P 's behav-

ior will be independent of this assignment.

By assumption, on completed elections with pa-

rameter n, P correctly determines which of the two

designated voters cast a yes-vote with an overall

probability of at least

1

2

+ "

n

.

Thus, P 's output behavior is independent of the

chosen assignment when z

0

(and hence z) is a

residue, and P 's output behavior varies (by at least

"

n

) as the chosen assignment varies when z

0

(and

hence z) is not a residue. Thus, by a statistical sam-

pling of P 's output on known values, we may gain

an "

n

advantage in determining whether or not z is

a residue modulo n.

If the second case, there is some primary ballot

which we cannot decrypt. We begin by observing

that if some teller releases an invalid parameter in

phase 1, then, with very high probability, it will be

detected in phase 5, and the election will not con-

tinue beyond this stage. Since up to this point, hon-

est voters have not in any way indicated their vote

preferences, P cannot gain more than an inverse ex-

ponential advantage at distinguishing votes unless

all parameters are valid. Such an inverse exponen-

tial advantage at deciding residuosity is easily ob-

tainable without P 's help.

We may therefore assume that all election parame-

ters are valid, and there are (again) two cases to be

considered here: either we are unable to (by freezing

and then continuing P with di�erent bit choices by

t

1

) change at least one global bit in some interactive

proof, or we are able to change at least one global

bit in every interactive proof but (although the voter

8

completed the relevant interactive proof on the �rst

run of P) we are unable to get the voter to complete

such an interactive proof on any successive runs. In

the former case, it may be assumed with extremely

high probability that P was able to read t

1

's bit

(before its decryption) and adjust its bits so as to

force the global bit to remain constant. By another

symmetry argument, this is only possible if z

0

(and

hence z) is a non-residue. The latter case can be

shown to be of low probability unless, once again, P

was able to read t

1

's encrypted bit. Hence, if we are

not able to dercypt all primary ballots and complete

the simulation, we may conclude that with very high

probability z is not an r

th

-residue.

Corollary 1

If there exists a probabilistic polynomial-time algo-

rithm which, for all admissible n, can distinguish

with an "

n

advantage between some two assignments

of votes to voters within a group of honest voters

(with the same sub-tally over this group of voters)

in elections in which at least one teller is honest and

selects n as its modulus, then there exists a proba-

bilistic polynomial-time algorithm which can, for all

admissible n, decide r

th

-residuosity modulo n with

an "

n

advantage.

Proof:

Let H be a set of honest voters and let h = jHj.

Let s and s

0

be two distinct assignment of votes (yes

or no) to voters in H such that both s and s

0

have

the same number of yes-votes. Clearly, there exists a

sequence of \swaps" s = s

0

; s

1

; s

2

; : : : ; s

k�1

; s

k

= s

0

with k < h(< r) such that, for all i, assignments s

i

and s

i+1

di�er only in one pair of votes.

An algorithm which distinguishes between assign-

ments s and s

0

with an "

n

advantage must, for some

i, distinguish between assignments s

i

and s

i+1

with

at least an "

n

=r advantage. Since r is constant, the

central limit theorem implies that a �xed number

of repeated samplings can boost this advantage to

"

n

. The two assignments s

i

and s

i+1

now satisfy

the conditions of theorem 2 and thereby yield the

corollary.

6 Discussion and Conclusion

By distributing the capabilities of the centralized

government election protocol of [CoFi85], we have

substantially increased the privacy of electors. In

the previous work, the government was able to de-

termine how every voter cast its vote in the election.

In the new scheme, even if only one teller is honest,

the votes of honest voters remain private.

One disadvantage of this scheme is that if a teller,

at any point of the protocol, ceases execution or oth-

erwise deviates from the protocol in a detectable

way, then no tally is produced, and the election

must be restarted from the beginning (without the

corrupted teller). [Coh86a] presents a fault-tolerant

version of this scheme in which the election can be

continued and a tally produced even in the presence

of faulty tellers.

[Coh86a] also describes a variant of the original

centralized election scheme in which the government

can announce the winner of an election and prove the

result to the election participants without revealing

the actual tally of the election. How to do this in a

decentralized manner without allowing any agent to

determine the actual tally remains open.

Distributing the functions of the government has

both enhanced the privacy of voters and allowed the

beacon of the previous work to be replaced by a

distributed protocol which is more practically real-

izable. We feel that the technique of distributing

the functionality of agents in the context of crypto-

graphic protocols is of signi�cant value.

Acknowledgements

We would like to express many thanks to Mike

Fischer, who was a partner in the orignal work on

which this extension is based and who o�ered help

in many aspects of this work, and to David Wit-

tenberg, who proofread this work and made many

helpful suggestions and comments.

9

References

[Bro85] Broder, A. \A Provably Secure Poly-

nomial Approximation Scheme for the

Distributed Lottery Problem." Proc. 4

th

ACM Symp. on Principles of Distributed

Computing, Minaki, ON (Aug. 1985),

136{148.

[Cha81] Chaum, D. \Untraceable Electronic

Mail, Return Addresses, and Digital

Pseudonyms." Comm. ACM 24, 2, (Feb.

1981), 84{88.

[CGMA85] Chor, B., Goldwasser, S., Micali,

S., and Awerbuch, B. \Veri�able Se-

cret Sharing and Achieving Simultane-

ity in the Presence of Faults." Proc. 26

th

IEEE Symp. on Foundations of Com-

puter Science, Portland, OR (Oct. 1985),

383{395.

[CoFi85] Cohen, J. and Fischer, M. \A Ro-

bust and Veri�able Cryptographically

Secure Election Scheme." Proc. 26

th

IEEE Symp. on Foundations of Com-

puter Science, Portland, OR (Oct. 1985),

372{382.

[Coh86a] Cohen, J. \Improving Privacy in Cryp-

tographic Elections." TR-454, Yale Uni-

versity, Department of Computer Sci-

ence, New Haven, CT (Feb. 1986).

[Coh86b] Cohen, J. \Cryptographic Capsules:

A Disjunctive Primitive for Interactive

Protocols." TR-471, Yale University,

Department of Computer Science, New

Haven, CT (Apr. 1986).

[DLM82] DeMillo, R., Lynch, N., and Mer-

ritt, M. \Cryptographic Protocols."

Proc. 14

th

ACM Symp. on Theory of

Computing, San Francisco, CA (May

1982), 383{400.

[FeMi85] Feldman, P. and Micali, S. \Byzan-

tine Agreement in Constant Expected

Time (and Trusting No One)." Proc.

26

th

IEEE Symp. on Foundations of

Computer Science, Portland, OR (Oct.

1985), 267{276.

[GHY85] Galil, Z., Haber, S., and Yung,

M. \A Private Interactive Test of

a Boolean Predicate and Minimum-

Knowledge Public-Key Cryptosystems."

Proc. 26

th

IEEE Symp. on Founda-

tions of Computer Science, Portland,

OR (Oct. 1985), 360{371.

[GoMi84] Goldwasser, S. andMicali, S. \Prob-

abilistic Encryption." J. Comput. Sys-

tem Sci. 28, (1984), 270{299.

[GMR85] Goldwasser, S., Micali, S., and

Racko� C. \The Knowledge Complex-

ity of Interactive Proof-Systems." Proc.

17

th

ACM Symp. on Theory of Comput-

ing, Providence, RI (May 1985), 291{

304.

[LMR83] Luby, M., Micali, S., and Racko�,

C. \How to Simultaneously Exchange a

Secret Bit by Flipping a Symmetrically-

Biased Coin." Proc. 24

th

IEEE Symp. on

Foundations of Computer Science, Tuc-

son, AZ (Nov. 1983), 11{21.

[Mer83] Merritt, M. \Cryptographic Proto-

cols." Ph.D. Thesis presented at Georgia

Institute of Technology (Feb. 1983).

[Rab79] Rabin, M. \Digitalized Signatures

and Public-key Functions as Intractable

as Factorization." MIT/LCS/TR-212,

MIT Laboratory for Computer Science,

Cambridge, MA (Jan. 1979).

[Rab83] Rabin, M. \Transaction Protection by

Beacons." J. Comp. Sys. Sci. 27, 2 (Oct.

1983), 256{267.

[Yao82] Yao, A. \Protocols for Secure Com-

putations." Proc. 23

rd

IEEE Symp.

on Foundations of Computer Science,

Chicago, IL (Nov. 1982), 160{164.

10

Appendix: An r-ary Probabilis-

tic Public-Key Cryptosystem

Goldwasser and Micali, in [GoMi84], de�ne a (bi-

nary) probabilistic public-key cryptosystem (PPKC)

which o�ers many advantages over \traditional"

public-key cryptosystems. Their PPKCs are built

upon their notion of an unapproximable trapdoor

predicate (UTP) which is a formal version of a cryp-

tographic assumption such as the residuosity as-

sumption used here in elections.

PPKCs encrypt messages one bit at a time by

producing many bits for each bit to be encrypted.

Strong properties are proven about messages en-

crypted as the concatenation of many encrypted

bits. Roughly, these properties imply that for any

PPKC, any function of a message that can be eval-

uated by an adversary after seeing the encryption of

the message could have been evaluated (almost as

successfully) by the adversary without even being

given the encrypted message (i.e. the encryption of

a message gives an adversary almost no a posteriori

information about the message that it didn't have a

priori).

Goldwasser and Micali propose quadratic residu-

osity (Given n and z, does there exist an x such that

z � x

2

(mod n)?) as the basis for a UTP and build

a PPKC on this predicate.

The type function used in this election schememay

be used as the core of an r-ary probabilistic public-

key cryptosystem. Instead of encrypting only one

bit at a time, one of up to r distinct values may be

encoded with a single encryption. This o�ers greater

e�ciency with (seemingly) comparible security.

The de�nition of a UTP generalizes easily to

an unapproximable trapdoor function (UTF), and

this allows a straightforward generalization of the

Goldwasser and Micali binary PPKC into an r-ary

PPKC. The security theorems also generalize di-

rectly.

It is not hard to see that the problem of evaluat-

ing the type of an integer (with respect to a given

(n; y) pair) with probability greater than

1

r

+ " is

equivalent to the problem of distinguishing between

elements chosen from one of two �xed types with

probability greater than

1

2

+ ". Thus, it is reason-

able to propose using the type function as a UTF

given the underlying r

th

-residuosity assumption (as

used for elections).

The r-ary PPKC de�ned by using the type func-

tion as a UTF is a direct generalization of the binary

PPKC proposed in [GoMi84] with an r-ary rather

than a binary alphabet. The advantage is that, given

a security parameter N , a k-bit message can be en-

crypted using (N + log

2

r)k= log

2

r bits rather than

Nk bits with (under the assumptions) comparable

security.

Once this mechanism has been developed, an al-

ternate proof of Theorem 2 is suggested. By concate-

nating the vote components received by each teller,

this set of votes can be regarded as an encrypted

message in an r-ary PPKC. The sub-tally released

by each teller, known votes cast by voters controlled

by procedureP , and constraints on vote components

given by knowledge of other components held by

tellers controlled by P all serve as partial informa-

tion about the message space of all possible votes.

The security theorems of [GoMi84] (when suitably

generalized to the r-ary case) show that such partial

information is of no signi�cant use in extracting fur-

ther information not directly implied by the partial

information (which of two vote assignments is actu-

ally the case is an example), unless the underlying

assumption about residuosity is violated.

The election scheme presented here is, however,

more complex than an r-ary PPKC since the inter-

active proofs of phases 2 and 6 (constraining the bal-

lots to valid types) require additional interactions.

It must be shown that such interactions give no ad-

ditional knowledge to an adversary. [GMR85] and

[GHY85] focus on these very issues. By showing that

an election can be simulated for an adversary (as was

done in the original proof of Theorem 2), one shows

that an adversary gains no such additional knowl-

edge and that therefore, the privacy of the voters is

maintained.

11

