THE IMPLEMENTATION
OF FUNCTIONAL

PROGRAMMING LANGUAGES

Simon L. Peyton Jones

Department of Computer Science,
University College London

with chapters by

Philip Wadler, Programming Research Group, Oxford
Peter Hancock, Metier Management Systems Ltd
David Tumer, University of Kent, Canterbury

PRENTICE HALL

NEWYORK LONDON TORONTO SYDNEY TOKYO



To Dorothy

First published 1987 by

Prentice Hall International (UK) Ltd,

Campus 400, Maylands Avenue, Hemel Hempstead,
Hertfordshire, HP2 7EZ

A division of

Simon & Schuster International Group

© 1987 Simon L. Peyton Jones (excluding Appendix)
Appendix © David A. Tumer

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission, in writing,
from the publisher. For permission within the United States of
America contact Prentice Hall Inc., Englewood Cliffs, NJ 07632,

Printed and bound in Great Britain by
BPC Wheatons Ltd, Exeter

Library of Congress Cataloging-in-Publication Data

Peyton Jones, Simon L., 1958-
The implementation of functional programming languages.

“7th May 1986.

Bibliography: p.

Includes index.

1. Functional programming languages. 1. Title.
QA76.7.P495 1987 005.13'3 86-20535
ISBN 0-13-453333-X

Britisb Library Cataloguing in Publication Data

Peyton Jones, Simon L.
The implementation of functional programming languages —
(Prentice Hall International series in computer science)
I. Electronic digital computers — Programming
L Title II. Wadler, Philip III. Hancock, Peter
005.1 QA76.6

ISBN 0-13-453333-X
ISBN 0-13-453325-9 Pbk

678910 9897 9 95 %4

ISBN 0-1,3-453333-X
ISBN 0-13-453325-9 PBK



CONTENTS

Preface xvii

1 INTRODUCTION 1

1.1 Assumptions 1

1.2 Part 1: compiling high-level functional languages 2

1.3 Part 11: graph reduction 4

1.4 Part 111: advanced graph reduction 5

References 6
PART I COMPILING HIGH-LEVEL FUNCTIONAL LANGUAGES

2 THE LAMBDA CALCULUS 9

2.1 The syntax of the lambda calculus 9

2.1.1 Function application and currying 10

2.1.2 Use of brackets 11

2.1.3 Built-in functions and constants 11

2.1.4 Lambda abstractions 12

2.1.5 Summary 13

2.2 The operational semantics of the lambda calculus 14

2.2.1 Bound and free variables 14

2.2.2 Beta-conversion 15

2.2.3 Alpha-conversion 18

2.2.4 Eta-conversion 19

2.2.5 Proving interconvertibility 19

2.2.6 The name-capture problem 20

2.2.7 Summary of conversion rules 21

2.3 Reduction order 23

2.3.1 Normal order reduction 24

23.2 Optimal reduction orders 25

2.4 Recursive functions 25

2.4.1 Recursive functionsand Y 26

2.4.2 Y can be defined as a lambda abstraction 27



vi Contents

2.5 The denotational semantics of the lambda calculus 28
2.5.1 The Eval function 29
2.5.2 Thesymbol | 31
2.5.3 Defining the semantics of built-in functions and constants 3
2.5.4 Strictness and laziness 33
2.5.5 The correctness of the conversion rules 34
2.5.6 Equality and convertibility 34

2.6 Summary 35

References 35

3 TRANSLATING A HIGH-LEVEL FUNCTIONAL LANGUAGE

INTO THE LAMBDA CALCULUS 37

3.1 The overall structure of the translation process 38

3.2 The enriched lambda calculus 39
3.2.1 Simple let-expressions 40
3.2.2 Simple letrec-expressions 42
3.2.3 Pattern-matching let- and letrec-expressions 43
3.2.4 Let(rec)s versus lambda abstractions 43

3.3 Translating Miranda into the enriched lambda calculus 44

3.4 The TE translation scheme 45
3.4.1 Translating constants 46
3.4.2 Translating variables 46
3.4.3 Translating function applications 46
3.44 Translating other forms of expressions 47

3.5 The TDtranslation scheme 47
3.5.1 Variable definitions 47
3.5.2 Simple function definitions 47

3.6 Anexample 48

3.7 The organization of Chapters 4-9 49

References ' 50

4 STRUCTURED TYPES AND THE SEMANTICSOP

PATTERN-MATCHING Simon L. Peyton Jones and Philip Wadler 51

4.1 Introduction to structured types 52
4.1.1 Type variables 53
4.1.2 Special cases 53
4.1.3 General structured types 55
4.1.4 History 56

4.2 Translating Miranda into the enriched lambda calculus 57
4.2.1 Introduction to pattern-matching 57
42,2 Patterns 59
4.2.3 Introducing pattern-matching lambda abstractions 60
42,4 Multiple equations and failure 61
4.2.5 Multiple argninents 62



Contents

vit

4.2.6 Conditional equations 63

4.2.7 Repeated variables 65

4.2.8 Where-clauses 66

4.2.9 Patterns on the left-hand side of definitions 67

4.2.10 Summary 67

4.3 The semantics of pattern-matching lambda abstractions 67

4.3.1 The semantics of variable patterns 68

4.3.2 The semantics of constant patterns 69

4.3.3 The semantics of sum-constructor patterns 69

4.3.4 The semantics of product-constructor patterns 70

4.3.5 A defence of lazy product-matching 72

4.3.6 Summary 74

4.4 Introducing case-expressions 74

4.5 Summary 76

References 77
5 EFFICIENT COMPILATION OF PATTERN-MATCHING

Philip Wadler - 78

5.1 Introduction and examples 78

5.2 The pattern-matching compiler algorithm 81

5.2.1 The function maich 81

5.2.2 The variablerule
5.2.3 The constructor rule
5.24 Theemptyrule
5.2.5 Anexample
5.2.6 The mixture rule
5.2.7 Completeness
5.3 The pattern-matching compiler in Miranda
5.3.1 Patterns
5.3.2 Expressions
5.3.3 Equations
5.3.4 Variable names
5.3.5 The functions partition and foldr
5.3.6 The function match
5.4 Optimizations
5.4.1 Case-expressions with default clauses
5.4.2 Optimizing expressions containing (] and FAIL
5.5 Uniform definitions
References

P LrE 88828888 BRRY

5 TRANSFORMING THE ENRICHED LAMBDA CALCULUS 104
6.1 Transforming pattern-matching lambda abstractions 104
6.1.1 Constant patterns : 104
6.1.2 Product-constructor patterns 105
6.1.3 Sum-constructor patterns 106



viii

Contents

6.1.4 Reducing the number of built-in functions 107
6.1.5 Summary 109

6.2 Transforming letand letrec 109
6.2.1 Conformality checking and irrefutable patterns 110
6.2.2 Overview of letand letrec transformations 110
6.2.3 Transforming simple lets into the ordinary lambda calculus 112
6.2.4 Transforming irrefutable lets into simple lets 112
6.2.5 Transforming irrefutable letrecs into simple letrecs 113
6.2.6 Transforming irrefutable letrecs into irrefutable lets 114
6.2.7 Transforming general let(rec)s into irrefutable let(rec)s 115
6.2.8 Dependency analysis 118

" 6.3 Transforming case-expressions 121
6.3.1 Case-expressions involving a product type 12
6.3.2 Case-expressions involving a sum type 12
6.3.3 Using a let-expression instead of UNPACK 123
6.3.4 Reducing the number of built-in functions 124

6.4 The [] operator and FAIL 125
6.5 Summary 126
References 126
7 LIST COMPREHENSIONS Philip Wadler 127
7.1 Introduction to list comprehensions 127
7.2 Reduction rules for list comprehensions 129
7.3 Translating list comprehensions 132
7.4 Using transformations to improve efficiency 133
7.5 Pattern-matching in comprehensions 136
Reference 138
8 POLYMORPHIC TYPE-CHECKING Peter Hancock 139
8.1 Informal notation for types 140
8.1.1 Tuples 140

8.1.2 Lists 141

8.1.3 Structured types 141

8.1.4 Functions 142

8.2 Polymorphism 143
8.2.1 The identity function 143

8.2.2 The length function 144

8.2.3 The composition function 145

8.2.4 The function foldr 146

8.2.5 What polymorphism means 147

8.3 Type inference 148
8.4 The intermediate language 150
8.5 How to find types 151
8.5.1 Simple cases, and lambda abstractions 151

8.5.2 A mistyping 154

8.5.3 Top-leveliets 155



Contents ix
8.5.4 Top-level letrecs 157

8.5.5 Local definitions 159

8.6 Summary of rules for correct typing 160
8.6.1 Rule for applications 160

8.6.2 Rule for lambda abstractions 160

8.6.3 Rule for let-expressions 161
8.6.4 Rule for letrec-expressions 161

8.7 Some cautionary remarks 161
References 162
9 A TYPE-CHECKER Peter Hancock 163
9.1 Representation of programs 163
9.2 Representation of type expressions 164
9.3 Success and failure 165
9.4 Solving equations 166
9.4.1 Substitutions 166
9.4.2 Unification 168

9.5 Keeping track of types 171
9.5.1 Method 1: look to the occurrences 171
9.5.2 Method 2: look to the variables 171
9.5.3 Association lists 173

9.6 New variables 175
9.7 The type-checker 176
9.7.1 Type-checking lists of expressions 177
9.7.2 Type-checking variables 177
9.7.3 Type-checking application 178
9.7.4 Type-checking lambda abstractions 179
9.7.5 Type-checking let-expressions 179
9.7.6 Type-checking letrec-expressions 180
References 182

PART II GRAPH REDUCTION

10 PROGRAM REPRESENTATION 185
10.1 Abstract syntax trees 185
10.2 The graph 186
10.3 Concrete representations of the graph 187
10.3.1 Representing structured data 187

10.3.2 Other uses for variable-sized cells 189

10.4 Tags and type-checking 189
10.5 Compile-time versus run-time typing 190
10.6 Boxed and unboxed objects 190
10.7 Tagged pointers 191
10.8 Storage management and the need for garbage collection 192
References 192



Contents

11 SELECTING THE NEXT REDEX 193
11.1 Lazy evaluation 193
11.1.1 The case for lazy evaluation 194
11.1.2 The case against lazy evaluation 194
11.1.3 Normal order reduction 194
11.1.4 Summary 195
11.2 Data constructors, input and output 195
11.2.1 The printing mechanism 196
11.2.2 The input mechanism 197
11.3 Normal forms 197
11.3.1 Weak head normal form 198
11.3.2 Top-level reduction is easier 199
11.3.3 Head normal form 199
11.4 Evaluating arguments of built-in functions 200
11.5 How to find the next top-level redex 201
11.6 The spine stack 202
11.6.1 Pointer-reversal 203
11.6.2 Argument evaluation using pointer-reversal 204
11.6.3 Stacks versus pointer-reversal 205
References 206
12 GRAPH REDUCTION OF LAMBDA EXPRESSIONS 207
12.1 Reducing a lambda application 207
12.1.1 Substituting pointers to the argument 208
12.1.2 Overwriting the root of the redex 209
12.1.3 Constructing a new instance of the lambda body 209
12.1.4 Summary 210
12.2 Reducing a built-in function application 212
12.3 The reduction algorithm so far 213
12.4 Indirection nodes 213
12.4.1 Updating with unboxed objects 214
12.4.2 Updating where the body is a single variable 215
12.4.3 Evaluating the result before updating 216
12.4.4 Summary: indirection nodes versus copying 217
12.5 Implementing Y 218
References 219
13 SUPERCOMBINATORS AND LAMBDA-LIFTING 220
13.1 The idea of compilation 220
13.2 Solving the problem of free variables 222
13.2.1 Supercombinators 223 -
13.2.2 A supercombinator-based compilation strategy 224
13.3 Transforming lambda abstractions into supercombinators 226
13.3.1 "Eliminating redundant parameters 228
13.3.2 Parameter ordering 229



Contents

xi

13.4 1mplementing a supercombinator program 230
References 231
14 RECURSIVE SUPERCOMBINATORS 232
14.1 Notation 233
14.2 Lets and letrecs in supercombinator bodies 233
14.3 Lambda-lifting in the presence of letrecs 235
14.4 Generating supercombinators with graphical bodies 236
14.5 An example 236
14.6 Alternative approaches 238
14.7 Compile-time simplifications 240
' 14.7.1 Compile-time reductions 240
14.7.2 Common subexpression elimination 241

14.7.3 Eliminating redundant lets 241
References 242
15 FULLY-LAZY LAMBDA-LIFTING 243
15.1 Full laziness 243
15.2 Maximal free expressions 245
15.3 Lambda-lifting using maximal free expressions 247
15.3.1 Modifying the lambda-lifting algorithm 247

15.3.2 Fully lazy lambda-lifting in the presence of letrecs 249

15.4 Alarger example 250
15.5 Implementing fullylazy lambda-lifting 252
15.5.1 Identifying the maximal free expressions 252

15.5.2 Lifting CAFs 253

15.5.3 Ordering the parameters 253
15.5.4 Floating out the lots and letrecs 254

15.6 Eliminating redundant full laziness 256
15.6.1 Functions applied to too few arguments 257

15.6.2 Unshared lambda abstractions 258
References 259
16 SK COMBINATORS 260
16.1 The SK compilation scheme 260
16.1.1 Introducing S, Kand | 261

16.1.2 Compilation and implementation 263

16.1.3 Implementations 265

16.1.4 SK combinators perform lazy instantiation 265

16.1.5 lis not necessary 266

16.1.6 History 266

16.2 Optimizations to the SK scheme 267



xii Contents_

16.2.1 Koptimization 267
16.2.2 The B combinator 268
16.2.3 The Ccombinator 269
16.2.4 The S’ combinator 270
16.2.5 The B’ and C’' combinators 272
16.2.6 An example 273
16.3 Director strings : 274
16.3.1 The basicidea 275
16.3.2 Minor refinements 277
16.3.3 Director strings as combinators 277
16.4 The size of SK combinator translations 278
16.5 Comparison with supercombinators 279
16.5.1 Infavor of SK combinators 279
16.5.2 Against SK combinators 279
References 280

17 STORAGE MANAGEMENT AND GARBAGE COLLECTION 281

17.1 Ciriteria for assessing a storage manager 281
17.2 A sketch of the standard techniques 282
17.3 Developments in reference-counting 285

17.3.1 Reference-counting garbage collection of cyclic structures 285

17.3.2 One-bit reference-counts 286

17.3.3 Hardware support for reference-counting 286
17.4 Shorting out indirection nodes 287
17.5 Exploiting cell lifetimes 287
17.6 Avoiding garbage collection 288
17.7 Garbage collection in distributed systems 288
References 289

PART lit ADVANCED GRAPH REDUCTION

18 THE G-MACHINE 293
18.1 Using an intermediate code 294
18.1.1 G-code and the G-machine compiler 294
18.1.2 Other fast sequential implementations of lazy languages 295
18.2 An example of G-machine execution 296
18.3 The source language for the G-compiler 299
18.4 Compilation to G-code 300
18.5 Compiling a supercombinator definition 301
18.5.1 Stacks and contexts 302
18.5.2 The Rcompilation scheme 304
18.5.3 The Ccompilation scheme 306
18.6 Supercombinators with zero arguments 311
18.6.1 Compiling CAFs 311

18.6.2 Garbage collection of CAFs 312



Contents xiii
18.7 Getting it all together 312
18.8 The built-in functions 313
18.8.1 $NEG, $+, and the EVAL instruction 314
18.8.2 $CONS 316
18.8.3 S$HEAD 316
18.8.4 $IF, and the JUMP instruction 317
18.9 Summary 318
References 318
19 G-CODE -DEFINITION AND IMPLEMENTATION 319
19.1 What the G-code instructions do 319
19.1.1 Notation 320
19.1.2 State transitions for the G-machine 320
19.1.3 The printing mechanism 322
19.1.4 Remarks about G-code 324
19.2 Implementation 324
19.2.1 VAXUnix assembler syntax 324
19.2.2 The stack representation 325
19.2.3 The graph representation 325
19.2.4 The code representation 326
19.2.5 The dump representation 326
19.3 Target code generation 326
19.3.1 Generating target code from G-code instructions 327
19.3.2 Optimization using a stack model 328
19.3.3 Handling EVALs and JUMPs 329
19.4 More on the graph representation 330
19.4.1 Implementing tag case analysis 330
19.4.2 Implementing EVAL 331
19.4.3 Implementing UNWIND 332
19.4.4 Indirection nodes 334
19.4.5 Boxed versus unboxed representations 335
19.4.6 Summary 336
19.5 Getting it all together 336
19.6 Summary 336
References 337
20 OPTIMIZATIONS TO THE G-MACHINE 338
20.1 On not building graphs 338
20.2 Preserving laziness 339
20.3 Direct execution of built-in functions 340
20.3.1 Optimizations to the Rscheme 340
20.3.2 The Escheme 341
20.3.3 TheRS and ES schemes 343

20.3.4 m-reduction and lambda-lifting



xiv Contents

20.4 Compiling FATBAR and FAIL 347
20.5 Evaluating arguments 349
20.5.1 Optimizing partial applications 349
20.5.2 Using global strictness information 350
20.6 Avoiding EVALs 352
20.6.1 Avoiding re-evaluation in a function body 352
20.6.2 Using global strictness information 352
20.7 Avoiding repeated unwinding 354
20.8 Performing some eager evaluation 355
20.9 Manipulating basic values 356
20.10 Peephole optimizations to G-code 360
20.10.1 Combining multiple SLIDEs and MKAPs 360
20.10.2 Avoiding redundant EVALs 361
20.10.3 Avoiding allocating the root of the resuit 361
20.10.4 Unpacking structured objects 362
20.11 Pattern-matching revisited 363
20.12 Summary 363
Reference 366

21 OPTIMIZING GENERALIZED TAIL CALLS Simon L. Peyton

Jones and Thomas Johnsson 367

21.1 Tail calls 368
21.2 Generalizing tail calls n
21.2.1 Wisan application node 372
21.2.2 Wisasupercombinator of zero arguments 373
21.2.3 Waisa function of three arguments 373
21.2.4 Wisa function of less than three arguments 373
21.2.5 Wisa function of more than three arguments 374

21.3 Compilation using DISPATCH 376
21.3.1 Compilation schemes for DISPATCH 376
21.3.2 Compile-time optimization of DISPATCH 376

21.4 Optimizing the Escheme 37
21.5 Comparison with environment-based implementations 378
References 3719

22 STRICTNESS ANALYSIS

22.1 Abstract interpretation
22.1.1 Anarchetypical example —the rule of signs
22.1.2 History and references

22.2 Using abstract interpretation to do strictness analysis
22.2.1 Formulating the question
22.2.2 Choosing an appropriate abstract interpretation
22.2.3 Developing f# from f
22.2.4 Fitting strictness analysis into the compiler

REeRER8E |8



One

INTRODUCTION

This book is about implementing functional programming languages using
lazy graph reduction, and it divides into three parts.

The first part describes how to translate a high-level functional language
into an intermediate language, called the lambda calculus, including detailed
coverage of pattern-matching and type-checking. The second part begins with
a simple implementation of the lambda calculus, based on graph reduction,
and then develops a number of refinements and alternatives, such as super-
combinators, full laziness and SK combinators. Finally, the third part
describes the G-machine, a sophlsucated implementation of graph reduction,
which provides a dramatic increase in performance over the implementations
described earlier.

One of the agreed advantages of functional languages is their semantic
simplicity. This simplicity has considerable payoffs in the book. Over and
over again we are able to make semi-formal arguments for the correctness of
the compilation algorithms, and the whole book has a distinctly mathematical
fiavor ~ an unusual feature in a book about implementations.

Most of the material to be presented has appeared in the published
literature in some form (though some has not), but mainly in the form of
conference proceedings and isolated papers. References to this work appear
at the end of each chapter.

1.1 Assumptions

This book is about implementations, not languages, so we shall make no
attempt to extol the virtues of functional languages or the functional
programming style. Instead we shall assume that the reader is familiar with
functional programming; those without this familiarity may find it heavy

1



2 Chapter 1 Introduction

going. A brief introduction to functional programming may be found in
Darlington [1984], while Henderson [1980] and Glaser et al. [1984] give more
substantial treatments. Another useful text is Abelson and Sussman [1985]
which describes Scheme, an almost-functional dialect of Lisp..

An encouraging consensus seems to be emerging in the basic features of
high-level functional programming languages, exemplified by languages such
as SASL [Turner, 1976], ML [Gordon et al., 1979], KRC [Turner, 1982],
Hope [Burstall et al., 1980], Ponder [Fairbairn, 1985], LML [Augustsson,
1984], Miranda [Turner, 1985] and Orwell [Wadler, 1985]. However, for the
sake of definiteness, we use the language Miranda as a concrete example
throughout the book (When used as the name of a programming language,
‘Miranda’ is a trademark of Research Software Limited.) A brief intro-
duction to Miranda may be found in the appendix, but no serious attempt is
made to give a tutorial about functional programming in general, or Miranda
in particular. For those familiar with functional programming, however, no
difficulties should arise.

Generally speaking, all the material of the book should apply to the other
functional languages mentioned, with only syntactic changes. The only
exception to this is that we concern ourselves almost exclusively with the
implementation of languages with non-strict semantics (such as SASL, KRC,
Ponder, LML, Miranda and Orwell). The advantages and disadvantages of
this are discussed in Chapter 11, but it seems that graph reduction is probably
less attractive than the environment-based approach for the implementation
of languages with strict semantics; hence the focus on non-strict languages.
However, some functional languages are strict (ML and Hope, for example),
and while much of the book is still relevant to strict languages, some of the
material would need to be interpreted with care.

The emphasis throughout is on an informal approach, aimed at developing
understanding rather than at formal rigor. It would be an interesting task to
rewrite the book in a formal way, giving watertight proofs of correctness at
each stage. :

1.2 Partl: Complling High-level Functional Languages

It has been widely observed that most functional languages are quite similar to
each other, and differ more in their syntax than their semantics. In order to
simplify our thinking about implementations, the first part of this book shows
how to translate a high-level functional program into an intermediate language
which has a very simple syntax and semantics. Then, in the second and third
parts of the book, we will show how to implement this intermediate language
using graph reduction. Proceeding in this way allows us to describe graph
reduction in considerable detail, but in a way that is not specific to any
particular high-level language.

The intermediate language into which we will translate the high-level
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functional program is the notation of the lambda calculus (Figure 1.1). The
lambda calculus is an extremely well-studied language, and we give an intro-
duction to it in Chapter 2.

High-level language program

l Part

Program expressed in lambda notation

l Parts Il and III

Concrete implementation

Figure 1.1 Implementing a functional program

The lambda calculus is not only simple, it is also sufficiently expressive to
allow us to translate any high-level functional language into it. However,
translating some high-level language constructs into the lambda notation is
less straightforward than it at first appears, and the rest of Part I is concerned
with this translation.

Part I is organized as follows. First of all, in Chapter 3, we define a language
which is a superset of the lambda calculus, which we call the enriched lambda
calculus. The extra constructs provided by the enriched lambda calculus are
specifically designed to allow a straightforward translation of a Miranda
program into an expression in the enriched lambda calculus, and Chapter 3
shows how to perform this translation for simple Miranda programs.

After a brief introduction to pattern-matching, Chapter 4 then extends the
translation algorithm to cover more complex Miranda programs, and gives a
formal semanncs for pattern-matching. Subsequently, Chapter 7 rounds out
the picture, by showing how Miranda’s ZF expressions can also be translated
in the same way. (Various advanced features of Miranda are not covered,
such as algebraic types with laws, abstract data types, and modules.)

Much of the rest of Part I concerns the transformation of enriched lambda
calculus expressions into the ordinary lambda calculus subset, a process which
is quite independent of Miranda. This language-independence was one of the
reasons for defining the enriched lambda calculus language in the first place.
Chapter 5 shows how expressions involving pattern-matching constructs may
be transformed to use case-expressions, with a considerable gain in efficiency.
Then Chapter 6 shows how all the constructs of the enriched lambda calculus,
including case-expressions, may be transformed into the ordinary lambda
calculus.

Part I concludes with Chapter 8 which discusses type-checking in general,
and Chapter 9 in which a type-checker is constructed in Miranda.
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1.3 Partli: Graph Reduction

The rest of the book describes how the lambda calculus may be implemented
using a technique called graph reduction. It is largely independent of the later
chapters in Part I, Chapters 24 being the essential prerequisites.

As a foretaste of things to come, we offer the following brief introduction to
graph reduction. Suppose that the function f is defined (in Miranda) like this:

fx=MX+1)=*(x-1)

This definition specifies that f is a function of a single argument x, which
computes‘(x + 1) * (x — 1)’. Now suppose that we are required to evaluate

fa
that is, the function f applied to 4. We can think of the program like this:

A
f 4
where the @ stands for function application. Applying f to 4 gives

N\
/\ /\

4 1 4 1

(Note: in the main text we will use a slightly different representation for
applications of *, + and —, but this fact is not significant here.) We may now
execute the addition and the subtraction (in either order), giving

*
5 3
Finally we can execute the multiplication, to give the result
15

From this simple example we can see that:

(i) Executing a functional program consists of evaluating an expression.
(ii) A functional program has a natural representation as a tree (or, more
generally, a graph).

(iii) Evaluation proceeds by means of a sequence of simple steps, called
reductions. Each reduction performs a local transformation of the graph
(hence the term graph reduction).

(iv) Reductions may safely take place in a variety of orders, or indeed in
parallel, since they cannot interfere with each other.
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) Evaluation is complete when there are no further reducible expressions.

Graph reduction gives an appealingly simple and elegant model for the
execution of a functional program, and one that is radically different from the
execution model of a conventional imperative language.

We begin in Chapter 10 by discussing the representation of a functional
program as a graph. The next two chapters form a pair which discusses first the
question of deciding which reduction to perform next (Chapter 11), and then
the act of performing the reduction (Chapter 12).

Chapters 13 and 14 introduce the powerful technique of supercombinators,
which is the key to the remainder of the book. This is followed in Chapter 15
with a discussion of full laziness, an aspect of lazy evaluation; this chapter can
be omitted on first reading since later material does not depend on it.

Chapter 16 then presents SK combinators, an alternative implementation
technique to supercombinators. Hence, this chapter can be understood
independently of Chapters 13-15. Thereafter, however, we concentrate on
supercombinator-based implementations.

Part II concludes with a chapter on garbage collection.

1.4 Partlii: Advanced Graph Reduction

It may seem at first that graph reduction is inherently less efficient than more
conventional execution models, at least for conventional von Neumann
machines. The bulk of Part III is devoted to an extended discussion of the
G-machine, which shows how graph reduction can be compiled to a form that
is suitable for direct execution by ordinary sequential computers.

In view of the radical difference between graph reduction on the one hand,
and the linear sequence of instructions executed by conventional machines on
the other, this may seem a somewhat surprising achievement. This (fairly
recent) development is responsible for a dramatic improvement in the speed
of functional language implementations.

Chapters 18 and 19 introduce the main concepts of the G-machine, while
Chapters 20 and 21 are devoted entirely to optimizations of the approach.

The book concludes with three chapters that fill in some gaps, and offer
some pointers to the future. .

Chapter 22 introduces strictness analysis, a compile-time program analysis
method which has been the subject of much recent work, and which is crucial
to many of the optimizations of the G-machine.

Perhaps the major shortcoming of functional programming languages,
from the point of view of the programmer, is the difficulty of estimating the
space and time complexity of the program. This question is intimately bound
up with the implementation, and we discuss the matter in Chapter 23.

Finally, the book concludes with a chapter on parallel implementations of
graph reduction.
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Two

THE LAMBDA CALCULUS

This chapter introduces the lambda calculus, a simple language which will be
used throughout the rest of the book as a bridge between high-level functional
languages and their low-level implementations. The reasons for introducing
the lambda calculus as an intermediate language are:

(i) It is a simple language, with only a few, syntactic constructs, and simple
semantics. These properties make it a good basis for a discussion of
implementations, because an implementation of the lambda caiculus only
has to support a few constructs, and the simple semantics allows us to
reason about the correctness of the implementation.

(ii) It is an expressive language, which is sufficiently powerful to express all
functional programs (and indeed, all computable functions). This means
that if we have an implementation of the lambda calculus, we can

implement any other functional language by translating it into the lambda
calculus. '

In this chapter we focus on the syntax and semantics of the lambda calculus
itself, before turning our attention to high-level functional languages in the
next chapter.

2.1 The Syntax of the Lambda Calculus

Here is a simple expression in the lambda calculus:
(+ 4 5)
All function applications in the lambda calculus are written in prefix form, so,

9
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for example, the function + precedes its arguments 4 and 5. A slightly more
complex example, showing the (quite conventional) use of brackets, is

(+ (+ 5 6) (+ 8 3) -

In both examples, the outermost brackets are redundant, but have been
added for clarity (see Section 2.1.2).

From the implementation viewpoint, a functional program should be
thought of as an expression, which is ‘executed’ by evaluating it. Evaluation
proceeds by repeatedly selecting a reducible expression (or redex) and
reducing it. In our last example there are two redexes: (* 5 6) and (» 8 3).
The whole expression(+ (* 5 6) (* 8 3))isnotaredex, since a + needs to be
applied to two numbers before it is reducible. Arbitrarily choosing the first
redex for reduction, we write

(+(»56)(«83) — (+ 30 (* 8 3)

where the —» is pronounced ‘reduces to’. Now there is only one redex, (* 8 3),
which gives

(+ 30 (» 83) — (+ 30 29
This reduction creates a new redex, which we now reduce
(+ 30 24) —» 54

When there are several redexes we have a choice of which one to reduce
first. This issue will be addressed later in this chapter.

2.1.1 Function Application and Cunying

In the lambda calculus, function application is so important that it is denoted
by simple juxtaposition; thus we write

f x

to denote ‘the function f applied to the argument x’. How should we express
the application of a function to several arguments? We could use a new
notation, like (f (xy)), but instead we use a simple and rather ingenious
alternative. To express ‘the sum of 3 and 4’ we write

((+3) 4

The expression (+ 3) denotes the function that adds 3 to its argument. Thus
the whole expression means ‘the function + applied to the argument 3, the
result of which is a function applied to 4’. (In common with all functional
programming languages, the lambda calculus allows a function to return a
function as its resuit.)

This device allows us to think of all functions as having a single argument
only. It was introduced by Schonfinkel [1924] and extensively used by Curry
[Curry and Feys, 1958]; as a result it is known as currying.
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2.1.2 Use of Brackets

In mathematics it is conventional to omit redundant brackets to avoid
cluttering up expressions. For example, we might omit brackets from the
expression

(ab) +((2c)/d)
to give
ab +2c/d

The second expression is easier to read than the first, but there isa danger that
it may be ambiguous. It is rendered unambiguous by establishing conventions
about the precedence of the various functions (for example, multiplication
binds more tightly than addition)..

Sometimes brackets cannot be omitted, as in the expression:

(b+c)la

Similar conventions are useful when writing down expressions in the
lambda calculus. Consider the expression:

(+3) 2

By establishing the convention that function application associates to the left,
we can write the expression more simply as:

(+32)
or even
+ 32

We performed some such abbreviations in the examples given earlier. As a
more complicated example, the expression:

(f (+ 4 3)) (g x)

is fully bracketed and unambiguous. Following our convention, we may omit
redundant brackets to make the expression easier to read, giving:

f(+43) (gx

No further brackets can be omitted. Extra brackets may, of course, be
inserted freely without changing the meaning of the expression; for example

f (+ 43) (g x)
is the same expression again.

2.1.3 Built-in Functions and Constants

In its purest form the lambda calculus does not have built-in functions such as
+, but our intentions are practical and so we extend the pure lambda calculus
with a suitable collection of such built-in functions.
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These include arithmetic functions (such as +, —, *, /) and constants (0, 1,
.. .), logical functions (such as AND, OR, NOT) and constants (TRUE,
FALSE), and character constants (‘a’, ', . . .). For example

~-54 - 1
AND TRUE FALSE — FALSE

We also include a conditional function, IF, whose behavior is described by the
reduction rules:

IFTRUE E E —» E
IF FALSEE; E; — E

We will initially introduce data constructors into the lambda calculus by
using the built-in functions CONS (short for CONSTRUCT), HEAD and TAIL
(which behave exactly like the Lisp functions CONS, CAR and CDR). The
constructor CONS builds a compound object which can be taken apart with
HEAD and TAIL. We may describe their operation by the following rules:

HEAD (CONS a b) — a
TAIL (CONS ab) — b

We also include NIL, the empty list, as a constant. The data constructors will
be discussed at greater length in Chapter 4.

The exact choice of built-in functions is, of course, somewhat arbitrary, and
further ones will be added as the need arises.

2.1.4 Lambda Abstractions

The only functions introduced so far have been the built-in functions (such as
+ and CONS). However, the lambda calculus provides a construct, called a
lambda abstraction, to denote new (non-built-m) functions. A lambda
abstraction is a particular sort of expression which denotes a function. Here is
an example of a lambda abstraction:

Ax . + x 1)

The A says ‘here comes a function’, and is inmediately followed by a variable,
x in this case; then comes a . followed by the body of the function, (+ x 1) in
this case. The variable is called the formal parameter, and we say that the A
binds it. You can think of it like this:

(A x . + x 1)

) trt 1 1
That function of x which adds x to 1

A lambda abstraction always consists of all the four parts mentioned: the A,
the formal parameter, the . and the body.
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A lambda abstraction is rather similar to a function definition in a
conventional language, such as C:

Inc{ x )
int x;
{retum( x + 1 );}

The formal parameter of the lambda abstraction corresponds to the formal
parameter of the function, and the body of the abstraction is an expression
rather than a sequence of commands. However, functions in conventional
languages must have a name (such as Inc), whereas lambda abstractions are
‘anonymous’ functions.

The body of a lambda abstraction extends as far o the right as possible, so
that in the expression

(A.+ x 1) 4

the body of the Ax abstraction is (+ x 1), not just +. As usual, we may add
extra brackets to clarify, thus

(Ax.(+ x 1)) 4

When a lambda abstraction appears in isolation we may write it without any
brackets:

AX.+ x 1

2.1.5 Summary

We define a lambda expression to be an expression in the lambda calculus, and
Figure 2.1 summarizes the forms which a lambda expression may take. Notice
that a lambda abstraction is not the same as a lambda expression; in fact the
former is a particular instance of the latter.

<exp> :: = <constant> Built-in constants
| <variable> Variable names
| <exp> <exp> Applications

| A <variable>.<exp> Lambda abstractions

This is the abstrdct syntax of lambda expressions. In order to write down
such an expression in concrete form we use brackets to disambiguate its
structure (see Section 2.1.2).

We will use lower-case letters for variables (e.g. x, f), and upper-case
letters to stand for whole lambda expressions (e.g. M, E).

The choice of constants is rather arbitrary; we assume integers and
booleans (e.g. 4, TRUE), together with built-in functions to manipulate
them (e.g. AND, IF, +). We also assume built-in list-processing functions
(e.g. CONS, HEAD). '

Figure2.1 Syntax of a lambda expression (in BNF)
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In what follows we will use lower-case names for variables, and single
upper-case letters to stand for whole lambda expressions. For example we
might say ‘for any lambda expressionE, . . .,”. We will also write the names of
built-in functions in upper case, but no confusion should arise.

2.2 The Operational Semantics of the Lambda Calculus

So far we have described only the syntax of the lambda calculus, but to dignify
it with the title of a ‘calculus’ we must say how to ‘calculate’ with it. We will do
this by giving three conversion rules which describe how to convert one
lambda expression into another.

First, however, we introduce an important piece of terminology.

2.2.1 Bound and Free Variables
Consider the lambda expression

(AX.+ xvy) 4

In order to evaluate this expression completely, we need to know the ‘global’
value of y. In contrast, we do not need to know a ‘global’ value for x, since it is
just the formal parameter of the function, so we see that x and y have a rather
different status.

The reason is that x occurs bound by the Ax; it is just a “hole’ into which the
argument 4 is placed when applying the lambda abstraction to its argument.

An occurrence of a variable must be either free or bound.
Definition of ‘occurs free’
xoccurs free in X (but not in any other variable or constant)
xoccurs free in (E F) <> Xoccurs free inE
or xoccurs freein F
X accurs free in Ay.E << xand y are different variables
and xoccurs free in E
Definition of ‘occurs bound’
xoccurs boundin (E F) <> xoccurs bound in E
or Xoccurs bound in F
xoccurs bound in Ay.E << (xand yare the same variable
and x occurs free in E)
or xoccurs boundin E
(No variable occurs bound in an expression consisting of a single constant
or variable.)
Note: ‘<>’ means ‘if and only if’

Figure 2.2 Definitions of bound and free
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On the other hand, y is not bound by any A, and so occurs free in the
expression. In general, the value of an expression depends only on the values
of its free variables.

An occurrence of a variable is bound if there is an enclosing lambda
abstraction which binds it, and is free otherwise. For example, x and y occur
bound, but z occurs free in this example:

AX.+ ((Ay.+y2)7) x

Notice that the terms ‘bound’ and ‘free’ refer to specific occurrences of the
variable in an expression. This is because a variable may have both a bound
occurrence and a free occurrence in an expression; consider for example

+ x (Ax.+ x 1) 4)

in which x occurs free (the first time) and bound (the second time). Each
individual occurrence of a variable must be either free or bound.

Figure 2.2 gives formal definitions for ‘free’ and ‘bound’, which cover the
forms of lambda expression given in Figure 2.1 case by case.

2.2.2' Beta-conversion

A lambda abstraction denotes a function, so we must describe how to apply it
to an argument. For example, the expression

(Ax.+ x 1) 4

is the juxtaposition of the lambda abstraction (\x. + x 1) and the argument 4,
and hence denotes the application of a certain function, denoted by the
lambda abstraction, to the argument 4. The rule for such function application
is very simple:

The result of applying a lambda abstraction to an argument is an instance of
the body of the lambda abstraction in which (free) occurrences of the
formal parameter in the body are replaced with (copies of) the argument.

Thus the result of applying the lambda abstraction (Ax.+ x 1) to the
argument 4 is

+ 41

The (+ 4 1) is an instance of the body (+ x 1) in which occurrences of the
formal parameter, x, are replaced with the argument, 4. We write the
reduction using the arrow ‘-’ as before:

AX.+x1) 4 > +41

This operation is called 8-reduction, and much of this book is concerned with
its efficient implementation. We will use a series of examples to show in detail
how B-reduction works.
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2.2.2.1 Simple examples of beta-reduction
The formal parameter may occur several times in the body:

AX@X.+xx)5 —- +55
- 10

Equally, there may be no occurrences of the formal parameter im the body:
(Ax.3) 5 —» 3

In this case there are no occurrences of the formal parameter (x) for which the
argument (5) should be substituted, so the argument is discarded unused.

The body of a lambda abstraction may conmsist of anmother lambda
abstraction:

(AN.A\Y.— YX)45 - (\Yy.—Y4)5
- —-54
- 1
Notice that, when constructing an instance of the body of the Ax abstraction,
we copy the entire body including the embedded Ay abstraction (while
substituting for x, of course). Here we see currying in action: the application
of the Ax abstraction returned a function (the Ay abstraction) as its result,
which when applied yielded the result (— 5 4).
We often abbreviate

(Ax.(AY.E))
to
(Ax.AY.E)
Functions can be arguments too:

(M.f3) (Ax.+x1) - (Ax.+x1)3
- +31
- 4

An instance of the Ax abstraction is substituted for f wherever f appears in the
body of the M abstraction.

2,2.2.2 Naming
Some slight care is needed when formal parameter names are not unique. For
example

(Ax.(Ax.+ (- x1) x3)9
- (MX@.+(-x1))93
- +(-91)3
- 11

Notice that we did not substitute for the inner x in the first reduction, because
it was shielded by the enclosing Ax; that is, the inner occurrence of x is not free
in the body of the outer Ax abstraction.
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Given a lambda abstraction (Ax.E), how can we identify exactly those
occurrences of x which should be substituted for? It is easy: we should
substitute for those occurrences of x which are free in E, because, if they are
free in E, then they will be bound by the Ax abstraction (\x.E). So, when
applying the outer Ax abstraction in the above example, we examine its body

(™. + (—x 1) x3

and see that only the second occurrence of x is free, and hence qualifies for
substitution.

This is why the rule given above specified that only the free occurrences of
the formal parameter in the body are to be substituted for. The nesting of the
scope of variables in a block-structured language is closely analogous to this
rule.

Here is another example of the same kind

(AX.AY.+ X ((Ax.-— x 3y)56
- (Ay.+ 5 (A x.— x 3) y) 6
- + 5 ((\.— x 3) 6)

- + 5(—6 3

- 8

Again, the inner x is not substituted for in the first reduction, since it isnot free
in the body of the outer Ax abstraction.

2.2.2.3 A larger example '

As a larger example, we will demonstrate the somewhat surprising fact that

data constructors can actually be modelled as pure lambda abstractions. We
define CONS, HEAD and TAIL in the following way:

CONS = (Aa.Ab.Af.f a b)
HEAD = (Ac.c (Aa.Ab.a))
TAIL (Ac.c (Aa.Ab.Db))

These obey the rules for CONS, HEAD and TAIL given in Section 2.1.3. For
example,

HEAD (CONS p q) '
(Ac.c (Aa.Ab.a)) (CONS p q)

->» CONS p q (Aa.Ab.a)

= (Aa.Ab.Af. f a b) p q (Aa.Ab.a)
—> (Ab.Af. f p b) q (Aa.Ab.2)

- (M. f p q) (Aa.Ab.a)

->» (Aa.Ab.a) p q

— (Ab.p) q

= p

This means, incidentally, that there is no ess;ential need for the built-in
functions CONS, HEAD and TAIL, and it turns out that all the other built-in
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functions can also be modelied as lambda abstractions. This is rather satis-
fying from a theoretical viewpoint, but all practical implementations support
buiit-in functions for efficiency reasons.

2.2.2.4 Conversion, rednction and abstraction
We can use the 8-rule backwards, to introduce new lambda abstractions, thus

+41 « (M. +x1) 4

This operation is called B-abstraction, which we denote with a backwards
reduction arrow ‘«’. B-conversion means S8-reduction or 8-abstraction, and
we denote it with a double-ended arrow ‘?f. Thus we write

+41 ?(Ax.+x1)4

The arrow is decorated with 8 to distinguish 8-conversion from the other
forms of conversion we will meet shortly. An undecorated reduction arrow
‘-’ will stand for one or more B8-reductions, or reductions of the built-in
functions. An undecorated conversion arrow ‘«’ will stand for zero or more
conversions, of any kind.

Rather than regarding 8-reduction and g-abstraction as operations, we can
regard S-conversion as expressing the equivalence of two expressions which
‘look different’ but ‘ought to mean the same’. It turns out that we need two
more rules to satisfy our intuitions about the equivalence of expressions, and
we turn to these rules in the next two sections.

2.2.3 Alpha-conversion
Consider the two lambda abstractions

(ax.+ x 1)
and
(y.+y1)

Clearly they ‘ought’ to be equivalent, and a-conversion allows us to change
the name of the formal parameter of any lambda abstraction, so long as we do
80 consistently. So

AX.+ x 1) - (Ay.+ y 1)

where the arrow is decorated with an a to specify an a-conversion. The newly
introduced name must not, of course, occur free in the body of the original
lambda abstraction. a-conversion is used solely to eliminate the sort of name
clashes exhibited in the exampie in the previous section.

Sometimes a-conversion is essential (see Section 2.2.6).
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2.2.4 Eta-conversion

One more conversion rule is necessary to express our intuitions about what
lambda abstractions ‘ought’ to be equivalent. Consider the two expressions

(Ax.+ 1 x)
and
(+1)

These expressions behave in exactly the same way when applied to an
argument: they add 1 to it. n-conversion is a rule expressing their equivalence:

(X.+ 1%) < (+1)

More generally, we can express the n-conversion rule like this:
(Ax.F x) < F

provided x does not occur free in F, and F denotes a function.
The condition that x does not occur free in F prevents false conversions. For
example,

(A.+ x x)
is not 9-convertible to
(+ x)

because x occurs free in (+ x). The condition that F denotes a function
prevents other false conversions involving built-in constants; for example:

TRUE
is not n-convertible to
(Ax. TRUE x)
When the »-conversion rule is used from left to right it is called n-reduction.

2.2.5 Proving Interconvertibility

We will quite frequently want to prove the interconvertibility of two lambda
expressions. When the two expressions denote a function such proofs can
become rather tedious, and in this section we will demonstrate a convenient
method that abbreviates the proof without sacrificing rigor.

As an example, consider the two lambda expressions:

IF TRUE ((A\p-p) 3)
and
(Ax.3)
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Both denote the same function, namely the function which always delivers the
result 3 regardless of the value of its argument, and we might hope that they

were interconvertible. This hope is justified, as the followmg sequence of
conversions shows:

IF TRUE ((Ap.p) 3) < IF TRUE 3
< (Ax.IF TRUE 3 x)
> (.Ax.3)
The final step is the reduction rule for IF.
An alternative method of proving convertlblhty of expressions denoting

functions, which is often more convenient, is to apply both expressions to an
arbitrary argument, w, say:

IF TRUE ((Ap.p) 3) W (Ax.3) w
- (Ap.p) 3 - 3
- 3

Hence

(IF TRUE ((Ap.p) 3)) <« (Ax. 3)

This proof has the advantage that it only uses reduction, and it avoids the
explicit use of n-conversion. If it is not immediately clear why the final step is
justified, consider the general case, in which we are given two lambda
expressions Fy and Fz. If we can show that

Fiw —» E
and
Fg w —» E

where w is a variable which does not occur free in F1 or Fz, and E is some
expression, then we can reason as follows:

Fq <-;> (AW.F1 w)

< (Aw.E)
< (AWw.F2 w)
< P

and henceFy < Fa.
It is not always the case that lambda expressions which ‘ought’ to mean the

same thing are interconvertible, and we will have more to say about this point
in Section 2.5.

2.2.6 The Name-capture Problem

As a warning to the unwary we now give an example to show why the lambda
calculus is trickier than meets the eye. Fortunately, it turns out that none of
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our implementatioﬁs will come across this problem, so this section can safely
be omitted on first reading.
Suppose we define a lambda abstraction TWICE thus:

TWICE = (Mf.xx.f (f x))
Now consider reducing the expression (TWICE TWICE) using 8-reductions:

TWICE TWICE
= (Af.Ax.f (f X)) TWICE
— (AX.TWICE (TWICE x))

Now there are two B-redexes, (TWICE x) and (TWICE (TWICE x)), so let us
(arbitrarily) choose the inner one for reduction, first expanding the TWICE to
its lambda abstraction:

= (AX.TWICE ((A\f.AX.f (F X)) X))

Now we see the problem. To apply TWICE to x, we must make a new instance
of the body of TWICE (underlined) replacing occurrences of the formal
parameter, f, with the argument, x. But xis already used as a formal parameter
inside the body. It is clearly wrong to reduce to

(Ax.TWICE ((Mf.Ax.f (f X)) x))
— (AX.TWICE (Ax.x (x x))) wrong!
because then the x substituted for f would be ‘captured’ by the inner Ax

abstraction. This is called the name-capture problem. One solution is to use
a-conversion to change the name of one of the AX’s; for instance:

(Ax. TWICE ((Mf.Ax.f (f x)) )
< (Ax.TWICE ((M.w) x))
— (AX.TWICE (AY.x (x ¥))) right!
We conclude:

(i) B-reduction is only valid provided the free-variables of the argument do
not clash with any formal parameters in th¢ body of the lambda
abstraction.

(ii) a-conversion is sometimes necessary to avoid (i).

2.2.7 Summary of Conversion Rules

We have now developed three conversion rules which allow us to interconvert
expressions involving lambda abstractions. They are

(i) Name changing. a-conversion allows us to change the name of the formal

. parameter of a lambda abstraction, so long as we do so consistently.

(ii) Function application. B-reduction allows us to apply a lambda abstrac-
tion to an argument, by making a new instance of the body of the
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abstraction, substituting the argument for free occurrences of the formal
parameter. Special care needs to be taken when the argument contains
free variables.

(iii) Eliminating redundant lambda abstractions. n-reduction can sometimes
eliminate a lambda abstraction.

Within this framework we may also regard the built-in functions as one more
form of conversion, §-conversion. For this reason the reduction rules for
built-in functions are sometimes called delta rules.

As we have seen, the application of the conversion rules is not always
straightforward, so it behoves us to give a formal definition of exactly what the
conversion rules are. This requires us to introduce one new piece of notation.

The notation

E[M/x]

means the expression E with M substituted for free occurrences of x.

As a mnemonic, imagine ‘multiplying’ E by M/x, giving M where the xX’s
cancel out, so that x{M/x] = M. This notation allows us to express
B-conversion very simply:

(M E) M < E[M/x]

and it is useful for a-conversion too.

Figures 2.3 and 2.4 give the formal definitions of substitution and
conversion. They are rather forbidding, but all the complexity arises because
of the name-capture problem described in Section 2.2.6 which will not arise at
all in our implementations. Hence a-conversion will not be necessary, 8-
reduction can proceed by simple substitution, and n-reduction will prove to
be a compile-time technique only.

To summarize our progress so far, we now have:

(i) asetof formal rules for constructing expressions (Figure 2.1);
(ii) a set of formal rules for converting one expression into an equivalent one
(Figures 2.2-2.4).

xMx] =M
c [M/x] where cis any variable or constant other than x
= C

(E PM/x] = EIM/x] AM/x]
(Ax.E)M/X] = Ax.E
(Ay. E)[M/x] where y is any variable other than x
= \y.E[M/x] if xdoes not occur free in E
or y does not occur free in M
= \z.(E[z/yD[M/x] otherwise
where zis a new variable name which does not
" occur free in Eor M

Figure 2.3 Definition of E[M/x]



Section 2.3 Reduction order 23

It turns out that this small formal base is sufficient to build a large and complex
theory of interconvertibility; the standard work is Barendregt [1984]. While
this book is very well written, it is not intended for the casual reader, and Stoy
[1981] gives a less comprehensive but more readable treatment. Curry and
Feys also give a clear account of the historical origins and basic properties of
the lambda calculus [Curry and Feys, 1958]. The lambda calculus was
originally invented by Church [1941].

We will not take the lambda calculus any further as an end in itself; rather
we will simply appropriate the fruits of the theory as and when we need them.

a-conversion: if yis not free in E then
(\x.E) g (y.Ely/x])

B-conversion: (Ax.E) M 4;» E[M/x]
m-conversion: if xisnot free in E
and Edenotes a function then
(Ax.E x) < E

When used left to right, the 8 and 7 rules are called reductions, and may be
written with a ‘—’ arrow.

Figure 2.4 Definitions of a-, 8- and »-conversions

2.3 Reduction Order

If an expression contains no redexes then evaluation is complete, and the
expression is said to be in normal form. So the evaluation of an expression
consists of successively reducing redexes until the expression is in normal
form.

However, an expression may contain more than one redex, so reduction
can proceed by alternative routes. For example, the expression
(+ (= 3 4) (» 7 8)) can be reduced to normal form with the sequence

(+ (3 4) (» 7 8)
— (+ 12 (» 7 8))
— (+ 12 56)
— 68

or the sequence

(+(*»34)(»78)
— (+ (» 3 4) 56)
— (+ 12 56)
- 68
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Not every expression has a normal form; consider for example
(O D)

where D is (Ax.x x). The evaluation of this expression would not terminate
since (D D) reduces to (D D):

(AX.x x) (AX.x xX) —~> (Ax.X X) (AX.X X)
= (AX.X X) (AX.X X)

This situation corresponds directly to an imperative program going into an
infinite loop. ,

Furthermore, some reduction sequences may reach a normal form while
others do not. For example, consider

(\x.3) (D D)

If we first reduce the application of (Ax.3) to (D D) (without evaluating (D D))
we get the result 3; but if we first reduce the application of D to D, we just get
(D D) again, and if we keep choosing the (D D) the evaluation will fail to
terminate.

2.3.1 Normal Order Reduction

These complications raise an embarrassing question: can two different

reduction sequences lead to different normal forms? Fortunately the answer

is ‘no’. This is a consequence of a profound and powerful pair of theorems, the
* Church-Rosser Theorems I and II, which save the day.

THEOREM
Church-Rosser Theorem I (CRT I)
IfEy <« Eg, then there exists an expression E, such that
Et - E and Eo —» E

The following corollary is an easy consequence:

Corollary. No expression can be converted to two distinct normal forms
(that is, normal forms that are not a-convertible).

Proof. Suppose thatE <> EjandE <« Ep,where Ejand Ezare in normal
form. Then, Ey <> Ezand, by CRT I, there must exist an expression F,
such that Ey —» F and Ea — F. But E{ and E2 have no redexes,
SOE1 = F = Ea.

Informally, the corollary says that all reduction sequences which terminate
will reach the same result. The second Church-Rosser Theorem concemns a
particular reduction order, called normal order:
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THEOREM
Church-Rosser Theorem II (CRT II)

If Ey — Eg, and Ezis in normal form, then there exists a normal order
reduction sequence from E; to Ez.

This is as much as we can hope for; there is at most one possible resuit, and
normal order reduction will find it if it exists. Notice that no reduction
sequence can give the ‘wrong’ answer — the worst that can happen is non-
termination.

Normal order reduction specifies that the lefimost outermost redex should
be reduced first.

Thus, in our example above ((Ax.3) (D D)), we would choose the Ax-redex
first, not the (D D). This rule embodies the intuition that arguments to
functions may be discarded, so we should apply the function (Ax. 3) first, rather
than first evaluating the argument (D D).

The shortest proofs of the Church-Rosser Theorem I (which is the harder
one) are in Welch [1975] and Rosser [1982].

2.3.2 Optimal Reduction Orders

While normal order reduction guarantees to find a normal form (if one exists),
it does not guarantee to do so in the fewest possible number of reductions. In
fact, for tree reduction (see Section 12.1.1) it is provably least favorable, but
fortunately for graph reduction (see Section 12.1.1) it seems that normal
order is ‘almost optimal’, and that it probably takes more time to find the
optimal redex than to pursue normal order. Some work has been done on
finding more nearly optimal reduction orders that preserve the desirable
properties of normal order [Levy, 1980].

For SK-combinator reduction (see Chapter 16), normal order graph
reduction has been shown to be optimal. This result, among many others on
graph reduction, is shown in Staples’ series of papers [Staples, 1980a, 1980b,
1980c]. A more accessible treatment of this work is given by Kennaway
[1984].

2.4 Recursive Functions

We began by saying that we propose to translate all functional programs into
the lambda calculus. One pervasive feature of all functional programs is
recursion, and this throws the viability of the whole venture into doubt,
because the lambda calculus appears to lack anything corresponding to
recursion.
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In the remainder of this section, therefore, we will show that the lambda
calculus is capable of expressing recursive functions without further exten-
sion. This is quite a remarkable feat, as the reader may verify by trying it
before reading the following sections.

2.4.1 Recursive Functionsand Y
Consider the following recursive definition of the factorial function:

= (M.F (=n0)1(» n (FAC (— n 1))

* The definition relies on the ability to name a lambda abstraction, and then
to refer to this name inside the lambda abstraction itself. No such construct is .
provided by the lambda calculus. The problem is that lambda abstractions are
anonymous functions, so they cannot name (and hence refer to) themselves.

We proceed by simplifying the problem to one in which recursion is
expressed in its purest form. We begin with a recursive definition:

FAC = An. (...FAC..)

(We have written parts of the body of the lambda abstraction as *. . .” to focus
attention on the recursive features alone.)
By performing a B—abstraction on FAC, we can transform its definition to:

FAC = (Mac. (An. (.. .))) FAC
We may write this definition in the form:

FAC = H FAC (2.1)
where

= (Mac. (An. (...fac...)))

The definition of H is quite straightforward. It is an ordinary lambda
abstraction and does not use recursion. The recursion is expressed solely by
definition (2.1).

The definition (2.1) is rather llke amathematical equation. For example, to
solve the mathematical equation

t-2=

we seek values of x which satisfy the equation (namely x = —landx = 2).

Similarly, to solve (2.1) we seek a lambda expression for FAC which satisfies

(2.1). As with mathematical equations, there may be more than one solution.
The equation (2.1)

FAC = H FAC

states that when the function H is applied to FAC, theresult is FAC. We say that
FAC is a fixed point (or fixpoint) of H. A function may have more than one
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fixed point. For example, both 0 and 1 are fixed points of the function
AX.* X X

which squares its argument.
To summarize our progress, we now seek a fixed point of H. It is clear that
this can depend on H only, so let us invent (for now) a function Y which takes a

function and delivers a fixed point of the function as its result. Thus Y has the
behavior that

YH=H(YH)

and as aresult Y is called a fixpoint combinator. Now, if we can produce such a
Y, our problems are over. For we can now give a solution to (2.1), namely

FAC=YH
which is a non-recursive definition of FAC. To convince ourselves that this

definition of FAC does what is intended, let us compute (FAC 1). Werecall the
definitions for FAC and H:

FAC=YH
H = MMac.An.IF(=n0)1t1(*n (fac (— n 1))
So
FAC 1
= YHT
= H(YH)1
= (Mac.An.IF (=-n0)1(*n(fac (- n 1) (Y H 1
= MMIF(=n0)t(+n(YH(-n)) 1
> F(=101(*1(YH(-11)
= +1(YHO)
= +«1(H(YHO
= * 1 (Mac.An.IF(=n0)1(*n(fac (—n 1)) (YHO)
= *1T((MIF(=n0)t(+n(YH(-n1))oO
- *1(F(=001(*0(YH(-01)
- % 1 1
- 1

2.4.2 Y Can Be Defined as a Lambda Abstraction

We have shown how to transform a recursive definition of FAC into a non-
recursive one, but we have made use of a mysterious. new functlon Y. The

property that Y must possess is
YH=H (Y H)

and this seems to express recursion in its purest form, since we can use it to
express all other recursive functions. Now here comes the magic: Y can be



28 Chapter2 The Lambda Calculus

defined as a lambda abstraction, without using recursion!
Y = (Ah. (Ax.h (x x)) (Ax.h (x x)))

To see that Y has the required property, let us evaluate

YH
= (Nh. (Ax.h (x %)) (A\x.h (x x))) H
e (Ax.H (x x)) (Ax.H (x x))
« H ((Ax.H (x x)) (\x.H (x x)))
« H(YH)

and we are home and dry.

For those interested in polymorphic typing (see Chapter 8), the only respect
in which Y might be considered an ‘improper’ lambda abstraction is that the
subexpression (Ax.h (x x)) does not have a finite type.

The fact that Y can be defined as a lambda abstraction is truly remarkable
from a mathematical point of view. From an implementation point of view,
however, it is rather inefficient to implement Y using its lambda abstraction,
and most implementations provide Y as a built-in function with the reduction -
rule

YH — H(YH)

We mentioned above that a function may have more than one fixed point,
so the question arises of which fixed point Y produces. It seems to be the ‘right’
one, in the sense that the reduction sequence of (FAC 1) given above does
mirror our intuitive understanding of recursion, but this is hardly satisfactory
from a mathematical point of view. The answer is to be found in domain
theory, and the solution produced by (Y H) turns out to be the unique least
fixpoint of H[Stoy, 1981], where ‘least’ is used in a technical domain-theoretic
sense.

2.5 The Denotational Semantics of the Lambda Caicuius

There are two ways of looking at a function: as an algorithm which will
produce a value given an argument, or as a set of ordered argument-value
pairs.

The first view is ‘dynamic’ or operational, in that it sees a function as a
sequence of operations in time. The second view is ‘static’ or denotational: the
function is regarded as a fixed set of associations between arguments and the
corresponding values.

In the previous three sections we have seen how an expression may be
evaluated by the repeated application of reduction rules. These rules
prescribe purely syntactic transformations on permitted expressions, without
reference to what the expressions ‘mean’; and indeed the lambda calculus can
be regarded as a formal system for manipulating syntactic symbols. Never-
theless, the development of the conversion rules was based on our intuitions
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about abstract functions, and this has, in effect, provided us with an
operational semantics for the lambda calculus. But what reason have we to
suppose that the lambda calculus is an accurate expression of the idea of an
abstract function?

To answer this question requires us to give a denotational semantics for the
lambda calculus. The framework of denotational semantics will be useful in
the rest of the book, so we offer a brief sketch of it in the remainder of this
section.

2.5.1 The Eval Function

The purpose of the denotational semantics of a language is to assign a value to
every expression in that language. An expression is a syntactic object, formed
according to the syntax rules of the language. A value, by contrast, is an
abstract mathematical object, such as ‘the number 5°, or ‘the function which
squares its argument’.

We can therefore express the semantics of a language as a (mathematical)
function, Eval, from expressions to values:

Expressions Eval » | Values

We can now write equations such as
Evalf + 34 =7

This says ‘the meaning (i.c. value) of the expression (+ 3 4) is the abstract
numerical value 7’. We use bold double square brackets to enclose the
argument to Eval, to emphasize that it is a syntactic object. This convention is
widely used in denotational semantics. We may regard the expression (+ 3 4)
as a representation or denotation of the value 7 (hence the term denotational
semantics).

We will now give a very informal development of the Eval function for the
lambda calculus. The task is to give a value for Evalll E 1, for every lambda
expression E, and we can proceed by direct reference to the syntax of lambda
expressions (Figure 2.1), which gives the possible forms which E might take.

For the moment we will omit the question of constants and built-in
functions, returning to it in Section 2.5.3. Suppose, then, that E is a variable,
x. What should be the value of

Evalf x

where X is a variable? Unfortunately, the value of a variable is given by its
surrounding context, so we cannot tell its value in isolation. We can solve this
problem by giving Eval an extra parameter, p, which gives this contextual

information. The argument p is called an environment, and it is a function
which maps variable names on to their values. Thus

Evall x 1 p = p x:
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The notation (p x), on the right-hand side, means ‘the function p applied to
the argument x’.

Next we treat applications. It seems reasonable that the value of (E1 E2)
should be the value of E; applied to the value of E2: '

Evall[ E1 Ez J] p = (Evalll Ei 1 p) (Evall Ez  p)

The final case is that of a lambda abstraction. What should be the value of
(Evalll Ax.E T p)? It is certainly a function, and so we can fully define it by
giving its value when applied to an arbitrary argument, a:

(Evalff Ax.E J p) a

(Following our usual conventions about currying, we will omit the brackets in
future.) The following statement sums up our intuitions about lambda
abstractions:

The value of a lambda abstraction, applied to an argument, is the value of
the body of the lambda abstraction, in a context where the formal
parameter is bound to the argument.

Formally, we write -
Eval[ \x.E J] p a = Evalff E J p[x=a]

where the notation p[x=a] means ‘the function p extended with the
information that the variable x is bound to the value a’. More precisely:

p[x=a] x = a
plx=aly =py

if y is a different variable fromx.

That’s it! Apart from constants and built-in functions, each of which require
individual treatment, we have now provided a simple denotational semantics
for the lambda calculus. Figure 2.5 summarizes our progress.

Needless to say, this account is greatly simplified (though hopefully not
misleading). The mam component that is missing is a description of the
collection of all possible values which Eval can produce. This collection is
called a domain, and it is quite a complicated structure, since it includes all the

Evall k 1 o = <see Section 2.5.3>
Evall x § p = p X
Eval[ E1 E; J p = (Eval[Ei ] p) (Eval[ Ez J p)
Evalf Ax.E Jp a = Eval[ E } pix=a]
where k is a constant or built-in function
X is a variable
E E1,E2 are expressions

Figure 2.5 Denotational semantics of the lambda calculus
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functions and data values that can be denoted by a lambda expression. The
really serious complication is that, in view of the self-application required in
the lambda abstraction for Y, the domain must include its own function space.
Giving a sound theory to such domains is the purpose of domain theory [Scott,
1981].

We will take the existence and soundness of domain theory and denota-
tional semantics for granted, and the framework they provide will prove to be
quite useful. They are rich and beautiful areas of computer science, and Stoy
[1981] is a good starting-point for further reading.

A note on notation: as we have seen, the environment p is an essential
argument to Eval. Nevertheless, in all the situations where we use Eval in the
rest of this book, p plays no significant role. For the sake of simplicity, we will
therefore omit the argument p from now on — it could be restored by adding p
to every call of Eval. For example, we will write

Evall E1 ]] = Evalf E: ]
where we should more correctly write
Evalfl E1 1 p=Evalll E2 ] p

2.5.2 The Symbol L

One of the most useful features of the theory we have described in this section
is that it gives us a way to reason about the termination (or otherwise) of
programs.

As remarked in Section 2.3, the reduction of an expression may not reach a
normal form. What value should the semantics assign to such programs? All
that we have to do is to include an element 1, pronounced ‘bottom’, in the
value domain, which is the value assigned to an expression without a normal
form: :

Evalf] <expression with no normalform> J} = 1
1 has a perfectly respectable mathematical meaning in domain theory, and,
like the symbol 0 (which also stands for ‘nothing’), its use often allows us to
write down succinct equations instead of rambling words. For example,

instead of saying ‘the evaluation of the expression E fails to terminate’, we can
write

Evaf EQ - L

2.5.3 Defining the Semantics of Built-in Functions and Constants

In this section we will see how to define the value of Evalf] k ]}, wherekis a
constant or built-in function.

For example, what is the value of Evallfl * JJ? It is certainly a function of
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two arguments, and we can define it by giving the value of this function
applied to arbitrary arguments:

Evall * Jab=axb

This gives the meaning of the lambda calculus * in terms of the mathematical
operation of multiplication x. The distinction between the * and x is crucial:
the * is a syntactic expression in the lambda calculus, while X is the abstract
mathematical operation. In the case of multiplication, the mathematical
notation x differs from the program notation *, but in the case of addition (for
example) the symbol + is used by both. This is a ready source of confusion,
and we must keep a clear head!

We will use lower-case letters, such as a and b, to stand for values in
semantic equations,

The equation given above is, however, an incomplete specification for *.
We must define what * does to each possible argument, including 1. The full
set of equations should therefore be:

Evaiffl * Jab=axb ifatlandb+l
Evalf * BLb=1
Evall * Jal=1

The two new equations complete the definition of *, by specifying that if
either argument of * fails to terminate, then so does the application of *.

They are not the only possible set of equations for a multiplication
operator. For example, here are the equations for a more ‘intelligent’
multiplication operator, #:

Evalf # Bab=axb if a#1 and a0 and b#L
Evaff # J0b =0

Evalf # Jal =1 if a+0
Evalf # J1b =1

These equations imply that # should evaluate its first argument and, if it is
zero, return the result zero without examining the second argument at all;
otherwise it behaves just like *. Using # instead of * would cause the
evaluation of some expressions to terminate when they would not have done
so before.

The point of the example is that the semantic equations for a built-in
function enable us to express subtle variations in its behavior, with a precision
that is hard to achieve by giving reduction rules. The semantic equations for a
function both specify the meaning of the function and imply its operational
behavior (reduction rules).

Strictly speaking we should also provide equations such as

Evalfl 6 J =6

where the ‘6’ on the left-hand side is a lambda expression, and the ‘6’ on the
right-hand side is the abstract mathematical object. Ideally, we should
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distinguish the two kinds of ‘6’ typographically, but common practice is to
write them in the same way and distinguish them only by context. This applies
to all constants and built-in functions. Thus we write

Eval[ TRUE J] = TRUE

Eval[ IF ] = |F
Eval[ + 1 = 4+
and so on.

This is sloppy, but it saves clutter. For example, using this more relaxed
notation, we could write the following semantic equations for the built-in
function IF:

IFTRUE ab=a
IFFALSE ab=>b
IF L ab=1

The use of = and the occurrence of 1 continue to remind us that we are looking
at semantic equations rather than reduction rules.

2.5.'4 Strictness and Laziness

We say that a function is strict if it is sure to need the value of its argument.
This is a concept that will arise repeatedly in the book. Can we give a
denotational definition of strictness?

If a function, f, is sure to need the value of its argument, and the evaluation
of the argument will not terminate, then the application of f to the argument
will certainly fail to terminate. This verbose, operational argument suggests
the following concise, denotational, definition of strictness:

DEFINITION

A function fis strict if and only if
flL=1

The definition generalizes easily to functions of several arguments. For
example, if g is a function of three arguments, then g is strict in its second
argument if and only if

galc=]

for all values of a and c.

If a function is non-strict, we say that it is lazy. Techmcally, this is an abuse
of terminology, since lazy evaluation is an implementation technique which
implements non-strict semantics. However, ‘lazy’ is such an evocative term
that it is often used where ‘non-strict’ would be more correct.
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2.5.5 The Correctness of the Conversion Rules

The conversion rules given earlier in this chapter- express equivalences
between lambda expressions. It is vital that these equivalences are mirrored in
the denotational world. For example, using a-conversion we may write

(AX.+ x 1) & (Ay.+y1)-

Our hope is that both of thiese expressions mean the same thing or, more
precisely, denote the same function, so that

Evalf Ax.+ x 1 § = Evalf Ay.+ y 1 1

In general, we liope that conversion preserves meaning, which we may state
as follows:

E1 & E2
implies
Evall E1 ] = Eval Ez 1

In other words, if E; is convertible to E2 then the meaning of E, is certainly the
same as the meaning of E2. (As we will see in the next section, however, the
reverse is not always true.) There is a burden of proof liere, to sliow that the
above statement always liolds, given the conversion rules and the semantic
funiction Eval. We will content ourselves with observing that proof is required,
leaving the hard work to Stoy [1981].

Since the reduction rules (8-reduction and n-reduction) are a subset of the
conversion rules, we certainly know that

Eis —» E2
implies
Ei « E2
and hence
Ei —» E2
implies
Evalf E: §=Evall E2 1]
2.5.6 Equality and Convertibility

In the previous section we saw that conversion preserves equality. But is the
reverse true? In particular, does the equality of two expressions imply their
interconvertibility? The answer is ‘no’, as the following example shows.
Consider the two lambda abstractions, which we will call F1 and Fa:

Fi = (AX.+ X X)
Fa = (AX.* x 2)
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It is clear that Fy ¢annot be converted into F2 using the conversion rules of the
lambda calculus. To a mathematician, however, a function is a ‘black box’,
and two functions are the same if (and only if) they give the samne result for
each possible arguinent. This sort of equality of functions is called extensional
equality. The function denoted by F1 and that denoted by F; are certainly
(extensionally) equal, so we mnay write

Eval F1 ] = Evall F: ]}

So F1 and F; are not interconvertible, but they do denote the saine function.
To sminnarize the main conclusion:
If E1 > Eg

then Evall E, ] = Evalff E: J

but not necessarily the other way around.

We can therefore regard conversion as a weak form of reasoning about the
equality of expressions. It can never cause us to believe that two expressions
are equal when they are not, but it inay not allow us to prove the equality of
two expressions which are in fact equal. From this point of view, reduction is a
still weaker form of inference.

2.6 Summary

A working understanding of the lambda calculus will prove extremnely useful
for the rest of the book, and in this chapter we have tried to give a compact
swmnary of the material we will require. The treatment has necessarily been
rather superficial, and the reader is again referred to Stoy [1981] or
Barendregt [1984] for fuller treatments.
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Thre

TRANSLATING A HIGH-LEVEL |
FUNCTIONAL LANGUAGE INTO THE
LAMBDA CALCULUS

In the next few chapters we will describe how to translate a high-level
functional language into the lambda calculus.
We can regard this translation in two ways:

(i) As a description of the semantics of the language, giving the meaning of
each of its constructs in terms of lambda expressions, whose meaning is
well understood. This is precisely the approach taken by denotational
semantics [Gordon, 1979].

(ii) As astep in the implementation of the high-level language, by expressing
all its constructs in terms of the lambda notation.

For the sake of definiteness we use a subset of the language Miranda [Turner,
1985], but the techniques apply to any functional language. An introduction
to Miranda can be found in the Appendix.

Disclaimer
In this book Miranda is used as an example of a modern functional
programming language, to illustrate various points about the imple-
mentation of functional programming languages in general. This book is
not intended fo be a source of reference for the definition of Miranda.
Note that:

(i) Miranda has a number of features, both major and minor, which are
not discussed here at all.

(ii) The material about Miranda in this book was based on a prerelease
version of the Miranda system and may therefore be inaccurate by the
time it is published.

The Miranda functional programming system is a product of Research

Software Limited, and a full description of the language and its pro-

gramming environment is in preparation by them.

37
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3.1 fhe Overall Structure of the Translation Process

Miranda is a powerful, high-level functional language, providing a rich set of
programming constructs. The purpose of the next few chapters is to demon-
strate how some of these constructs can be translated into the lambda
calculus. Specifically, we will discuss structured data types, pattern-matching,
conditional equations and ZF expressions. Miranda includes a number of
other constructs, such as abstract data types and structured data types with
laws, which we will not study in this book.

Even so, the translation we describe is a substantial task, and we begin by
outlining the structure of the translation process.

It might be possible to translate a program directly from Miranda into the
lambda calculus, but this would be an extremely complicated translation, so
we will take a more step-by-step approach. In order to do this, it is convenient
to regard much of the translation as a process of successively transforming one
program into another, until finally the result is a program in the lambda
notation. (We are here using ‘translation’ to suggest a process which takes a
program in one language and produces a program in another, while a
‘transformation’ produces a program in the same language.)

Two ways of organizing the translation then suggest themselves:

(i) We could perform most of the translation by successive transformations
of one Miranda program into another, each transformation performing a
simplification step. We would complete the process by translating the
resulting (simple) Miranda program into the lambda calculus. The idea is
that the earlier transformations would have done all the hard work, so the
final step should consist of httle more than a change of syntax.

(i) Alternatively, we could begin the translation by performing a simple
syntactic translation of the Miranda program into an enriched version of
the lambda calculus. This enriched lambda calculus would include the
ordinary lambda calculus as a subset, but would also-include extra
constructs, chosen so that the first step consists of little more than a
change of syntax. Then we could do most of the hard work by successively
transforming the expression into simpler and simpler forms, until it
becomes an ordinary lambda expression, free from any of the extra
constructs.

Initially, the first method looks more attractive than the second, because it
does not require us to define a new language (the enriched lambda calculus).
However, we choose to follow the second course of action for the following
reasons:

(i) Miranda is designed to be a language for programmers, not compilers,
and it lacks certain features that are desirable for a transformation-based
compiler. (The particular features lacking are lambda abstractions and
the ability to qualify any expression with local definitions. This is not a
criticism of Miranda ~ it just has a different purpose.)
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(ii) To a much greater extent than is the case for imperative languages,
functional languages are largely syntactic variations of one another, with
relatively few semantic differences. Using the second method allows the
transformations we present to be applied easily to other languages, by
altering only the translation of the high-level language into the enriched
lambda calculus.

Figure 3.1 depicts the overall plan of action. We will use the term ordinary
lambda calculus to refer to the language described in Chapter 2, and enriched
lambda calculus to refer to the language introduced here.

The enriched lambda calculus is simply the ordinary lambda calculus
augmented with extra constructs, chosen to allow an easy translation from
Miranda. For each construct we will

(i) say what it looks like (give its syntax);
(ii) say what it means (give its semantics).

The semantics for each construct can be given by providing a simple trans-
formation which shows how to express that construct in terms of the ordinary
lambda calculus. Then we could, in principle, translate from Miranda into the

ordinary lambda calculus by first translating into the enriched lambda
" calculus, and then using the semantics of each construct repeatedly to
transform the expression into an ordinary lambda expression.

While this method generates correct results, far greater efficiency is
attainable by using more complicated transformations, but we can always
confirm their correctness by reference to the inefficient version.

Miranda program

l A simple transiation
(specific to Miranda)

Expression in the
enriched lambda calculus

(independent of Miranda)

Expression in the
ordinary lambda calculus

Figure 3.1 Translation of Miranda into the lambda calculus

3.2 The Enriched Lambda Calculus

The enriched lambda calculus is a superset of the ordinary lambda calculus, so
that any expression in the ordinary lambda calculus is also an expression in the
enriched lambda calculus. The syntax for function application, lambda
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abstractions, constants and built-in functions therefore remains exactly as
described in Chapter 2. Likewise, all functions are written in prefix form, and
the same conventions hold concerning brackets.

The only difference from the ordinary lambda calculus is the provision of
four extra constructs. They are:

(i) let-expressions and letrec-expressions;
(ii) pattern-matching lambda abstractions;
(iii) the infix operator [I;
(iv) case-expressions.

Of these, we will only describe the first here. The other three all concern
pattern-matching, and cannot be defined before the discussion of pattern-
matching itself. This is given in Chapter 4, and the remaining three constrncts
are defined there.

Figure 3.2 summarizes the syntax of the enriched lambda calculus for future
reference.

<exp> ::= <constant> Constants
| <variable> Variables
| <exp> <exp> Applications -
| A <pattern> . <exp> Lambda abstractions
| let <pattern> = <exp> in <exp> Let-expressions
| letrec <pattern> = <exp> Letrec-expressions
<pattern> = <exp>
in <exp>
| <exp> [ <exp> Fat bar
| case <variable> of Case-cxpressions

<pattern> = <exp>

.<.p:attem> > <exp>

<pattern> ::= <constant> Constant patterns
! <variable> Variable patterns
| <constructor> <pattern>' Constrctor patterns
<pattem>

Figure 3.2 Syntax of enriched lambda expressions
3.2.1 Simple let-expressions

One of the main constrncts in any functional language is the definition,
whereby a name is bound to a value. This mechanism is provided in the
enriched lambda calculus, using let-expressions and letrec-expressions.

We begin by defining simple let-expressions. They are called ‘simple’ by
contrast with pattern-matching let-expressions, which we deal with later. A
simple let-expression has the following syntax:

letv=Bin E
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where the v is a variable, and B and E are expressions in the (enriched) lambda
notation. _

It introduces a definition for a variable v, which binds v to B in E. The
definition is in scope with E but not B. We say that the ‘v = B’ is the
definition of the let, the v is the variable bound by the let, and the B is the
definition body.

For example, consider the following let-expression:

let x = 3 in (* x x)

Intuitively, the value of this expression is found by substituting 3 for x in the
body (* x x), and then evaluating the body, giving the result 9:

let X = 3 In (* x x)
- .33

- 9

A let-expression is an expression like any other, and can be used in the same
way as any other expression. For example,

+ 1 (et x=3iIn (* x x))
- + 1 (33
- + 19
- 10

For the same reason, let-expressions can be nested:

tx=3In(lety =4in (* xy))
— lety=4in(*3y)
- * 34
- 12

As a matter of convenience, we also allow ourselves to write multiple
definitions in the same let; thus:

let x = 3
y=4
in »xy

This expression means precisely the same as the previous one. We define a
let-expression with several definitions to mean the same as the nested set of
let-expressions which defines the same variables in the same order, one per
let-expression. (Syntactically, it would have been possible to specify that
multiple definitions are separated with semicolons, but layout will suffice for
Our purposes.)

‘Earlier in this section we developed an mformal reduction rule for let-
expressions. This involved substitution and is very reminiscent of the
pB-reduction rule, which also uses substitution. For example, to evaluate

(Ax.* x x) 3
we substitute 3 for x in the body (* x x), and then evaluate the body.
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Generalizing this idea, we can now define the semantics of a simple let-
expression as follows:

(et v=DBin E) = ((Av.E) B)
(We use the symbol = to denote the equivalence of two expressions.) That
is all that is needed to define its semantics! By repeated application of this

equivalence, we could eliminate all simple let-expressions from an expression,
in favor of lambda abstractions.

3.2.2 Simple letrec-expressions

The syntax of a simple letrec-expression is similar to that of a simple let-
expression:

letrec vi = E;
vz = E2
vl.l.= En

in
E

where the vj are variables, and E, E, . . ., En are expressions in the (enriched)
lambda notation. We will sometimes abbreviate “letrec-expression’ to ‘letrec’
(and ‘let-expression’ to ‘let’), where no ambiguity arises.

The term “letrec’ is short for ‘let recursively’, and it introduces possibly
recursive bindings for a number of variables v|. The difference between lets
and letrecs is that the vjare in scope in the E (aswellasE) of aletrec. To take an
example, the expression

letrec factorial = mlF(-n0)1(¢n(factoﬁal(—n1)))
in factorial 4

defines a recursive function factorial, and applies it to the argument 4. The
value of the expression is thus 24.

Like let-expressions, letrec-expressions can appear embedded anywhere in
an expression. Unlike let-expressions, however, it is essential to allow
multiple definitions in a letrec-expression, so as to permit mutual recursion.
This is demonstrated by the following example:

letrec f = ...f...g...

g=...f...
in...

Here, f refers to itself and g, and g refers to f. This cannot be transformed into
a nested pair of letrecs, because then either g would not be in scope in the body
of f, or vice versa.

It is easy to provide a semantics for a letrec with only a single definition,
using the Y operator developed in Section 2.4. In particular,

(lettec v =B N E) = (et v ="Y (Av.B) in E)
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The use of Y renders the definition non-recursive, so we can then use a
let-expression, whose semantics has already been defined.

The case of multiple definitions requires the use of pattern-matching, and
so is postponed until Chapter 6.

3.2.3 Pattem-matching let- and letrec-expressions

We will also allow patterns, as well as variables, to appear on the left-hand side
of definitions in lets and letrecs. We have not yet defined what a pattern is, so
we postpone the topic until Chapter 6. However, a variable is just a simple
form of pattern, so simple let(rec)-expressions are just simple forms of pattern-
matching let(rec)-expressions.

3.2.4 Let(rec)s versus Lambda Abstractions

So far we have regarded the ordinary lambda calculus as the target language,
into which we will transform the program, and let(rec)-expressions as
intermediate embellishments. However, there are strong efficiency reasons
for including simple let{rec)-expressions in the target language, rather than
transforming them into the ordinary lambda calculus.

Specifically, the transformation of a let-expression

letv=DBinE
into the application of a lambda abstraction
(A\v.E) B

is using a sledgehammer (lambda abstraction) to crack a nut (let-expressions).
The lambda abstration (Av.E) could be applied to many arguments, but it is in
fact only ever applied to one, namely B. The generality of lambda abstraction
is not required, and the special case (that of application to a unique argument)
can be exploited by the more sophisticated compilers described later in this
book.

‘This issue manifests itself in a number of ways:

(i) Miranda is a polymorphically typed language, and in Chapter 8 we give
an algorithm for type-checking programs. Unfortunately, it is not
possible to type-check the program once it has been transformed into the
ordinary lambda calculus, but the addition of snnple let{rec)-expressions
is sufficient to solve the problem.

(iij) In all implementations except the very simplest, let-expressions can be
evaluated very much more efficiently than the corresponding application

of a lambda abstraction. This applies to all the implementations
described from Chapter 14 onwards.

(iii) A related problem is that the transformation of letrec-expressions into
the ordinary lambda calculus compels us to use Y to express recursior
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The resulting expression is not an efficient implementation, and a more
sophisticated compiler may wish to handle recursion in a different way
(see Chapter 14). Keeping the recursion explicit using letrec allows scope -
for these optimizations.

To summarize, all our implementations, except the very simplest, will
require the program to beé transformed into the ordinary lambda calculus
augmented with simple let(rec)-expressions. This approach makes a dramatic
contribution to the efficiency of the resulting implementations. On the other
hand, little seems to be gained by augmenting the language still further.

3.3 Translating Miranda into the Enriched Lambda Calculus

A program consists of a set of definitions, together with an expression to be
evaluated. To keep these two components of the program separate we will use
a box, like this:

Set of definitions

Expression to be evaluated

For example, we could compute twice the square of 5 with the following
Miranda program:

square n = n*n

2 * (square 5)

(Note: Miranda is an interactive language, and defines a ‘program’ to be a set
of definitions, while the ‘expression to be evaluated’ is typed by the user. For
the rest of this book, however, we will use ‘program’ to mean ‘a set of
definitions together with an expression to be evaluated’.) Proceeding
informally, we can translate this Miranda program mto the enriched lambda
calculus quite easily, to produce the expression

let square = An.* n n

in (*+ 2 (square 5))

We now introduce some notation to help describe the translation process.
Consider the translation of the Miranda expression (2' * (square 5)) into the
lambda expression (* 2 (square 5)). We may regard this translation process
as a function TE, which takes the Miranda expression as its input, and
produces the lambda expression as its output. We write the translation like
this: .

TE[ 2 » (square 5) ] = #* 2 (square 5)

The double square brackets [ ]] are used to enclose the Miranda expression,
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to emphasize that the argument to TE is a syntactic object. This convention
was used in Chapter 2, but the difference on this occasion is that the result of
the translation is a syntactic object also, and we use = rather than = to remind
us of this fact. We call TE a translation scheme.

We also need another translation scheme TD, which translates Miranda
definitions into definitions suitable for a letrec. For example,

TDff square n =n*n J] = square = A\n.* n n

Here we see another reason for using = when writing translation schemes: it
avoids confusion with = symbols in the program being translated. We can now
generalize the translation scheme as follows. Given the Miranda program

Definition
Ee'ﬁnltlon..

Expression

we generate the following (enriched) lambda expression:

letrec
TD[[ Definitions T

TD[ Definition, Ji
in
TEJ Expression ]

In the previous example we used a let instead of a letrec, but Miranda
definitions are all potentially recursive, so we must use a letrec in general (later
work will optimize this— Section 6.2.8).

What we have now done is to reduce the translation problem to one of
defining the two translation schemes TD and TE. We will define them for
simple cases in the succeeding two sections, and then lay out the plan of the
next few chapters, which will extend them to cover more complicated cases.

For the moment, we completely avoid the question of declarations of new
types and type-checking. The former will be introduced in Chapter 4 and the
latter in Chapter 8.

3.4 The TE Translation Scheme

The translation scheme TE is a function, which takes a Miranda expression as

its argument, and produces an equivalent lambda expression as its result,
thus:

Miranda TE Lambda
expression expression
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We will describe TE by case analysis, giving a rule for each possible form of a
Miranda expression.

3.4.1 Translating Constants

To translate a constant or built-in function is straightforward, assuming that
the lambda notation into which we are translating supports the same set of
constants. The following rule is all that is required:

TEL kD = k

where k is a constant or built-in function name (we include all Miranda’s
operators, and literal constants in this category). Thus, for example

TEL S5 ] 5
TEL + B +

This translation assumes that all the constants and built-in functions have
the same names in the lambda notation. It is straightforward to describe
changes of name, however. For example, the following set of rules for TE
translates the operators +, —, etc. in Miranda into PLUS, MINUS, etc.:

THf + § = PLUS
TE[ - § = MINUS
etc.

3.4.2 Translating Variables
An equally simple rule suffices to translate variables:
THv]l = v

where v is a variable (including the names of user-defined functions and
constructors).

3.4.3 Translating Function Applications

Function application in Miranda is denoted by juxtaposition, thus (f x). The
same syntax is used in the lambda notation, so the rule for translation is
simple:

TELE:E2c] = THIE: ] TELE: ]

where E1 and E2 are arbitrary Miranda expressions. In the case of certain
common operators (such as +, etc.), Miranda provides infix syntax (that is,
the operator is written between its operands). The translation rule to deal
with these constructs is:

TEL Eiinfix E; ] = TE[ infix ] TE[E, 1 TE[ E: ]
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.where ‘ifix’ is an infix operator, and E; and E; are arbitrary Miranda
expressions. We inust apply TE to ‘infix’ to accomplish any change of name (see
above).

Furthermore, Miranda allows user-defined functions to be used as infix
operators by prefixing their names with $. We can treat this case with the rule

TEHLE/$SvE] = TEfv] TE[ E: ] TE[E: ]

3.4.4 Translating Other Forms of Expressions

We shall consider two other forms of Miranda expression, namely

(i) list expressions such as[2,5,1];
(ii) ZF expressions.

We will deal with these in Chapters 4 and 7 respectively.

3.5 The TD Translation Scheme

The TD scheme takes a Miranda defirition as its argument and produces a
letrec definition as its result. We will only give a rather simplified TD schemne
here, leaving a more powerful one for later chapters.

There are two cases that we can handle immediately, namely variable
definitions and simple function definitions.

3.5.1 Variabl_e Definitions
Consider the Miranda definition

v = 5»7
It can be translated very easily to
v=%57

All that is required is to translate the body of the definition, using the TE
schemne. In general:

TMEv=E] = v=TH[E ]

where v is a variable and E is an expression.

3.5.2 Simple Function Definitions

We have already seen an example of translating a simple function definition,
when we translated the Miranda definition

square n = n*n
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TE[ Exp Jtransplates the expression Exp

TEL k } = Kk (assumes no name-changing)
TEL v } - v
TEf E1 E2 } = TE[E:' JTE[ E2 }
TE[ E: infix E2 § = TEf infix J TER E: J TEL E2 }§
TE[ E1 $v Ez2 } = TEfv]TELE JTELE: §
where k is a literal constant or built-in operator
v is a variable
Ex is an expression

infix is an infix operator

TOf Def Jtranslates the definition Def

Tfv=E]} = v=TE[ E }
TOLfvi...vn=E]f] = f=M...\vp.TE[ E }

where v, vy, { are variables
E i$ an expression

Figure 3.3 Translation schemes TE and TD (simple versions)

into the letrec definition
square = An.* n n

The body of the definition is translated, and a lambda abstraction is
generated around it. We can generalize this as follows:

M'V1...Vn=E] = f=hV1...hVn.HE]

wheref, vy, .. .,vnare variables and E is an expression.

3.6 An Example

We have now shown how to translate a simple subset of Miranda into the
enriched lambda notation. Our progress is summarized in Figure 3.3.

To illustrate the translation in action, consider the following Miranda
program:

average a b = (a+b)/2

average 2 (3+5)
This will be transformed to
letrec
TDf average a b = (a+b)/2 J
in

TEH average 2 (3+5) J}
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Application of the rules for TE gives

TE[[ average 2 (3+5) 1

TE average J] TEH[ 2 }] TH[ 3+5 ]
average 2 (TEfl + J THI 3 ]I TH[ 5
average 2 (+ 3 5)

)

Similarly, the rules for TD give

TDf[ average a b = (a+b)/2 ]

average = Aa.Ab.TH[[ (a+b)/2 ]

average = \a.Ab.(TEf / J TEf a+b I TEL 2 })
average ="Aa.Ab.(/ (TEL + J THI aJ THL D D 2)
average = Aa.Ab.(/ (+ a b) 2)

Putting it all together gives the result of the translation:

letrec

average = Aa.Ab.(/ (+ a b) 2)
in

average 2 (+ 3 5)

To complete the example, let us transform the expression into the ordinary
lambda calculus. Let us suppose that we spot that the letrec may be replaced
with a let, because the definition is non-recursive (tlie method is described in
Chapter 6). Then we can use the semantics of let-expressions to produce the
ordinary lambda expression

(Aaverage.(average 2 (+ 3 5))) (\a.Ab.(/ (+ a b) 2))

‘You can see why we prefer to write programs in Miranda!

3.7 The Organization of Chapters 4-9

In the interests of simplicity, the equations for TD and TE given im Figure 3.3
are far from compreliensive. The rest of Part I of thie book is devoted to filling
in the details.

Chapter 4 introduces structured data objects, pattern-matching and
conditional equations, and gives a simple translation into the enriched lambda
calculus. This translation is rather inefficient, and Chapter 5 shows how
pattern-matching can be compiled far more efficiently. Chapter 6 then shows
liow to transform all the constructs of the enriclied lambda calculus into the
ordinary lambda calculus.

Miranda contains constructs called ZF expressions (also known as list
comprehiensions). We discuss their translation in Chapter 7.

Finally, Miranda is a polymorphically typed language, and we liave so far

paid no attention to'the question of type-checking. This is addressed in
Chapters 8 and 9. '

The organization of these chapters is depicted in Figure 3.4.
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i Type
Miranda program declarations
Simple Pattern- ZF ]
constructs matching expressions
(Chapter3) | (Chapter 4) (Chapter 7)
Pattern-matching
[« lambda
Pattern- abstractions Enriched
matching lambda
- A P— calculus
(Chapter 5)
—®| Case-expressions
lChapter6 lChapter6
Ordinary Ordinary Y
lambda calculus lambda calculus | _ Type-checking
augmented with (Chapter 8)
letand letrec
Figure 3.4 Organization of Chapters 4-8
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STRUCTURED TYPES AND THE
SEMANTICS OF

PATTERN-MATCHING
Simon L. Peyton Jones and Philip Wadler

This chapter concerns structured types, a powerful and general mechanism
for defining data types, provided by several functional languages, including
Miranda, ML and Hope. Intimately associated with structured types is a
notational device known as pattern-matching, which is used by such
languages for defining functions.

Section 4.1 gives a general introduction to structured types and pattern-
matching. Section 4.2 begins with a more in-depth look at pattern-matching
and conditional equations, and then introduces two new constructs in the
enriched lambda calculus, [ and pattern-matching lambda abstractions. Using
these constructs, we then show how to translate a general Miranda function
definition into the enriched lambda calculus. Section 4.3 is devoted to
providing a precise semantics for pattern-matching lambda abstractions.

We conclude in Section 4.4 by defining case-expressions, the last new
construct of the enriched lambda calculus. This clears the way for Chapter 5,
which will show how to transform pattern-matching lambda abstractions into
case-expressions, thus giving a considerable gain in efficiency.

What n this chapter are called ‘structured types’ are called ‘algebraic types’
in Miranda, and ‘free data types’ by some others [Burstall and Goguen, 1982).
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4.1 Introduction to Structured Types

Suppose that we wish to define binary trees with leaves that are numbers. In
the notation of Miranda, this could be done by declaring a structured type tree
as follows:

tree = LEAF num | BRANCH tree tree

(The symbol ::= identifies this as a type declaration.) This might be read as
follows: ‘a tree is either a LEAF, which contains a num, or a BRANCH, which
contains a tree and a tree’. Here LEAF and BRANCH are called constructors of .
the type. Miranda requires that constructors (and only constructors) begin
with an upper-case letter, but we will always write them entirely in upper case.
LEAF has one field, of type num, and BRANCH has two, both of type tree. The
number of fields associated with a constructor is called its arity; thus LEAF has
arity 1 and BRANCH has arity 2.

Constructors can be used as functions, to create values of type tree. For
example, the equation

treel = BRANCH (BRANCH (LEAF 1) (LEAF 2)) (LEAF 3)
defines tree1 to be a tree. Informally, this tree might be drawn as:

/\
. 3
/\
1 2
Constructors can also appear on the left-hand side of an equation, as in the

following Miranda function definition:

reflect (LEAF n) LEAF n
reflect (BRANCH t1 12) = BRANCH (reflect t2) (reflect t1)

For example, (reflect tree1) returns
BRANCH (LEAF 3) (BRANCH (LEAF 2) (LEAF 1))

A definition with patterns on the left-hand side, such as that of refiect, is said
to use pattern-matching to perform case analysis. For example, in evaluating
(reflect t) there are two cases to choose from: t matches the pattern (LEAF n),
or t matches the pattern (BRANCH t1 12). If, say, t is (LEAF 1) then the first
case is chosen, with n bound to 1. Much more will be said about pattern-
matching later.

An important difference in the treatment of structured types in Miranda
from that in ML or Hope, is that in Miranda constructor functions are lazy;
that is, they do not evaluate their arguments. The components of a structured
object are evaluated only when (and if) they are subsequently extracted and
used, not when the object is built.
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41.1 Type Variaﬁles

Type declarations may also contain type variables. For example, the
definition of the type tree above may be rewritten to allow trees with leaves of
any type:

tree * ;= LEAF * | BRANCH (tree *) (ree *)

Here * is called a generic (or schematic) type variable. The declaration could
be read as follows: ‘a tree of * is either a LEAF, which contains a *, or a
BRANCH which contains a tree of * and a tree of *, for any type *’.

Leaves of any particular tree must all contain values of the same type, but
different trees may have leaves of different types. Examples of trees and their
types are :

BRANCH (LEAF 1) (LEAF 2) = free num

BRANCH (LEAF ‘a’) (LEAF D’) :: tree char
(The symbol :: is pronounced ‘has type’.) Here, ‘tree’ is called a type-forming
operator, since it takes a type (such as num or char) as an ‘argument’ and
produces a type (respectively, (tree num) or (tree char)).

The repeated use of * on the right-hand side of the type declaration
specifies that the two branches of a tree must be of uniform type. For example,

‘BRANCH (LEAF 1) (LEAF ‘a’)

isnot legal, since it has leaves of mixed type. More will be said about types and
. type variables in Chapter 8.

4.1.2 Special Cases

This section shows how three ‘built-in’ types, namely lists, tuples and
enumerated types, can be regarded as imstances of general structured types.

4.1.2.1 Lists
Miranda has a special syntax to denote lists, but lists are just an instance of a
general structured type. Lists could be defined as follows:

list * == NIL | CONS #* (ist %)

This type declaration defines the two new constructors NIL and CONS.
Miranda’s built-in syntax for lists could then be translated to use NIL and
CONS, as follows:

[ ]is translated to NIL

(x-xs) is translated to (CONS x xs).

[x.y.z] is a Miranda abbreviation for (xy:z[ ]) and hence is translated to
(CONS x (CONS y (CONS z NIL)))

[*]is translated to (list *)




54 Chapter 4 Structured Types and the Semantics of Pattern-matching

TE[ : ) = CONS

TEL[]1} = NL

TEf [E1, E2,...,En]] = CONS TE[ E\ } TE[ [E2, ..., En] }
TE[ (E1, E2) } = PARR TE[ E, } TEf E; }

TE[ (E1, E2, Ea) } = TRIPLE TEf E1 J TEf E2 ] TE[ E3 }
and soon

TEL True 3 = TRUE

TE[ Faise } = FALSE

Figure 4.1 Modifications to the TE scheme for lists, tuples and booleans

(Note: the last example is different from the others, because it describes a
‘type-expression rather than a value-expression.)

We can conveniently perform this translation when translating from
Miranda into the enriched lambda calculus; Figure 4.1 gives the required
equations.

Notice that the elements of a list of type (list *) must all be of type *, but the
number of elements in a list is not determined by its type. Thus (CONS 2 NiL)
and (CONS 3 (CONS 6 NiL)) are both of type @list num), though they are of
different lengths.

4.1.2.2 Taples
Miranda also provides special syntax to denote tuples, and these also can be
defined using a structured type. Tuples could be defined as follows:

pair ® k% PAIR ® &%
triple * k% kEx% TRIPLE ® kk KRk
quadruple * ** %% ###+ 1= QUADRUPLE #* ## #%% %%

Notice the difference between ‘pair’ and ‘PAIR’: the former is a type-forming
operator, used only in type-expressions, while the latter is the constructor
function of the type, used only in value-expressions.

As with lists, Miranda’s special syntax can be translated as follows:

(x,y) is translated to (PAIR x y)
(x.y,2) is translated to (TRIPLE x y 2)

and so on.

(*,*#) is translated to (pair * *»)
(*,#*,**%) s translated to (triple * ** **#)

Figure 4.1 gives the required equations.
Notice that a tuple may contain elements of mixed type; for example

(3, TRUE) : PAIR num bool
(‘a’, (3, 2)) :: PAIR char (PAIR num num)
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However, the type of a tuple completely determines the number and the types
of its fields. For example, a pair always contains exactly two fields, a triple
contains exactly three fields, and so on.

4.1.2.3 Enumerated types
The type declaration

color ::= VERMILLION | PUCE | LAVENDER

im which each constructor has zero fields, is just like an enumerated type in
Pascal. Thus, we can define the type of boolean values:

bool ::= TRUE | FALSE

The usual functions on booleans can then be defined using pattern-
matching; for example:

if TRUE el e2 = el
if FALSE e1 e2 = e2

Miranda uses the names ‘True’ and ‘False’ for its built-in truth-values.

4.1.2.4 Summary

Since it is easy to translate ‘built-in’ types like lists and tuples into equivalent
structured types, then any implementation of a functional language that
handles structured types will also handle these ‘built-in’ types for free. This
can greatly simplify an implementation. Instead of implementing several type
mechanisms, one for lists, one for tuples, one for enumerated types, and so
on, we need only implement a single mechanism for structured types, and
translate other types imto structured types. Figure 4.1 gives the required
equations.

4.1.3 General Structured Types
In general, the form of a structured type definition is:

To=c¢1 Tyt ... Ty
...
| Cn Tn.i .o Tn;n

where the T;; are types and the c; are constructors of arity r;. In the ‘tree’
example above, T was (ree *), c; was LEAF, T+,; was num, c2 was BRANCH, T4
was (free »), and To2 was (tree #). ’

Readers familiar with the mathematical operations for constructing types
will recognize that the general type above can be written as the sum (that is,
discriminated union):

T=Ti+...+ Ta
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where each T, fori from 1 ton, can be written asa product:
Ti=TuXTia X ... X T

In other words, a structured type is a sum-of-products.

When n=1 we say that the type is a product type; the types (pair * *+),
(riple * *+ «++) . areall product types. Whenn>1we say that the typeisa
sum type, since it is the sum of more than one domain; the types (tree *),
(list +), color and bool are all sum types. Thus a product type has exactly one
constructor, and a sum type has two or more constructors.

We will often wish to distinguish between the constructors of product
types and sum types. Just as we use the names c; to stand for constructors of all
types, we will use the name t to stand for the constructor of a product type, and
the names s and s; to stand for the constructors of a sum type (tsuggests ‘tuple’
and s suggests ‘sum’).

(Note: we use lower-case letters to stand for constructors, to avoid
confusion with the constructors themselves, which are written in upper case.
Similarly, we use upper-case letters to stand for types, which are themselves
written in lower case - see Section 4.1.)

(Important: at the time when this chapter was first written the semantics of
Miranda provisionally specified that a structured type with only one
constructor was a product type, as above. However, an alternative view is that
a structured type with only one constructor should behave as a sum type with
one component in the sum, and that product types (tuples) be treated as an
independent construct. It now seems likely that Research Software Limited
will follow this latter course in their definition of Miranda. As a consequence
some of the statements made in this chapter about the semantics of structured
types in Miranda may be incorrect. We draw the reader’s attention to the
caveat on page 37.)

4.1.4 History

As mentioned, structured types are a combination of sum types and product
types, which have a long history in mathematics.

Landin’s Iswim, one of the earliest functional languages, was described
using a stylized form of English for defining structured types [Landin, 1966].
Burstall introduced a more formal notation for defining such types in NPL
[Burstall, 1977]. Hope and ML have type systems based on separate sum and
product types, whereas Miranda and Orwell have type systems based on
sum-of-product types.

Iswim also contained a simple form of pattern-matching, where one could
write definitions such as

addPair (xy) = x +y

However, the important idea of using pattern-matching for case analysis
appears to have been developed independently by Burstall and Turner.
Pattern-matching appeared in NPL and SASL, and was used to good effect in
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proofs by structural induction [Burstall, 1969] and program transformation
[Burstall and Darlington, 1977]. It was incorporated into many later
languages such as Hope, KRC, ML, Miranda and Orwell.

4.2 Translating Miranda Into the Enriched Lambda Calculus

We must now deimnonstrate how to translate Miranda function definitions
involving pattern-inatching into the enriched lambda calculus. In the process
of doing so we will introduce pattern-matching lambda abstractions and the [J
operator, two of the constructs in the enriched lambda calculus whose
explanation was postponed.

4.2.1 Introduction to Pattem-ratching

We begin this section by illustrating some further aspects of pattern-
matching, which have to be handled by an implementation. (Not all the
illustrations should be taken as examples of good programining style. Somne
are expressly chosen to demnonstrate all the possible nasty things that can

~ happen!)
Recall the definition of reflect:
reflect (LEAF n) = LEAF n

reflect (BRANCH t1 12) = BRANCH (reflect t2) (reflect t1)

The terms (LEAF n) and (BRANCH t1 t2) occurring on the left-hand side of
these equations are called patterns. When reflect is applied to an argument, the
arguinent is first evaluated to see whether it matches the pattern (LEAF n) or
(BRANCH t1 2). It will certainly match one or the other, because the type-
checker ensures that reflect is only applied to objects of type (tree #), for somne
type *. For example, if reflect is applied to an expression which evaluates to
(BRANCH E1 Eg), the second equation is selected, with t1 bound to E; and t2
bound to Ea.

In the preceding example, the order in which the equations were written
was iminaterial, but this is not always the case. Consider the Miranda function
definition

factorial 0 = 1

factorial n = n * factorial (n—1)

The order of the equations in this definition is significant. In the evaluation
of (factorial x), there are two cases to choose from: either x inatches 0 (that is, x
evaluates to 0), so the first equation is chosen, or it does not, so the second
case is chosen with n bound to x. The equations are tried out one at a time,
froimn top to bottom. If they had been written in the other order then the first
equation would always match. In this situation we say that the patterns
overlap. (As we shall see in Chapter 5, there are good reasons to avoid writing
overlapping patterns, but occasionally they prove useful.)
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Another point, illustrated by the first factorial equation, is that a pattern
may consist of a literal constant, such as a number or character.
As another example, consider the Miranda function definition

lastElt ([]) = x
lastElt (x:xs) = lastElt xs

The function call (lastElt xs) returns the last element of the list xs. Again, the
order of the equations is significant, since the patterns overlap. Furthermore,
the first pattern is an example of a nested pattern, in which the pattern [] is
. nested inside the pattern (x[]). Finally, the equations are not exhaustive,
since neither pattern matches the argument []. If lastElt is applied to [] some
sort of error should be reported.

Pattern-matching can apply to several arguments, as the following Miranda
definition shows:

xor False y =y
xor True False = True
xor True True = False

Another feature of Miranda that is closely connected with pattern-
matching is conditional equations, which control the selection of alternatives
by the use of guards. We could, for example, rewrite the factorial function in
the following way:

factorial n = 1, n=0
n = factorial (n—1)

A single left-hand side governs several alternatives, which together constitute
the right-hand side. In this case there is only one guard, namely the boolean-
valued expression ‘n=0', which appears following a comma. Guards are
evaluated one at a time, beginning at the top, and when a guard evaluates to
True, the corresponding alternative expression is selected. The guard may be
omitted in the final right-hand side, giving an ‘otherwise’ case (equivalent toa
guard of True),

The factorial example shows, incidentally, that a constant appearing in a
pattern can easily be eliminated by replacing it with a variable and adding a
guard to the equation instead.

Conditional equations interact with pattern-matching, as demonstrated in
the next example. The function funnylastElt returns the last element of its
argument list, except that if a negative element is encountered then it is
returned instead:

funnyLastElt (x:xs) = x, x<0

funnylLastElt ¢[]) = x

funnyLastElt (x:xs) = furnylLastElt xs
Pattern-matching proceeds, as usual, from top to bottom; when a left-hand
side matches the argument, the guarded alternative(s) are tried, from top to
bottom. If none of the guards is True, then pattern-matching continues,
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starting with the next equation. Applying funnylLastElt to the list [1,2] would
cause this behavior, since the first equation would match, but the guard fails,
so the second and then third equations are tried.

Finally, variables may be repeated on the left-hand side of an equation. For
example, the function noDups eliminates adjacent duplicate elementsin a list:

noDups [] =[]

noDups [x] = [x]

noDups (x:x:xs) = noDups (x:xs)
noDups (x:y:ys) = x : noDups (y:ys)

The third equation matches only if the first two elements of the argument list
are equal; the repeated use of x on the left-hand side implies the equality
condition.

We may summarize the features that the implementation must support as
follows:

(i) overlapping patterns;
(ii) constant patterns;
(iii) nested patterns;
(iv) multiple arguments;
(v) non-exhaustive sets of equations;
(vi) conditional equations;
(vii) repeated variables.

Given these complications it is unwise to rely on a purely intuitive under-
standing of what a function definition using pattern-matching means. The rest
of this section and the next is therefore devoted to providing a formal
semantics of pattern-matching.

422 Patterns
First of all, we will need a precise definition of pattemns.

DEFINITION

A pattem pis:

either a variable v,

Or  aconstant k, Such as a number, a character, a boolean and so on.

Or  a constructor pattem, of the form (¢ py ... p;) where cis a con-
structor of arity r, and py, ..., prare themselves pattems.

All of the variables in a pattem should be distinct.

A pattem of the form (s py ... pr), where s iS a Sum constructor, is
called a sum-constructor pattern, or sum pattern. A pattem of the form
tp1 ... p), where t is a product constructor, is called a product-
constructor pattern, or product pattern.

Note: according to this definition, patterns may not contain repeated
vanase:tl;s‘; although Miranda allows them to do so. This point is discussed
in ion4.2.7. :




60 Chapter 4 Structured Types and the Semantics of Pattern-matching

Here are some examples of patterns:

X
3

LEAF n

BRANCH (LEAF n) t

CONS x xs written (x:xs) in Miranda
CONS x (CONS 3 NIL) written [x,3] in Miranda
PAIR x 4 written (x,4) m Miranda

The term (PAIR z 2) is not a pattern, because it contains a repeated variable.
The term (CONS x) is not a pattern, because the CONS does not have enough
arguments.

Miranda allows patterns with repeated variables, like (PAIR z 2) but the
patterns defined here do not. This is discussed in Section 4.2.7.

A constructor pattern is simple if it has the form (c v ... v;), where
V4, ... Vrare distinct variables. If a constructor pattern is not simple it is
nested.

4.2.3 Introducing Pattern-matching Lambda Abstractions

Up to now we have translated function definitions into the lambda calculus
using the following rule:

TLtvi...va=EJ = f=a...\\h. TEL E }

where vy, ..., Vo are variables. Temporarily restricting our attention to
functions of a single variable, we could derive the less general rule

TOf tv=EQ = t=A.TELE ]}

By analogy, given the function definition
fp=E

(where p is a pattern), it seems plausible to translate it using the rule
TOEtp=EJ = t=M.TELE ]}

This is not quite right yet, because we must remember to translate the
pattern, so that Miranda’s list notation is translated into uses of CONS and NIL
(and likewise for tuples and booleans). Fortunately, the syntax of patternsis a
subset of that of expressions, so we can use the TE scheme.

TOLfp=EJ = f=ATE@Mp 1.TEL E }

For example, consider the Miranda function definition for fst:

fst (x,y) = x

Using the rule above gives:

TOR fst (xy) = xJ] = fst= A(PAIR x y).x
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This introduces a new sort of lambda abstraction, a pattern-matching lambda
abstraction, which has the form (Ap E) where p is a pattern. This leaves us with
two questions:

(i) How can we translate a general Miranda function definition into pattern-
matching lambda abstractions?
(ii)) What, exactly, does (Ap.E) mean?

We discuss the first in the remainder of this section, leaving the second for the
next section.

4.2.4 Multiple Equations and Failure
Consider first a Miranda function definition of the form

1p1 = Ey
1p2 = E;
1 pn = Eq

Intuitively, we expect the semantics to be ‘try the first equation, and if that
fails try the second, and so on’. This introduces the idea that a pattern-match
might fail. Such failure does not necessarily indicate an error, since there
might be a subsequent equation which would match. Hence, we introduce a
new built-in value FAIL, which is returned when a pattern-match fails.

With the aid of this idea, we can translate the definition of 1 into the
following enriched lambda calculus expression:

f=M.( ((Ap1.E1) X)
0 ((Ap2'.E2) x)

i]. i(mn'-En') X)
| ERROR)

where x is a new variable name that does not occur free in any E;, the
expressions E;’ are the result of translating the E;, and the patterns p/’ are the
result of translating the p;. The new definition of f can be read ‘try to apply
(\p1'.E+') to x, and if that succeeds return its result; otherwise try (\p2' .E2'),
and so on; if they all fail, return ERROR’.

Here ERROR is meant to be a special value whose evaluation indicates an
- error, an event which should never occur.

The function [] is an infix function, whose behavior is described by the
semantic equations:

a [b=a if a#1 and a#FAIL
FALb=0Db
1 Ib=1

Operationally, [] evaluates its left argument; if the evaluation terminates and
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yields something other than FAIL, then [] returns that value (first rule); if it
evaluates to FAIL, [} returns its right argument (second rule); if the evaluation
of the left argument fails to terminate, then so does the application of [] (third
rule). .

It is easy to verify that [} is an associative operator, and has identity FAIL. Its
associativity means that we may write expressions such as (E¢ [J] Ez [J Es)
without ambiguity. It is extremely convenient to write [} between its operands
(that is, infix) but, since all functions are written prefix in the lambda calculus,
we are forced to dignify [J] by making it one of the new constructs of the
enriched lambda calculus. The sole reason for doing so is notational.

As an example of the suggested translation in action, recall the definition of
the refiect function:

reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect t2) (reflect t1)

This would be translated to:

reflect = At.( ((\(LEAF n).LEAF n) 1)
0 ((MBRANCH t1 t2).BRANCH (reflect t2) (reflect t1)) 1)
[ ERROR)

"In this case, of course, ERROR can never be returned, since one of the
previous pattern-matches will succeed. This is not always the case, as the
following example shows. Consider the Miranda definition of hd, which
extracts the first element of a list:

hd (x:xs) = x
It would be translated to

hd = Axs’.(((A\(CONS x xs).x) xs') [] ERROR)
If hd is applied to NIL, then ERROR will be the result. (We have used xs’ as the
formal parameter of the lambda abstraction, to avoid confusion with the xs in

the pattern. Technically, however, there would be no problem with using xs,
or any other variable, since hd has no free variables.)

4.2.5 Multiple Arguments

Functions with multiple arguments are easily handled. As we recalled earlier,
the basic approach is to translate a function of several arguments using the
rule

T fvi...vp=E ] = f=a...Av,.TE[ E ]

Combining this with the approach of the previous section suggests that we
should translate the definition

fpipz2...Pm=E
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where p1, ..., pmare patterns, into
f = Avi...AVm.(((APY .. .APm' .E’) V4 ... Vi) [] ERROR)
where v4, ..., vm are new variables that do not occur free in E, the py’ are the

results of translating the p;, and E’ is the result of translating E. The only new
complication is that we must specify what happens in case of failure. Suppose f
is applied to m arguments, and the first pattern-match fails:

(ApY’...Apw’ .E") Ey E2 ... Em — FAILE;...Epn

Then we want the whole expression to fail, so we need to add a reduction
rule for FAIL:

FAIL E — FAIL
Now we can continue reduction:
FAWL E2E3s ... Ewm —» FALE;...Ep, —» ... —» FAL

The translation is readily extended for the case when f is defined by several
equations. To see an example of this in action, consider the definition of xor
given above:

xor False y =y
xor True False = True
xor True True = False

Combining the rules of this section and the last allows us to transform this to
(Notice that the arguments are matched from left to right)
xor = AX.Ay.( ((A\FALSE.Ay.y) x y)
0 ((A\TRUE.AFALSE.TRUE) x y)
0 ((A\TRUE.ATRUE.FALSE) x y)
[ ERROR)

4.2.6 Conditional Equations

Next, we describe how to translate conditional equations into the enriched
lambda calculus. Consider the following Miranda definition:

ged a b = ged (a~-b) b, a>b
ged a (b—a), a<b
a, a=b

Itis easy to see that the right-hand side of this definition could be translated to

(IF (> ab) (gcd (— a b) b)
(F (<ab)(gcd a (~ b a)
(IF (= a b) a FAIL)))

Notice that if all the guards fail, then FAIL is returned by the nested IF
expression. (In the case of gcd this can never occur, and a very clever compiler
might be able to discover this fact and optimize the last IF.) In a more
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complicated definition, the failure of all the guards would cause the next
equation to be tried (see example below).

Regarding all of an equation after the first = sign as a ‘right-hand side’, we
can now give a new translation scheme, TR, which translates right-hand sides:

TRI rhs Jtranslates the right-hand side of a definition
TR A, Gy || = (FTEL Gy RTEL A §
= Az, G2 (FTE[ G2 F TEf A2 §

= An, Gn (F TEL Gy 1 TEL A, 3 FAI) ..)
where A, is an expression and G is a boolean-valued expression.

Now we can use TR instead of TE to translate the right-hand sides of
function definitions. As an example, recall the definition of funnyLastElt:

lunnyLastElt (x:xs) = x, x<0
lunnyLastElt (x:[]) = x
funnyLastER -(x:xs) = funnylLastElt xs

We can now translate it to

funnyLastEit = Av.( ((M(CONS x xs).IF (< x 0) x FAIL) v)
0 (AMCONS x NiIL).x) v)
0 (A (CONS x xs).funnylastElt xs) v)
[l ERROR)

If the first equation matches, but the guard fails, then the IF returns FAIL, and
the next equation is tried.

InMiranda, the final guard G, may be omitted, which is equivalent to giving
a final guard of True. In this case, the innermost IF is of the form

IF TRUE E; FAIL
which can be optimized to
Ey
For example, the definition of factorial

factorial n = 1, n=0
n = factorial (n—1)

would be translated to

factorial = Av.( ((An.IF (= n 0) 1 (*+ n (factorial (— n 1)))) v)
[ ERROR)

This can be simplified further, since the pattern-match cannot fail, and this
special case will be spotted by the transformations of Chapter 5.
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4.2.7 Repeated Variables

It appears at first that it is easy to use a conditional equation to eliminate
repeated variables, by introducing a new variable name to replace one of the
occurrences of the repeated variable, and adding an appropriate equality
condition. For example, we could rewrite the definition of noDups (given in
Section 4.2.1) thus:

noDups [] =[]

noDups [x]} = [x]

noDups (x:y:ys) = noDups (y:ys), x=y
noDups (x:y:ys) = x : noDups (y:ys)

(The last two equations could now be combined into a conditional equation
with two alternatives.) Unfortunately, this approach occasionally confiicts
with the left-to-right rule originally given for pattern-matching. For example,
given the following definition:

nasty x x True = 1
nasty x y z = 2

consider the evaluation of

nasty bottom 3 False

where the evaluation of bottom fails to terminate (for example, bottom could be
defined by the degenerate equation: bottom = bottom). We might expect that
the evaluation (nasty bottom 3 False) would not terminate, since we will try to
evaluate bottom in order to compare it with 3. However, suppose we trans-
formed the definition of nasty to use a conditional equation:

nasty’ x y True
nasty’ x y z

Now, if we evaluate (nasty’ bottom 3 False), bottom will match x and 3 will
match y, but the match of True against False will fail, so the second equation
will be tried, and deliver the answer 2. Hence, nasty and nasty’ behave
differently, and the transformation is invalid. (Note: nasty and nasty’ also
behave differently for expressions such as (nasty 1 2 bottom).)

There is a further complication raised by repeated variables. Consider the
function multi:

muli pq q p
multi pqrs

1, x=y
2

1
2

Should we compare the first and fourth arguments, and then compare the
second and third argaments, or the other way around? The order of
comparison is important, because it affects termination; consider
(multi bottom 2 3 4).

This section has shown that repeated variables in a pattern are not as
straightforward as at first appeared (the examples were suggested by Simon
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Finn of the University of Stirling). To simplify the rest of this chapter we will
therefore side-step these complications, by restricting our attention to a
subset of Miranda which does not allow repeated variables in a pattern. We

lose no expressive power thereby, though we do lose some notational
convenience.

4.2.8 Where-clauses

Miranda allows the right-hand side of a definition to be qualified with a
where-clause. For example,

sumsq X y = xsq + ysq

where
XSq = X*X
ysq = y+y

It is intuitively clear that this could be translated to

sumsq = AX.Ay.(let xsq = * x x
- ysq==*yy
in
(+ xsq ysq))
where we use a let-expression instead of a where-clause. In general, the
definitions in a where-clause may be mutually recursive, so we have to use a
letrec-expression instead. This will be optimized in Section 6.2.8.
Finally, the scope of a where-clause may include a set of alternatives and
guards in a conditional equation:

ged a b = ged diff b, a>b
= gcd a (—diff), a<b
= g, a=b
where
diff = a-b

TR rhs J translates the right-hand side of a definition

TRIT A, G| = letrec TDf D1 }
=An. Gn TD[Dm]
where in
Dy (F TEf G4 J TE[ A1 §
| om (F TEL G 3 TEL Ao § FAL) ..))

If G, is absent, or True, then the final IF-expression
should be replaced by TE[ An J
where A, is an expression

G is a boolean-valued expression
D; is a definition

Figure 4.2 The final TRtransiation scheme
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The scope of the definition of diff includes all the alternatives and guards.
Figure 4.2 gives the final TR translation scheme, which translates right-hand
sides, using a letrec to translate a where-clause.

4.2.9 Patterns on the Left-hand Side of Definitions

So far we have only described how to translate function definitions, but
Miranda also allows a pattern to appear on the left-hand side of a definition.
For example, consider the following Miranda definition:

addPair w = x + y
where (xy) = w

The product pattern (x,y) appears on the left-hand side of the definition in the
where-clause. It implies that w evaluates to a pair, and it binds the names x and
y to the components of w.

As mentioned in Section 3.2.3, we also allow general patterns to appear on
the left-hand side of definitions in a let(rec). Thls extension allows us to make a
simple translation of addPair to

addPair = Aw.(letrec (PAIR x y) = w in (+ x y))

The hard work of dealing with patterns on the left-hand side of deﬁnitions is
now carried out by transforming this letrec into the ordinary lambda calculus,
which is described in Section 6.2. The modification required to TD is very
simple:

™Ip=R] = TELpl - TRIR 1
where p is a pattern and R is a right-hand side.

4210 Summary

We have now completed the development of the translation of a significant
subset of Miranda into the enriched lambda calculus. The final translation
schemes, summarized in Figures 4.2, 4.3 and 4.4, look rather forbidding, but
this is because of their generality rather than their complexity.

4.3 The Semantics of Pattemn-matching Lambda Abstractions

Having described how to translate from Miranda into a language involving
pattern-matching lambda abstractions, we now give the semantics of pattern-
matching lambda abstractions of the form (\p.E).

We will do so by devoting a subsection to each form of the pattern, p:
variable, constant, sum-constructor and product-constructor.
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TE[ Exp Jtranslates the expression Exp

where k is a literal constant or built-in operator
v, v; are variables
E, E; are expressions
Infix is an infix operator

TEL : 1 = CONS

TE[ (11 = NIL

TEL[E1,Es ...,EndJ] = CONSTE[LE; I TEL[Ez .... En]l J
TE[ (E+, E2) 1 = PARTE[ E, ] TE[ E; ]

TE[ (E, Ea, E3) § = TRIPLE TE[ E; J TE[ E> § TE[ E3 J
and soon

TEL True J = TRUE

TE[ False J = FALSE

TE[ k 1 = k

TEL v } = v

TE[ Ey E2 1 = TE[ E, ] TE[ E> ] -

TE[ E, infix E2 J = "TE[ infix ] TE[ E, ] TE[ E> ]
TEL Ey $v E2 1 = TE[v]TELE ] TE[ E>

Figure 4.3 The final TE translation scheme

TD Def Jtranslates the definition Def

TOL p=R] = TE[p] =TRER ]
ml[fp1,1 coo Prm = Ry

fPnt ... Pnm = Rn

I ERRORY))

where f is a variable
vi is a variable not free in any R;
pij is a pattern
R is aright-hand side
R; is a right-hand side

= = (Av1...Avm.(n((ATE|[ Pty B..ATEL p1im §. TRE Ry D vs ...

0 (ATEL pn,s B...ATEL pom 3. TRE R ) vs ...

Vm)

Vm)

Figure 4.4 The final TD translation scheme

. 4.3.1 The Semantics of Variable Pattems

If the pattern p is a variable v, then the pattern-matching lambda abstraction
(Ap.E) is just an ordinary lambda abstraction (Av.E), whose sernantics have

already been discussed in Section 2.5.
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4.3.2 The Semantics of Constant Pattems
To describe the semantics of constant patterns we must specify the value of
Evallf \k.E 1

where k is a constant. Its value is certainly a function, so we can specify it by
giving the value of

Evalfl \k.E J a

for any argument a. There are three possibilities: either a is the same ask, or it
is 1, or it is something else. This leads to the following semantic equations:

Evalf \k.E J a=Evalf E J] if a = Evalll k 1
Evalf Ak.E J] a = FAIL ifa#Evalf k] and a # L
Evalll \Ak.EJ L =1

The first equation says that if (Ak. E) is applied to something that evaluates to
k, then the result comes from evaluating E. The second equation says that the
result is FAIL if the argument evaluates to anything else, and the third equation
specifies that, if the evaluation of the argument fails to terminate, then so does
the whole application. As usual, these semantic equations specify reduction
rules by implication. Thus, for example

AM.+341 - +34
(\M.+ 342 - FAL

It is also possible to regard constants as sum-constructors of arity zero, as
outlined in Section 4.1.2.3, in which case the rules of this section become a
special case of those of the next.

4.3.3 The Semantics of Sum-constructor Pattems

Next, we consider the case of constructor patterns, of the form (s ps ... py).
Initially we will only consider sum patterns, since product patterns turn out to
require special treatment. Here are the semantic rules for such patterns:

Evalfl A(s p1...p).E ] (s ai...a) = Evalf A\ps...\p,.E P as...8;
Evallfl \(sps...p).EQ (8" a1...ar) =FAIL ifs #¢
Evalf s p1...P).EX L =]

Operationally, the rules work as follows. To apply (\(s p1 ... p).E)toan
argument A we first evaluate A to find out what sort of object it is. This implies
that if the evaluation of A does not terminate then neither does the application
in question (third rule). (Note: to ‘evaluate A’ we only evaluate it to
constructor form; we do not evaluate its components. They will be evaluated
only if they are extracted and used. This is what it means for constructors to be
lazy.)

If A evaluates to an object built with a constructor other than s, then the
pattern-match fails (second rule). To see how this rulc works, consider an
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application of the lambda abstraction (\(BRANCH t1 t2).BRANCH 2 t1) to
(LEAF 0): '

(MBRANCH t1 t2).BRANCH 2 t1) (LEAF 0) — FAIL

The application returns FAIL because the constructor in the pattern is different
from that of the argument.

Finally, if A was built with the same constructor as the pattern, then the first
rule applies. To see how this rule works, consider an application of the same
abstraction to a BRANCH:

(MBRANCH t1 t2).BRANCH 2 t1) (BRANCH (LEAF 0) (LEAF 1))
— (M1.M2.BRANCH 2 t1) (LEAF 0) (LEAF 1)
— (M2.BRANCH {2 (LEAF 0)) (LEAF 1)
— BRANCH (LEAF 1) (LEAF 0)

In this case the match succeeds, and 11 and 2 are bound to the components of
the branch with the ordinary g-reduction rule.

Notice that for constructors of arity zero (r=0) the three rules correspond
exactly to those of the previous section. For example, using the first case of the
xor function gives:

(A\FALSE.\y.y) FALSE TRUE — (Ay.y) TRUE
- TRUE

Finally, notice that the rules deal correctly with nested patterns. Consider, for
example, the following application of the first case of the function lastEl] to
(CONS 4 (CONS 3 NIL)):

(MCONS x NIL).x) (CONS 4 (CONS 3 NIL))
-» (M.ANIL.x) 4 (CONS 3 NIL)  (firstrule)
— (ANIL.4) (CONS 3 NIL) (normal S-rule)
— FAIL (second rule)

Here, the outer pattern matches but the inner one does not, so the whole
expression returns FAIL.

4.3.4 The Semantics of Product-constructor Pattems

Finally we consider the semantics of matching product patterns. This is an
area in which a rather subtle issue surfaces.
Consider the Miranda functions

ZeroAny x =0
zerolisl [] =0
ZeroPair (xy) = 0

The function zeroAny takes a single argument and returns 0. Miranda’s lazy
semantics clearly means that the argument is not evaluated, so that 0 is
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returned even if the evaluation of the argument is very expensive or non-
terminating:

Evalff zeroAny J L =0

We say that zeroAny is lazy since it does not evaluate its argument.

The semantics of the function zeroList has already been described by the
preceding sections. It specifies that zeroList evaluates its argument, and
checks whether it is [ ]. If it is, then zeroList returns 0, otherwise it returns
ERROR. We say that zerolist is strict since it does evaluate its argument:

Evalf zerolist J L = 1

Should the zeroPair function be lazy or strict? Since the argument is a tuple
there is no point in evaluating it to check that it really is a tuple, as was
required in the case of zerolList, because the check would always succeed
(assuming that the program is type-checked). It would be more in the spirit of

a lazy language to specify that
Evalf[ zeroPair L = 0

and the Miranda language specifies this choice. We call this lazy product-
matching. On the other hand, an alternative choice would be to specify that

Evallf zeroPair J L = L

and we call this strict product-matching.

Notice that there is no ‘right’ or ‘wrong’ answer, it is simply a question of
making a clear choice of semantics for product-matching. The only ‘wrong’
approach is not to notice that there is a choice to be made (and hence to risk
making different choices in different parts of the implementation, with
unpredictable results).

Nevertheless, we contend that there are persuasive arguments in favor of
the lazy approach. We discuss this issue in the next section, while in the rest of
this section we concentrate on the semantics of lazy product-matching.

We may describe lazy product-matching by the following semantic rule:

Evalll Mt p:1 ... p).E J a = Evalll Ap1...Ap..E J (SEL-t-1 a)
(SEL-tr a)
Here SEL-t-i is a built-in function which selects the ith field from a structured
object built with constructor t. It may be described by the following semantic
equations:

SELt-i(ta; ... a ... a) = a
SEL-t-i | =1

Suppose that (\p. E), where p is a product pattern, is applied to an expression
A. The rule for lazy product-matching postpones the evaluation of the
argument A by binding the names for the components to applications of
SEL-t-ito A, rather than evaluating A and extracting its components direstly. If
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none of the components of A is evaluated, then A will not be evaluated either,
which is the effect we wanted to achieve.
Let us see how this works on zeroPair:

zeroPair = A(PAIR x y).0

Hence,

Evall zeroPair J 1

Eval[ A(PAR x y).0 § 1

Evalll Ax.Ay.0 J (SEL-PAIR-1 1) (SEL-PAIR-2 })
Eval Ay.0 J (SEL-PAIR-2 1)

=0

as required.

4.3.5 A Defence of Lazy Product-matching

Consider the Miranda function firsts, which takes a list of numbers, and
returns a pair consisting of the first odd and first even elements of the list:

firsts [] = (0,0)
firsts (x:xs) = combine x (firsts xs)

combine x (od,ev) = (x,ev), odd x
= (od,x), even x

Suppose that we were to use strict product-matching, so that when evaluating
an application (combine A; Az) we would first evaluate A.. Now consider
evaluating (firsts [1..]), where [1..]is the infinite list of integers starting at 1:

firsts [1..] — combine 1 (firsts [2..])
—> combine 1 (combine 2 (firsts [3..])

and so on.

The evaluation of (firsts [1..]) will never terminate. This is hardly satis-
factory, because it is clear that the value of (firsts [1..]) should be (1,2).

All is well, however, if we use lazy product-matching. Then, in effect, the
evaluation goes like this:

firsts [1..] — combine 1 (firsts [2..]
— (1, SEL-PAIR-2 (firsts [2..]))
— (1, SEL-PAIR-2 (combine 2 (firsts [3..])))
— (1, SEL-PAIR-2 (SEL-PAIR-1 (firsts [3..]), 2))
- (1,2

Under lazy product-matching, combine does not evaluate its second
argument. Instead it binds od to (SEL-PAIR-1 A) and ev to (SEL-PAIR-2 A),
where A is the argument.

We conclude that lazy product-matching gives significant benefits to the
programmer. The effect is quite subtle: strict product-matching caused the
entire argument list to be scanned even though all the operations on lists are
lazy. One purpose of this section is to point out that it is easy for a subtle
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difference in evaluation strategy (strict versus lazy product-matching) to
cause a gross difference in the operational behavior of the program (scanning
the whole of an infinite list versus looking at the first element only). The
example is derived from a paper by Wadler [1985].

A further reason for advocating lazy product-matching is that it allows us to
describe mutual recursion correctly. For an explanation of this point, see
Section 6.2.6.
.. There is another interesting mathematical way of looking at the differences

between strict and lazy product-matching. In domain theory there is more
- than one way of forming the product of two domains A and B, that vary in their
treatment of 1. The ordinary product, A x B, is defined like this:

A x B = {(ab) | acA and beB)

All the elements of this domain are pairs, and the bottom element of A X Bis
(L1).
The lifted product, (A x B), is defined like this:

AxB)=(AxB) u(lL)

In this product the element | is distinct from (1,1). This corresponds closely to
our operational ideas of how tuples (or any other data structure) are formed: |
stands for a non-terminating computation, while (L,1) is a pair, both of whose
elements are non-terminating computations.

The key insight is that lazy product-matching corresponds to ordinary
product, and strict product-matching corresponds to lifted product. To
implement the ordinary product domain (A x B) we have to make (L,1)
indistinguishable from non-termination. Since they clearly differ operation-
ally, the only way to conceal their differences is to use values in an ordinary
product domain in a way that makes them indistinguishable. This is precisely
what the lazy product-matching rule does:

Evallfl A(PAIRp1 p2).E] L
= Evalll Ap1.Ap2.E ] (SEL-PAIR-1 1) (SEL-PAIR-2 1)
= Evalll A\p1.Ap2.EJ L L

Evalll A(PAIR py p2).E J] (PAIR 1 1)
= Evall[ Ap1.Ap2.E 1 (SEL-PAIR-1 (PAIR L 1)) (SEL-PAIR-2 (PAIR L 1))
= Evalll A\p1.A\p2.E ] L L

In other words, the abstraction (\(PAIR p1 p2).E) is indifferent to whether its
argument is | or (L 1); it returns the same result in either case. So lazy
product-matching can be regarded as a way of implementing ordinary product
domains (A x B) by using the values in the lifted product domain (A x B) in
such a way that (L,1) is indistinguishable from | . :

Finally, it is worth noting that the use of lazy product-matching carries an
implementation cost. Consider a function addPair, which adds together the
elements of a pair:

addPair = A(PAIR x y).+ x y
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Now, using lazy product-matching, the reduction of (addPair (PAIR 3 4))
goes as follows:

addPair (PAIR 3 4)

(MPAIR x y).+ x y) (PAIR 3 4)

(Ax.Ay.+ x y) (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
(Ay.+ (SEL-PAIR-1 (PAIR 3 4)) y) (SEL-PAIR-2 (PAIR 3 4))

+ (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAR 3 4))

+ 3 (SEL-PAIR-2 (PAIR 3 4))

+34

7

R EEEA

This takes one reduction to apply the addPair lambda abstraction, and then
two further reductions (subsequently) to reduce the two applications of
SEL-PAIR. Contrast this with the effect of using strict product-matching:

addPair (PAIR 3 4)

(MPAIR x y).+ x y) (PAIR 3 4)
(Ax.Ay.+ xy) 3 4

(Ay.+ 3 y) 4

+ 34

7

Pdldo

This uses fewer reductions, since the application of the addPair lambda
abstraction also takes the argument apart. Furthermore, it uses less store
since no temporary applications of SEL-PAIR are constructed. This suggests
that we should use strict product-matching instead of lazy product-matching
wherever this does not affect the semantics.

In the case of addPair, it is clear that the argument will certainly be
evaluated in the end, so it would do no harm to evaluate it at the time of
function application (that is, to use strict product-matching). In general,
whenever a function is strict in an argument (see Section 2.5 .4) it is safe to use
strict product-matching for that argument. The process of working out which
functions are strict is called strictness analysis, and is discussed in Chapter 22.

4.3.6 Summary

This section has examined the semantics of pattern-matching in some detail,
because much confusion has surrounded this area in the past. Figure 4.5
summarizes the results of the section. The distinction between strict and lazy
product-matching, and the use of [] and FAIL, are both first described in
Turner’s thesis [Turner, 1981], but the present formulation based on
structured types is due to the authors.

4.4 Introducing case-expressions

The transformations in the last section produce remarkably inefficient
programs! The main reason for this is that pattern-matches are attempted,



Section 4.4 Introducing case-expressions 75

testing for FAIL each time, as each equation in the function definition is tried in
turn.

Frequently, however, a single test would suffice to select the appropriate
equation. For example, recall again the reflect function:

reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect t2) (reflect t1)

To apply reflect, it would suffice to test the argument, and select the first or
second right-hand side according to whether it was a LEAF or a BRANCH.

In this section, therefore, we introduce case-expressions, a convenient
construct for describing a particularly simple form of pattern-matching which
has this single-test property. Chapter 5 will then demonstrate how to translate
Miranda function definitions into case-expressions, and Chapter 6 will show
how case-expressions can be transformed into the ordinary lambda calculus.
The net effect will be a significant improvement in the efficiency of the
resulting program.

Case-expressions are a notation for describing a simple form of pattern-
matching. To begin with an example, we may translate the definition of refiect,
using a case-expression, in the following way:

reflect = At.case t of
LEAF n = LEAF n
BRANCH t1 2 ==> BRANCH (reflect t2) (reflect t1)

The important points about a case-expression are that the patterns are simple
(that is, not nested) and exhaustive (that is, they cover all constructors of the
type). This makes them particularly simple to implement.

The general form of a case-expression is

case v of
C1 Vi1 ... Viy = E1

cn Vn'1 s s Vn'rn =2> En

where v is a variable, Ey ... E,are expressions, the v; are distinct variables,
and the ¢y ... Cnare a complete family of constructors from a structured type
declaration. The syntax of case-expressions was defined in Figure 3.2.
Operationally, to evaluate this case-expression, v is first evaluated. Then,
according to what constructor v was built with, the appropriate E; is selected
and evaluated, with the vi;bound to the components of v.
Formally, the construct is defined to be equivalent to

I ((Mer vi1 ... Vig).E9) V)
1] ((A(cn Vo1 ... Vo) .En) V)

but a case-expression is far more readable!
Intuitively, case-expressions correspond to a multiway jump, whereas the
equivalent expression using [| corresponds to asequential if. . . then. . . elseif. . .’
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The semantic equations of (A\p . E) are:

Evaiff >k.E] a=Evaff E] ifa=Evalf k]
Ev.l[kk.E] a = FAIL if a 2 Evalf k Jand a # |
Evalf \k.E] L=1

Evalf M p1 ... Prp).E B (8 a1 ... 8,) = Eval[Ap1...\p,.E B & ... &,
Evalf M8 p1 ... pr)) .EJ(8' @1 ... 8y) = FAIL if s # &

Eval M8 p1 ... ps).E R L = |

Evalf Mt p1 ...pp).EJa= EvalfAp1...\py.E] (SEL+1 a)
(SEL-, a)

where ks a consiant

8 is a sum construcior of arity rs

1 is a produci consiructor of arity r,
P is a paitern

E is an expression

&, a are values

The SEL- funciions are defined as follows:
SEL-- (ta)...q8...8) =g

SEL+ L = |
where 1is a produc: constructor of arity r.
‘The [] operator is defined as follows:
a [[b=a if a # Landa # FAIL
FALJb = b
L 0fb=1

Figure 4.5 Semantics of pattern-maiching lambda abstractions and ]

structure. Indeed, the implementation described in Chapters 18-20 will
compile case-expressions and [} respectively to precisely such machine code!

4.5 Summary

Structured data types have proved more complicated than at first appeared!
We have discussed the background and semantics of pattern-matching,
showing how to translate a Miranda function definition involving pattern-
matching into the enriched lambda calculus. This required us to define two
new constructs, pattern-matching lambda abstractions and the [] operator, -
whose semantics we then defined. To clear the way for a more efficient
translation, we then introduced case-expressions, describing their semantics -
in terms of a transformation into the constructs previously described.

The next two chapters complete the pattern-matching story. Chapter 5
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gives a more efficient translation of Miranda function definitions into case-
expressions, and Chapter 6 shows how to transform the new constructs into
the ordinary lambda calculus.

References

Burstall, R.M. 1969. Proving properties of programs by structural induction. The
Computer Journal. Vol. 12, No. 1, pp. 41-8.

Burstall, R.M. 1977. Design considerations for a functional programming language. In
Proceedings Infotech State of the Art Conference, Copenhagen, pp. 54-1.

Burstall, R.M., and Darlington, J. 1977. A transforriiation system for developing
recursive programs. Journal of the ACM. Vol. 24, No. 1, pp. 44-67.

Burstall, R.M., and Gognen, J.A. 1982. Algebras, Theories, and Freeness: An
Introduction for Computer Scientists. Report CSR-101-82, Dept of Computer
Science, University of Edinburgh. February.

Landin, P.J. 1966. The next 700 programming langnages. Communications of the
ACM. Vol. 9, No. 3, pp. 157-64.

Turner, D.A., 1981.. Aspects of the implementation of programming languages.
D.Phil. thesis, University of Oxford. February.

Wadler, P. 1985. A Splitting Headache — and Its Cure. Programming Research Group,
Oxford. January.



Five

EFFICIENT COMPILATION OF
PATTERN-MATCHING

Philip Wadler

This chapter shows how to compile function definitions with pattern-matching
into case-expressions that can be efficiently evaluated. Previously, pattern-
matching has been formally defined, and we have seen some examples of
function definitions with pattern-matching.

5.1 Introduction and Examples

We begin by reviewing two examples.

The first example shows pattern-matching on more than one pattern. The
function call (mappairs f xs ys) applies the function f to corresponding pairs
from the lists xs and ys.

mappairs f [] ys =[]
mappairs f (x:xs) [] =[]

mappairs f (x:xs) (y:ys) = f x y : mappairs f xs ys

For example, (mappairs (+) [1,2] [3,4]) returns [4,6]. The definition given
here specifies that if the argument lists are not the same length, then the
result will be as long as the shorter of the two lists. For example,
(mappairs (+) [1,2] [3,4,5]) also returns [4,6].

The simplest way to think of pattern-matching is as trying to match each
equation in turn. Within each equation, patterns are matched from left to
right. For example, evaluating (mappairs (+) [1,2] [3,4] first matches (+)
against f in the first equation, which succeeds, and then matches [1,2] against

78
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[1, which fails. Then the second equation is tried. Matching (+) against f and
[1,2] against (x:xs) both succeed, but matching [3,4] against [] fails. Finally,
matching in the third equation succeeds, bindingfto (+),xto 1,xsto[2],y to 3,
and ys to [4). This corresponds exactly to the way pattern-matching was
defined in Chapter 4.

Performing pattern-matching in this way can require a lot of work. The
example above had to examine the list[1,2] three times and the list [3,4] twice.
It seems clear that it should be possible to evaluate this function application in
a more efficient manner that examines each list only once, but still gives the
result prescribed by the semantics. This can be done by transforming the
above definition into an equivalent one using case-expressions:

mappairs
= N.Axs'.\ys’.
case xs' of
NIL = NIL
CONS x xs => case ys' of
. NIL => NIL
CONS y ys = CONS (f x y) (mappairs f xs ys)

(Case-expressions were introduced in Section 4.4.) This chapter describes an
algorithm that can automatically translate the first definition into the second.
This algorithm is called the pattern-matching compiler.

The second example shows pattern-matching on a nested pattern. The
function call (nodups xs) removes adjacent duplicate elements from a list xs. It
can be defined as follows:

nodups [] =[]
nodups [x] = [x]
nodups (y:X:Xs) = nodups (X:Xs), y =X

y : nodups (x:xs), otherwise

(As you would expect, the guard ‘otherwise’ applies if no other guard does.
See Appendix.) For example, (nodups[3,3,1,2,2,2,3]) returns [3,1,2,3]. Note
that the naming need not be consistent: x stands for the first element of the list
in the second equation, and for the second element of the list in the third
equation.

Again, one can apply this definition by matching each equation in turn. For
example, evaluation of (nodups [1,2,3]) will first try to match [1,2,3] against[ ],
which fails. Next, it will try to match [1,2,3] against [x], which also fails.
Finally, it will succeed in matching[1,2,3] against (y:x:xs), bindingyto 1,xto 2
and xs to [3]. Again, this corresponds exactly to the semantics in Chapter 4.

As before, this is not very efficient. The list [1,2,3] is examined three times,
and the sublist [2,3] is examined twice (once in the second equation, where it
fails to match [ ], and once in the third equation, where it succeeds in matching
(x:xs)). The pattern-matching compiler can transform this into a form that
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examines the list and the sublist only once:

nodups
= Axs'’. case xs'’ of
NiL s> NIL
CONS x’' xs' =
case xs' of
NIL = CONS x’ NIL

CONS xxs = IF (= x’' X)
(nodups (CONS x xs))
(CONS x' (nodups (CONS x xs)))

(Here x' is the variable that was called x in the second equation and y in the
third.)

The two kinds of pattern-matching, nested patterns and multiple pattems,
are closely related to one another. The pattern-matching compiler discussed
below works uniformly for both.

In the examples above, the patterns on the left-hand sides of the equations
do not overlap. Many people would rewrite the first definition in the form:

mappairs’ f [] ys =[]
mappairs’ f xs [] =[]
mappairs’ f (x:xs) (y:ys) = f x y : mappairs’ f xs ys

In this case, the patterns overlap because both the first and the second
equation match against (mappairs’ f [] []).

One reason for preferring mappairs’ to mappairs is that it is considered to be
more efficient. Indeed, if the simplest implementation of pattern-matching is
used, matching each equation in turn, then it is slightly less work to match
against xs than to match against (x:xs). However, as we shall see, this
definition may actually be less efficient when the pattern-matching compiler is
used. Some other problems with definitions like mappairs’ will be discussed in
Section 5.5.

The remainder of this chapter is organized as follows. Section 5.2 explains
the pattern-matching compiler algorithm. Section 5.3 presents a Miranda
program that implements the algorithm. Section 5.4 describes some optimiza-
tions to the pattern-matching compiler. Section 5.5 discusses a restricted class
of definitions, called uniform definitions, which have useful properties.

Credit for the first published description of a pattern-matching compiler
goes to Augustsson, who used it in the LML compiler [Augustsson, 1985].
Techniques similar to Augustsson’s have been discovered independently by
several researchers, including the authors of the Hope compiler [Burstall e
al., 1980]. The material presented here is derived partly from Augustsson’s
paper and partly from original work by the author (Wadler).

It is also possible to derive the pattern-matching compiler from its
specification using program transformation techniques; see Barrett and
Wadler [1986].
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5.2 The Pattern-matching Compiler Algorithm
A Miranda function definition of the form

fpi1... p1a = Eq

f Pt - .. Pmn = En

can be translated into the enriched lambda calculus definition

f = Aujy.. .Mln[j (AP1.1". ... Ap1".E¢') ug ... uy)
0 (Apm1". ... Apma’-Em’) Uy ... Up)
] ERROR

where the u, are new variables which do not occur free in any E;, and the E/
and p; are the result of translating the E; and p;; respectively. It was shown
how to do this translation in Chapter 4, using the TD translation scheme.

This section shows how to transform the definition of f into a form which
uses case-expressions, removing all use of pattern-matching lambda abstrac-
tions. The transformation applies to the entire body of the Auy...\u,
abstraction, except that we generalize slightly to allow an arbitrary expression
instead of ERROR.

For the sake of simplicity, we assume that constant patterns have been
replaced by conditional equations, as described in Section 4.2.1.

5.2.1 The Function match
Our goal, then, is to transform an expression of the form

((Ap1,1- . .Ap1.a-E1) Uy ... uy)

5.1)
(é)\pm. .. APpmn-Em) U1 ... Uy

== = =}

into an equivalent expression which uses case-expressions rather than
pattern-matching lambda abstractions.

The transformation is a bit complicated, and so we will use some new
notation to describe it. Specifically, we will use a function match, which takes
as its arguments the various parts of the input expression, namely the pi;, E|
and u;, and produces as its output the transformed expression. The function
match is similar to the TDand TE translation schemes introduced in Chapter 3,
except that both its input and its result are enriched lambda calculus expres-
sions. Furthermore, the double square bracket syntax becomes somewhat
cumbersome, so we use a syntax like Miranda instead.

Here, then, is the call to match which we will use to compile the expression
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(5.1) given above:

match [U1, .oy u..]
[( [p1.1: »eey Pi.n]- E1 ):

i.[.pm.is sy pm.n]- Em )]
E

This call should return an expression equivalent to the expression (5.1), and
we take (5.1) as the definition of match from a semantic point of view. A call of
match takes three arguments: a list of variables, a list of equations and a
default expression. Each equation is a pair, consisting of a list of patterns
(representing the left-hand side of the equation) and an expression (repre-
senting the right-hand side). Notice that the list of variables and each list of
patterns have the same length.
We will also sometimes write calls of match in the form

match us gs E

Here us is the list of argument variables (of length n), and gs is a list of
equations (of length m). Each equation q;in gs has the form (ps;, Ej), where ps;
is the list of patterns on the left-hand side (of length n) and E; is the expression
on the right-hand side.

As a running example, we will use the following Miranda function:

demo f [] ys Afys
demo f (x:xs) [] Bfxxs
demo f (x:xs) (y:ys) = Cfxxsyys

This function is similar in structure to mappairs, but it has been changed
slightly in order to simplify and clarify the following examples. The right-hand
sides use three unspecified expressions A, Band C.

Translating this into the enriched lambda calculus using TD gives:

demo

= AUg.AUz.Aus. ((Mf.ANIL.Ays.A f ys) uy uz ug)
0 ((Mf.A(CONS x xs).ANIL.B f x xs) us uz ua)
0 ((M.AM(CONS x xs).A(CONS y ys).C f x xs y ys)us Uz Ug)
] ERROR

where uy, U2, us are new variable names which do not occur freein A, B orC.
Now, we transform the definition of demo, by replacing its body with a call of
match:

demo
= Auj.AUz.A\us. maich [ug, uz, us]
[ ([f, NI, ys } (A fys) ),
( [t, CONS x xs, NIL 1, (B f x xs) ),
([f, CONS x x5, CONS y ys], (C f x xs y ys)) ]

ERROR

The following sections give rules to transform any call of match to an
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equivalent case-expression. We begin with rules for simple cases and proceed
to more general cases.

5.2.2 The Variable Rule
In the example above, we have the following call on match:
match [uy, U2, us]

[ (Of, NiL, ys 1 (A fys) ),
( [f, CONS x xs, NIL ] Bfxxs) )
([f, CONS x xs, CONS y ys], (C f x xs y ys) ) ]
ERROR

In this case, the list of patterns in every equation begins with a variable. This
may be reduced to the equivalent call:

match [UZ! Ua]
[ ([NiL, ys 1 (A us ys) ),
( [CONS x xs, NIL 1 (B us x xs) ),
([CONS x xs, CONS y ys], (C us x xs y ys) ) ]
ERROR

This is derived by removing the first variable, us, and in each equation
removing the corresponding formal variable, f, and replacing f by u, in the
right-hand side of each equation.

The same method works whenever each equation begins with a variable,
even if each equation begins with a different variable. For example,

match [uz, us]

[ ([x, NIL], B x) ),
( [y, CONS x xs], (C y x xs) ) ]
ERROR

reduces to the call,

match [Us]

[ (INILL ® v ),
( [CONS x xs], (C uz2 x xs) ) ]
ERROR

(This particular example arises when compiling the definition of nodups. )

In general, if every equation begins with a variable pattem, then the call of
malch will have the form:

match (u:us)
[ ( (vi:psy), Eq ),

( Vm:PSm), Em ) ]
E
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This can be reduced to the equivalent call:

match us
[ ( ps1, Esfuivi]),

( PSm En[Wvm] )]
E

where, as usual, E[M/x] means ‘E with M substituted for xX’. In order to avoid
too many subscripts, a Miranda-like notation. has been used here; for
example, we write (u:us) instead of [uy, ..., us). The general case corres-
ponds to the first example above, where u is u4, us is [uz,us], v1 is f, pst is
[NIL, ys], and so on.

It is not hard to show that the rule is correct, that is, that the two match
expressions are equivalent. This follows from the definition of match and the
semantics of pattern-matching.

5.2.3 The Constructor Rule
The above step has left us with the following call of match:

match [uz, ua]
[ ( [N“.., ys ]v (A U4 ys) )v
( [CONS x xs, NIL 1, (B uy X xs) )
( [CONS x xs, CONS y ys], (C us x xs y ys) ) ]
ERROR

In this case, the list of patterns in every equation begins with a constructor.
This call is equivalent to the following case-expression:

case uz of

NIL 2> match [us]
[ ([ys), (A uy ys) )]
ERROR

CONS ug4 us = match [Uq, Us, Ua]
[ ( [x, xs, NIL], (B uy x xs) )

([x, xs, CONS y ys], (C u1 x xs y ys}))]

ERROR

This call is derived by grouping together all equations that begin with the same
constructor. Within each group, new variables are introduced corresponding
to each field of the constructor. Thus NIL, which has no fields, requires no new
variables, while CONS, which has two fields, introduces the variables us and
us. These new variables are matched against the corresponding subpatterns of
the original patterns.

It may be useful here to look at a second example. In compiling the
definition of a function like nodups, one would encounter the following call of
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match:
match [uy]
[ ( [NIL], A )
( [CONS x NIL], B x) ),
([CONS y (CONS x xs)], (C y x xs) ) ]
ERROR
This can be reduced to the equivalent expression:
case uy of
NIL > maitch []
[([] A )1
ERROR
CONS uz us => match [ua, us]
[ ( [x, NIL], B x) ),
( [y, CONS x xs], (Cy x xs) ) ]
ERROR

Again, NIL introduces no new variables (leaving a call of match with an empty
list of variables), and CONS introduces two new variables, uz and us.

More generally, it may be the case that not all equations beginning with the
same constructor appear next to each other. For example, one might have a
call of match such as:

match [lh]
[ ([CONS x NIL], (B x) )
( [NIL), A )
([CONS y (CONS x xs)], (Cy x xs) )]
ERROR

It is always safe to exchange two equations that begin with a different
constructor, so we may rearrange the above to the equivalent call:

. match [u4]
[ ( [NIL], A )
( [CONS x NIL], B x) )
([CONS y (CONS x xs)], (Cy x xs) ) ]
ERROR

which may be transformed as before.
It may also be the case that not all constructors appear in the original list of
equations. For example, a function definition such as:

last [x] = X
last (y:(x:xs)) = last (x:xs)

will result in the following call of match:

match [u,]
[ ( [CONS x NIL], X
( [CONS y (CONS x xs)], (last (CONS x xs)) ) ]
ERROR
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This can be reduced to the equivalent expression:

case u; of
NIL => maich [] [] ERROR
CONS u» uz => match [uz us]
[( [x, NIL], X ),
( [y, CONS x xs], (last (CONS x xs)) ) ]
ERROR

The case-expression must still contain a clause for the missing constructor,
and the call of match in this clause will have an empty list of equations. (From
the definition of match, we know that (match [] [] ERROR) is equivalent to
ERROR.)

We now discuss the general rule for reducing a call of match where every
equation begins with a constructor pattern. Say that the constructors are from
a type which has constructors cy, ..., ¢k. Then the equations can be
rearranged into groups of equations gss, . .., gsk, such that every equation in
group gs; begins with constructor c;. (If there is some constructor c; that begins
no equation, like NiL in the last example above, then the corresponding group
gs; will be empty.) The call of match will then have the form:

match (u:us) (gs; ++ ... ++ gsy) E
where each gs; has the form:
[ ( ((ci ps'i1):psia), Eir )
'('(.(c. PS’umy):PSim); Eimy ) ]

(++ is list append.) In this expression we have abbreviated the constructor
pattern (C p: ... prtothe form (c ps), where ps stands for the list of patterns
[p1, P2, ..., pi. This call to matchis reduced to the case-expression:

case u of
Ci us'y = match (us'y ++ us) gs's+ E

Ck us'x = malch (us’«x ++ us) gs'x E
where each qs’; has the form:

[ ( (ps'is ++ psig), Eig ),

( (PS"um ++ PSim), Eim ) ]
Here each us‘;is a list of new variables, containing one variable for each field
in Ci.
For instance, in the example at the beginning of this section, gszis

[ { [CONS x xs, NIL ), (B uy x xs) )
( [CONS x xs, CONS y ys], (C us xxsy ys) ) ]
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and c2 is CONS, ps’z2;1 is [x, xs], ps21is [NIL], E21is (B u1 x xs),ps’z2is[x, xs],
ps22is [CONS y ys], and E22is (C u1 x xs y ys). The corresponding gs’2is

[ ([x, xs, NIL ], (B u1 x xs) )
( [x, xs, CONS y ys], (C us x xs y ys) ) ]

The corresponding list of new variables, us2’, is [u4,us).

This notation is, of necessity, rather clumsy. The reader will be pleased to
discover, in Section 5.3, that this transformation can be written as a functional
program which is more concise and (with experience) easier to read.

Again, the correctness of this rule can be proved using the definition of
match and the semantics of pattern-matching.

5.2.4 The Empty Rule

After repeated application of the rules above, one eventually arrives at a call
of match where the variable list is empty, such as the following:

match []

([ (Auiug)]
ERROR

This reduces to:

(A U1 Us)

The correctness of this follows immediately from the definition of match, since
A cannot return FAIL.

In general, the call of match may involve zero, one or more equations. Zero
equations may result if the constructor rule is applied and some constructor of

the type appears in no equations, as in lastabove. More than one equation can
result if some of the original equations overlap.

Thus, the general form of a call of match with an empty variable list is:

match []
[ ([} E)

([} Em)]
E
wherem = 0. From the deﬁnitioh of match, this reduces to

E1ll...0EmnDE

Further, we can often guarantee that none of E4, ..., Epcanbe equal to FAIL.
In this case, the above match expression reduces to E; if m > 0 and to E if
m = 0. Section 5.4.2 discusses this optimization further.
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5.2.5 An Example

The rules given so far are sufficient to translate the definitions of mappairs and
nodups to the corresponding case-expressions given in the introduction.
Notice that the variable names used in the introduction were chosen for
readability. In practice, the translation algorithm will usually pick new names.

The reader may wish to verify that the rules given above are indeed
sufficient to translate the definition

mappairs f [] ys []
mappairs f (x:xs) [] []
mappairs f (x:xs) (y:ys) = f x y : mappairs f xs ys

to the equivalent:

mappairs
= AU7.AU2.AuUs.
case uz of
NIL = NIL

CONS ug us = case uz of
NIL = NIL

CONS ug u7 = CONS (u1 us ue)
(mappairs u; us uz)

The reader may also wish to check that the function nodups transforms to the
case-expression given in the introduction.

5.2.6 The Mixture Rule

The above rules are sufficient for compiling most function definitions into
case-expressions. However, there is still one case which has not been covered.
This arises when not all equations begin with a variable, and not all equations
begin with a constructor; that is, when there is a mixture of both kinds of
equation. For example, here is an alternative definition of demo (similar in
structure to the alternative definition of mappairs):

demo’ f [] ys =Afys
demo’ f xs [] =B fxs
demo’ f (x:xs) (y:ys) = C fxxsyys

Converting this to a match expression and applying the variable rule to
eliminate f results in the following:

maich [uz,us}
[ ( [N"-r ys ]f (A U1 ys) )r
( [xs, NIL 1. (B us xs) ).
( [CONS x xs, CONS y ys], (C u1 x xs y ys) )
ERROR

Neither the variable rule nor the constructor rule applies to this expression,
because some equations begin with constructors and others with variables.



Section 5.2 The pattern-matching compiler algorithm 89

This is where the third argument to the match function is useful. The above
expression is equivalent to:

match [uz, ua]
[(NIL, ys], (A uy ys))]
( match [uz, ug]
[([xs, NIL], (B uy xs))]
( match [uz, us]
[([CONS x xs, CONS y ys], (C uy x xs y ys))]
ERROR ))

That is, the equations are broken into groups; first an equation beginning with
a constructor, then one beginning with a variable, and then one beginning
with a constructor again. If the equation in the first call of match fails to match
the arguments then the value of the second call of match is returned. Similarly,
if the equation in the second call does not match then the third call is returned,
and if the equation in the third call does not match then ERROR is returned.

The reader may verify that reducing the three calls of match using the
variable, constructor and base case rules results in the following definition of
demo’:

demo’
= AUj.AlU2.AUs.
case up of
NIL = (A uy uy)
CONS uq us =
case ug of
NIL =2 (B uy up)
CONS ug uy =
case uz of
NIL = ERROR
CONS u4 us =
case uz of
NIL = ERROR

CONS ug uz = (C uy ug us ug uy)

This involves.four case-expressions. When the second and third arguments
are both non-empty lists then each list is examined twice, as compared with
once for the definition of demo. This confirms the claim made in the
introduction that ‘optimizing’ the definition of mappairs by transforming it
into mappairs’ can actually result in worse code.

It may be possible to devise a compilation algorithm that would produce
better code for this case. This could be done by simplifying a case-expression
that appears inside another case-expression for the same variable. This sort of
optimization is straightforward, although it requires considerably more book-
keeping. In this case, mappairs’ would compile to the same case-expression as
mappairs, although the compilation process would be rather more
complicated. '
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In general, a call of match where some equations begin with variables and

some with constructors may be transformed as follows. Say we are given a call
of match of the form

match us gs E

The equation list gs may be partitioned into k lists gss, . .., gsksuch that
gs = gsy ++ ... ++ gsk

The partition should be chosen so that each gs; either has every equation
beginning with a variable or every equation beginning with a constructor. (In
the example above, each gs had length 1, but in general this need not be the
case.) Then the call of match can be reduced to:

match us gs¢ (match us gsz ( ... (maich us gsi E)...))

It is easy to use the definition of match to show that this rule is correct.

5.2.7 Completeness

With the addition of the mixture rule, it is now possible to reduce any possible
call of match to a case-expression. This can be seen by a simple analysis. Given
a call (match us gs E) then us will be either empty, so the empty rule applies,
or non-empty. If us is non-empty then each equation must have a non-empty
pattern list, which must begin with either a variable or a constructor. If all
equations begin with a variable then the variable rule applies; if all begin with
a constructor then the constructor rule applies; and if some begin with
variables and some with constructors then the mixture rule applies.

Further, define the ‘size’ of an equation list as the sum of the sizes of all the
patterns in the equation list. It can be seen that all four of the rules result in
calls of match with smaller equation lists. This guarantees that the algorithm
must eventually terminate.

5.3 The Pattern-matching Compiler in Miranda

This section presents the transformation algorithm as a functional program in
Miranda.

5.3.1 Patterns
First, it is necessary to give a data type for representing patterns.

pattern ;= VAR variable

I CON constructor [pattem]
variable ==
constructor == [char]
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For example, (x:xs) is represented by (CON “CONS* [VAR “x", VAR *xs"]).

We need two functions on constructor names. The function arity given a
constructor returns its arity, and the function constructors given a constructor
returns a list of all constructors of its type:

arity .. constructor —> num

constructors :: constructor —> [constructor]

For example (arity “NIL*) returns 0, and (arity “CONS*) returns 2. Both
(constructors “NIL“) and (constructors “CONS*“) return the list
[“NIL*, “CONS"].

5.3.2 Expressions
Next, we need a data type for representing expressions:

expression ::= CASE varable [clause]
| FATBAR expression expression
...

clause = CLAUSE constructor [variable] expression

For example, the case-expression:

case xs of
NIL = E;

would be represented by

CASE llxs’l
[CLAUSE “NIL“ [] Ev',
CLAUSE “CONS" ["Y". uysn] Ez']

where E{', E2' are the representations of the expressions E,, Ez2. Similarly,
the expression

Eq ] E2
would be represented by
FATBAR E, E2'

The *. . ." in the definition of the type expression stands for other
constructors used to represent other expressions, such as variables,
applications and lambda abstractions. We do not need to know anything
about these other expressions, except that there is a substitution function
defined for them.

subst :: expression —> variable —> variable —> expression

For example, if E represents the expression (f x y), then (sdbst E “_ut” “x")
represents the expression (f _u1l y).
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5.3.3 Equations
An equation is a list of patterns paired with an expression:
equation == ([pattern], expression)

We will use the letter q to denote equations, or else write (ps,e).

We need functions to determine if an equation begins with a variable or a
constructor. If it begins with a constructor, we also need a function to return
that constructor.

isVar .. equation —> bool

isvVar (VAR v : ps, 8) = True

isVar (CON c ps’ : ps, 8) = False

isCon :: equation —> bool
isCon q = ~ (isVar q)

getCon :: equation —> constructor

getCon (CON c ps’ : ps, @)= ¢

5.3.4 Variable Names

We need some way of generating the new variable names, ut, u2, and so on.
To do this we introduce a function makeVar that, given a number, returns a
variable name.

makeVar : num —> variable
makeVar k = “_u” ++ show k

For example, (makeVar 3) returns *_u3’. Here we preface each new variable
name with ‘_’ to avoid it being confused with any variable already in the
program.

5.3.5 The Functions partition and foldr

The implementation of the mixture rule uses a function called partition. The
call (partition f xs) returns a list [xsy, ... xsy] such that
xs = xs1 ++ ... ++ xsp, and such thatf x = f x' for any elements x and x’
in xs), i from 1 ton, and such thatf x # f x’ for any elements x in xs; and x’ in
xsi+1, | from 1to n—1. For example,

partition odd [1,3,2,4,1] = [ [1,3], [24], [1]]
The function partition is defined as follows:

partition m(x => ) —> [6] > [ [*] ]
partition f [] =[]
partition f [x] =[[x]]

partition f (x:x’':xs) = tack x (partition f (x':xs)), fx = f x’
= [x] : partition f (x':xs), otherwise

tack x xss = (x : hd xss) : t| xss
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Incidentally, the following definition of tack is not equivalent to the above
definition:

tack x (xs:xss) = (x : xs) : xss

The difference between the two is closely related to the question of strict and
lazy pattern-matching, mentioned in Section 4.3.5 in connection with the
function firsts.

The pattern-matching compiler also uses the standard function foldr. The
function foldr is defined so that

foldr f a [x4, X2, ..., Xn] = f X1 (F X2 (... (f Xq @)...))

For example, (foldr (+) O xs) returns the sum of the list of numbers xs. The
function foldr is defined by:

foldr D > ok —> xx) —> 2k —> [#] —> ==
foldr £ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

5.3.6 The Function match

We are now ready to define the function match. Calls of match have the form
(match k us gs def). Here, as in Section 5.2, us represents a list of variables,
gs represents a list of equations and def is a default expression. The argument
k is added to help in generating new variable names; it should be chosen so
that for every i>k, (makeVar I) is a new variable not in us, gs or def.

For example, the initial call to match to compile the definitions of mappairs
would be:

match 3
[”_U"”, n_u2u' "_U3"]
[ ( [VAR "f*, CON "NIL" [],
VAR "ys" } E1),
( [VAR nfn' CON "CONS" [VAR "X", VAR "XS"],
CON "NIL" []1], E2 ),
( [VAR ufu' CON "CONS" [VAR uxu' VAR uxsu]'
CON "CONS" [VAR uyu' VAH uysu] ]' E3 ) ]
efrror

where E1, E2 and E3 represent the three expressions on the right-hand sides of
the equation, and error represents the expression ERROR.

The definition of match can now be derived in a fairly straightforward way
from the description given in Section 5.2. The type of match is:

match :: num —> [variable] —> [equation] —> expression —> expression
The equations for the top-level of match come from the empty rule and the
mixture rule.

match k [] gs def = foldr FATBAR def [e | ((]e) <— gs ]
match k (u:us) gs def

= foldr (matchVarCon k (u:us)) def (partition isVar gs)
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The function matchVarCon is given a list of equations that either all begin
with a variable or all begin with a constructor. It calls matchVar or matchCon, as
appropriate.

matchVarCon k us gs def

= matchVar k us gs def, isVar (hd gs)
= matchCon k us gs def, isCon (hd gs)

The function matchVar implements the variable rule.

matchVar k (u:us) gs def
= match k us [(ps, subst e u v) | (VAR v : ps, 8) <— gs] def

The functions matchCon and matchClause implement the constructor rule.
The call (choose ¢ gs) returns all equations that begin with constructor c.

matchCon k (u:us) gs def

= CASE u [matchClause ¢ k (u:us) (choose c gs) def | ¢ <— cs]
where
cs = constructors (getCon (hd gs))

matchClause ¢ k (u:us) gs def
= CLAUSE c us’' (match (k’+k)

(us' ++us)
[(ps’++ps, e) | (CON c ps’ : ps, e) <— gs]
def )

where

k' = arity c

us’ = [makeVar (i+k) | i <— [1..k'] ]
choose ¢ gs = [q | q <— gs; getCon q = c]
This completes the Miranda program for the pattern-matching compiler

5.4 Optimizations

This section discusses some optimizations to the pattern-matching compiler.
Section 5.4.1 describes an optimization which gives greater efficiency when
compiling overlapping equations. This involves further uses of [ and FAIL, and
Section 5.4.2 describes how these may often be eliminated.

5.4.1 Case-expressions with Default Clauses

If overlapping equations are allowed, then sometimes the pattern-matching
compiler described above may transform a small set of equations into a
case-expression that is much larger. For example, consider the function
defined by:

unwieldy [] []
unwieldy xs ys

A
B xs ys
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The pattern-matching compiler transforms this into:

unwieldy = Axs.\ys. case xs of :
NIL => case ys of
NIL = A
CONS y' ys' => B xsys
CONS x' xs' = B xs ys

Here the expression (B xs ys) appears twice. If (B xs ys) were replaced by
a very large expression, the increase in size caused by the compilation process
could be very significant.

The problem can be avoided by modifying the rules given in Section 5.2 so
that right-hand sides are never duplicated during the compilation process. In
fact, only one rule can cause right-hand sides to be duplicated, the constructor
rule. This rule is modified as follows.

Recall that the constructor rule transforms a call of match of the form:

match (u:us) (gs1 ++ ... ++ gsi) E

to a case-expression of the form:

case u of
ci Usy = match (usy’ ++ us) gsy E

ck Usx’ => match (usy ++ us) gsk’' E

whereqgsy, ..., gskandgsy’, ..., gsx’ are as described in Section 5.2.3.
Normally E will be ERROR, but if the mixture rule is used then E may itself
be a match expression containing right-hand sides; it is in this case that
duplication may occur. The modified rule prevents this by using [] and FAIL to
avoid duplicating E.
This is done by replacing the case-expression above with the equivalent
expression:

(case u of
cy usy’ => match (us\’ ++ us) gsy FAIL

Ck Usy’ => match (usy’ ++ us) gsi’ FAIL)
JE

If we call the old case-expression C, then the new expression is (C’ [} E),
where C’ is formed by replacing each E in C by FAIL. It is clear that the new
expression is equivalent to the old cxpression and, as desired, E is not
duplicated by the new rule.

For example, using the new rule, the definition of unwieldy will now
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transform to:
unwieldy = Axs.Ays.
(case xs of
NIL 2> (case ys of
NIL =2 A
CONS y' ys' = FAIL) (a)
I FAIL (b)
CONS x’' xs' = FAIL)
I Bxsys ©

This expression is a little larger than the previous version of unwieidy, but
now (B xs ys) appears only once. If (B xs ys) stands for a large expression,
then this new expression may be much smaller than the-previous one.

As an example of how this sort of expression is evaluated, consider the call

(unwieldy NIL (CONS 1 NIL))

This is evaluated as follows. First, the outer case-expression is evaluated.
Since xs is NIL, this causes the inner case to be evaluated. Since ys is
(CONS 1 NIL), the inner case-expression returns FAIL; see line (a). So the
expression after the inner [] is returned, which is also FAIL; see line (b). Thus,
the outer case-expression returns FAIL. So the expression after the outer [J is
returned; see line (c). This is (B NIL (CONS 1 NIL)), which is the value
returned by the call of unwieldy.

5.4.2 Optimizing Expressions Containing [J and FAIL

It is often the case that all occurrences of FAIL, and its companion, [}, can be
eliminated. Most of these optimizations depend on reasoning that FAIL can
never be returned by an expression, because in this case an occurrence of [Jcan
be eliminated.

Suppose that FAIL is returned by an expression E. Then it is necessary
(though not sufficient) that one of the following conditions must hold:

(i) FAIL is mentioned explicitly in E;
(ii) E contains a pattern-matching lambda abstraction, whose application
may fail;
(iii) FAIL is the value of one of the free variables of E.

If the pattern-matching compiler described in this chapter is applied
throughout, then no pattern-matching lambda abstractions will remain in the
transformed program, and hence (ii) cannot occur. Since the programmer
presumably cannot write FAIL explicitly in his program, it is not hard
(although perhaps tedious) to verify that (iii) cannot occur either.

These observations focus our attention on all the places where FAIL can be
introduced explicitly by the compiler. There are only two such places:

(i) In the translation of conditional equations (Section 4.2.6). Fortunately,



Section 5.4 Optimizations 97

we can easily transform conditional equations to avoid the use of [] and
FAIL, and we show how to do so below.

(ii) In the variant of the pattern-matching compiler described in the last
section, where the introduction of [} and FAIL seems unavoidable. This
problem motivates the discussion in Section 5.5, in which we describe a
restricted class of function definitions that can always be compiled
without using [] and FAIL.

5.4.2.1 Rules for transforming [ and FAIL
We now give some rules for transforming expressions involving []and FAlL toa
simpler form. In all cases their correctness follows directly from the semantics
of [I.

First, we may eliminate [] if FAIL cannot occur on the left:

E+[] E2 = E,
provided that E, cannot return FAIL.

For example, this rule is used to derive the optimized version of the empty
rule in Section 5.2.4.

Second, we may eliminate [] if FAIL definitely occurs on the right or left:
EJFAL = E and FALL[E = E

Forexample, these rules can be used to simplify the final definition of unwieldy in
Section 5.4.1.

Third, there is the following useful transformation involving IF:

(FE E2E) [E = IF Ey Ez (Es [] E)
provided that neither E4 nor Ez can return FAIL.

This rule will be useful in simplifying conditional equations, which we now
attend to. :

5.4.2.2 Eliminating [ and FAIL from conditional equations
The empty rule for match, which was described in Section 5.2.4, resulted in an
expression of the form

E+fl...0EmIE

Now, the E; are just the right-hand sides of the original equations. If a
right-hand side consisted of a set of guarded alternatives without a final
‘otherwise’ case, then it will have been translated to the form:

IF Gy Ay (IF.... (IF Gg Ag FALL) ... )

where g is the number of alternatives (see Section 4.2.6). If there was a final
‘otherwise’ case (that is, a final alternative with no guard, so that the right-
hand side never fails), then it would have been translated to the form:

IF Gt A1 (IF ... (IF Gg—y Ag—y Ag) ... )
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Notice that G; and A; cannot be equal to FAIL, because they are only the
transformed versions of expressions written by the programmer.

If the right-hand side is of the first form, we can use the third rule of the
previous section repeatedly, followed by the second, to give:

(IF Gy Ay (IF ... (IF Gg Ag FALL) ... ) D E

IF Gy A; (IF ..j(IF Gy AgE) ...)

If the right-hand side is of the second form, it cannot return FAIL, and so we
can use the first rule of the previous section.

Application of these three rules will eliminate all occurrences of [] and FAIL
in the expression generated by the empty rule, and incidentally thereby give a
worthwhile improvement in efficiency.

5.4.2.3 Clever compilation

Using these rules, many of the instances of [] and FAIL remaining in a function
definition can be eliminated. Later we will consider compiling an expression
into low-level machine code. When we do this, we will see that it is possible to
compile the remaining expressions involving [] and FAIL in a surprisingly
efficient way, so that [ requires no code at all, and the FAIL simply compiles to
a jump instruction. This is discussed in Section 20.4.

5.5 Uniform Definitions

This section introduces a restricted class of function definitions, called
uniform definitions. There are two motivations for studying this class. First,
uniform definitions avoid certain problems with reasoning about function
definitions that involve pattern-matching. Second, uniform definitions are
easier to compile, and are guaranteed to avoid certain kinds of inefficient
code.

We begin by discussing some problems with reasoning about function
definitions containing pattern-matching. Consider again the alternate
definition of mappairs:

mappairs’ f [] ys =[]
mappairs’ f xs [] =[]
mappairs' f (x:xs) (y:ys) = f x y : mappairs’ f xs ys

Now, consider evaluation of the expression:
mappairs’ (+) bottom []
where the evaluation of bottom would fail to terminate (for example, botiom

could be defined by the degenerate equation bottom = bottom). Matching
against the first equation binds f to (+) and then attempts to match [] against
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bottom. In order to perform this match it is necessary to evaluate bottom, and
this of course causes the entire expression to fail to terminate.
On the other hand, consider evaluation of:

mappairs’ (+) [] bottom

Now matching against the first equation binds f to (+), matching [] against []
succeeds, and then ys is bound to bottom (without evaluating bottom). So the
expression returns [] instead of failing to terminate. This means that the
definition of mappairs’ is not as symmetric as it appears.

Further, if the first two equations of mappairs’ were written in the opposite
order, the two expressions above would change their meaning: now the first
would return [] and the second would fail to terminate. So even though the
first and second equations have the same right-hand side, the order in which
they are written is important.

The original definition of mappairs has none of these problems:

(]
(]
f x y : mappairs f xs ys

mappairs f [] ys
mappairs f (x:xs) []
mappairs f (x:xs) (y:ys)

Now the asymmetry between (mappairs (+) [] bottom) and
(mappairs (+) bottom []) is apparent from the equations. Further, changing
the order of the equations does not change the meaning of the function.

In general, one might expect that whenever the equations do not overlap,
the order in which they are written does not matter. In fact, this is not true.
Consider the definition:

diagonal x True False
diagonal False y True
diagonal True False z

1
2
3

The three equations of this definition are non-overlapping, that is, at most one
equation can apply. However, by this definition, the evaluation of:

diagonal bottom True False

would return 1. On the other hand, if the order of equations in the definition
were reversed, so the third equation came first, then the above expression
would fail to terminate. So even though the equations do not overlap, the
order in which they are written is important.

Clearly, it would be useful to have a test that guarantees that the order of
the equations does not matter. We now define the class of uniform definitions,
which have this property. The definition of ‘uniformity’ is designed so that it is
easy to test whether a definition is uniform while applying the pattern-
matching compiler to it.
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DEFINITION
A set of equations is uniform if one of the following three conditions holds:

(i) either, all equations begin with a variable pattern, and applying the
variable rule (of Section 5.2.2) yields a new set of equations that is
also uniform;

(ii) or, all equations begin with a constructor pattern, and applying the
constructor rule (of Section 5.2.3) yields new sets of equations that
are all also uniform;

(iii) or, all equations have an empty list of patterns, so the empty rule (of
Section 5.2.4) applies, and there is at most one equation in the set.

That is, a set of equations is uniform if it can be compiled without using the
mixture rule (of Section 5.2.6), and if the empty rule is only applied to sets
containing zero or one equations. (It is easy for the reader to check that when
the empty rule is applied to more than one equation, the order is relevant.)

Such equation sets are called ‘uniform’ because all equations must begin the
same way, either with a variable pattern or a constructor pattern, whereas the
mixture rule applies when some equations begin with variable patterns and
some with constructor patterns.

It is not difficult to prove the following:

THEOREM

If a definition is uniform, changing the order of the equations does not
change the meaning of the definition.

The proof is a straightforward induction, and is similar in structure to the
proof of correctness of the pattern-matching compiler that was outlined
(along with its definition) in Section 5.2. '

This shows that being uniform is a sufficient condition for the order of the
equations not to matter. It is not a necessary condition, as is shown by the
function dummy:

1
1, xs =[]

dummy []
dummy xs

Clearly, dummy is not uniform, but the order of the equations does not matter.
However, the following result shows that being uniform is indeed necessary if
one considers only the left-hand sides:

THEOREM

If the left-hand sides of a definition are such that the order of the equations
does not matter (regardless of the right-hand sides or condition parts of
the equations), the definition is uniform.
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For example, the order of the equations would matter in dummy if the 1 in the
second equation were changed to a 2. Again, the proof of the theorem is a
straightforward induction. These two theorems give us a simpler way of
characterizing uniform equations, without referring to the pattern-matching
compiler. Namely, a definition is uniform if and only if its left-hand sides are
such that the order of the equations does not matter.

It is also possible to show that every uniform definition is non-overlapping.
The converse is not true: the function diagonal is non-overlapping but is not
uniform. Researchers have often referred to ‘lack of overlapping’ as an
important property, but perhaps they should refer to ‘uniformity’ instead,
since this is the property that guarantees that the order of equations does not
matter.

Uniform equations are related to strongly left-sequential equations as
defined by Hoffman and O’Donnell [1983], which are in turn related to
sequential equations as defined by Huet and Levy [1979].

Notice that although uniform equations are independent of ‘top-to-bottom’
order, they still have a ‘left-to-right’ bias. For example, although the
following definition is uniform:

xor False x
xor True Failse
xor True True

X
True
False

the same definition with the arguments interchanged is not:

xor’ x False = x
xor’ False True = True
xor' True True = False

Of course, we can always get around this bias by using extra definitions to
rearrange the arguments. For example, we can define

XOr'' Xy = Xor y x

and then xor’’ is equivalent to xor’, and both xor’’ and xor have uniform
definitions.

The existence of left-to-right bias is due to the semantics of pattern-
matching that we have chosen. A different definition of pattern-matching that
avoids left-to-right bias is possible; see Huet and Levy [1979].

There is a second reason why uniform equations are important: they
are easier to implement. The problems with implementing non-uniform
definitions have been referred to implicitly in prevnous sections. In summary,
they are as follows:

(i) The resulting case-expressions may examine some variables more than
once (see Section 5.2.6).

(ii) The compiler must use a modified constructor rule to avoid duplicating
the right-hand side of equations (see Section 5.4,1),



102 Chapter 5 Efficient Compilation of Pattern-matching

(iii) The resulting expressions may contain [] and FAIL. Implementing such
expressions efficiently requires additional simplification rules and/or a

special way of implementing FAIL using jump instructions (see Section
5.4.2).

The result is that the pattern-matching compiler must be significantly more
complicated if it is to deal with non-uniform expressions. Further, the first
point above means that it may be difficult to know how efficient the code
compiled for a non-uniform definition will be.

An issue related to uniformity is the way conditionals are handled. In
languages such as SASL, conditional expressions and where expressions may
appear anywhere in an expression, and the semantics of each is defined
independently. In Miranda, conditions and where clauses are not separate
expressions, but rather must be associated with the right-hand side of
definitions. This increases the power of Miranda, in some ways, but only when
non-uniform definitions are used. Hence, a restriction to uniform equations
would also allow this part of the language to be simplified.

On the other hand, it should be pointed out that non-uniform definitions
are sometimes very convenient. For example, the following definition
reverses lists of length two, and leaves all other lists the same:

reverseTwo [x,y] = [y.x]
reverseTwo xs = xs

The most straightforward way of rewriting this as a uniform definition is much
more long-winded:

reverseTwo [] =[]
reverseTwo [x] = [x]
reverseTwo [x,y] = [y,x]
reverseTwo (X:y:zZ:ws) = X:y:Z:Ws

In this case, it is easy to see another way of rewriting reverseTwo, but, in
general, rewriting may not be so easy.

Functional language designers have long debated whether or not
definitions with overlapping equations should be allowed in functional
languages. As has been shown, it may be more appropriate to debate the
merits of uniform — as opposed to non-overlapping — equations. Several
arguments in favor of restricting definitions to uniform equations have been
raised here; but it is also true that non-uniform definitions are on occasion
quite convenient. No doubt the debate will continue to be a lively one.

* * *
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Six

TRANSFORMING THE ENRICHED
LAMBDA CALCULUS

Having now defined the semantics of pattern-matching, we are in a position to
show how to transform all the constructs of the enriched lambda calculus into
the ordinary lambda calculus.

Section 6.1 shows how to transform pattern-matching lambda abstractions
into the ordinary lambda calculus, while Section 6.2 deals with let- and
letrec-expressions; Sections 6.3 and 6.4 deal with case-expressions and the |
operator.

6.1 Transforming Pattern-matching Lambda Abstractions

In order to translate Miranda function definitions involving pattern-matching
into the enriched lambda calculus, we had to introduce pattern-matching
lambda abstractions as a new construct. In this section we will show how they
can be transformed into the ordinary lambda calculus. For each form of (Ap.E)
we will give an equivalent form that does not use pattern-matching lambda
abstractions.

In the case when the pattern p is a variable there is nothing to do, because
no pattern-matching is involved. The remaining cases are when the patternis
a constant, a product-constructor pattern or a sum-constructor pattern. These
are dealt with in the following three subsections.

6.1.1 Constant Patterns

This section shows how to transform a pattern-matching lambda abstraction
(Ak.E), with a constant pattern k, into the ordinary lambda calculus. First of

104
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all, we recall the semantics of (Ak. E) from Section 4.3.2:

Eval[ \k.E ] a = Bval[ E ]| ifa=Evall k J
Eval[ \k.E ]} a = FAIL if a+ Evalfl Kk J and a # 1
Evall Nk.EJL=1

Operationally, (\k.E) tests whether its argument is equal to k; if so, it returns
E, if not it returns FAIL. This simple test can be carried out by the built-in IF
function, using the following transformation:

(Ak.E) = (Av.IF (= k v) E FAIL)

where v is a new variable which does not occur free in E. It should be clear
(and can be proved, using the semantics of (Ak. E) and the semantics of IF and
=) that these two lambda abstractions have the same meaning, and hence are
equivalent. Notice the way in which we introduce a new Av abstraction, so that
we can name the argument directly in its body.

As an example, consider the Miranda definition

fip 0 = 1
flip1=

This will be translated to

fiip = Ax.( ((A0.1) x)

0 (z1.0) x)
 ERROR)

Now, transforming out the pattern-matching lambda abstractions gives

fip = Ax.( ((A\V.IF (= 0 v) 1 FAIL) x)
0 ((\v.IF (= 1 v) 0 FAIL) x)
0 ERROR)

Itis now easy to verify that

fip0 —» ... » 1
fipt - ... - 0
fip2 -» ... - ERROR

6.1.2 Product-constructor Patterns

Next we consider the case of (\p.E), where p is the product pattern
(t p1 ... pr), and tis a product constructor of arity r. As before, we recall its
semantics (Section 4.3.4);

Evalll At p1 ... p).E 1 a = Evall[ Aps...Ap.E J (SEL+1 a)
(SEL-t-r a)

To implement this semantics, we invent a necw function
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UNPACK-PRODUCT-t for each product constructor t, and use it in this
transformation:

(At p1 ... p).E) = UNPACK-PRODUCT-t (Ap:...Apr.E)

The idea is that UNPACK-PRODUCT-t takes two arguments, a function and a
structured object, and applies the function to the lazily selected components
of the object. It is defined by the following semantic equation:

UNPACK-PRODUCT-t f a = f (SEL-t-1 a) ... (SEL-t-r a)

It can easily be shown that the transformation is valid, by comparing the
semantics of the expression before and after the transformation.

The right-hand side of the transformation still has pattern-matching lambda
abstractions in it, but they are smaller than the one we began with, and
repeated use of the rules for transforming pattern-matching lambda abstrac-
tions will eliminate them.

As an example, consider the function addPair, which adds together the
elements of a pair:

addPair = A(PAIR x y).+ x ¥y
This will be transformed to
addPair = UNPACK-PRODUCT-PAIR (Ax.Ay.+ x Y)

We can check that it gives the right results by reducing (addPair (PAIR 3 4)):

addPair (PAIR 3 4)

UNPACK-PRODUCT-PAIR (Ax.Ay.+ x y) (PAIR 3 4)

(Ax.Ay.+ x y) (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
(\y.+ (SEL-PAIR-1 (PAIR 3 4)) y) (SEL-PAIR-2 (PAIR 3 4))

+ (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))

+ 3 (SEL-PAIR-2 (PAIR 3 4))

+34

7

RN

6.1.3 Sum-constructor Pattemns

Finally, consider the case of (Ap . E), where pisa sum pattern(s p1 ... py),and
s is a sum constructor of arity r. The semantics of such lambda abstractions
was derived in Section 4.3.3:

Evalf M(s p1 ...p).EQl(s a1 ... a) = Evalll Ap1...Apr.EJ a1...ar
Evalll A(s p1 ... p).E T} (s’ a1 ... ar)= FAIL ifs+s
Evalll Aspr ... pd.ER L = I

We can make a very similar transformation to the product-constructor case,
leaving all the hard work to a new function UNPACK-SUM-s:

(h(s Pt ... pr).E) = UNPACK-SUM-s (M)L..hpr.E)
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The function UNPACK-SUM-s takes two arguments, a function (in this case
(Ap1. . .Apr.E)), and a structured object. It checks whether the object is built
with constructor s: if not, FAIL is returned; if so, UNPACK-SUM-s takes the
object apart and applies the function (its first argument) to its components.
UNPACK-SUM-s is specified by the following semantic equations:

UNPACK-SUM-s f(say...a) =far... ar
UNPACK-SUM-s f (s’ a; ... ay) = FAIL ifs+#s
UNPACK-SUM-s f 1 =]

As an example, recall the Miranda definition of reflect:

reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect t2) (reflect tt)

This is translated to:

reflect = At.( ((MLEAF n).LEAF n) t)
0 ((MBRANCH t1 2).BRANCH (reflect t2) (reflect t1)) t)
[} ERROR)

Now, applying the transformation gives:

reflect

= At.( (UNPACK-SUM-LEAF (An.LEAF n) t)
1 (UNPACK-SUM-BRANCH (At1.At2.BRANCH (reflect 2) (reflect t1)) t)
Il ERROR)

6.1.4 Reducing the Number of Built-in Functions

The trouble with the transformations of the previous section is that they
introduce several functions associated with each constructor. In this section
we discuss the implementation of these functions.

A structured object will be represented by the implementation as an
aggregate, consisting of the component fields together with a structure tag,
which distinguishes objects built by different constructors from each other
(see Section 10.3.1). It is this tag which can be used by UNPACK-SUM-s to
identify the constructor used.

In a type-checked system it is only necessary to distinguish objects from
other objects of the same type, so the structure tag can be a small integer in the
range 1. ..n (where n is the number of constructors in the type). This means
that, instead of requiring an UNPACK-SUM:-s function for each constructor s,
it is only necessary to have a single family of functions UNPACK-SUM-d-rs,
where d is the integer structure tag which is recognized by UNPACK-SUM-d-rs,
and r is the arity of s. In a similar way, the sum constructor functions can be
replaced with a family of functions PACK-SUM-d-rs, which take rs arguments
and construct an aggregate with r; fields and structure tag d.

We can perform an analogous set of replacements for the functions
associated with product types. UNPACK-PRODUCT-t can be replaced with
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UNPACK-PRCDUCT-r,, where ryis the arity of t (there is no need for a structure
tag here, since UNPACK-PRCDUCT does not examine it). Similarly, the
product-constructor functions can be replaced with PACK-PRCDUCT-r, and
the selector functions SEL-t-i can be replaced with SEL-rri. It is sensible to
keep PACK-SUM and PACK-PRCDUCT distinct because, having no structure
tag, objects of product type may have a different representation from objects
of sum type.
To summarize:

s (a sum-constructor function) is replaced by PACK-SUM-d-rs
UNPACK-SUM-s is replaced by UNPACK-SUM-d-rs
t (a product-constructor function) is replaced by PACK-PRCDUCT-r;
UNPACK-PRCDUCT-t is replaced by UNPACK-PRCDUCT-r;
SEL-t-i iis replaced by SEL-rri

where rs = arity of s,
d = structure tagofs,
r, = arity oft.

For example, assuming that we implement lists with structure tag 1 for NIL
and 2 for CONS, then the following replacements would take place:

NIL is replaced by PACK-SUM-1-0

CONS is replaced by PACK-SUM-2-2
UNPACK-SUM-NIL is replaced by UNPACK-SUM-1-0
UNPACK-SUM-CONS is replaced by UNPACK-SUM-2-2

Likewise, if the type tree is declared as before:
tree ::= LEAF num | BRANCH tree tree

and LEAF and BRANCH are assigned structure tags 1 and 2 respectively, the
following replacements would take place:

LEAF is replaced by PACK-SUM-1-1
BRANCH is replaced by PACK-SUM-2-2

UNPACK-SUM-LEAF is replaced by UNPACK-SUM-1-1
UNPACK-SUM-BRANCH is replaced by UNPACK-SUM-2-2

Finally, if the type pair is declared as before:
pair * ** ;= PAIR * *»
the following replacements would take place:

PAIR is replaced by PACK-PRODUCT-2
UNPACK-PRODUCT-PAIR is replaced by UNPACK-PRODUCT-2
SEL-PAIR-1 is replaced by SEL-2-1
SEL-PAIR-2 is replaced by SEL-2-2

Since functions with different types may be replaced by the same function
(for example, CONS and BRANCH are both replaced by PACK-SUM-2-2), these
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replacements should not be performed until after type-checking. For the
same reason, none of these replacements is possible for a system that
performs run-time type-checking (see Section 10.5).

6.1.5 Summary

Figure 6.1 summarizes the transformations developed in this section, and
Figure 6.2 gives the semantics for the two new families of functions we
introduced in order to perform the transformations.

(Ak.E) = (Av.IF (= k v) E FAIL)
where v is a new variable that does not occur free
inE
(Mt p1 ... py).E) = (UNPACK-PRODUCT-t (.. .Apy.E))
(A(s Ps ... pr’).E) (UNPM-SUM% (Apj . .hprs.E»
where k is a constant ’

t is a product constructor of arity r,
8 is a sum constructor of arity rs

Figure 6.1 Transforming out pattern-matching lambda abstractions

UNPACK-PRODUCT-t f a = f (SEL4-1 a) ... (SEL-t-; a)

UNPACK-SUM-s f (s a1 ... a,)) = fay...a,
UNPACK-SUM-s f (s’ a; ... a,,) = FAIL ifs+s
UNPACK-SUM-s f | - =1

where t is a product constructor of arity r,
s is a product constructor of arity rs

Figure 6.2 Sernantics of UNPACK-PRODUCT and UNPACK-SUM

6.2 Transforming let and letrec

In Section 4.2.9 we introduced a new complication to let(rec)-expressions, by
allowing the left-hand side of definitions to be an arbitrary pattern rather than
asimple variable. In this section we show how to transform these generalized
lets and letrecs into successively simpler forms, arriving eventually at the
ordinary lambda calculus. .

Rather than defining the semantics of let and letrec directly, as we did for
pattern-matching lambda abstractions, we will regard the transformations
described in this section as a definition of their semantics. To define their
meaning in a more direct way would require more mathematical machinery
than we have available in this book.



110 _ Chapter 6 Transforming the Enriched Lambda Calculus

We begin by sketching a new problem which is introduced by allowing
arbitrary patterns on the left-hand side of definitions. This leads us to define a
class of patterns, the irrefutable patterns, which do not suffer from the
problem. Then, before embarking on the transformations themselves, we
give a ‘map’ to explain their structure.

6.2.1 Conformality Checking and Irrefutable Pattems

Allowing arbitrary patterns on the left-hand side of a definition introduces a
new and somewhat subtle complication. Consider the expression

let (CONS x xs) =B in E

Here, the pattern (CONS x xs) appears on the left-hand side of the definition.
This raises the nasty possibility that B might evaluate to NIL instead of
(CONS B3 B»), in which case the pattern would not match, and some sort of
error should, presumably, be reported. This requires that a conformality
check be made, to ensure that B conforms with the specified pattern.

Conformality checking will carry some implementation cost, so we would
like to avoid it whenever possible. It can be avoided in precisely those cases
when the pattern match cannot fail, for example, simple product patterns.
However, there are some nested patterns which cannot fail also, which
motivates the following definition:

DEFINITION
A pattern pis irrefutable if it is
(i) either a variable v
(ii) oraproduct patternofform (t py ... p)wherepy, ..., prare irrefut-
able patterns.

Otherwise the pattern is refutable.

In other words, the irrefutable patterns consist of arbitrarily nested product
constructors with variables at the leaves. These patterns cannot fail to match
in a type-checked implementation. Variables and simple product patterns are
just two examples of irrefutable patterns.

However, even a single constant or sum constructor (even if nested insidea
product pattern) makes the pattern refutable, since there is a possibility that it
may not match. We need to perform conformality checking for refutable
definitions only.

6.2.2 Overview of let and letrec Transformations

We are now ready to describe the various transformations to simplify let(rec)-
expressions. While few are complicated, they are quite numerous, so we
begin by offering a ‘map’ to aid in navigation through the rest of the section.
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For a start, we establish the following terminology:

(i) The left-hand side of each definition of a simple let(rec)-expression must
be a variable.
(ii) The left-hand side of each definition of an irrefutable let(rec)-expression
must be an irrefutable pattern.
(iii) The left-hand side of each definition of a general let(rec)-expression may
be any arbitrary pattern.

With the aid of this terminology, Figure 6.3 depicts the transformations which
will be described below, giving the appropriate section number in brackets.

For the reasons discussed in Section 3.2.4, there are two possible forms into
which we may wish to transform the program, which differ only in their
treatment of let and letrec:

(1) We may transform the program into the ordinary lambda calculus; this
gives the simplest resulting program. In this case, general lets are trans-
formed into the ordinary calculus via irrefutable lets and simple lets.
General letrecs, on the other hand, are first transformed into irrefutable
lets via irrefutable letrecs, and then use the let transformations.

(ii) We may transform the program into the ordinary lambda calculus
augmented with simple let(rec)-expressions; the resulting program is
slightly more complicated, but can be implemented more efficiently
(Section 3.2.4). In this case, general lets are transformed only into simple
lets, and general letrecs are transformed into simple letrecs, via irrefutable

letrecs.
Dependency analysis (6.2.8)
l L
General let(rec) expressions
{ Conformality transformation (6.2.7) t
Irrefutable | Irrefutable
lets (6.2.6) letrecs
‘ (6.2.4) ‘,(6.2.5)
Simple Simple
lets letrecs
‘ (6.2.3)
Ordinary
lambda calculus

Figure 6.3 Map of let(rec) transformations
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Both possibilities are catered for by the transformations shown in Figure 6.3.
In what follows, when considering let-expressions we assume that they
contain only one definition. This gives no loss of generality, since a let-
expression with multiple definitions is trivially equivalent to a nested set of
single-definition let-expressions.
The following sections deal with the transformations depicted in Figure 6.3.

6.2.3 Transforming Simple lets Into the Ordinary Lambda Calculus

Once we have arrived at an expression in which all let-expressions are simple,
it is easy to remove them altogether, using the transformation given in Section
3.2.1:

letv=BinE = (A\W.E)B

For example,

let x =4in (+ x6) = (Ax.+ x 6) 4

6.2.4 Transforming lrrefutable lets into Simple lets

Consider the case of an irrefutable let-expression, of the form
letp=BinE

where p is irrefutable. Since the pattern on the left-hand side of the definition
is irrefutable, it must either be a variable or a product pattern. In the former
case there is nothing to do, since the let-expression is already simple. In the
latter case, the let-expression takes the form

where the p;are irrefutable patterns, and B and E are expressions. We can now
make the following transformation:

letv=08
in (let py = SEL-t-1 v

let(tp1...pr)=BinE

pr = SEL-t-r v
in E)

where v is a new variable that does not occur free in E.

The piare bound to selector functions applied to v, which is in turn bound to
B. Repeated application of this transformation will eliminate all non-simple
irrefutable let-expressions.

To take an example, the expression

let (PAIRXxy) =B inE
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would be transformed to

let v =B in (let x = SEL-PAIR-1 v
y = SEL-PAIR-2 v
in E)

Notice that if neither x nor y is evaluated in E, then B will not be evaluated
either, so the transformation implements lazy product-matching. Lazy
product-matching s just as much of an advantage here as it was in function
definitions. For example, we could recode the function “firsts’ from Section
4.3.5 in the following way:

firsts [] = (0, 0)
firsts (x:xs) = (x, ev), odd x
= (od, x), even x

where

(od, ev) = firsts xs

We would expect this definition to behave just like that of Chapter 4, so that if
lazy product-matching is used for function definitions then it should also be
used for let(rec)-expresstons.

(Note: an alternative transformation would have been possible in this
section, namely:

etp=BInE = (A\p.E)B

where p is an irrefutable pattern. From a semantic point of view, this is
entirely equivalent to the transformation used above. However, for the
efficiency reasons outlined in Section 3.2.4, we prefer to stay in the world of
let-expresstons as long as possible; hence our choice.)

6.2.5 Transforming lirefutable letrecs into Simple letrecs

The transformation from a letrec involving only irrefutable definitions into a
stmple letrec is very similar to that for let-expressions:

letrec t p1 ... pp =B = lerecv =8B
<other definitions> p1 = SELt-1 v
in E
pr = SEL-t-r v
<other definitions>
in E

where v is a new variable that does not occur free in E or B.

All the transformed definitions must be in a single letrec, to ensure that
vartables in the patterns p; are in scope in B. The ‘<other definitions>’ simply
takes into account the fact that the letrec may contain multiple definitions, and
this transformation should be applied to each of them separately.
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Repeated application of the transformation will simplify the p;successively,
until the letrec is simple.

6.2.6 Transforming Irefutable letrecs into Irefutable lets

In showing how to eliminate letrec-expressions altogether, we could take as
our starting-point the simple letrec-expressions produced by the transform-
ation described in the preceding section. However, it is slightly more efficient
to start from an earlier stage, the irrefutable letrec-expressions.

First of all, we recall from Section 3.2.2 how to transform a simple letrec
containing only a single definition:

(letrec v=Bin E) = (let v=Y (Av.B) in E)

We simply use the built-in function Y, which was introduced in Section 2.4, to
make the definition non-recursive. Now that the definition is non-recursive,
we can use let instead of letrec, and the job is done.

When there is more than one definition, we apply the following sequence of
two transformations. First of all, we apply the transformation

letrec p1 =By = letrec tp1 ... pn) = (tB1... By in E

Pn = Bn
in E
where tis a product constructor of arity n.

In other words, we simply package up the right-hand sides into a tuple and
match it against a product pattern on the left-hand side. Furthermore, since
the p; are irrefutable, the pattern (t py ... pn)is also irrefutable.

Now the letrec contains only a single definition with an irrefutable pattern
on its left-hand side, and we can proceed by analogy with the simple case
described above, using Y. This analogy yields the following transformation:

“letrec p=BinE = letp=Y (A\p.B)in E
where p is an irrefutable pattern.

Y is used exactly as before, to make the definition non-recursive. The new
feature is the use of a pattern-matching lambda abstraction, where we used
only a simple lambda abstraction before. The result is a let-expression with an
irrefutable pattern on its left-hand side, which is therefore amenable to the
transformations of Section 6.2.4.

To see this transformation in action, consider the following letrec-
expression:

letrec x = CONS 1y
y = CONS 2 x
in x
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It defines the infinite list [1,2,1,2,...,]. Applying the first transformation, we
package up the definitions into one:

letrec (PAIR x y) = PAIR (CONS 1 y) (CONS 2 x) in x
Now, applying the second transformation gives:
let (PAIR x y) = Y (A(PAIR x Yy).PAIR (CONS 1 y) (CONS 2 x)) in x

It is vital that the pattern-matching lambda abstraction should use lazy
product-matching. If it were to use strict product-matching instead, the
expression would yield 1 rather than [1,2,1,2, .. .]. In fact, mutual recursion
cannot be implemented using Y without some form of lazy product-matching.

Using the transformations for let-expressions and pattern-matching lambda
abstractions, we could complete the transformation of the current example as
follows:

(Av.(Ax.AY.X) (SEL-PAIR-1 v) (SEL-PAIR-2 v))
(Y (UNPACK-PRODUCT-PAIR (Ax.Ay.PAIR (CONS 1 y) (CONS 2 x))))

This expression is not a pretty sight, but it gives the correct answer (that is, the
infinite list[1,2,1,2,1,2,...,].

It should be clear from this example that implementing letrec using tuples
carries a run-time cost, both to build the tuple and to take it apart. This is one
of the reasons why more sophisticated implementations implement simple
let(rec)s directly (see Section 3.2.4 and Chapter 14).

6.2.7 Transforming General let(rec)s into Irrefutable let(rec)s

In Miranda, arbitrary patterns may appear on the left-hand side of a
definition. For example, consider the following Miranda definition of the
function head, which extracts the first element of a list:

head xs = ¥
where (Y:ys) = xs

The pattern (y:ys) appears on the left-hand side of the definition in the
where-clause. But this raises an awkward question: what would happen if the
pattern (y:ys) did not match the result of evaluating xs? In particular, what
would happen if we evaluated (head [])?

It is clearly unacceptable for the system to proceed in ignorance that
anything is wrong, so it is necessary to check that xs matches the pattern,
rather than assume that it always will. This is called the conformality check,
since it checks that xs conforms to the pattern.

Notice that the possibility of a mismatch only arises in the case of refutable
patterns, involving sum-constructor patterns or constants. The irrefutable
patterns, involving variables and product-constructor patterns only, cannot
fail to match (in a type-checked implementation).

The translation into the enriched lambda calculus does not affect the
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problem of conformality checking. For example, the definition of head
translates to:

head = Axs.(letrec (CONS y ys) = xs in y)

The pattern (CONS y ys) is refutable, and may fail to match. The problem
applies equally to lets and letrecs.

Having decided that conformality checking is essential, the next question
is: when is the conformality check performed? There are two possible
answers:

(i) When the evaluation of the entire let(rec)-expression begins.
(i) On the first occasion when either y or ys is used.

To illustrate the consequences of this choice, consider the (rather
contrived) expression

let (CONS y ys) = NIL in 6

The first answer specifies that the evaluation of this expression should cause
an error, while the second specifies that it should return 6.

In keeping with its lazy approach, the semantics of Miranda specifies the
second of the two answers, and so this property should be inherited by
let(rec)-expressions. How is this to be achieved? The simplest way seems to be
to transform the expression

let (CONSyys) =B in E
into
let (PAIR y ys) = (((M(CONS y ys).PAIR y ys) B) [] ERROR) in E

and rely on the transformation of Section 6.2.5 to cope with the simple product
pattern (PAIR y ys). The expression on the right-hand side will evaluate B, check
that it is an object constructed with CONS, take it apart, and construct a pair
cohtaining its two components. These components are then bound to y and ys using
a simple product pattern on the left-hand side.

If it is not an object constructed with CONS, then the application of the
pattern-matching lambda abstraction to B will return FAIL, and [] will retumn its
second argument, namely ERROR.

There are two points to notice about this transformation:

(i) No conformality check will be made if neither y nor ys is used in E,
because the lazy product-matching ensures that the right-hand side of the
definition is not evaluated unless at least one of the components of the
tuple is used.

(ii) The conformality check is made at most once. The evaluation of y or ys
will cause the evaluation of the right-hand side of the definition, at which
point the conformality check will be made, and the tuple built. Now,
further use of y or ys will simply access the components of this tuple.
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It seems hard to improve on these two properties, so we now generalize the
method to handle any let(rec)-expression. Given a definition of the form

p=8
where p is a refutable pattern, we use the following transformation:
p=B = (tvi...va)=(AP.(t vi ... vp)) B) | ERROR

where tis a product constructor of arity n. The resulting definition now has an
irrefutable pattern on the left-hand side. We call this the conformality
transformation, and it applies separately to any definition in a let or letrec
which has a refutable pattern on the left-hand side.

The variablesv; ... vaaresimply the variables that appear anywhere in the
pattern p. This suggests a new definition.

DEFINITION

For any pattern p, the set of variables of p, abbreviated Var(p), is defined
thus:

if pis a variable v, then Var(p) = {v}

if pis a constant k, then Var(p) = {}

if pis a structured pattern (c p1 ... pr),
then Var(p) = Var(py) U... U Var(p,)

Now we see that the variables vy ... v, in the conformality transformation
are simply the variables of p, namely Var(p). Hence, we can express the
conformality transformation as follows:

p=B = (tvi...v)=(Ap.(t vi... vy B) | ERROR

where (v, ..., Va} = Var(p),
t is a product c