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INTRODUCTION

This book is about implementing functional programming languages using

lazy graph reduction, and it divides into three parts.

Thefirst part describes how to translate a high-level functional language
into an intermediate language, called the lambdacalculus, including detailed

coverage ofpattern-matching and type-checking. The secondpart begins with
a simple implementation of the lambda calculus, based on graph reduction,
and then develops a numberof refinements and alternatives, such as super-
combinators, full laziness and SK combinators. Finally, the third part
describes the G-machine, a sophisticated implementation ofgraph reduction,
which provides a dramatic increase inPerformance over the implementations
described earlier.

Oneof the agreed advantages of functional languages is their semantic
simplicity. This simplicity has considerable payoffs in the book. Over and
over again we are able to make semi-formal arguments for the correctness of
the compilation algorithms, and the whole book has adistinctly mathematical
fiavor — an unusualfeature in a book about implementations.
Most of the material to be presented has appeared in the published

literature in some form (though somehas not), but mainly in the form of
conference proceedings and isolated papers. References to this work appear
at the end of each chapter.

1.1 Assumptions

This book is about implementations, not languages, so we shall make no
attempt to extol the virtues offunctional languages or the functional
programming style. Instead we shall assume that the readeris familiar with

functional programming; those without this familiarity may find it heavy

i
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going. A brief introduction to functional programming may be found in
Darlington [1984], while Henderson [1980] and Glaseret al. [1984] give more
substantial treatments. Another useful text is Abelson and Sussman [1985]
which describes Scheme, an almost-functional dialect of Lisp..
An encouraging consensus seems to be emerging in the basic features of

high-level functional programming languages, exemplified by languages such
as SASL [Turner, 1976], ML [Gordon et al., 1979], KRC [Turner, 1982],

Hope [Burstall et al., 1980], Ponder [Fairbairn, 1985], LML [Augustsson,
1984], Miranda [Turner, 1985] and Orwell [Wadler, 1985]. However, for the
sake of definiteness, we use the language Miranda as a concrete example
throughout the book (When used as the name of a programming language,
‘Miranda’ is a trademark of Research Software Limited.) A brief intro-
duction to Miranda maybe foundin the appendix, but no serious attemptis
madeto give a tutorial about functional programmingin general, or Miranda
in particular. For those familiar with functional programming, however, no

difficulties should arise.
Generally speaking,all the material of the book should apply to the other

functional languages mentioned, with only syntactic changes. The only
exception to this is that we concern ourselves almost exclusively with the
implementation of languages with non-strict semantics (such as SASL, KRC,
Ponder, LML, Miranda and Orwell). The advantages and disadvantages of
this are discussed in Chapter 11, but it seems that graph reduction is probably
less attractive than the environment-based approach for the implementation

of languages with strict semantics; hence the focus on non-strict languages.
However, some functional languagesare strict (ML and Hope,for example),
and while much of the bookis still relevantto strict languages, some of the
material would need to be interpreted with care.
The emphasis throughoutis on an informal approach, aimed at developing

understanding rather than at formalrigor. It would be an interesting task to
rewrite the book in a formal way, giving watertight proofs of correctness at

each stage.

1.2 Parti: Compiling High-level Functional Languages

It has been widely observed thatmost functional languagesare quite similar to
each other, and differ more in their syntax than their semantics. In order to

simplify our thinking about implementations,thefirst part of this book shows
howto translate a high-level functional program into an intermediate language
which has a very simple syntax and semantics. Then, in the second and third
parts of the book, we will show how to implementthis intermediate language
using graph reduction. Proceeding in this way allows us to describe graph
reduction in considerable detail, but in a way that is not specific to any
particular high-level language.
The intermediate language into which we will translate the high-level
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functional program is the notation of the lambda calculus (Figure 1.1). The
lambdacalculus is an extremely well-studied language, and wegive an intro-
duction to it in Chapter 2.

 

 

  
High-level language program

{ Part
Program expressed in lambda notation

 

 

   

{ Parts II and III

 

Concrete implementation
      

Figure 1.1 Implementing a functional program

The lambda calculus is not only simple,it is also sufficiently expressive to
allow us to translate any high-level functional language into it. However,
translating some high-level language constructs into the lambda notation is
less straightforward than it at first appears, and the rest of Part I is concerned
with this translation.

Part I is organized as follows.Firstofall, in Chapter3, we define a language
whichis a superset of the lambda calculus, which we call the enriched lambda

calculus. The extra constructs provided by the enriched lambda calculus are

specifically designed to allow a straightforward translation of a Miranda
program into an expression in the enriched lambda calculus, and Chapter 3
showshow to perform this translation for simple Miranda programs.

After a brief introduction to pattern-matching, Chapter 4 then extends the
translation algorithm to cover more complex Miranda programs, and gives a
formal semantics for pattern-matching. Subsequently, Chapter 7 rounds out
the picture, by showing how Miranda’s ZF expressions can also be translated
in the same way. (Various advanced features of Miranda are not covered,
such as algebraic types with laws, abstract data types, and modules.)

Muchofthe rest of Part I concernsthe transformationofenriched lambda
calculus expressions into the ordinary lambdacalculus subset, a process which
is quite independent ofMiranda. This language-independence was oneofthe
reasonsfor defining the enriched lambda calculus languageinthefirst place.
Chapter 5 shows how expressions involving pattern-matching constructs may
be transformedto use case-expressions, with aconsiderable gainin efficiency.
Then Chapter6 showshowall the constructs ofthe enriched lambda calculus,
including case-expressions, may be transformed into the ordinary lambda
calculus.

Part I concludes with Chapter 8 which discusses type-checking in general,
and Chapter 9 in which a type-checker is constructed in Miranda.
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1.3 Part ll: Graph Reduction

Therest of the book describes how the lambdacalculus may be implemented
using a technique called graph reduction. It is largely independent ofthe later
chapters in Part I, Chapters 2-4 being the essential prerequisites.

Asaforetaste ofthings to come,weofferthe following brief introduction to
graph reduction. Supposethat the function f is defined (in Miranda)likethis:

fx = (x + 1) * «x — 1)

This definition specifies that f is a function of a single argument x, which
computes ‘(x + 1) * (x — 1)’. Now suppose thatwe are required to evaluate

{4

that is, the function f applied to 4. We can think of the program like this:

/\
f 4

where the @ stands for function application. Applyingf to 4 gives

IN.
/\ JN
4 1 4 1

(Note: in the main text we will use a slightly different representation for
applications of *, + and —, but this fact is not significant here.) We may now
execute the addition and the subtraction (in either order), giving

*

5 3

Finally we can execute the multiplication, to give the result

15

From this simple example wecan see that:

(i) Executing a functional program consists of evaluating an expression.
(ii) A functional program has a natural representation as a tree (or, more

generally, a graph).
(iii) Evaluation proceeds by means of a sequence of simple steps, called

reductions. Each reduction performsa local transformation of the graph
(hence the term graph reduction).

(iv) Reductions may safely take place in a variety of orders, or indeed in
parallel, since they cannotinterfere with each other.
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(v) Evaluationis complete when there are no further reducible expressions.

Graph reduction gives an appealingly simple and elegant model for the
execution of a functional program,and onethatis radically different from the
execution modelofa conventional imperative language.
Webegin in Chapter 10 by discussing the representation of a functional

program as a graph. The next two chapters form apairwhich discusses first the
question of deciding which reduction to perform next (Chapter 11), and then
the act of performing the reduction (Chapter 12).

Chapters 13 and 14 introduce the powerful technique ofsupercombinators,
whichis the key to the remainder of the book. This is followed in Chapter 15
with a discussionoffull laziness, an aspect of lazy evaluation; this chapter can
be omitted on first reading since later material does not dependonit.
Chapter 16 then presents SK combinators, an alternative implementation

technique to supercombinators. Hence, this chapter can be understood
independently of Chapters 13-15. Thereafter, however, we concentrate on
supercombinator-based implementations.

Part II concludes with a chapter on garbagecollection.

1.4 Part lil: Advanced Graph Reduction

It may seem atfirst that graph reductionis inherently less efficient than more
conventional execution models, at least for conventional von Neumann
machines. The bulk of Part III is devoted to an extended discussion of the
G-machine, which shows how graph reduction can be compiled to a form that
is suitable for direct execution by ordinary sequential computers.

In view of the radical difference between graph reduction on the one hand,
and the linear sequenceofinstructions executed by conventional machines on
the other, this may seem a somewhatsurprising achievement. This (fairly
recent) developmentis responsible for a dramatic improvementin the speed
of functional language implementations.

Chapters 18 and 19 introduce the main concepts of the G-machine, while
Chapters 20 and 21 are devoted entirely to optimizations of the approach.
The book concludes with three chapters that fill in some gaps, and offer

some pointers to the future. .
Chapter 22 introduces strictness analysis, a compile-time program analysis

method which has been the subject ofmuch recent work, and which is crucial
to manyofthe optimizations of the G-machine.

Perhaps the major shortcoming of functional programming languages,
from the point of view of the programmer,is the difficulty of estimating the
space and time complexity of the program. This questionis intimately bound
up with the implementation, and wediscuss the matter in Chapter 23.

Finally, the book concludes with a chapter on parallel implementations of
graph reduction.
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THE LAMBDA CALCULUS

This chapter introduces the lambda calculus, a simple language whichwill be
used throughouttherest ofthe bookas abridge between high-level functional
languages andtheir low-level implementations. The reasonsfor introducing
the lambda caiculus as an intermediate languageare:

(i) It is a simple language, with only a few, syntactic constructs, and simple
semantics. These properties make it a good basis for a discussion of
implementations, because an implementation ofthe lambda caiculus only
has to support a few constructs, and the simple semantics allows us to
reason aboutthe correctness of the implementation.

(ii) It is an expressive language, which is sufficiently powerful to express all
functional programs(and indeed,all computable functions). This means
that if we have an implementation of the lambda calculus, we can
implementany other functional languagebytranslating it into the lambda
calculus.

In this chapter we focus on the syntax and semantics of the lambda calculus
itself, before turning our attention to high-level functional languages in the
next chapter.

2.1 The Syntax of the Lambda Calculus

Here is a simple expression in the lambdacalculus:

(+ 4 5)

All function applicationsm the lambdacalculus are written in prefix form, so,

9
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for example, the function + precedes its arguments 4 and 5. A slightly more
complex example, showing the (quite conventional) use of brackets,is

(+ (* 5 6) (* 8 3)) -

In both examples, the outermost brackets are redundant, but have been
added for clarity (see Section 2.1.2).
From the implementation viewpoint, a functional program should be

thoughtof as an expression, which is ‘executed’ by evaluating it. Evaluation
proceeds by repeatedly selecting a reducible expression (or redex) and
reducing it. In our last example there are two redexes: (* 5 6) and (* 8 3).
The whole expression (+ (* 5 6) (* 8 3))isnotaredex,since a + needs to be
applied to two numbers before it is reducible. Arbitrarily choosing the first
redex for reduction, we write

(+ (* 5 6) (# 8 3)) —> (+ 30 (* 8 3))

where the—> is pronounced‘reduces to’. Now there is only one redex, (* 8 3),

whichgives

(+ 30 (* 8 3)) — (+ 30 24)

This reduction creates a new redex, which we now reduce

(+ 30 24) —» 54

Whenthere are several redexes we have a choice of which one to reduce

first. This issue will be addressed laterin this chapter.

2.1.1 Function Application and Currying

In the lambdacalculus, function application is so importantthatit is denoted
by simple juxtaposition; thus we write

fx

to denote ‘the function f applied to the argument x’. How should we express
the application of a function to several arguments? We could use a new
notation, like (f (x,y)), but instead we use a simple and rather ingenious
alternative. To express ‘the sum of3 and 4’ we write

((+ 3) 4)

The expression (+ 3) denotes the function that adds 3 to its argument. Thus
the whole expression means ‘the function + applied to the argument3, the
result of which is a function applied to 4’. (In commonwith all functional
programming languages, the lambda calculus allows a function to return a
functionas its result.)

This device allows us to think ofallfunctions as having a single argument
only. It was introduced by Schonfinkel [1924] and extensively used by Curry
[Curry and Feys, 1958}; as a resultit is known as currying.
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2.1.2 Use of Brackets

In mathematics it is conventional to omit redundant brackets to avoid
cluttering up expressions. For example, we might omit brackets from the
expression

(ab) + ((2c)/d) ©
to give

ab + 2c/d

The second expressionis easier to read than thefirst, but there is a danger that
it may be ambiguous.It is rendered unambiguous by establishing conventions
about the precedence of the various functions (for example, multiplication
binds moretightly than addition).
Sometimesbrackets cannotbe omitted, as in the expression:

(b+c)/a

Similar conventions are useful when writing down expressions in the
lambdacalculus. Consider the expression:

(+ 3) 2)
Byestablishing the convention thatfunction application associates to theleft,
we can write the expression more simplyas:

(+ 3 2)

or even

+32

Weperformed somesuch abbreviations in the examplesgiven earlier. As a
more complicated example, the expression:

(ff (+ 4) 3) @ %)

is fully bracketed and unambiguous. Following our convention, we may omit
redundant brackets to makethe expressioneasier to read, giving:

f (+ 4 3) (g x)

No further brackets can be omitted. Extra brackets may, of course, be
inserted freely without changing the meaning ofthe expression; for example

(f (+ 4 3) g x)

is the same expression again.

2.1.3 Built-in Functions and Constants

In its purest form the lambda calculus does not have built-in functions such as
+, but our intentions are practical and so we extend the pure lambda calculus
with a suitable collection of such built-in functions.
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These include arithmetic functions (such as +, —, *, /) and constants (0, 1,
.. -), logical functions (such as AND, OR, NOT) and constants (TRUE,
FALSE), and character constants (‘a’, ‘b’, . . .). For example

-~§4- 1

AND TRUE FALSE — FALSE

Wealso include a conditional function, IF, whose behavioris described by the
reduction rules:

IFTRUE EE; > &

IF FALSEE, E& — €;

Wewill initially introduce data constructors into the lambda calculus by
using the built-in functions CONS (short for CONSTRUCT), HEAD and TAIL
(which behave exactly like the Lisp functions CONS, CAR and CDR). The
constructor CONS builds a compound object which can be taken apart with
HEADand TAIL. We maydescribe their operation by the following rules:

HEAD (CONS ab) — a
TAIL (CONS ab) — b

Wealso include NIL, the empty list, as a constant. The data constructors will

be discussed at greater length in Chapter 4.
Theexact choice ofbuilt-in functionsis, ofcourse, somewhatarbitrary, and

further ones will be added as the needarises.

2.1.4 Lambda Abstractions

Theonly functions mtroduced so far have been the built-in functions (such as
+ and CONS). However, the lambda calculus provides a construct, called a

lambda abstraction, to denote new (non-built-m) functions. A lambda

abstraction is a particular sort of expression which denotesa function. Hereis
an example of a lambda abstraction:

(AX . + x 1)

TheA says ‘here comesa function’, andis immediately followed by a variable,
x in this case; then comesa . followed by the body of the function, (+ x1) in
this case. The variable is called the formal parameter, and we say that the A
binds it. You can thinkofit like this:

(A xX . + x 4)

t f ft ft fT Tf
Thatfunction of x which adds x to 1

A lambda abstraction always consists of all the four parts mentioned:the A,
the formal parameter, the . and the body.
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A lambda abstraction is rather similar to a function definition in a
conventionallanguage, such as C:

Inc( x )

int x;

{return( x + 1 );}

The formal parameter of the lambda abstraction corresponds to the formal
parameterof the function, and the body of the abstraction is an expression
rather than a sequence of commands. However, functions in conventional
languages must have a name(such as Inc), whereas lambda abstractions are
‘anonymous’ functions.

The body of a lambda abstraction extends asfar to the right as possible, so
that in the expression

(Ax.+ x 1) 4

the body of the Ax abstractionis (+ x 1), not just +. As usual, we may add
extra brackets to clarify, thus

(Ax.(+ x 1)) 4

Whena lambdaabstraction appears in isolation we may write it without any
brackets:

Ax. + x 1

2.1.5 Summary

Wedefine a lambda expression to be an expressioninthe lambdacalculus, and
Figure 2.1 summarizes the forms which a lambda expression may take. Notice
that a lambda abstraction is not the same as a lambda expression; in fact the
formeris a particular instance ofthelatter.

 

<exp> :: = <constant> Built-in constants
| <variable> Variable names
|  <exp> <exp> Applications
| \<variable>.<exp> Lambdaabstractions

This is the abstract syntax of lambda expressions. In order to write down
such an expression in concrete form we use brackets to disambiguate its
structure (see Section 2.1.2).
Wewill use lower-case letters for variables (e.g. x, f), and upper-case

letters to stand for whole lambda expressions (e.g. M,E).
The choice of constants is rather arbitrary; we assume integers and

booleans (e.g. 4, TRUE), together with built-in functions to manipulate
them (e.g. AND,IF, +). We also assume built-in list-processing functions
(e.g. CONS, HEAD).   

Figure 2.1 Syntax ofa lambda expression (in BNF)
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In what follows we will use lower-case names for variables, and single

upper-case letters to stand for whole lambda expressions. For example we
might say ‘for any lambda expressionE,. . .,”. We will also write the namesof
built-in functions in uppercase, but no confusion should arise.

2.2 The Operational Semantics ofthe Lambda Calculus

So far we have describedonly the syntax of the lambdacalculus, butto dignify
it with thetitle of a ‘calculus’ we mustsay how to ‘calculate’ with it. We willdo
this by giving three conversion rules which describe how to convert one
lambda expressioninto another.

First, however, we introduce an important piece of terminology.

2.2.1 Bound and Free Variables

Consider the lambda expression

(Ax.+ x y) 4

In order to evaluate this expression completely, we need to know the ‘global’
value ofy. In contrast, we do not need to know ‘global’ value forx,sinceit is

just the formal parameterof the function, so wesee that x and y have a rather
different status.

Thereasonis that x occurs boundbythe Ax;it is just a ‘hole’ into which the
argument4 is placed when applying the lambda abstraction to its argument.

 

An occurrence ofavariable must be either free orbound.

Definition of‘occursfree’
xoccurs free in x(but not in any other variable or constant)
xoccurs free in (E F) <> xoccurs free in.E

or xoccurs free in F

xoccurs free in Ay.E <> xandyare different variables
and xoccurs free in E

Definition of ‘occurs bound’
xoccurs boundin (E F) <> xoccurs bound in E

or Xoccurs boundin F

xoccurs bound in Ay.E << (Xand yare the samevariable
andxoccurs free in E)

or xoccurs bound in E

(No variable occurs bound in an expression consisting ofa single constant
or variable.)

Note: ‘<<>>’ means ‘ifandonlyif”   
Figure 2.2 Definitions of bound and free
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On the other hand, y is not bound by any A, and so occurs free in the

expression. In general, the value of an expression dependsonly on the values
of its free variables.
An occurrence of a variable is bound if there is an enclosing lambda

abstraction which binds it, and is free otherwise. For example, x and y occur

bound,but z occurs free in this example:

AX. + ((Ay.+ y z) 7) x

Notice that the terms ‘bound’ and‘free’ refer to specific occurrences of the
variable in an expression. This is because a variable may have both a bound
occurrence and a free occurrence in an expression; consider for example

+ x ((Ax.+ x 1) 4)

in which x occurs free (the first time) and bound (the second time). Each
individual occurrence of a variable must be either free or bound.

Figure 2.2 gives formaldefinitions for ‘free’ and ‘bound’, which cover the
forms of lambda expression given in Figure 2.1 case bycase.

2.2.2 Beta-conversion

A lambdaabstraction denotes a function, so we must describe how to applyit
to an argument. For example, the expression

(Ax. + x 1) 4

is the juxtaposition of the lambda abstraction (Ax. + x 1) and the argument4,
and hence denotes the application of a certain function, denoted by the

lambdaabstraction, to the argument 4. Therule for such function application
is very simple:

Theresult ofapplying a lambdaabstraction to an argumentis an instance of
the body of the lambda abstraction in which (free) occurrences of the
formal parameterin the body are replaced with (copies of) the argument.

Thus the result of applying the lambda abstraction (Ax.+ x 1) to the
argument4 is

+41

The (+ 4 1) is an instance of the body (+ x 1) in which occurrences of the
formal parameter, x, are replaced with the argument, 4. We write the
reduction using the arrow ‘—»’ as before:

Ox.+ x14 5 +41

This operation is called 8-reduction, and much ofthis book is concerned with
its efficient implementation. Wewill use a series ofexamples to showin detail
how f-reduction works.
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2.2.2.1 Simple examples ofbeta-reduction
The formal parameter mayoccur severaltimes in the body:

(Ax.+ xx) 5 ~» +55
— 10

Equally, there may be no occurrencesof the formal parameterim the body:

(Ax.3) 5 — 3

In this case there are no occurrences ofthe formal parameter(x) for which the

argument(5) should be substituted, so the argumentis discarded unused.
The body of a lambda abstraction may consist of another lambda

abstraction:

(Ax.(AyY-- Y x) 45 — (ay.—y4)5
> —54
—> 1

Notice that, when constructing an instance of the body of the Ax abstraction,
we copy the entire body including the embedded Ay abstraction (while
substituting for x, of course). Here we see currying in action: the application
of the Ax abstraction returned a function (the Ay abstraction) as its result,
which whenapplied yielded the result (— 5 4).

We often abbreviate

(Ax. (AY .E))

to

(Ax. Ay.E)

Functions can be arguments too:

(Af.f 3) (Ax.+ x 1) —> (Ax.+x 1) 3
> +31

> 4

Aninstance of the Ax abstractionis substituted for f whereverf appears in the
bodyof the Af abstraction.

2.2.2.2 Naming

Someslight care is needed when formal parameter names are not unique. For
example

(Ax. (Ax. + (— x 1)) x 3) 9
—> (Ax.+ (— x 1) 93

— +(-—91)3
— 111

Notice that we did notsubstitute for the innerx in the first reduction, because
it was shielded by the enclosing Ax;that is, the inner occurrence ofx is not free
in the body of the outer Ax abstraction.
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Given a lambda abstraction (Ax.E), how can we identify exactly those

occurrences of x which should be substituted for? It is easy: we should
substitute for those occurrences ofx which arefree in E, because, if they are
free in E, then they will be bound by the Ax abstraction (Ax.E). So, when
applying the outer Ax abstraction in the above example, we examine its body

(Ax.+ (— x 1)) x3

and see that only the second occurrence of x is free, and hence qualifies for
substitution.

This is why the rule given above specified that only thefree occurrences of
the formal parameterin the body are to be substituted for. The nesting of the
scope of variables in a block-structured languageis closely analogousto this
rule.
Here is another example of the same kind

(AX.Ay.+ x ((AX.— x 3) y)) 56
—> (Ay.+ 5 ((Ax.— x 3) y)) 6
—> + 5 ((Ax.— xX 3) 6)
— + 5 (-6 93)

— 8

Again,the innerxis not substituted forin the first reduction,since it is not free
in the body of the outer Ax abstraction.

2.2.2.3 A larger example
As a larger example, we will demonstrate the somewhat surprising fact that
data constructors can actually be modelled as pure lambda abstractions. We
define CONS, HEAD and TAIL in the following way:

CONS = (Aa.Ab.aAf.f a b)
HEAD = (Ac.c (Aa.Ab.a))
TAIL (Ac.¢ (Aa.Ab.b))

These obey the rules for CONS, HEAD and TAIL given in Section 2.1.3. For
example,

HEAD (CONSp q)
(Ac.c (Aa.Ab.a)) (CONS p q)

— CONS p q (Aa.Ab.a)
= (Aa.Ab.af. f a b) p q (Aa.Ab.a)
—> (Ab.Af. f p b) q (Aa.Ab.a)
—> (af. f p q) (Aa.Ab.a)
—> (Aa.Ab.a) pq

—> (Ab.p) q
> p

This means, incidentally, that there is no essential need for the built-in
functions CONS, HEAD and TAIL, and it turns out thatall the other built-in
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functions can also be modelled as lambda abstractions. This is rather satis-
fying from a theoretical viewpoint, but all practical implementations support
built-in functions for efficiency reasons.

2.2.2.4 Conversion, rednction and abstraction

Wecanuse thef-rule backwards,to introduce newlambdaabstractions, thus

+41 — (x.tx 1) 4

This operation is called B-abstraction, which we denote with a backwards
reduction arrow ‘<’. B-conversion means B-reduction or B-abstraction, and
we denoteit with a double-ended arrow <. Thuswe write

+41 —@ (ax.+ x 1) 4

The arrow is decorated with 8 to distinguish B-conversion from the other
forms of conversion we will meet shortly. An undecorated reduction arrow
‘-»’ will stand for one or more f-reductions, or reductions of the built-in
functions. An undecorated conversion arrow ’ will stand for zero or more
conversions,ofany kind.

Ratherthan regarding B-reduction and B-abstraction as operations, we can
regard 8-conversion as expressing the equivalence of two expressions which
‘look different’ but ‘ought to mean the same’. It turns out that we need two
morerulesto satisfy our intuitions about the equivalence of expressions, and
weturn to theserules in the next two sections.

2.2.3 Alpha-conversion

Consider the two lambda abstractions

(AX. + x 1)

and

(ay.+ y 1)

Clearly they ‘ought’ to be equivalent, and a-conversion allows us to change
the nameofthe formal parameter ofany lambdaabstraction, so long aswe do
so consistently. So

(AX. + X 1) - (Ay.+ y 1)

where the arrow is decorated with an a to specify an a-conversion. The newly
introduced name mustnot,of course, occur free in the body of the original
lambdaabstraction. a-conversion is used solely to eliminate the sort of name
clashes exhibited in the example in the previous section.
Sometimes a-conversionis essential (see Section 2.2.6).
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2.2.4 Eta-conversion

One more conversion rule is necessary to express our intuitions about what
lambda abstractions ‘ought’ to be equivalent. Consider the two expressions

(Ax.+ 1 x)

and

(+ 1)

These expressions behave in exactly the same way when applied to an
argument: they add 1 to it. 7-conversion isa rule expressing their equivalence:

QAx.+ 1x) <> (+ 1)

More generally, we can express the 7-conversionrulelikethis:

(Ax.F x) ° F

provided x does not occurfree in F, and F denotes a function.
The condition that x does not occurfree in F prevents false conversions. For

example,

(Ax.+ x x)

is not 7-convertible to

(+ x)

because x occurs free in (+ x). The condition that F denotes a function
prevents other false conversions involving built-in constants; for example:

TRUE

is not y-convertible to

(Ax. TRUE x)

Whenthe 7-conversionruleis used from left to rightit is called n-reduction.

2.2.5 Proving Interconvertibility

Wewill quite frequently want to prove the interconvertibility of two lambda
expressions. When the two expressions denote a function such proofs can
becomerather tedious, and in this section we will demonstrate a convenient

method that abbreviates the proofwithout sacrificing rigor.
As an example, consider the two lambda expressions:

IF TRUE ((Ap.p) 3)

and

(Ax.3)
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Both denote the same function, namely the function which always delivers the
result 3 regardless of the value of its argument, and we might hope that they
were interconvertible. This hope is justified, as the following sequence of
conversions shows:

IF TRUE ((Ap.p) 3) > IF TRUE 3

- (Ax.IF TRUE 3 x)

_— (Ax.3)

Thefinal step is the reduction ruleforIF.
Analternative method of proving convertibility of expressions denoting

functions, which is often more convenient,is to apply both expressions to an
arbitrary argument, w, say:

IF TRUE ((Ap.p) 3) w (Ax.3) Ww

—> (Ap.p) 3 > 3
—> 3

Hence

(IF TRUE ((Ap.p) 3)) <> (Ax. 3)

This proof has the advantage that it only uses reduction, and it avoids the
explicit use ofn-conversion.If it is not immediately clearwhy the final step is
justified, consider the general case, in which we are given two lambda
expressions F; and Fe. Ifwe can show that

Fiw > E

and

Fo wo E

where is a variable which does not occur free in F; or Fe, and E is some

expression, then we can reason as follows:

Fy 2 (Aw. Fa w)

<> (dw.E)
<— (aAw.Fe w)

ay Fe

and hence F; <> Fe.
It is not always the case that lambda expressions which ‘ought’ to mean the

same thing are interconvertible, and wewill have moreto say aboutthis point
in Section 2.5.

2.2.6 The Name-capture Problem

As a warning to the unwary we nowgive an example to show whythe lambda
calculus is trickier than meets the eye. Fortunately, it turns out that none of
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our implementations will come across this problem,so this section can safely

be omitted onfirst reading.
Suppose wedefine a lambda abstraction TWICE thus:

TWICE = (Af.Ax.f (f x))

Now consider reducing the expression (TWICE TWICE)using 8-reductions:

TWICE TWICE
= (Af.Ax.f (f x)) TWICE
—> (Ax.TWICE (TWICE x)

Now there are two 6-redexes, (TWICE x) and (TWICE (TWICE x)), so let us

(arbitrarily) choose the inner one for reduction,first expanding the TWICE to
its lambda abstraction:

= (Ax.TWICE ((af.Ax.f (f x) x)

Now wesee the problem. To apply TWICE to x, we must makeanew instance
of the body of TWICE (underlined) replacing occurrences of the formal
parameter,f, with the argument, x. But x is already used as aformalparameter
inside the body.It is clearly wrong to reduce to

(Ax.TWICE ((Af.Ax.f (f x) x)
—> (AX.TWICE (Ax.x (x x))) wrong!

because then the x substituted for f would be ‘captured’ by the inner Ax
abstraction. This is called the name-capture problem. Onesolutionis to use
«-conversion to change the nameofoneofthe Ax’s; for instance:

(Ax. TWICE ((Af.ax.f (f x)) x)
<> (Ax.TWICE (Qf.ay.f(fy) x))

—> (AX. TWICE (Ay.x (x y))) right!

We conclude:

(i) A-reductionis only valid provided the free-variables of the argument do
not clash with any formal parameters in the body of the lambda
abstraction.

(ii) a-conversion is sometimes necessary to avoid (i).

2.2.7 Summary of Conversion Rules

We havenow developed three conversion rules which allow usto interconvert
expressions involving.lambda abstractions. They are

(i) Namechanging. o-conversion allows us to change the nameofthe formal
. parameterofa lambda abstraction, so long as we do so consistently.
(ii) Function application. B-reduction allows us to apply a lambda abstrac-

tion to an argument, by making a new instanceof the body of the
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abstraction, substituting the argumentfor free occurrencesofthe formal

parameter. Special care needs to be taken when the argument contains
free variables.

(iii) Eliminating redundant lambda abstractions. n-reduction can sometimes
eliminate a lambdaabstraction.

Within this framework we mayalso regard the built-in functions as one more
form ofconversion, 5-conversion. For this reason the reduction rules for

built-in functions are sometimes called delta rules.
As we have seen, the application of the conversion rules is not always

straightforward,so it behovesus to give aformaldefinition ofexactlywhat the
conversionrulesare. This requiresus to introduce one newpiece ofnotation.

Thenotation

E[M/x]

meansthe expression E with M substituted for free occurrences of x.
As a mnemonic, imagine ‘multiplying’ E by M/x, giving M where the x’s

cancel out, so that x{M/x] = M. This notation allows us to express

f-conversion very simply:

_ (x. E) M 3 E[M/x]}

andit is useful for a-conversion too.
Figures 2.3 and 2.4 give the formal definitions of substitution and

conversion. They are rather forbidding,butall the complexity arises because
of the name-capture problem described in Section 2.2.6which will not arise at
all in our implementations. Hence a-conversion will not be necessary, B-

reduction can proceed by simple substitution, and 7y-reduction will prove to
be a compile-time techniqueonly.
To summarize our progress so far, we now have:

(i) a set of formal rules for constructing expressions (Figure 2.1);
(ii) a set of formalrules for converting one expression into an equivalent one

(Figures 2.2-2.4).

 

x [Mx] =M
c [M/x]} where cis any variable or constant other than x

= C

(E F)[M/x] = E[M/x] FIM/x]
(ax. EXIM/x] = Ax. E
(ay. E)[M/x] whereyis any variable other than x

= Ay.E[M/x] if xdoes not occur free in E
or y does not occurfree in M

== Az. (E[z/y)[M/x] otherwise
where zis a new variable name which does not
" occur free in Eor M  
 

Figure 2.3 Definition of E[M/x]
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It turns out that this small formalbaseis sufficient to build a large and complex
theory of interconvertibility; the standard work is Barendregt [1984]. While
this bookis very well written,it is not intended for the casual reader, and Stoy
[1981] gives a less comprehensive but more readable treatment. Curry and
Feys also give a clear accountof the historical origins and basic properties of
the lambda calculus [Curry and Feys, 1958]. The lambda calculus was
originally invented by Church[1941].
Wewill not take the lambda calculus any further as an endinitself; rather

we will simply appropriate the fruits ofthe theory as andwhenwe need them.

 

a-conversion: if y is not free in E then
(ax. E) - (ay. Ely/x)

f-Conversion: (ax.£) M E[M/x]

7-conversion: if xis not free in E
and Edenotes a function then

(Ax.E x) - E

When used left to right, the8 andrules are called reductions, andmaybe
written with a ‘—>’ arrow.   

Figure 2.4 Definitions of a-, 8- and n-conversions

2.3 Reduction Order

If an expression contains no redexes then evaluation is complete, and the
expression is said to be in normalform. So the evaluation of an expression
consists of successively reducing redexes until the expression is in normal
form.

However, an expression may contain more than one redex, so reduction
can proceed by alternative routes. For example, the expression
(+ (* 3 4) (* 7 8)) can be reduced to normal form with the sequence

(+ (* 3 4) (* 7 8))
— (+ 12 (* 7 8))

— (+ 12 56)
— 68

or the sequence

(+ (* 3 4) (* 7 8)
—> (+ (* 3 4) 56)
— (+ 12 56)
— 68
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Not every expression has a normal form; consider for example

(D D)

where D is (Ax.x x). The evaluation of this expression would not terminate
since (D D) reduces to (D D):

(AX. X) (AX.X X) > (AK. X) (AX.X X)
—> (AX.X X) (AX.X X)

This situation corresponds directly to an imperative program going into an
infinite loop. .

Furthermore, some reduction sequences may reach a normal form while
others do not. For example, consider

(ax.3) (D D)

Ifwe first reduce the application of (Ax.3) to (D D) (without evaluating (D D))

wegetthe result 3; but ifwe first reduce the application of D to D, we just get
(D D) again, and if we keep choosing the (D D) the evaluation will fail to

terminate.

2.3.1 Normal Order Reduction

These complications raise an embarrassing question: can two different
reduction sequenceslead to different normal forms? Fortunately the answer
is ‘no’. This is aconsequenceofa profound and powerfulpairoftheorems,the

‘ Church-Rosser Theorems Iand II, which save the day.

 

THEOREM

Church-Rosser Theorem I(CRT I)

IfE; <> Eo, then there exists an expression E, such that

E; — E and Eo — E   
The following corollary is an easy consequence:

Corollary. No expression can be converted to two distinct normal forms
(thatis, normal formsthatare not a-convertible).
Proof. Suppose thatE <>» E,andE <> Eo, where E; andEgarein normal
form. Then, E; <> E2 and, by CRT I, there must exist an expression F,
such that E; -—» F and E2 —> F. But E; and E2 have no redexes,
soE; = = Ez.

Informally, the corollary says that all reduction sequences which terminate
will reach the same result. The second Church-Rosser Theorem concerns a
particular reduction order, called normal order:
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THEOREM

Church-Rosser Theorem H(CRT Il)

IfE; —» Es, and Eis in normal form, then there exists a normal order
reduction sequence from E; to Eo.   

This is as much as we can hopefor; there is at most one possible result, and

normal order reduction will find it if it exists. Notice that no reduction

Sequence can give the ‘wrong’ answer — the worst that can happen is non-
termination.

Normal order reduction specifies that the leftmost outermost redex should
be reduced first.

 

   
Thus, in our example above ((Ax.3) (D D)), we would choose the Ax-redex
first, not the (D D). This rule embodies the intuition that arguments to
functions may be discarded, sowe should apply the function(Ax .3) first, rather
thanfirst evaluating the argument(D D).

The shortest proofs of the Church-Rosser Theorem I (whichis the harder
One) are in Welch [1975] and Rosser[1982].

2.3.2 Optimal Reduction Orders

While normalorder reduction guaranteesto find a normal form (ifoneexists),
it does not guaranteeto do so in the fewest possible numberof reductions.In
fact, for tree reduction (see Section 12.1.1) it is provably least favorable, but
fortunately for graph reduction (See Section 12.1.1) it seems that normal
order is ‘almost optimal’, and that it probably takes more time to find the
optimal redex than to pursue normalorder. Some work has been done on
finding more nearly optimal reduction orders that preserve the desirable
properties of normal order [Levy, 1980].
For SK-combinator reduction (see Chapter 16), normal order graph

reduction has been shown to be optimal. This result, among many others on
graph reduction,is shown in Staples’ series of papers [Staples, 1980a, 1980b,
1980c]. A more accessible treatment of this work is given by Kennaway
[1984].

2.4 Recursive Functions

Webeganbysaying that we proposetotranslate all functional programsinto
the lambda calculus. One pervasive feature of all functional programs is
recursion, and this throws the viability of the whole venture into doubt,
because the lambda calculus appears to lack anything corresponding to
recursion.
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In the remainder of this section, therefore, we will show that the lambda

calculus is capable of expressing recursive functions without further exten-
sion. This is quite a remarkable feat, as the reader may verify by trying it
before reading the following sections.

2.4.1 Recursive Functions and Y

Consider the following recursive definition of the factorial function:

= (An.iF (= n 0) 1 (# n (FAC (— nr 1))))

‘ The definition relies on the ability to name a lambdaabstraction, and then

to refer to this nameinside the lambda abstractionitself. No such construct is .
provided by the lambdacalculus. Theproblem is that lambda abstractions are
anonymous functions, so they cannot name (and hence refer to) themselves.
We proceed by simplifying the problem to one in which recursion is

expressed in its purest form. We begin with a recursive definition:

FAC = An. (... FAC...)

(Wehavewritten parts of the body of the lambda abstraction as‘. . .’ to focus
attention on the recursive features alone.)
By performing aeeeon FAC, we can transform its definition to:

FAC = (Afac. (An. (.. . ))) FAC

Wemaywrite this definition in the form:

FAC = H FAC (2.1)

where

= (Afac. (An. (...fac...)))

The definition of H is quite straightforward. It is an ordinary lambda
abstraction and does not use recursion. The recursion is expressed solely by
definition (2.1).

Thedefinition (2.1) is rather likeamathematical equation. For example,to
solve the mathematical equation

x -2=

weseek values ofx which satisfy the equation (namely x = —1landx = 2).
Similarly, to solve (2.1) we seek a lambda expression for FAC whichsatisfies
(2.1). Aswith mathematicalequations, theremay bemorethan onesolution.

The equation (2.1)

FAC = H FAC

states that when the functionH is applied to FAC, the result is FAC. Wesaythat
FAC is afixed point (or fixpoint) of H. A function may have more than one
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fixed point. For example, both 0 and 1 are fixed points ofthe function

AX. # XX

which squaresits argument.
To summarize our progress, we now seek a fixed point of H.It is clear that

this can depend on only,so let us invent (for now) a functionYwhich takes a
function and delivers a fixed pomtofthe functionas its result. Thus Y has the
behavior that

YH=H (VY H)

and as a resultiscalled afixpointcombinator. Now,ifwe can produce such a
Y, our problems are over. For we can now give a solutionto (2.1), namely

FAC = YH

which is a non-recursive definition of FAC. To convince ourselves that this

definition ofFAC does whatis intended,let uscompute (FAC 1). We recall the
definitions for FAC and H:

FAC = YH
H = Afac.An.IF (= n 0) 1 (# n (fac (-— n 1)))

So

FAC 1
=z YH?
= H (Y H) 1
= (Afac.An.IF (= 10) 1 (# n (fac (- n 1)))) (Y H) 1
— (An.IF (= n 0) 1 (# n (Y H (— n 1))) 1
— IF (= 10) 1 (* 1 (Y H (— 1 1)))
=> *«1(V HO)

= «* 1 (H (Y H) 0)
= * 1 ((Afac.An.IF (= n 0) 1 (# n (fac (— n 1)))) (Y H) 0)
—> #* 1 ((an.IF (= n 0) 1 (« n (Y H (— n 1)))) 0)
— ¢ 1 (IF (= 0 0) 1 (* 0 (VY H (- O 1))))
— * 11

— 1

2.4.2 Y Can Be Defined as a Lambda Abstraction

We have shown how to transform a recursive definition of FAC mto a non-

recursive one, but we have made use of a mysterious,new function Y. The

property that Y must possess is

YH =H (Y H)

and this seems to express recursion in its purest form, since we can use it to
express all other recursive functions. Now here comes the magic: Y can be
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defined as a lambdaabstraction, without using recursion!

Y = (Ah. (Ax.h (x x)) (Ax. (x x)))

Tosee that Y has the required property, let us evaluate

YH
= (Ah. (Ax. (x x)) (Ax.h (x x))) H
<> (Ax.H (x x)) (AX.H (x x))
<> H ((Ax.H (x x)) (Ax.H (x x)))
= H (Y H)

and we are homeand dry.
For those interested inpolymorphic typing (seeChapter8), the only respect

in which Y might be considered an ‘improper’ lambda abstraction is that the
subexpression (Ax.h (x x)) does not havea finite type.

Thefact that Y can be defined as a lambda abstraction is truly remarkable
from a mathematical point of view. From an implementation pointof view,

however,it is rather mefficient to implementY using its lambda abstraction,

and most implementations provide Y as a built-in function with the reduction -
rule

YH > H(YH)

We mentioned abovethat a function may have more than one fixed point,
so the question arises ofwhich fixed pointY produces. Itseems to be the ‘right’
one, in the sense that the reduction sequence of (FAC 1) given above does
mirrorourintuitive understandingof recursion,butthis is hardly satisfactory
from a mathematical point of view. The answer is to be found in domain
theory, and the solution produced by (Y H) turns out to be the unique /east
fixpoint of H[Stoy, 1981], where ‘least’ is used in a technical domain-theoretic
sense.

2.5 The Denotational Semantics of the Lambda Caicuius

There are two ways of looking at a function: as an algorithm which will
produce a value given an argument, oras a set of ordered argument-value

pairs.
Thefirst view is ‘dynamic’ or operational, in that it sees a function as a

sequence ofoperations in time. The secondviewis ‘static’ or denotational: the
function is regarded as a fixed set of associations between arguments and the
correspondingvalues.

In the previous three sections we have seen how an expression may be
evaluated by the repeated application of reduction rules. These rules
prescribe purely syntactic transformations on permitted expressions, without
reference to what the expressions ‘mean’; and indeed the lambdacalculus can
be regarded as a formal system for manipulating syntactic symbols. Never-
theless, the developmentofthe conversion rules was based on our imtuitions
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about abstract functions, and this has, in effect, provided us with an

operational semantics for the lambda calculus. But what reason have we to
suppose that the lambdacalculus is an accurate expression of the idea of an
abstract function?
To answerthis question requires us to give a denotationalsemantics for the

lambdacalculus. The framework of denotational semantics will be useful in
the rest of the book, so we offer a brief sketch of it in the remainderofthis
section.

2.5.1 The Eval Function

The purposeofthe denotational semantics of a languageis to assign a value to
every expression in that language. An expressionis a syntactic object, formed
according to the syntax rules of the language. A value, by contrast, is an
abstract mathematical object, such as ‘the number5’, or‘the function which
squaresits argument’.

Wecan therefore express the semantics of a language as a (mathematical)
function, Eval, from expressions to values:

Expressions ——Eval_, Values
  

     
 

We can now write equations such as

Evalf + 34] = 7

This says ‘the meaning(i.e. value) of the expression (+ 3 4) is the abstract
numerical value 7’. We use bold double square brackets to enclose the
argumentto Eval, to emphasizethatit is a syntactic object. This conventionis
widely used in denotational semantics. We may regard the expression (+ 3 4)
as a representation or denotation ofthe value 7 (hence the term denotational
semantics).

Wewill now give a very informal developmentofthe Eval function for the
lambdacalculus. The task is to give a value for Evall[ E Ji, for every lambda

expression E, and we can proceed by direct reference to the syntax of lambda
expressions (Figure 2.1), which gives the possible forms which E mighttake.
For the moment we will omit the question of constants and built-in

functions, returning to it in Section 2.5.3. Suppose, then, that E is a variable,
x. Whatshould be the value of

Evalf[ x 7

where x is a variable? Unfortunately, the value of a variable is given byits
surrounding context, so we cannottell its value in isolation. We can solve this
problem by giving Eval an extra parameter, p, which gives this contextual
information. The argumentp is called an environment, andit is a function
which maps variable namesonto their values. Thus

Eval[ x Hp = p x.
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The notation (p x), on the right-hand side, means ‘the function p applied to
the argumentx’.
Next we treat applications. It seems reasonable that the value of (E: Ez)

should be the value of E: applied to the value of Ez:

Eval[[ E: G2 Jj o = (Evalll E: Bip) (Evaill Ez Fp)

Thefinal case is that of a lambda abstraction. What should be the value of
(Evaill \x.E Jj p)? It is certainly a function, and so we can fully define it by

giving its value when applied to an arbitrary argument,a:

(Eval ax.E JJ p) a

(Following our usual conventions aboutcurrying, we will omit the brackets in
future.) The following statement sums up our intuitions about lambda
abstractions:

The value of a lambda abstraction, applied to an argument,is the value of
the body of the lambda abstraction, in a context where the formal

parameteris bound to the argument.

Formally, we write -

Evall Ax.E 9} p a = Evalll E 9] p[x=a]

where the notation p[x=a] means ‘the function p extended with the

informationthat the variable x is bound to the value a’. Moreprecisely:

pix=a] x a

p[x=a] y py

ify is a different variable fromx.
That’s it! Apart from constants and built-in functions, each ofwhich require

individual treatment, we have now provided a simple denotational semantics
for the lambdacalculus. Figure 2.5 summarizes our progress.

Needless to say, this account is greatly simplified (though hopefully not
misleading). The mam component that is missing is a description of the
collection of all possible values which Eval can produce. This collection is
called a domain,andit is quite a complicated structure, since it includes all the

 

Eval[ k Hp = <see Section 2.5.3>
Evai[ x I p =p X

Eval E:1 Eo lip = (Eval[E; Ip) (Eval Eo 9 p)
Eval Ax.E Hpa = Eval[ E 9 pix=al]

where k is a constantor built-in function
x is a variable
E, E1,E2 are expressions  
 

Figure 2.5 Denotational semantics of the lambda calculus
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functions and data values that can be denoted by a lambda expression. The
really serious complicationis that, in view ofthe self-application required in
the lambdaabstraction for Y, the domain must includeits own function space.
Giving a sound theory to such domains is the purpose ofdomain theory [Scott,
1981].

Wewill take the existence and soundness of domain theory and denota-
tional semantics for granted, and the frameworkthey providewillprove to be
quite useful. They are rich and beautiful areas of computer science, and Stoy
[1981] is a good starting-pointfor further reading.
A note on notation: as we have seen, the environment p is an essential

argument to Eval. Nevertheless,in all the situations where we use Eval in the
rest of this book,p plays nosignificantrole. For the sake of simplicity, we will
therefore omit the argument p from now on it could be restored by addingp
to every call of Eval. For example, we will write

Evalil E: J] = Evalfl E2 JJ

where we should more correctly write

Eval E: J} p = Evall Eo I p

2.5.2 The Symbol Ll

Oneofthe mostuseful features ofthe theorywe have described in this section
is that it gives us a way to reason about the termination (or otherwise) of
programs.

As remarkedin Section 2.3, the reduction of an expression maynot reach a
normal form. Whatvalue should the semantics assign to such programs? All
that we have to do is to include an element 1, pronounced ‘bottom’, in the
value domain, whichis the value assigned to an expression without a normal
form:

Eval] <expression with no normal form> J] = 1

1 has a perfectly respectable mathematical meaning in domain theory, and,
like the symbol 0 (which also stands for ‘nothing’), its use often allows us to
write down succinct equations instead of rambling words. For example,
insteadofsaying ‘the evaluation ofthe expression E fails to terminate’, we can
write

Eval E P= 1

2.5.3 Defining the Semantics of Built-in Functions and Constants

In this section we will see how to define the value of Eval k JJ, where k isa
constantor built-in function.
For example, whatis the value of Evail[ * JJ? It is certainly a function of
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two arguments, and we can define it by giving the value of this function
applied to arbitrary arguments:

Eval[ + Jab=axb

This gives the meaning of the lambda calculus* in terms of the mathematical
operation of multiplication x. The distinction between the * and x is crucial:
the * is a syntactic expression in the lambda calculus, while x is the abstract
mathematical operation. In the case of multiplication, the mathematical
notation x differs from the program notation*, but in the case ofaddition (for
example) the symbol + is used by both. This is a ready source of confusion,
and we mustkeep a clear head!
Wewill use lower-case letters, such as a and b, to stand for values in

semantic equations.

The équation given above is, however, an incomplete specification for *.
We mustdefine what * does to each possible argument, including 1. Thefull
set of equations should therefore be:

Eval * Hab=axb_ ifa#landb¢L
Evalf * Bib=1
Eval * Pal=L1

The two new equations complete the definition of +, by specifying that if
either argumentof * fails to terminate, then so does the applicationof +.
They are not the only possible set of equations for a multiplication

operator. For example, here are the equations for a more ‘intelligent’
multiplication operator, #:

Evailf # Jab=axb if a#1 and a#0 and b#1
Eva] # §¥O0b=0
Eval] # Jal=1 if a+0
Evail # Plb=1

These equations imply that # should evaluateits first argument and,if it is
zero, return the result zero without examining the second argumentat all;

otherwise it behaves just like *. Using # instead of * would cause the
evaluation of some expressions to terminate when they would not have done
so before.
The point of the example is that the semantic equations for a built-in

function enableus to express subtle variationsin its behavior, with a precision
that is hard to achieve by giving reduction rules. The semantic equationsfor a
function both specify the meaningof the function and imply its operational
behavior(reductionrules).

Strictly speaking we should also provide equations such as

Eval] 6 §=6

wherethe ‘6’ on the left-handside is a lambda expression, and the ‘6’ on the
right-hand sideis the abstract mathematical object. Ideally, we should



Section 2.5 The denotationalsemantics ofthe lambda calculus 33
 

distinguish the two kinds of ‘6’ typographically, but commonpractice is to
write them in the same wayanddistinguish them onlyby context. This applies
to all constants and built-in functions. Thus we write

Eval] TRUE Jj = TRUE
Eval IF qj. = IF

Eval] + JJ = +

and so on.

This is sloppy, but it saves clutter. For example, using this more relaxed
notation, we could write the following semantic equations for the built-in
functionIF:

IF TRUE ab=a

IF FALSE ab = b

IF L ab=lL

Theuseof= and the occurrence of|continue to remindus that we are looking
at semantic equations rather than reduction rules.

2.5.4 Strictness and Laziness

Wesaythat a function is strict if it is sure to need the value of its argument.
This is a concept that will arise repeatedly in the book. Can we give a
denotational definition of strictness?

If a function,f, is sure to need the valueofits argument, and the evaluation
of the argumentwill not terminate, then the application of f to the argument
will certainly fail to termmate. This verbose, operational argument suggests
the following concise, denotational, definition of strictness:

 

DEFINITION

A functionfis strict ifand onlyif

fl=L1   
The definition generalizes easily to functions of several arguments. For

example, if g is a function of three arguments, then g is strict in its second

argumentif and only if

galc=#l1

for all values of a and c.
If a function is non-strict, we say thatit is lazy. Technically, this is an abuse

of terminology, since lazy evaluation is an implementation technique which
implements non-strict semantics. However, ‘lazy’ is such an evocative term
thatit is often used where ‘non-strict’ would be more correct.
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2.5.5 The Correctness of the Conversion Rules

The conversion rules given earlier in this chapter express equivalences
between lambda expressions.Itisvital that tlese equivalences are mirrored in
the denotational world. For example, using a-conversion we may write

(AX. xX 1) <> (Ay.+ y 1) -

Our hope is that both of these expressions mean the same thing or, more
precisely, denote the samefunction,so that

Eval Ax.+ x 1 = Eval[ ay.t+ y 13

In general, we lope that conversionpreserves meaning, which we maystate

as follows:

E, — E-2

implies

Evalfl E; I] = Evalll E2 Il

In other words, if E; is convertible to E2 then the meaning ofE;is certainly the

sameas tle meaning of Ez. (As wewill see in the next section, lrowever,the

reverse is not always true.) There is a burdenofproof liere, to show that the
above statement always holds, given tle conversion rules and the semantic

furiction Eval. We will contentourselveswith observingtliat proofis required,

leaving the hard work to Stoy [1981].

Since the reduction rules (6-reduction and y-reduction)are a subsetofthe
conversion rules, we certainly knowthat

E, — E2

implies

E, — E2

and lence

E, — Ee

implies

Eval E, § = Eval] E2 I

2.5.6 Equality and Convertibility

In the previous section we saw that conversion preserves equality. Butis the
reverse true? In particular, does the equality of two expressions imply their
interconvertibility? The answer is ‘no’, as the following example slows.
Considerthe two lambda abstractions, which we will call F1 and Fa:

Fy = (Ax.+ X X)
Fo = (Ax.* x 2)
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It is clear that F, cannot be converted into Fz using the conversion rules of the
lambda calculus. To a mathematician, however, a function is a ‘black box’,
and two functions are the sameif (and only if) they give the saineresult for
each possible arguinent. This sort ofequality of functions is called extensional
equality. The function denoted by F; and that denoted by Fz are certainly
(extensionally) equal, so we nay write

Evalf[ F; J] = Evalfl Fz ]}

So F, and Fz are not interconvertible, but they do denote the saine function.
To summarize the main conclusion:

If E, -_ Eo

then Eval’ E: J] = Evalfl E. 9

but not necessarily the other way around.
Wecan therefore regard conversion as a weak form of reasoning about the

equality of expressions. It can never cause us to believe that two expressions
are equal whentheyare not, but it may not allow us to prove the equality of
two expressions whichare in fact equal. Froin this point ofview, reduction is a
still weaker form ofinference.

2.6 Summary

A working understanding of the lambda calculuswill prove extremely useful
for the rest of the book, and in this chapter we have tried to give a compact
suimmary of the material we will require. The treatment has necessarily been
rather superficial, and the readeris again referred to Stoy [1981] or
Barendregt[1984] for fuller treatments.
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TRANSLATING A HIGH-LEVEL |
FUNCTIONAL LANGUAGEINTO THE
LAMBDA CALCULUS

 

In the next few chapters we will describe how to translate a high-level

functional languageinto the lambdacalculus.
Wecan regard this translation in two ways:

(i) As a description of the semantics of the language, giving the meaning of

eachofits constructs in terms of lambda expressions, whose meaningis
well understood. This is precisely the approach taken by denotational

semantics [Gordon,1979].
(ii) As astep in the implementation ofthe high-level language, by expressing

all its constructs in termsofthe lambda notation.

For the sake of definiteness we use a subsetofthe language Miranda [Turner, _
1985], but the techniques apply to any functional language. An introduction
to Miranda can be foundin the Appendix.

Disclaimer
In this book Miranda is used as an example of a modern functional
programming language, to illustrate various points about the imple-
mentation of functional programming languages in general. This book is
not intended to be a source of reference for the definition of Miranda.
Note that:

(i) Miranda has a number of features, both major and minor, which are
not discussed here atall.

(ii) The material about Miranda in this book was based on a prerelease
versionof the Mirandasystemandmay therefore be inaccurate by the
time it is published.

The Miranda functional programming system is a product of Research
Software Limited, and a full description of the language andits pro-
gramming environmentis in preparation by them.
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3.1 The Overall Structure of the Translation Process

Mirandais a powerful, high-level functional language, providinga rich set of
programming constructs. The purpose of the next few chapters is to demon-
Strate how some of these constructs can be translated into the lambda
calculus. Specifically, we will discuss structured data types, pattern-matching,
conditional equations and ZF expressions. Miranda includes a numberof
other constructs, such as abstract data types and structured data types with
laws, which wewill not study in this book.

Evenso,the translation we describe is a substantial task, and we begin by
outlining the structureofthe translation process.

It might be possible to translate a program directly from Mirandainto the
lambda calculus, but this would be an extremely complicated translation, so

wewill take a more step-by-step approach.In orderto dothis, it is convenient
to regard much ofthe translation as a process ofsuccessively transformingone
program into another, until finally the result is a program m the lambda
notation. (Weare here using‘translation’ to suggest a process which takes a
program in one language and produces a program in another, while a
‘transformation’ produces a program in the same language.)
Two ways of organizing the translation then suggest themselves:

(i) We could perform mostof the translation by successive transformations
ofone Miranda program into another, each transformation performing a
simplification step. We would complete the process by translating the
resulting (simple) Miranda program into the lambdacalculus. The ideais
that the earlier transformationswould have doneall the hard work, so the
final step should consist of httle more than a changeofsyntax.

(ii) Alternatively, we could begin the translation by performing a simple
syntactic translation of the Miranda program imto an enriched version of
the lambdacalculus. This enriched lambda calculus would include the
ordinary lambda calculus as a subset, but would also- include extra

constructs, chosen so that the first step consists of little more than a
change ofsyntax. Then wecoulddo mostofthe hardwork by successively
transforming the expression into simpler and simpler forms, until it
becomes an ordinary lambda expression, free from any of the extra
constructs.

Initially, the first method looks moreattractive than the second, because it
does not require us to define a new language(the enriched lambdacalculus).
However, we choose to follow the second course of action for the followmg
reasons:

(i) Miranda is designed to be a language for programmers, not compilers,
andit lacks certain features that are desirable for a transformation-based
compiler. (The particular features lacking are lambda abstractions and
the ability to qualify any expression with local definitions. This is not a
criticism ofMiranda — it just has a different purpose.)
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(ii) To a much greater extent than is the case for imperative languages,
functional languagesare largely syntactic variations of one another, with
relatively few semantic differences. Using the second method allows the
transformations we present to be applied easily to other languages, by
altering only the translation of the high-level language into the enriched
lambdacalculus.

Figure 3.1 depicts the overall plan of action. Wewill use the term ordinary
lambda calculus to refer to the language described in Chapter 2, and enriched
lambda calculus to refer to the language introducedhere.
The enriched lambda calculus is simply the ordinary lambda calculus

augmented with extra constructs, chosen to allow an easy translation from
Miranda. For each construct wewill

(i) say whatit looks like (give its syntax);
(ii) say whatit means (give its semantics).

The semantics for each construct can be given by providing a simple trans-
formation which shows howto express that construct in termsof the ordinary
lambda calculus. Then we could, mprinciple, translate from Mirandainto the
ordinary lambda calculus by first translating into the enriched lambda

- calculus, and then using the semantics of each construct repeatedly to
transform the expression into an ordinary lambda expression.
While this method generates correct results, far greater efficiency is

attainable by using more complicated transformations, but we can always
confirm their correctness by reference to theinefficient version.

 

 

  
Miranda program

| A simple translation
(specificto Miranda)

Expression in the
enriched fambdacalculus

 

 

   

(independent of Miranda)

Expression in the
ordinary lambdacalculus

 

      
Figure 3.1 Translation of Miranda into the lambda calculus

3.2 The Enriched Lambda Calculus

The enriched lambdacalculus is a superset ofthe ordinary lambdacalculus, so
that any expressionin the ordinary lambdacalculus is also an expression in the
enriched lambda calculus. The syntax for function application, lambda



40 Chapter3 Translating a High-level Functional Language into the Lambda Calculus
 

abstractions, constants and built-in functions therefore remains exactly as
described in Chapter 2. Likewise, all functions are written in prefix form,and
the same conventions hold concerning brackets.
The only difference from the ordinary lambda calculus is the provision of

four extra constructs. They are:

(i) let-expressions andletrec-expressions;

(ii) pattern-matching lambda abstractions;
(iii) the infix operator(};

(iv) case-expressions.

Of these, we will only describe the first here. The other three all concern
pattern-matching, and cannot be defined before the discussion of pattern-
matchingitself. This is given in Chapter 4, and the remaining three constrncts
are defined there.

Figure 3.2 summarizes the syntax ofthe enriched lambdacalculus for future
reference.
 

<exp> ::= <constant> Constants
| <variable> Variables
{| <exp> <exp> Applications
| A <pattem> . <exp> Lambda abstractions
| ‘et <pattem> = <exp> in <exp> Letexpressions
|  letrec <pattern> = <exp> Letrec-expressions

<pattern> = <exp>
in <exp>

|  <exp> ) <exp> Fat bar
| cease <variable> of Case-expressions

<pattem> = <exp>

<pattern> > <exp>

  <patten> ::= <constant> Constant patterns
| <variable> Variable patterns
!  <constructor> <pattern> | Constrnctor patterns

<pattern>
 

Figure 3.2 Syntax ofenriched lambda expressions

3.2.1 Simple let-expressions

One of the main constrncts in any functional language is the definition,
whereby a nameis bound to a value. This mechanism is provided in the
enriched lambdacalculus, usinglet-expressions and letrec-expressions.
Webegin by defining sirnple \et-expressions. They are called ‘simple’ by

contrast with pattern-matching \et-expressions, which we deal with later. A
simple let-expression has the following syntax:

letv= Bin E
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wherethevis a variable, and B and E are expressions in the (enriched) lambda
notation.

It introduces a definition for a variable v, which binds v to B in E. The

definition is in scope with E but not B. We say that the ‘v = B’ is the
definition of the \et, the v is the variable bound by the \et, and the B is the
definition body.
For example, consider the following let-expression:

let x = 3 in (* x x)

Intuitively, the value of this expression is found by substituting 3 for x in the
body (* x x), and then evaluating the body, giving the result 9:

let x = 3 In (* x x)
—> «33

— 9

A let-expressionis an expressionlike any other, and can be usedin the same
way as any other expression. For example,

+ 1 (let x = 3 in (# x x))
> +1 (* 393)
> +19
= 10

For the same reason,let-expressions can be nested:

let x = 3 In (let y = 4 in (* x y))
— let y = 4 In (* 3 y)
> £34
—> 12

As a matter of convenience, we also allow ourselves to write multiple
definitions in the samelet; thus:

let x = 3

y=4
in *xy

This expression means precisely the same as the previous one. We define a
let-expression with several definitions to mean the sameas the nested set of
lt-expressions which defines the same variables in the same order, one per
let-expression. (Syntactically, it would have been possible to specify that
multiple definitions are separated with semicolons, but layout will suffice for
our purposes.)
‘Earlier in this section we developed an informal reduction rule forlet-

expressions. This involved substitution and is very reminiscent of the
f-reduction rule, which also uses substitution. For example, to evaluate

(Ax.* x x) 3

we substitute 3 for x in the body (* x x), and then evaluate the body.
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Generalizing this idea, we can now define the semantics of a simple let-
expression as follows:

(let v= B in E) = ((Av.E) B)

(We use the symbol = to denote the equivalence of two expressions.) That
is all that is needed to define its semantics! By repeated application of this
equivalence, we could eliminateallsimple let-expressionsfrom an expression,
in favor of lambda abstractions.

3.2.2 Simple letrec-expressions

The syntax of a simple letrec-expression is similar to that of a simple let-
expression:

letrec vi = E,

V2 = Eo

Va= En

in

E

where the vy, are variables, and E, E;, . . ., E, are expressions in the (enriched)
lambdanotation. Wewill sometimes abbreviate ‘letrec-expression’ to ‘letrec’
(and ‘let-expression’to ‘let’), where no ambiguityarises.
The term ‘letrec’ is short for ‘let recursively’, and it introduces possibly

recursive bindings for a numberof variables v;. The difference betweenlets
andletrecs is that the v, are in scope in the E, (aswellasE) of aletrec. To take an
example, the expression

letrec factorial = an.IF (= 10) 1 (en (factorial (~ 1 1))
in factorial 4

defines a recursive function factorial, and applies it to the argument 4. The
value of the expressionis thus 24.

Likelet-expressions, letrec-expressions can appear embedded anywherein
an expression. Unlike let-expressions, however, -it is essential to allow

multiple definitions in a letrec-expression, so as to permit mutual recursion.
This is demonstrated by the following example:

letrec f = ...f...g...
g=...f...

in...

Here,f refers to itselfand g, and g refers to f. This cannot be transformed into

a nested pair ofletrecs, because then eitherg wouldnotbe in scope in the body
of f, or vice versa.

It is easy to provide a semantics for a letrec with only a single definition,
using the Y operator developed in Section 2.4. In particular,

(letrec v = B in E) = (let v = Y (Av.B) in E)
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The use of Y renders the definition non-recursive, so we can then use a
let-expression, whose semantics has already been defined.
The case of multiple definitions requires the use of pattern-matching, and

so is postponed until Chapter6.

3.2.3 Pattern-matching let- and letrec-expressions

Wewill also allowpatterns, as well as variables, to appearon theleft-hand side
of definitions in lets and letrecs. We have notyet defined what a pattern is, so
we postpone the topic until Chapter 6. However,a variable is just a simple
form ofpattern,so simplelet(rec)-expressions are just simple formsofpattern-
matching let(rec)-expressions.

3.2.4 Let(rec)s versus Lambda Abstractions

So far we have regarded the ordinary lambda calculus as the target language,
into which we will transform the program, and let(rec)-expressions as
intermediate embellishments. However, there are strong efficiency reasons
for including simple let(rec)-expressions in the target language, rather than
transforming them into the ordinary lambda calculus.

Specifically, the transformationofa let-expression

lttv=BinE

into the application of a lambda abstraction

(Av.E) B

is using a sledgehammer(lambda abstraction) to crack a nut (let-expressions).
The lambda abstration (Av.E) could be applied to many arguments,butit is in
fact only ever applied to one, namely B. The generality oflambda abstraction
is not required, andthe special case (that ofapplication to a unique argument)
can be exploited by the more sophisticated compilers described later in this
book.
‘This issue manifestsitself in a number ofways:

(i) Miranda is a polymorphically typed language, and in Chapter 8 we give
an algorithm for type-checking programs. Unfortunately, it is not
possible to type-check the program once it has been transformed into the
ordinary lambda calculus, but the addition of simple let(rec)-expressions
is sufficient to solve the problem.

(ii) In all implementations except the very simplest, let-expressions can be
evaluated very much moreefficiently than the corresponding application
of a lambda abstraction. This applies to all the implementations
described from Chapter 14 onwards.

(iii) A related problem is that the transformation of letrec-expressions into
the ordinary lambda calculus compels us to use Y to express recursion
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Theresulting expression is not an efficient implementation, and a more
sophisticated compiler may wish to handle recursion in a different way
(see Chapter 14). Keeping the recursion explicit using letrec allows scope -
for these optimizations.

To summarize, all our implementations, except the very simplest, will
require the program to bé transformed into the ordinary lambda calculus
augmented with simplelet(rec)-expressions. This approach makes a dramatic
contribution to the efficiency of the resulting implementations. On the other
hand,little seems to be gained by augmenting the languagestill further.

3.3 Translating Miranda into the Enriched Lambda Calculus

A program consists of a set of definitions, together with an expression to be
evaluated. To keep these two componentsofthe program separate wewill use
a box,like this:

 

Set of definitions
 

  Expression to be evaluated
 

For example, we could compute twice the square of 5 with the following
Miranda program:
 

square n = nén
 

 2 * (square 5)   
(Note: Mirandais an interactive language, and defines a ‘program’to be a set
of definitions, while the ‘expression to be evaluated’ is typed by the user. For
the rest of this book, however, we will use ‘program’ to mean ‘a set of

definitions together with an expression to be evaluated’.) Proceeding
informally, we can translate this Miranda program into the enriched lambda
calculus quite easily, to produce the expression

let square = An.*# nn

in (* 2 (square 5))

We now introduce somenotation to help describe the translation process.
Consider the translation of the Miranda expression (2 * (square 5)) into the

lambda expression (* 2 (square 5)). We mayregardthis translation process

as a function TE, which takes the Miranda expression as its input, and

produces the lambda expression as its output. We write the translation like
this: ,

TEL 2 * (square 5) J] = * 2 (square 5)
The double square brackets [[ J] are used to enclose the Miranda expression,
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to emphasize that the argumentto TE is a syntactic object. This convention
was used in Chapter 2, but the difference on this occasion is that the result of

the translation is a syntactic object also, and we use = rather than = to remind
us of this fact. We call TE a translation scheme.
Wealso need anothertranslation scheme TD, which translates Miranda

definitions into definitions suitable for a letrec. For example,

TDIL square n = nen 9} = square = An.* nn

Here we see another reason for using = when writing translation schemes:it
avoids confusion with = symbols in the program beingtranslated. We cannow
generalize the translation schemeas follows. Given the Miranda program
 

Definition,

Definition,
 

Expression   
we generate the following (enriched) lambda expression:

letrec

TDI Definition; ij

DE Definition, ]j
in

TE{ Expression ]j

In the previous example we used a let instead of a letrec, but Miranda
definitions are all potentially recursive, sowe mustusealetrec in general(later
work will optimize this— Section 6.2.8).
What we have now doneis to reduce the translation problem to one of

defining the two translation schemes TD and TE. We will define them for
simple cases in the succeeding two sections, and then lay out the plan of the
next few chapters, whichwill extend them to cover more complicated cases.
For the moment, we completely avoid the question of declarations of new

types and type-checking. The former will be introduced in Chapter4 and the
latter in Chapter8.

3.4 The TE Translation Scheme

The translation schemeTE is a function, which takes a Miranda expressionas
its argument, and produces an equivalent lambda expressionas its result,
thus:
 

 

Miranda TE Lambda
. ———__» :

expression expression      
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Wewill describe TE by case analysis, giving a rule for each possible form of a
Miranda expression.

3.4.1 Translating Constants

To translate a constant or built-in function is straightforward, assuming that
the lambda notation into which we are translating supports the sameset of
constants. The followingruleis all that is required:

Te k Y= k

wherek is a constant or built-in function name (weinclude all Miranda’s
operators, andliteral constants in this category). Thus, for example

TEL 5 Jj 5
TEL + 2 +

This translation assumesthatall the constants and built-in functions have
the same namesin the lambda notation. It is straightforward to describe
changes of name, however. For example, the following set of rules for TE
translates the operators +, —, etc. in Miranda into PLUS, MINUS,etc.:

TEL + = PLUS
TE — Jj) = MINUS

etc.

3.4.2 Translating Variables

An equally simple rule suffices to translate variables:

TEL vj = v

wherev is a variable (including the names of user-defined functions and
constructors).

3.4.3 Translating Function Applications

Function application in Miranda is denoted by juxtaposition, thus (f x). The
same syntax is used in the lambda notation, so the rule for translation is
simple:

TEL E: Eo = TELE: 9 Tel EB

where E; and Ee are arbitrary Miranda expressions. In the case of certain
commonoperators (such as +, etc.), Miranda providesinfix syntax (thatis,
the operator is written between its operands). The translation rule to deal
with these constructs is:

TEE E: infix E2 = TE infix ] TEE: I eq Ey
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“where ‘infix’ is an infix operator, and E; and Ee are arbitrary Miranda

expressions. We inustapplyTE to‘infix’ to accomplish anychange ofname(see
above).
Furthermore, Miranda allows user-defined functions to be used as infix

operators by prefixing their names with $. Wecan treatthis case with the rule

TEE E; $v Eo = TEL va TEX €: TE E23

3.4.4 Translating Other Forms of Expressions

Weshall consider two other forms ofMiranda expression, namely

(i) list expressions such as [2,5,1};
(ii) ZF expressions.

Wewill deal with these in Chapters 4 and 7 respectively.

3.5 The TD Translation Scheme

The TD scheme takes a Miranda defistition as its argument and produces a
letrec definition as its result. We will only give a rather simplified TD scheme
here, leaving a more powerful one forlater chapters.
There are two cases that we can handle immediately, namely variable

definitions and simple functiondefinitions.

3.5.1 Variable Definitions

Consider the Mirandadefinition

v = 5*7

It can be translated very easily to

v=#5§7

All that is required is to translate the body of the definition, using the TE
scheime. In general:

TH Vv=ER = v=TEE I

wherev is a variable and E is an expression.

3.5.2 Simple Function Definitions

We have already seen an exampleoftranslating a simple function definition,
when wetranslated the Miranda definition

square n = nen
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TE, Exp }itransplates the expression Exp

TEE k J = k (assumes no name-changing)
TEL v 3 = Vv
TEE E, Eo J = TEE E, 3 TE Eo 3
TE E; infix Eo J = TEX infix 9 TEE E, J TEE Ee J
TEE E; $v Eo J = TEE v 9 TEL E; 9 TEL Ee J

where k is a literal constantor built-in operator
v is a variable
Ey is an expression
infix is an infix operator
 

TOL Def Bj translates the definition Def

TO] v=E 3 = v= TEF E jj
TOL fv ...vn = ER @ f = Avwy...Avn.TEL E

where v, v1, f are variables
E is an expression   

Figure 3.3 Translation schemes TEand TD (simple versions)

into theletrec definition

square = An.*# nn

The body of the definition is translated, and a lambda abstraction is
generated aroundit. We can generalizethis as follows:

TWH fvi... vn =E = f = Ava... AvyTEL E Bj

wheref, v1, .. .,vn are variables and is an expression.

3.6 An Example

Wehave now shown howto translate a simple subset of Miranda into the
enriched lambda notation. Ourprogress is summarizedin Figure 3.3.
To illustrate the translation in action, consider the following Miranda

program:
 

average a b = (at+b)/2
 

   average 2 (3+5)

This will be transformedto

tetrec

TDL average a b = (atb)/2 J
in

TEL average 2 (8+5) 9
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Application ofthe rules forTE gives

TEL average 2 (3+5) JJ
TE average J] TE 2 I] TE 3+5 JJ
average 2 (TEL + 9] TE 3 J] TEL 5
average 2 (+ 3 5)

I)

Similarly, the rules forTD give

TDI[ average a b = (a+b)/2 JJ
average = Aa.Ab.TEL (a+b)/2 Jj
average = \a.Ab.(TERL / J] TEL a+b Jj] TE 2 9)
average ="\a.db.(/ (TEL + J] TEL a 9] TEL b Wp) 2)
average = Aa.Ab.(/ (+ a b) 2)

Putting it all together gives the result of the translation:

letrec
average = \a.Ab.(/ (+ a b) 2)

in

average 2 (+ 3 5)

To complete tlie example, let us transform tle expression into the ordinary
lambda calculus. Let us suppose tliat we spotthat tle letrec may be replaced
with a let, because the definition is non-recursive (tle method is described in

Chapter 6). Then we can use tlie semantics of let-expressions to produce the
ordinary lambda expression

(Aaverage .(average 2 (+ 3 5))) (Aa.AD.(/ (+ a b) 2))

You can see why we prefer to write programs im Miranda!

3.7 The Organization of Chapters 4-9

In the interests of simplicity, tle equations for TD and TE given m Figure 3.3
are far from comprehensive. The rest ofPart I of the book is devotedtofilling
in the details.

Chapter 4 introduces structured data objects, pattern-matching and
conditional equations, and gives a simple translation into theenriched lambda
calculus. This translation is rather efficient, and Chapter 5 shows low
pattern-matching can be compiled far moreefficiently. Chapter6 then shows
how to transform all the constructs of the enriched lambda calculusinto the
ordinary lambda calculus.
Miranda contains constructs called ZF expressions (also knownas list

compreliensions). Wediscuss their translation in Chapter 7.
Finally, Miranda is a polymorphically typed language, and we have so far

paid no attention tothe question of type-cliecking. This is addressed in
Chapters8 and9.
The organizationofthese chapters is depicted in Figure 3.4.
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STRUCTURED TYPES AND THE
SEMANTICS OF
~PATTERN-MATCHING
Simon L. Peyton Jones and Philip Wadler

This chapter concerns structured types, a powerful and general mechanism
for defining data types, provided by several functional languages, including
Miranda, ML and Hope. Intimately associated with structured types is a
notational device known as pattern-matching, which is used by such
languages for defining functions.

Section 4.1 gives a general introduction to structured types and pattern-
matching. Section 4.2 begins with a more in-depth look at pattern-matching
and conditional equations, and then introduces two new constructs in the
enriched lambda calculus,[] and pattern-matching lambdaabstractions. Using
these constructs, we then show how to translate a general Miranda function
definition ito the enriched lambda calculus. Section 4.3 is devoted to
providing a precise semantics for pattern-matching lambdaabstractions.
We conclude im Section 4.4 by defining case-expressions, the last new

construct of the enriched lambda calculus. This clears the way for Chapter5,
which will show how to transform pattern-matching lambdaabstractions into
case-expressions, thus giving a considerable gain in efficiency.
Whatin this chapterare called ‘structured types’ are called ‘algebraic types’

in Miranda,and‘freedata types’ bysomeothers [Burstall andGoguen, 1982].
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4.1 Introduction to Structured Types

Suppose that we wish to define binary trees with leaves that are numbers. In
the notation of Miranda,this could be done by declaring a structured type tree

as follows:

tree ::= LEAF num | BRANCH tree tree

(The symbol::= identifies this as a type declaration.) This might be read as
follows: ‘a tree is either a LEAF, which contains a num, or a BRANCH, which

contains a tree and a tree’. Here LEAF and BRANCH are called constructors of.
the type. Miranda requires that constructors (and only constructors) begin
with an upper-caseletter, but we will always write them entirely in uppercase.
LEAFhas onefield, of type num, and BRANCHhas two,both of type tree. The
numberoffields associated with a constructoris called its arity, thus LEAF has
arity 1 and BRANCH has arity 2.

Constructors can be used as functions, to create values of type tree. For
example, the equation

treel = BRANCH (BRANCH (LEAF 1) (LEAF 2)) (LEAF 3)

definestree’ to be a tree. Informally, this tree might be drawn as:

/\
. 3

/\
1 2

Constructors can also appearonthe left-hand side of an equation,as in the
following Mirandafunction definition:

reflect (LEAF n) LEAF n
reflect (BRANCH t1 t2) BRANCH (reflect t2) (reflect t1)

For example,(reflect tree1) returns

BRANCH (LEAF 3) (BRANCH (LEAF 2) (LEAF 1))

A definition with patterns onthe left-handside, such as thatofrefiect,is said

to use pattern-matching to perform case analysis. For example, in evaluating
(reflect t) there are two cases to choose from: t matches the pattern (LEAF n),
or t matches the pattern (BRANCH ti t2). If, say, tis (LEAF 1) then the first

case is chosen, with n bound to 1. Much more will be said about pattern-
matchinglater.

An important difference in the treatment of structured types in Miranda
from that in ML or Hope,is that in Miranda constructor functions are lazy;

thatis, they do not evaluate their arguments. The components of a structured
object are evaluated only when (andif) they are subsequently extracted and
used, not whenthe object is built.
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4.1.1 Type Variables

Type declarations may also contain type variables. For example, the
definition ofthe type tree above may.be rewritten to allow trees with leaves of

anytype:
tree * ::= LEAF * | BRANCH (tree *) (tree *)

Here * is called a generic (or schematic) type variable. The declaration could
be read as follows: ‘a tree of * is either a LEAF, which contains a *, or a
BRANCHwhich contains tree of * and tree of *, for any type *’.

Leaves of any particular tree mustall contain values of the same type, but
different trees may have leaves ofdifferent types. Examples oftrees andtheir
types are

BRANCH (LEAF 1) (LEAF 2) :: tree num
BRANCH (LEAF ‘a’) (LEAF ‘b’) :: tree char

(The symbol:: is pronounced ‘has type’.) Here,‘tree’ is called a type-forming
operator, since it takes a type (such as num or char) as an ‘argument’ and
produces a type (respectively, (tree num) or(tree char)).
The repeated use of * on the right-hand side of the type declaration

specifies that the twobranches ofatree mustbeofuniform type. Forexample,

‘BRANCH (LEAF 1) (LEAF ‘a’)

is notlegal, since it has leavesofmixed type. Morewill be said abouttypes and
. type variables m Chapter8.

4.1.2 Special Cases

This section shows how three ‘built-in’ types, namely lists, tuples and
enumerated types, can be regarded as mstances ofgeneral structured types.

4.1.2.1 Lists
Mirandahas a special syntax to denote lists, but lists are just an instance of a
general structured type. Lists could be defined as follows:

list * ::= NIL | CONS * (list *)

This type declaration defines the two new constructors NIL and CONS.
Miranda’s built-in syntax for lists could then be translated to use NIL and
CONS,as follows:

[ J is translated to NIL
(x:xs) is translated to (CONS x xs).
[x,y,z] is a Miranda abbreviation for (x:y:z{ ]) and hence is translated to
(CONS x (CONS y (CONS z NIL)))

[*] is translated to (list *)
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TEE : 3 = CONS
TEL (] 1 = NIL
TEE (E:, E2,.... En] 3} = CONS TEE E; 3 Tel [Eo .... En] }

TEX (E;, E2) } = PAIR TEL E; 3 TEE Eo 3
TEX (E:, Eo, Es) 3 = TRIPLE TE E; 3 TEL Eo 9 TEL Es 3

and so on

TEI True J = TRUE
TEE False 3 = FALSE   
Figure 4.1 Modifications to the TEscheme forlists, tuples and booleans

(Note: the last example is different from the others, because it describes a
‘type-expression rather than a value-expression.)
We can conveniently perform this translation when translatmg from

Miranda into the enriched lambda calculus; Figure 4.1 gives the required
equations.

Notice that the elements ofa list of type (list +) mustall be of type *, but the
numberofelements in list is not determined by its type. Thus (CONS 2 NIL)
and (CONS 3 (CONS 6 NIL)) are both of type (ist num), though they are of
different lengths.

4.1.2.2 Tuples
Mirandaalso provides special syntax to denote tuples, and these also can be
defined using a structured type. Tuples could be defined as follows:

pair * et PAIR * &k

triple * ## £84 TRIPLE & kk Ft

quadruple * ** *#¢ ###6 ::= QUADRUPLE * ## «#8 e442

Notice the difference between ‘pair’ and ‘PAIR’: the formeris a type-forming
operator, used only in type-expressions, while the latter is the constructor
function of the type, used only in value-expressions.
As withlists, Miranda’s special syntax can be translated as follows:

(x,y) is translated to (PAIR x y)

(x,y,z) is translated to (TRIPLE x y 2)

and So on.

(*,**) is translated to (pair * **)

(*,##,##*) is translated to (triple * *# *##)

Figure 4.1 gives the required equations.
Notice that a tuple may contain elements ofmixed type; for example

(8, TRUE) :: PAIR num bool

(‘a’, (3, 2)) :: PAIR char (PAIR num num)
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However,the type of a tuple completely determmes the numberandthe types
of its fields. For example, a pair always contains exactly twofields, a triple

contains exactly three fields, and so on.

4.1.2.3 Enumerated types
Thetype declaration

color ::= VERMILLION | PUCE | LAVENDER

m which each constructor has zero fields, is just like an enumerated type in
Pascal. Thus, we can define the type of boolean values:

bool ::= TRUE | FALSE

The usual functions on booleans can then be defined using pattern-
matching; for example:

if TRUE e1 e2 = el

if FALSE e1 e2 = e2

Mirandauses the names‘True’ and‘False’ for its built-in truth-values.

4.1.2.4 Summary
Since it is easy to translate ‘built-in’ types like lists and tuples into equivalent
structured types, then any implementation of a functional language that
handles structured types will also handle these ‘built-in’ types for free. This
can greatly simplify an implementation. Instead of implementing several type
mechanisms, one forlists, one for tuples, one for enumerated types, and so
on, we need only implement a single mechanism for structured types, and
translate other types mto structured types. Figure 4.1 gives the required
equations.

4.1.3 General Structured Types

In general, the form of a structured type definitionis:

To = Cy Tas... Tay

I...
| Cn Tn eee Tain

where the T;) are types and the c; are constructors of arity r;. In the ‘tree’
example above, T was (tree *),c; was LEAF, T;,; was num, Co was BRANCH,To;

was (tree *), and T2,2 was (tree *).
Readers familiar with the mathematical operations for constructing types

will recognize that the general type above can be written as the sum (thatis,
discriminated union):

T=Ti+...+ Th
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whereeach T,, fori from 1 ton, canbe written as a product:

Ti = Tis X Tiz X ... * Tig

In other words, a structured type is a swm-of-products.
When n=1 wesaythatthe type is a product type; the types (pair * *+),

(triple * ** *#*).. . areall product types. Whenn>1 wesay that the typeisa
sum type, since it is the sum of more than one domain; the types (tree *),
(list *), color and bool are all sum types. Thus a producttype has exactly one
constructor, and a sum type has two or more constructors.
We will often wish to distinguish between the constructors of product

types and sum types.Just as we use the names c;to stand for constructors ofall
types, we will use the name

t

tostand for the constructorofa product type, and
the namesand s; to standfor the constructors ofasum type (t suggests ‘tuple’
and s suggests ‘sum’).

(Note: we use lower-case letters to stand for constructors, to avoid
confusion with the constructors themselves, which are written in uppercase.
Similarly, we use upper-case letters to stand for types, which are themselves
written in lower case — see Section 4.1.)

(/mportant: at the time whenthis chapterwas first written the semantics of
Miranda provisionally specified that a structured type with only one
constructorwas a producttype, as above. However,an alternative view is that
a structured type with only one constructor should behaveas a sum type with
one componentin the sum, and that product types (tuples) be treated as an
independentconstruct. It now seemslikely that Research Software Limited
will follow this latter course in their definition of Miranda. As a consequence
someof the statements madein this chapter about the semantics ofstructured
types in Miranda maybe incorrect. We draw the reader’s attention to the
caveat on page 37.)

4.1.4 History

As mentioned, structured types are a combination of sum types and product
types, which havea longhistory in mathematics.

Landin’s Iswim, one of the earliest functional languages, was described
using a stylized form of English for defining structured types [Landin, 1966].
Burstall introduced a more formal notation for defining such types in NPL
[Burstall, 1977]. Hope and MLhavetype systems based on separate sum and
product types, whereas Miranda and Orwell have type systems based on
sum-of-product types.

Iswim also contained a simple form ofpattern-matching, where one could
write definitions such as

addPair (x,y) = x + y

However, the important idea of using pattern-matching for case analysis
appears to have been developed independently by Burstall and Turner.
Pattern-matching appeared in NPL and SASL,andwas used to good effect in
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proofs by structural induction [Burstall, 1969] and program transformation
[Burstall and Darlington, 1977]. It was incorporated into many later
languages such as Hope, KRC, ML, Miranda and Orwell.

4.2 Translating Miranda Into the Enriched Lambda Calculus

We must now deionstrate how to translate Miranda function definitions
involving pattern-matching into the enriched lambdacalculus.In the process
of doing so we will introduce pattern-matching lambda abstractions and the {]
operator, two of the constructs in the enriched lambda calculus whose
explanation was postponed.

4.2.1 Introduction to Pattern-matching

We begin this section by illustrating some further aspects of pattern-
inatching, which have to be handled by an implementation. (Not all the
illustrations should be taken as examples of good programming style. Some
are expressly chosen to demonstrateall the possible nasty things that can

- happen!)
Recall the definition of refiect:

reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect 12) (reflect tt)

The terms (LEAF n) and (BRANCHtt t2) occurring onthe left-hand side of
these equations are calledpatterns. Whenreflect is applied to an argument, the
arguinentis first evaluated to see whetherit snatches the pattern (LEAF n) or
(BRANCHtt 2). It will certainly match oneor the other, because the type-
checker ensures thatreflect is only applied to objects of type (tree *), for some
type *. For example,if reflect is applied to an expression which evaluates to
(BRANCH E; E2), the second equationis selected, with t! bound to E; and t2
bound to Ez.

In the preceding example, the order in which the equations were written
was iminaterial, but this is not always the case. Consider the Miranda function
definition

factorial O = 1
factorial n = n * factorial (n—1)

The order of the equationsin this definitionis significant. In the evaluation
of(factorial x); there are two cases to choose from:eitherx matches 0 (thatis, x
evaluates to 0), so the first equation is chosen, or it does not, so the second
case is chosen with n bound to x. The equations are tried out one at a time,
from top to bottom. If they had been written in the other orderthenthefirst
equation would always atch. In this situation we say that the patterns
overlap. (As weshall see in Chapter5, there are good reasonsto avoid writing
overlapping patterns, but occasionally they prove useful.)
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Anotherpoint, illustrated by the first factorial equation, is that a pattern
mayconsistofa literal constant, such as a number or character.
As another example, consider the Miranda function definition

lastElt [J x
lastElt (x:xs) lastElt xs

The function call (lastElt xs) returns the last elementofthe list xs. Again, the
orderofthe equations is significant, since the patterns overlap. Furthermore,
the first pattern is an example of a nested pattern, m which the pattern [] is

_ nested inside the pattern (x[}. Finally, the equations are not exhaustive,
since neither pattern matches the argument[]. If lastEIt is applied to [] some
sort of error should be reported.

Pattern-matching can apply to several arguments,as the following Miranda
definition shows:

xor False y =y
xor True False = True

xor True True = False

Another feature of Miranda that is closely connected with pattern-
matching is conditional equations, which control the selection of alternatives
by the use ofguards. We could, for example, rewrite the factorial function in
the following way:

factorial n 1, n=0
ni * factorial (n—1)

Asingle left-hand side governs several alternatives, which together constitute
the right-handside. In this case there is only one guard, namely the boolean-
valued expression ‘n=0’, which appears following a comma. Guards are
evaluated oneat a time, beginning at the top, and whena guard evaluates to
True, the corresponding alternative expressionis selected. The guard may be
omittedin the final right-handside, giving an ‘otherwise’ case (equivalent toa
guardofTrue).
The factorial example shows,incidentally, that a constant appearing in a

pattern can easily be elimmated by replacing it with a variable and adding a
guard to the equation imstead.

Conditional equations interact with pattern-matching, as demonstrated in
the next example. The function funnyLastElt returns the last elementofits
argumentlist, except that if a negative element is encountered thenit is
returned instead:

furinyLastElt (x:xs) = x, x<0

funntyLastElt Qc[]) = x
funrtyLastElt (x:xs) = furrtyLastElt xs

Pattern-matching proceeds, as usual, from top to bottom; whena left-hand
side matches the argument, the guarded alternative(s) are tried, from top to
bottom. If none of the guards is True, then pattern-matching continues,
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starting with the next equation. Applying funnyLastElt to thelist [1,2] would

cause this behavior,since the first equation would match, but the guard fails,

so the second and then third equations aretried.
Finally, variables maybe repeated on theleft-hand side ofan equation. For

example, the function noDups eliminates adjacent duplicate elementsin list:

noDups [] = ([]
noDups [x] = [x]
noDups (xcx:xs) = noDups (cxs)

noDups (xy:ys) = x : noDups (y:ys)

The third equation matchesonlyif the first two elements of the argumentlist
are equal; the repeated use of x on the left-hand side implies the equality
condition.
We may summarize the features that the implementation must support as

follows:

(i) overlapping patterns;
(ii) constant patterns;
(iii) nested patterns;
(iv) multiple arguments;
(v) non-exhaustive sets of equations;
(vi) conditional equations;
(vii) repeated variables.

Given these complicationsit is unwise to rely on a purely intuitive under-
standingofwhat a function definition usingpattern-matching means.Therest
of this section and the next is therefore devoted to providing a formal
semantics of pattern-matching.

42.2 Patterns

First of all, we will need a precise definition of patterns.

 

DEFINITION

A pattem is:
either a variable v,
Or

=

aconstant k, Such as a number, a character, a boolean and so on.
Or aconstructor pattem, of the form (c p; ... p;) where c is a con-

Structor ofarity r, and p;, ..., pare themselves pattems.

All of the variables m a pattem should be distinct.
A pattem of the form (Ss p; ... p,), where s iS a sum constructor,is

called a sum-constructor pattern, or sum pattern. A pattem of the form
(t Pi ... pr), where t is a product constructor, is called a product-
constructorpattern, Orproductpattern.

Note: according to this definition, patterns may not contain repeated
resales, although Miranda allows them to do so. This pointis discussed
in ion 4.2.7. 
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Here are some examples of patterns:

x

3

LEAF n

BRANCH (LEAF n) t

CONS x xs written (x:xs) in Miranda
CONS x (CONS 3 NIL) written [x,3] in Miranda

PAIR x 4 written (x,4) m Miranda

The term (PAIR z 2)is not a pattern, because it contains a repeated variable.
The term (CONS x) is not a pattern, because the CONS doesnot have enough
arguments.

Mirandaallows patterns with repeated variables, like (PAIR z z) but the
patterns defined here do not. This is discussed in Section 4.2.7.
A constructor pattern is simple if it has the form (c v; ... v,), where

Vi, --.. Vr are distinct variables. If a constructor pattern is not simpleit is
nested.

4.2.3 Introducing Pattern-matching Lambda Abstractions
Up to now wehavetranslated function definitions into the lambda calculus
using the following rule:

TOR f vi... vn = E = f = Avs...Avn.TER E

where v;, ..., Vn are variables. Temporarily restricting our attention to
functions of a single variable, we could derive the less general rule

TWHftv=ER = f= av.TEL E i

By analogy, given the function definition

fp=E

(wherep is a pattern), it seems plausible to translateit using the rule

TORfp=ER = f= dp.TeR EB

This is not quite right yet, because we must rememberto translate the
pattern, so that Miranda’slist notationis translated into uses ofCONS and NIL
(and likewise for tuples and booleans). Fortunately, the syntax ofpatternsis a
subset ofthat of expressions, so we can use the TE scheme.

TOR fp=ER = f= aTEL p J.TELE J

For example, consider the Miranda function definition forfst:

fst (x,y) = x

Using the rule above gives:

TOL fst (xy) = x} = fst= A(PAIR x y).x
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This introduces a newsort of lambdaabstraction, apattern-matching lambda
abstraction, which has the form Op. E) whereis a pattern. This leaves uswith

two questions:

(i) How can wetranslate a general Miranda function definition into pattern-
matching lambda abstractions?

(ii) What, exactly, does (ap. E) mean?

Wediscuss thefirst in the remaimderofthis section, leaving the second for the
next section.

4.2.4 Multiple Equations and Failure

Considerfirst a Miranda function definition ofthe form

lp. = E;

1 pa = Eg

1 Pr = En

Intuitively, we expect the semantics to be ‘try the first equation, and if that
fails try the second, and so on’. This introduces the idea that a pattern-match
might fail. Such failure does not necessarily mdicate an error, since there
might be a subsequent equation which would match. Hence, we introduce a
new built-in value FAIL, which is returned when a pattern-matchfails.
With the aid of this idea, we can translate the definition of 1 into the

following enriched lambdacalculus expression:

f = Ax.( ((Apr’.E1’) x)

0 ((Ap2’.E2’) x)

O (pn! En’) x)
fi] ERROR)

where x is a new variable name that does not occur free in any E;, the
expressions E;’ are the result of translating the E;, and the patterns p;' are the
result of translating the pi. The new definition of f can be read ‘try to apply
(Ap1’ .E;’) to x, andif that succeeds return its result; otherwise try (Ap2' .E2’),
and so on;ifthey all fail, return ERROR’.
Here ERRORis meantto be a special value whose evaluation indicates an

* error, an event which should never occur.

The function {] is an infix function, whose behavior is described by the
semantic equations:

a {JIb=a if a#1 and a#FAIL
FAIL J b=b

L Jb=1

Operationally,{] evaluates its left argument; if the evaluation terminates and
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yields something other than FAIL, then (] returns that value(first rule); if it
evaluates to FAIL, {] returns its right argument(second rule); ifthe evaluation
of the left argumentfails to terminate, then so does the application of [] (third
rule). ‘

It is easy to verify that[] is an associative operator, and has identity FAIL. Its
associativity means that we may write expressions such as (E; [] Ez J Es)

without ambiguity. It is extremely convenient to write [] between its operands
(thatis, infix) but, since all functions are written prefix in the lambda calculus,
we are forced to dignify [] by making it one of the new constructs of the
enriched lambda calculus. The sole reason for doing so is notational.
As an exampleofthe suggested translation in action, recall the definition of

the reflect function:

reflect (LEAF n) = LEAF n
reflect (BRANCH ti t2) = BRANCH (reflect t2) (reflect t1)

This would be translatedto:

reflect = at.( ((A(LEAF n).LEAF n) t)
0 (((BRANCH t1 t2).BRANCH (refiect 12) (reflect t1)) t)
f) ERROR)

‘In this case, of course, ERROR can never be returned, since one of the

previous pattern-matches will succeed. This is not always the case, as the

following example shows. Consider the Miranda definition of hd, which
extracts the first elementofa list:

hd (x:xs) = x

It would be translated to

hd = axs’.(((A(CONS x xs).x) xs’) [] ERROR)

If hd is applied to NIL, then ERROR will be the result. (We have used xs’as the
formal parameterofthe lambda abstraction, to avoid confusion with the xs in
the pattern. Technically, however, there would be no problem withusing xs,
or any othervariable, since hd has no free variables.)

4.2.5 Multiple Arguments

Functions with multiple arguments are easily handled. As werecalledearlier,
the basic approachis to translate a function of several arguments using the
Tule

TDE f vi... vn = E I = f = Av...Avp-TED E 9

Combining this with the approach of the previous section suggests that we
should translate the definition

f Pi Po... Pm=E
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wherep, ..., Pmare patterns, into

f = Avy... AVm.(((AP1’. ..ADm’-E") vi... Ym) J) ERROR)

where v4, ..., Ym are new variables that do not occurfree in E, the p;’ are the
results of translating the p;, and E’ is the result of translating E. The only new
complication is that we must specify what happens in case of failure. Supposef
is applied to m arguments,andthe first pattern-matchfails:

(Ap1’...Apm’.E”) Ey Eo... Em —> FAIL Eo... Em

Then we want the whole expression to fail, so we need to add a reduction
rule for FAIL:

FAIL E — FAIL

Nowwecan continue reduction:

FAIL E2 Eg... Em — FAIL Eg...E, —- ... — FAIL

Thetranslation is readily extended for the case when f is defined by several
equations. To see an example ofthis in action, consider the definition of xor
given above:

xor False y =y
xor True False = True

xor True True = False

Combiningtherules of this section and the last allows us to transform this to

(Notice that the arguments are matched from left to right)
xor = Ax.Ay.( ((AFALSE.Ay.y) x y)

f) (ATRUE.AFALSE.TRUE) x y)
0) (ATRUE.ATRUE.FALSE) x y)
| ERROR)

4.2.6 Conditional Equations

Next, we describe how to translate conditional equations into the enriched
lambda calculus. Consider the following Miranda definition:

gcd a b =gcd (a—b) b, a>b
gcd a (b—a), a<b
a, a=b

It is easy to see that the right-handside ofthis definitioncouldbe translated to

(IF (> a b) (gcd (— a b) b)
(IF (< a b) (gcd a (— b a))

(IF (= a b) a FAIL)))

Notice that if all the guards fail, then FAIL is returned by the nested IF
expression.(In the case ofgcd this can neveroccur,and a very clever compiler
might be able to discover this fact and optimize the last IF.) In a more
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complicated definition, the failure of all the guards would cause the next

equationto be tried (see example below).
Regardingall of an equation after the first = sign as a ‘right-handside’, we

can nowgive anew translation scheme,TR, which translates right-handsides:

 

TRI rhs jjtranslates the right-hand side ofadefinition

TT Ay, Gi = (IF TEL G; 9 TEL A; 9
= Ao, Go (IF TEE Go 9 TEE Ao J

= An, Gn (FTEX Gy J TEE An 3 FAIL) ...)
where A; is an expression and G;is a boolean-valued expression.    

Now we can use TR mstead of TE to translate the right-hand sides of
function definitions. As an example,recall the definition offunnyLastEtt:

lunnyLastEk (x:xs) = x, x<O
lunnyLastEit (x:[]) = x
funnyLastElt -(x:xs) = funnyLastElt xs

Wecan nowtranslateit to

funnyLastElt = Av.( ((A(CONS x xs).IF (< x 0) x FAIL) v)
1) @(A(CONS x NIL).x) v)
0 «A (CONS x xs).funnyLastEit xs) v)
] ERROR)

If thefirst equation matches, but the guard fails, then the IF returns FAIL, and
the next equationis tried.

In Miranda,the final guardG,may be omitted, whichis equivalentto giving
a final guard ofTrue. In this case, the innermostIF is of the form

IF TRUE E, FAIL

which can be optimized to

E,

For example,the definition offactorial

factorial n 1, n=0
n * factorial (n—1)

would betranslated to

factorial = Av.( ((An.IF (= n 0) 1 (* rn (factorial (— n 1)))) v)
| ERROR)

This can be simplified further, since the pattern-match cannotfail, and this
special case will be spotted by the transformations of Chapter5.
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4.2.7 Repeated Variables

It appears at first that it is easy to use a conditional equation to eliminate
repeated variables, by mtroducing a new variable name to replace one of the
occurrences of the repeated variable, and adding an appropriate equality
condition. For example, we could rewrite the definition of noDups (given in
Section 4.2.1) thus:

noDups [] = []
noDups [x] = [x]
noDups (x:y:ys) = noDups (y:ys), x=y
noDups (x:y:ys) = x : noDups (y:ys)

(The last two equations could now be combinedinto a conditional equation
with two alternatives.) Unfortunately, this approach occasionally confiicts
with theleft-to-rightrule originally given for pattern-matching. For example,
given the following definition:

nasty x x True = 1
nasty x y z =2

consider the evaluation of

nasty bottom 3 False

wherethe evaluation ofbottom fails to terminate (forexample, bottom couldbe
defined by the degenerate equation: bottom = bottom). We might expectthat
the evaluation (nasty bottom 3 False) would not terminate,since wewilltry to

evaluate bottom in order to compare it with 3. However, suppose wetrans-
formed the definition of nasty to use a conditional equation:

nasty’ x y True
nasty’ x y z

Now, if we evaluate (nasty’ bottom 3 False), bottom will match x and 3 will

match y, but the match of True against False will fail, so the second equation
will be tried, and deliver the answer 2. Hence, nasty and nasty’ behave
differently, and the transformation is invalid. (Note: nasty and nasty’ also

behavedifferently for expressions such as (nasty 1 2 bottom).)
Thereis a further complication raised by repeated variables. Consider the

function multi:

multi pq qp
multi pqrs

1, xeay
2

1
2

Should we compare the first and fourth arguments, and then compare the
second and third argaments, or the other way around? The order of
comparison is important, because it affects termination; consider
(multi bottom 2 3 4).
This section has shown that repeated variables in a pattern are not as

straightforward asatfirst appeared (the examples were suggested by Simon
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Finn of the University of Stirling). To simplify the rest of this chapter wewill
therefore side-step these complications, by restricting our attention to a
subset of Miranda which does not allow repeated variables in a pattern. We
lose no expressive power thereby, though we do lose some notational
convenience.

4.2.8 Where-ciauses

Mirandaallows the right-hand side of a definition to be qualified with a
where-clause. For example,

 sumsq x y = xsq + ysq
where

xSQ = X*X

ysq = y*y

It is intuitively clear that this could be translated to

sumsq = Ax.Ay. (let xsq = * xX x

 ya=*yy
in

(+ xsq_ysq))

where we use a let-expression instead of a where-clause. In general, the
definitions in a where-clause may be mutually recursive, so we have to use a
letrec-expression instead. This will be optimized in Section 6.2.8.

Finally, the scope of a where-clause mayinclude set of alternatives and
guardsin a conditional equation:

gcd a b = ged diff b, a>b
= gcd a (—diff), a<b
= a, a=b

where
diff = a—b
 

TRI ths Jjtranslates the right-hand side of a definition

TR Ai, Qi = letrec TOE D; 9

= An, Gn TOE Dn 3

where in

Di (IF TEL G; 9 TET A: 3

Dn (IF TEX Gy 9 TEL An J FAIL) ...)
If Gy is absent, or True, then the final IF-expression
should be replaced by TET. An Jj

where A; is an expression
G; is a boolean-valued expression
D; is a definition   

Figure 4.2 Thefinal TR translation scheme
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The scope of the definition ofdiff includesall the alternatives and guards.
Figure 4.2 gives the finalTR translation scheme, whichtranslates right-hand

sides, using a letrec to translate a where-clause.

4.2.9 Patterns on the Left-hand Side of Definitions

So far we have only described how to translate function definitions, but
Miranda also allows a pattern to appear on the left-handside of a definition.
For example, consider the following Mirandadefinition:

addPair w=x+t+y
where (xy) = Ww

The product pattern (x,y) appears on theleft-handside of the definition in the
where-clause. It implies thatw evaluatesto a pair, and it binds the names x and
y to the componentsofw.
As mentionedin Section 3.2.3, we also allow general patterns to appear on

the left-handside ofdefinitions in a let(rec). This extension allows us to make a

simple translation of addPair to

addPair = Aw.(letrec (PAIR x y) = w in (+ x y))

Thehard workofdealing with patterns on theleft-handside ofdefinitions is
nowcarried out by transformingthis letrec into the ordinary lambda calculus,
which is described in Section 6.2. The modification required to TD is very
simple:

TWHEep=RY = Tel p 2 = REA
where is a pattern andR is a right-handside.

42.10 Summary

We have now completed the developmentofthe translation of a significant
subset of Miranda into the enriched lambda calculus. The final translation
schemes, summarized in Figures 4.2, 4.3 and 4.4, look rather forbidding, but

this is because of their generality rather than their complexity.

4.3 The Semantics of Pattern-matching Lambda Abstractions

Having described howto translate from Miranda into a language involving
pattern-matching lambda abstractions, we now give the semantics of pattern-
matching lambdaabstractionsofthe form (Ap.E).
Wewill do so by devoting a subsection to each form of the pattern,p:

variable, constant, sum-constructor and product-constructor.



Chapter 4 Structured Types and the Semantics ofPattern-matching
 

 

TEX Exp Jtranslates the expression Exp

where k isa literal constant or built-in operator
v, Vi are variables
E, & are expressions
Infix is an infix operator 

TEL : J = CONS

TEL (17 = NIL
TE] [E1, E2,..., En) J = CONS TE] E; 9 TE [E> .... En) J
TED (E1, Es) J = PAIR TEL E, 9 TE Eo y
TED (E:, Eo, Es) 9 = TRIPLE TEL E; j TEL Eo j TEE Es
and soon

TEI True jj = TRUE
TE[ False 9 = FALSE

TEL k J = k
TEL v 3 =v

TET ©; Eo J = TE[ E; J TEL Eo J
TEL E: infix Eo J = “TEL infix J TET E; 9 TEL E2
TET E; $v Eo J = TEL v J TEL E; J TEL £2   

Figure 4.3 Thefinal TE translation scheme

 

TD Def J translates the definition Def

TOE p= RJ = TEL py = TALR J
tee oe. Pim = Ry

f Pn... Pam = Rn

f] ERROR))

where is a variable
v; is a variable notfree in any R;
pij is a pattern
R is a right-hand side
Ri is a right-handside 

= f= (ve Wnf (TEL P14 0...ATEL pim J. TRE Ri Divs...

N (ATED pas F..-ATEL pom J. TRAE Ro vs...

Vm)

Vm)

 

Figure 4.4 Thefinal TDtranslation scheme

. 4.3.1 The Semantics of Variable Pattems

If the pattern

p

is a variable v, then the pattern-matching lambdaabstraction
(Ap.E) is just an ordinary lambda abstraction (av.E), whose sernantics have
already been discussed in Section 2.5.

 



Section 4.3 The sernantics ofpattern-matching lambda abstractions 69
 

4.3.2 The Semantics of Constant Pattems
To describe the semantics ofconstant patterns we must specify the value of

Evalf[ \k.E JJ

wherek is a constant. Its value is certainly a function, so we can specify it by
giving the value of

Eval Ak.E Ja

for any argumenta. There are three possibilities: eithera is the sameask,orit
is 1, orit is something else. This leads to the following semantic equations:

Eval Ak.E 9 a = Eval[ E Jj if a = Evelk JJ
Evalff Ak.E 9} a = FAIL ifa # Evalf— k J anda #1
Evailf AK.E J L=1

Thefirst equation says thatif (AK.E) is applied to something that evaluates to
k, then the result comes from evaluating E. The second equationsays that the
result is FAIL if the argumentevaluatesto anything else, and the third equation
specifies that, if the evaluation ofthe argumentfails to terminate, then so does

the whole application. As usual, these semantic equations specify reduction
rules by implication. Thus, for example

(1.+34)1 > +34
(A1.+ 34) 2 — FAIL

It is also possible to regard constants as sum-constructors of arity zero, as
outlined in Section 4.1.2.3, in which case the rules of this section become a
special case of those of the next.

4.3.3 The Semantics of Sum-constructor Pattems

Next, we consider the case of constructor patterns, of the form (S Pp: ... Pr).

Initially we will only considersum patterns, since product patterns turn out to
require special treatment. Here are the semantic rules for such patterns:

Eval X(s p1...p).E 9 (8 a:...a) = Evali[ Api...Ap,.E 9} ar... a,
Eval \(s p:...p).E 9 (s’ a:...ar) = FAL ifs #8’
Eval A(s p1...p).E BL = |

Operationally, the rules work as follows. To apply (A(S Pp: ... pr).E) to an
argumentA wefirst evaluateA to find out whatsort ofobject it is. This implies
thatif the evaluation ofAdoes not terminate then neither does the application
in question (third rule). (Note: to ‘evaluate A’ weonly evaluate it to
constructor form; we do not evaluate its components. Theywill be evaluated
only ifthey are extracted and used. This is whatit meansfor constructors to be

lazy.)
If A evaluates to an object built with a constructor other than s, then the

pattern-match fails (second rule). To see how this ruleworks, consider an
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application of the lambda abstraction (A(BRANCH t1 t2).BRANCH 12 t1) to

(LEAF 0):

(A(BRANCH ti t2).BRANCH t2 ti) (LEAF 0) — FAIL

The application returns FAIL because the constructorin the pattern is different
from that of the argument.

Finally, ifAwas built with the same constructoras the pattern, then thefirst

rule applies. To see how this rule works, consider an application of the same
abstraction to a BRANCH:

(\(BRANCH ti t2).BRANCH t2 t1) (BRANCH (LEAF 0) (LEAF 1))
—> (At1.At2. BRANCH #2 ti) (LEAF 0) (LEAF 1)
—> (\t2.BRANCH {2 (LEAF 0)) (LEAF 1)
— BRANCH (LEAF 1) (LEAF 0)

In this case the match succeeds, and 11 andt2 are bound to the componentsof

the branch with the ordinary A-reduction rule.
Notice that for constructors of arity zero (r=0) the three rules correspond

exactly to those of the previous section. Forexample, usmgthefirst case ofthe
xor function gives:

(AFALSE.Ay.y) FALSE TRUE —> (ay.y) TRUE
— TRUE

Finally, notice that the rules deal correctlywith nested patterns. Consider, for
example, the following application of the first case of the function lastEl] to
(CONS 4 (CONS 3 NIL)):

(A(CONS x NIL).x) (CONS 4 (CONS 3 NIL))
—> (AXx.ANIL.x) 4 (CONS 3 NIL) (first rule)
— (ANIL.4) (CONS 3 NIL) (normal B-rule)
— FAIL (second rule)

Here, the outer pattern matches but the inner one does not, so the whole
expression returns FAIL.

4.3.4 The Semantics of Product-constructor Pattems

Finally we consider the semantics of matching product patterns. This is an
area in which a rather subtle issue surfaces.

Consider the Miranda functions

zeroAny x =0
zeroLis! [}] =0
zeroPair (x,y) = 0

The function zeroAny takes a single argument and returns 0. Miranda’s lazy
semantics clearly means that the argumentis not evaluated, so that 0 is
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returned even if the evaluation of the argument is very expensive or non-
terminating:

Evaif[ zeroAny 9 1 = 0

Wesay that zeroAny is /azy since it does not evaluate its argument.
The semantics of the function zeroList has already been described by the

preceding sections. It specifies that zeroList evaluates its argument, and
checks whetherit is [ ]. If it is, then zeroList returns 0, otherwise it returns
ERROR. WesaythatzeroList is strict since it does evaluate its argument:

Eval zeroList J L = 1

Should the zeroPair function be lazy or strict? Since the argumentis a tuple
there is no point m evaluating it to check that it really is a tuple, as was
required in the case of zeroList, because the check would always succeed
(assuming that the program is type-checked). It would be morein thespirit of
a lazy language to specify that

Evaifl zeroPair 9 1 = 0

and the Miranda language specifies this choice. We call this lazy product-
matching. On the other hand,an alternative choice would be to specify that

Eval] zeroPair 9 1 = 1

and wecall this strictproduct-matching.
Notice that there is no ‘right’ or ‘wrong’ answer; it is simply a question of

making a clear choice of semantics for product-matching. The only ‘wrong’
approach is not to notice that there is a choice to be made (and hence torisk
making different choices in different parts of the implementation, with
unpredictable results).

Nevertheless, we contend that there are persuasive arguments m favor of
the lazy approach. Wediscuss this issue m the next section, while in the rest of
this section we concentrate on the semantics of lazy product-matching.
Wemaydescribe lazy product-matching by the following semantic rule:

Eval A(t pi ... p,).E Jj a = Evall[ Api...Ap,.E J (SEL-+t-1 a)

(SEL-t+ a)
Here SEL-t-i is a built-in function whichselects the ith field from a structured
object built with constructor t. It may be described by the following semantic
equations:

SEL+t-i (ta; ... aj... a) = a
SEL+t-i 1 =I

Suppose that (Ap.E), where p is a product pattern,is applied to an expression
A. The rule for lazy product-matching postpones the evaluation of the
argument A by binding the names for the components to applications of
SEL-t-i to A,rather than evaluatingA andextracting its components directly,If
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none of the components ofA is evaluated, then A will not be evaluated either,
which is the effect we wanted to achieve.

Let us see how this works on zeroPair:

zeroPalr = X(PAIR x y).0

Hence,

Eval[[ zeroPair 9 1
Evalll x(PAIR x y).0 BL
Evali[ Ax.ay.0 Jj (SEL-PAIR-1 1) (SEL-PAIR-2 1)

Evalf[ ay.0 J (SEL-PAIR-2 1)
=O

as required.

4.3.5 ADefence of Lazy Product-matching

Consider the Miranda function firsts, which takes a list of numbers, and

returns a pair consisting of the first odd andfirst even elementsofthelist:

firsts [] = (0,0)

firsts (x:xs) = combine x (firsts xs)

combine x (od,ev) = (x,ev), odd x
= (od,x), even x

Supposethatwe wereto use strict product-matching,so that when evaluating

an application (combine A; Az) we would first evaluate Az. Now consider
evaluating (firsts [1..]}, where [1..]is the infinite list of integers starting at1:

firsts [1..] —> combine 1 (firsts (2. .})
—> combine 1 (combine 2 (firsts [3..})

and so on.

The evaluation of (firsts [1..]) will never terminate. This is hardly satis-
factory, because it is clear that the valueof(firsts [1 ..]) should be (1,2).

All is well, however,if we use lazy product-matching. Then,in effect, the
evaluation goes likethis:

firsts [1..] —> combine 1 (firsts [2..)
— (1, SEL-PAIR-2 (firsts [2..})
— (1, SEL-PAIR-2 (combine 2 (firsts [3..])))
— (1, SEL-PAIR-2 (SEL-PAIR-1 (firsts [3..]), 2))
—> (1, 2)

Under lazy product-matching, combine does not evaluate its second
argument. Instead it binds od to (SEL-PAIR-1 A) and ev to (SEL-PAIR-2 A),
whereA is the argument.
Weconclude that lazy product-matching gives significant benefits to the

programmer. Theeffect is quite subtle: strict product-matching caused the
entire argumentlist to be scanned even though all the operations on lists are
lazy. One purpose ofthis section is to point out that it is easy for a subtle
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difference in evaluation strategy (strict versus lazy product-matching) to
cause a gross difference im the operational behavior of the program (scanning
the whole of an infinite list versus looking at the first element only). The
example is derived from a paper by Wadler [1985].
A further reason for advocating lazy product-matchingis thatit allows us to

describe mutual recursion correctly. For an explanation of this point, see
Section 6.2.6.

-. There is another interesting mathematical way of lookingat the differences
between strict and lazy product-matching. In domain theory there is more

- than one wayofforming the product oftwo domainsA and B,thatvaryin their
treatment of|. The ordinaryproduct, A x B,is definedlike this:

A x B = {(a,b) | acA and beB)

All the elements of this domain are pairs, and the bottom element ofA x is

(LL).
Theliftedproduct, (A x 8B).is defined like this:

(A x B)i = (A x B) U (1)

In this product the element| is distinct from (1,1). This correspondsclosely to

our operational ideas ofhow tuples (orany other data structure) are formed: |
standsfor a non-terminating computation,while (1,1) is a pair, both ofwhose
elements are non-terminating computations.

The key insight is that lazy product-matching corresponds to ordinary
product, and strict product-matching corresponds to lifted product. To
implement the ordinary product domain (A x B) we have to make (1,1)
indistinguishable from non-termination. Since they clearly differ operation-
ally, the only way to concealtheir differences is to use values in an ordinary
product domain in a way that makes them indistinguishable. This is precisely
what the lazy product-matchingrule does:

Evalfl (PAIR pi p2).E JL
= Evalf[ A\p1.Ape.E Jj (SEL-PAIR-1 1) (SEL-PAIR-2 1)
= Eval[[ Api.Ape.E J Lt

Evalll A(PAIR p; pe).E 9 (PAIR 1 1)
= Evalll Api.Ape.E 9] (SEL-PAIR-1 (PAIR 1 1)) (SEL-PAIR-2 (PAIR L 1)
= Evalf[ Api.Ape.E Ji

In other words, the abstraction (A(PAIR p1 p2).E)is indifferent to whetherits
argumentis | or (1,1); it returns the same result in either case. So lazy

product-matching can be regarded as awayofimplementing ordinary product
domains (A x B) by using the values in the lifted product domain (A x B);in
such a waythat(L,1) is indistinguishable fromL.

Finally, it is worth noting that the use of lazy product-matching carries an
implementation cost. Consider a function addPair, which adds together the
elements of a pair:

addPair = A(PAIR x y).+ x y
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Now,using lazy product-matching, the reduction of (addPair (PAIR 3 4))
goesas follows:

addPair (PAIR 3 4)
(A(PAIR x y).+ x y) (PAIR 3 4)
(ax.ay.+ x y) (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
(ay.+ (SEL-PAIR-1 (PAIR 3 4)) y) (SEL-PAIR-2 (PAIR 3 4))
+ (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
+ 3 (SEL-PAIR-2 (PAIR 3 4))
+34
7b

b
u
d
b
u
d
c
u

This takes one reduction to apply the addPair lambda abstraction, and then
two further reductions (subsequently) to reduce the two applications of
SEL-PAIR. Contrast this with the effect of using strict product-matching:

addPair (PAIR 3 4)
(A(PAIR x y).+ x y) (PAIR 3 4)
(Ax.Ay.+ x y) 34
(Ay.+ 3 y) 4
+34
7b

b
u
d
a
u

This uses fewer reductions, since the application of the addPair lambda
abstraction also takes the argument apart. Furthermore,it uses less store
since no temporary applications of SEL-PAIR are constructed. This suggests
that we should use strict product-matching instead of lazy product-matching
whereverthis does notaffect the semantics.

In the case of addPair, it is clear that the argument will certainly be
evaluated in the end, so it would do no harm to evaluate it at the time of
function application (that is, to use strict product-matching). In general,
whenevera functionisstrict in an argument(see Section 2.5.4)it is safe to use
strict product-matching for that argument. The process ofworking out which
functionsarestrictis called strictness analysis, and is discussed in Chapter 22.

4.3.6 Summary

This section has examined the semantics of pattern-matching in somedetail,
because much confusion has surrounded this area in the past. Figure 4.5
summarizes the results of the section. The distinction between strict and lazy
product-matching, and the use of [| and FAIL, are both first described in
Turner’s thesis [Turner, 1981], but the present formulation based on
structured types is due to the authors.

4.4 Introducing case-expressions

The transformations in the last section produce remarkably inefficient
programs! The main reasonfor this is that pattern-matches are attempted,
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testing for FAIL each time, as each equationin the function definitionis tried in

turn.

Frequently, however, a single test would suffice to select the appropriate

equation. For example,recall again the reflect function:

reflect (LEAF n) = LEAF n
reflect (BRANCH t1 t2) = BRANCH (reflect t2) (reflect t1)

To apply reflect, it would suffice to test the argument, and select the first or

second right-handside according to whether it was a LEAF or a BRANCH.

In this section, therefore, we introduce case-expressions, a convenient

construct for describing a particularly simple form of pattern-matching which
has this single-test property. Chapter 5 will then demonstrate how to translate
Mirandafunction definitions into case-expressions, and Chapter 6 will show
how case-expressionscan be transformed into the ordinary lambda calculus.
The net effect will be a significant improvement in the efficiency of the
resulting program.

Case-expressions are a notation for describing a simple form of pattern-

matching. To begin with an example, we maytranslate the definition ofreflect,

using a case-expression,in the following way:

reflect = At.case t of
LEAF n => LEAF n
BRANCH ti t2 = BRANCH (reflect t2) (reflect tt)

The importantpoints about acase-expressionare that the patterns are simple
(thatis, not nested) and exhaustive (that is, they coverall constructors of the

type). This makes them particularly simple to implement.
The general form ofa case-expressionis

case v of
C1 Vi4--- Ving > Ei

Cn Va,1 ane Van => E,

wherev is a variable, E, ... E, are expressions, the vi; are distinct variables,

and the ¢; ... Cn are a completefamily ofconstructors from a structured type
declaration. The syntax of case-expressions was defined in Figure 3.2.

Operationally, to evaluate this case-expression,v is first evaluated. Then,

according to whatconstructorv was built with, the appropriate E; is selected
and evaluated, with the vi; bound to the componentsofv.

Formally, the construct is defined to be equivalent to

1 ((A(C1 V1.1 --- V4,ry)-E1) v)

0 (AlCn Vn,1_ +++ Vaytq)-En) ¥)

but a case-expressionis far more readable!
Intuitively, case-expressions correspond to a multiway jump, whereas the

equivalent expression using |] correspondsto asequential‘if. . .then. . elseif. .’
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The semantic equations of (Ap. E) are:

Eval[l \4«.E J} a= Evalf Ey if a = Eval k J
Evalf Ak.E 9 a = FAIL if a # Evalfl k Band a # 1
Evalf 4«.E } L=1

Eval \(6 pi... Pr,)-E J (Ss a1... @&,) = Evall[ Ap1...Ap,.E Jar... ary
Eval (8 pi ... Pr)-E9 (8’ a1... ay) = FAIL ifs # 8’
Eval \(6 pi ... pr,).E 3 1 = i

Evall \(1 pi... py)-E Ja= Evalf[ Ap1...Ap,.E 9 (SEL-+1 a)

(SEL+-n a)
where kis a consian!

s is a sum construcior ofarity rs
1 is a produc! constructorofarity 7
pi is a patiern
E is an expression
aj, @ are values

The SEL-11 functions are defined as follows:

SEL-1-1 (i ay... @ ... a) = ay
SEL1, 1 = |

where1 is a produc: constructorofarity r.

The(] operatoris defined as follows:

a fb=a if a # Landa # FAIL
FAIL Jb = b
1 Qbe#Ll    
Figure 4.5 Semantics of pattern-matching lambda abstractions and (]

structure. Indeed, the implementation described in Chapters 18-20 will
compile case-expressions and|] respectively to precisely such machine code!

4.5 Summary

Structured data types have proved more complicated than at first appeared!
We have discussed the background and semantics of pattern-matching,
showing howto translate a Miranda function definition involvmg pattern-
matching into the enriched lambda calculus. This required us to define two
new constructs, pattern-matchmg lambda abstractions and the [] operator, —
whose semantics we then defined. To clear the way for a more efficient
translation, we then mtroduced case-expressions, describing their semantics .
in terms of a transformation into the constructs previously described.
The next two chapters complete the pattern-matching story. Chapter 5
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gives a more efficient translation of Miranda function definitions into case-

expressions, and Chapter 6 shows how to transform the new constructs into

the ordinary lambda calculus.
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Five
 

EFFICIENT COMPILATION OF
PATTERN-MATCHING

Philip Wadler

This chapter shows how to compile function definitions with pattern-matching
into case-expressionsthat can beefficiently evaluated. Previously, pattern-
matching has been formally defined, and we have seen some examplesof
function definitions with pattern-matching.

5.1 Introduction and Examples

We begin by reviewing two examples.
Thefirst example shows pattern-matching on more than one pattern. The

function call (mappairs f xs ys) applies the function f to corresponding pairs

from thelists xs and ys.

mappairs f [] ys = []
mappairs f (x:xs) [] = []
mappairs f (x:xs) (y:ys) = f x y : mappairs f xs ys

For example, (mappairs (+) [1,2] [3,4]) returns [4,6]. The definition given

here specifies that if the argumentlists are not the same length, then the
result will be as long as the shorter of the two lists. For example,
(mappairs (+) [1,2] [3,4,5]) also returns[4,6].

The simplest way to think of pattern-matching is as trying to match each
equation in turn. Within each equation, patterns are matched from left to
right. For example, evaluating (mappairs (+) [1,2] [3,4] first matches (+)

againstf in the first equation, which succeeds, and then matches[1,2] against

78
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[], which fails. Then the second equationis tried. Matching (+) against f and
[1,2] against (x:xs) both succeed, but matching [3,4] against [] fails. Finally,

matchingin the third equation succeeds, bindingto (+), x to 1,xsto[2],yto3,

and ys to [4]. This corresponds exactly to the way pattern-matching was

defined in Chapter4.
Performing pattern-matching in this way can require a lot of work. The

example above had to examinethelist [1,2] three times and thelist [3,4] twice.

It seemsclearthat it should be possible to evaluate this function application in
a more efficient manner that examineseach list only once, butstill gives the
result prescribed by the semantics. This can be done by transforming the
abovedefinition into an equivalent one using case-expressions:

mappairs
= df.Axs’.Ays’.

case xs’ of
NIL => NIL
CONS x xs => case ys’ of

. NIL => NIL
CONS y ys => CONS (f x y) (mappairs f xs ys)

(Case-expressions were introduced in Section 4.4.) This chapter describes an
algorithm that can automatically translate the first definition into the second.
This algorithm is called the pattern-matching compiler.
The second example shows pattern-matching on a nested pattern. The

function call (nodups xs) removes adjacent duplicate elementsfrom list xs.It
can be defined as follows:

nodups[] = []
nodups [x] = [x]
nodups (y:Xx:xs) = nodups (x:xs), y =X

y : nodups (x:xs), otherwise

(As you would expect, the guard ‘otherwise’ applies if no other guard does.

See Appendix.) For example, (nodups [3,3,1,2,2,2,3]) returns [3,1,2,3]. Note
that the naming neednotbe consistent: x stands for the first element of thelist
in the second equation, and for the second elementofthelist in the third

equation.
Again, one can applythis definition by matching each equation in turn. For

example, evaluation of (nodups [1,2,3]) will first try to match [1,2,3] against[],

which fails. Next, it will try to match [1,2,3] against [x], which also fails.
Finally, it will succeed in matching[1 ,2,3] against (y:x:xs), binding y to 1, x to 2

and xs to [3]. Again, this corresponds exactly to the semantics in Chapter4.
As before, this is not very efficient. Thelist [1,2,3] is examined three times,

and the sublist [2,3] is examined twice (once in the second equation, whereit

fails to match [], and once in the third equation, where it succeeds in matching
(&:xs)). The pattern-matching compiler can transform this into a form that
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examines the list and the sublist only once:

nodups
= \xs’’. case xs’’ of

NIL => NIL

CONS x’ xs’ =>
case xs’ of
NIL => CONS x’ NIL

CONS x xs => (IF (= x’ x)
(nodups (CONS x xs))
(CONS x’ (nodups (CONS x xs)))

(Herex’ is the variable that was called x in the second equation andy in the

third.)
The two kinds of pattern-matching, nested patterns and multiple patterns,

are closely related to one another. The pattern-matching compiler discussed
below works uniformly for both.

In the examples above,the patterns on theleft-handsides of the equations
do not overlap. Many people would rewrite thefirst definition in the form:

mappairs’ f [] ys =[]
mappairs’ f xs [] = []
mappairs’ f (x:xs) (y:ys) = f x y : mappairs’ f xs ys

In this case, the patterns overlap because both the first and the second
equation match against (mappairs’ f [] []).

Onereason for preferring mappairs' to mappairs is that it is considered to be

moreefficient. Indeed, if the simplest implementation of pattern-matching is
used, matching each equation in turn, thenit is slightly less work to match
against xs than to match against (x:xs). However, as we shall see, this

definition mayactually be /ess efficient when the pattern-matching compileris
used. Someother problemswith definitions like mappairs’ will be discussed in
Section 5.5.
The remainderof this chapter is organized as follows. Section 5.2 explains

the pattern-matching compiler algorithm. Section 5.3 presents a Miranda
program that implements the algorithm. Section 5.4 describes someoptimiza-
tions to the pattern-matching compiler. Section 5.5 discusses a restricted class
of definitions, called uniform definitions, which have useful properties.

Credit for the first published description of a pattern-matching compiler
goes to Augustsson, who usedit in the LML compiler [Augustsson, 1985].
Techniques similar to Augustsson’s have been discovered independently by
several researchers, including the authors of the Hope compiler [Burstall et
al., 1980]. The material presented here is derived partly from Augustsson’s
paperandpartly from original work by the author (Wadler).

It is also possible to derive the pattern-matching compiler from its
specification using program transformation techniques; see Barrett and
Wadler[1986].
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5.2 The Pattern-matching Compiler Algorithm

A Mirandafunction definition of the form

f Pia... Pin = Ey

f Pm --- Pmn = Em

can be translated into the enriched lambdacalculusdefinition

f = AU).. Mn ((Api,1’. --. APan’- Eq’) Uy... Up)

f] ((Apmi’. ... APmn’-Em’) uy ... Un)
{] ERROR

where the u; are new variables which do not occur free in any E;, and the E;’

and pi,’ are the result of translating the E; and pj; respectively. It was shown

how to do this translation in Chapter 4, using the TD translation scheme.
This section shows howto transform the definition of f into a form which

uses case-expressions, removingall use of pattern-matching lambda abstrac-
tions. The transformation applies to the entire body of the Au;...AU,
abstraction, except that we generalize slightly to allow an arbitrary expression
instead of ERROR.
For the sake of simplicity, we assume that constant patterns have been

replaced by conditional equations, as described in Section 4.2.1.

5.2.1 The Function match

Our goal, then,is to transform an expression of the form

((Api,1-- -APin-E1) Uy... Up)

vee (5.1)

(Pmt. .++ APmn.Em) Ur... Up)

I
e
e
e

into an equivalent expression which uses case-expressions rather than
pattern-matching lambdaabstractions.
The transformation is a bit complicated, and so we will use some new

notation to describe it. Specifically, we will use a function match, which takes
as its arguments the various parts of the input expression, namely the pj), Ei
and uj, and produces as its output the transformed expression. The function
match is similar to the TDandTE translation schemesintroduced in Chapter3,

except that both its input andits result are enriched lambda calculus expres-
sions. Furthermore, the double square bracket syntax becomes somewhat
cumbersome, so we use a syntax like Mirandainstead.
Here, then,is the call to match which wewill use to compile the expression
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(5.1) given above:

match (ur, anes Un]

[( (P11, men Pt], E; ),

( [pms. heey Pmnl, Em }

E

This call should return an expression equivalent to the expression (5.1), and
we take (5.1) as the definition ofmatch from a semantic pointofview.A call of
match takes three arguments: a list of variables, a list of equations and a
default expression. Each equation is a pair, consisting of a list of patterns
(representing the left-hand side of the equation) and an expression (repre-
senting the right-handside). Notice that the list of variables and eachlist of
patterns have the samelength.

Wewill also sometimeswrite calls ofmatch in the form

match us qs E

Here usis the list of argument variables (of length n), and qs is list of
equations(oflength m). Each equation qin qs has the form (psi, E;), where ps;
is the list of patterns on the left-hand side (of length n) and E,is the expression
on the right-handside.
As a running example, wewill use the following Miranda function:

demo f [] ys Af ys

demo f (x:xs) [] Bf x xs
demo f (x:xs) (y:ys) = C f x xs y ys

This function is similar in structure to mappairs, but it has been changed

slightly in order to simplify andclarify the followingexamples. The right-hand
sides use three unspecified expressions A, B andC.

Translating this into the enriched lambdacalculus usingTD gives:

demo
= \U1.AUz.AUg. ((Af.ANIL.Ays.A f ys) Uy Uz Us)

f] ((Af.A(CONS x xs).ANIL.B f x xs) uy U2 Ug)
f] ((Af.A(CONS x xs).A(CONS y ys).C f x xs y ys)Us Uz Us)
{] ERROR

where U1, Uz, Ug are new variable names which do notoccurfree in A, B orC.

Now,we transform the definition of demo, by replacing its body with a call of

match:

demo

= \uy.AU2.Aug. match [u1, U2, Us]
C ( ff, NIL, ys ], (Af ys) )

( [f, CONS x xs, NIL ], (Bf x xs) )s
( [f, CONS x xs, CONS y ys], (C f x xs y ys)) ]

ERROR

The following sections give rules to transform any call of match to an
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equivalent case-expression. We begin with rules for simple cases and proceed
to more general cases.

5.2.2 The Variable Rule

In the example above, we have the followingcall on match:

match [U1, U2, Us]

C (Cf, NIL, ys ], (A f ys) ),
( [f, CONS x xs, NIL , (Bfxxs) - ),
( [f, CONS x xs, CONS y ys], (C f x xs y ys) ) ]
ERROR

In this case, the list of patterns in every equation begins with a variable. This
may be reduced to the equivalentcall:

match [ua, Us]

[ ( (NIL, ys 1, (A us ys) ),
( [CONS x xs, NIL ], (B uy x xs) ),
( [CONS x xs, CONS y ys], (C us x xs y ys) ) ]

ERROR

This is derived by removing the first variable, us;, and in each equation
removing the corresponding formal variable, f, and replacing f by u: in the
right-handside of each equation.

The same method works whenever each equation begins with a variable,
even if each equation begins with a different variable. For example,

match [u2, Us]
[ (fx, NIL], (B x) ),

( [y, CONS x xs], (C y x xs) ) ]
ERROR

reduces to thecall,

match [us]

CC [NILL @ us) ),
( [CONS x xs], (C uz x xs) ) Jj

ERROR

(This particular example arises when compiling the definition of nodups.)
In general, if every equation begins with a variable° pattern, then thecall of

match will have the form:

match (u:us)

[ ( (v1:ps), E; ),

( (Vm:P8m), Em) ]
E
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This can be reducedto the equivalentcall:

match us

[ ( pss, Exfu/vi] ),

( pSm EmlwWnl )]
E

where,as usual, E[M/x] means ‘E with M substituted for x’. In order to avoid

too many subscripts, a Miranda-like notation. has been used here; for
example, we write (u:us) instead of [u;, ..., Un]. The general case corres-

ponds to the first example above, where u is U;, us is [U2,U3]}, V1 is f, ps1 is

(NIL, ys], and so on.

It is not hard to show that the rule is correct, that is, that the two match

expressions are equivalent. This follows from the definition of match and the
semantics of pattern-matching.

5.2.3 The Constructor Rule

The abovestep has left us with the following call ofmatch:

match [ue, us}

[ ( (NIL, ys } (A U4 ys) ),

( [CONS x xs, NIL }, (B uy x x8) ),
( [CONS x xs, CONS y ys], (C u: x xs y ys) ) }

ERROR

In this case, the list of patterns in every equation begins with a constructor.
This call is equivalent to the following case-expression:

case U2 of
NIL => match (us)

C ( fysl, (A uy ys) )]
ERROR

CONS ug us => match (us, Us, Ug]

{ (xs, NIL}, (B ur X xs) ),
( [x, xs, CONS y ys], (C u; x xs y ys))]

ERROR

This call is derived by grouping togetherall equations that begin with the same
constructor. Within each group, new variables are introduced corresponding
to eachfield of the constructor. Thus NIL, which has nofields, requires no new

variables, while CONS, which has twofields, introduces the variables us and

us. These new variables are matchedagainst the corresponding subpatterns of
the original patterns.

It may be useful here to look at a second example. In compiling the
definition of a function like nodups, one would encounterthe following call of
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match:

match [u1]
C ( (NIL), A ),

( [CONS x NIL], (B x) ),
( [CONS y (CONS x xs)], (C y x xs) ) ]

ERROR

This can be reduced to the equivalent expression:

case u, of

NIL => match []

C (0), A )]
ERROR

CONS u2 us => match [ue, us]

[ ( [x, NIL), (B x) ),
( ly, CONS x xs], (C y x xs) ) J

ERROR

Again,NIL. introduces no new variables (leaving a call ofmatch with an empty
list of variables), and CONS introduces two new variables, u2 and us.

Moregenerally, it may be the case that not all equations beginning with the
same constructor appear next to each other. For example, one might have a
call ofmatch such as:

match [u1]

[ ( [CONS x NIL], (B x) )
( [NIL], A )
( [CONS y (CONS x xs)], (C y x xs) ) ]

ERROR

It is always safe to exchange two equations that begin with a different
constructor, so we may rearrange the aboveto the equivalentcall:

_ Match [ui]
C ( (NIL), A )

( [CONS x NIL], (B x) ),
( [CONS y (CONS x xs)], (C y x xs) ) J

ERROR

which maybe transformed as before.
It may also bethecase that notall constructors appear in the original list of

equations. For example, a function definition such as:

last [x] = X
last (y:(x:xs)) = last (x:xs)

will result in the followingcall ofmatch:

match [u1]
[ ( [CONS x NIL], 4

( [CONS y (CONS x xs)], (last (CONS x xs)) . ]
ERROR
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This can be reduced to the equivalent expression:

case u; of
NIL => match [] [] ERROR

CONS uz ug => match [us, us)

[( Ex, NIL}, x )s
( [y, CONS x xs], (last (CONS x xs)) ) ]

ERROR

The case-expression muststill contain a clause for the missing constructor,

and the call of match in this clause will have an emptylist of equations. (From
the definition of match, we know that (match [] [] ERROR) is equivalent to

ERROR.)
Wenowdiscuss the general rule for reducing a call of match where every

equation begins with a constructor pattern. Say that the constructors are from
a type which has constructors c;, ..., Ck. Then the equations can be
rearrangedinto groups of equations qs:, ..., QSx, such that every equation in
groupqs; begins with constructorcj. (If there is some constructor ¢; that begins
no equation,like NIL in the last example above,then the corresponding group
qs; will be empty.) Thecall ofmatch will then have the form:

match (u:us) (qs; ++ ... ++ qs) E

where each qs; has the form:

L ( (cy ps’it):psia), Eve )

( (ci PS'im):PSim); Eim ) J

(++ is list append.) In this expression we have abbreviated the constructor
pattern (c p; ... p,)to the form (c ps), where ps standsforthe list of patterns

[P1, P2, ..., Pr). This call to matchis reduced to the case-expression:

case u of

C1 us’; => match (us’; ++ us) qs’; E

Ck US’k => match (us’« ++ us) qs’ E

where each qs’; has the form:

[ ( (ps’y1 ++ psi), Er ),

( (PS'um ++ PSim), Eim ) J

Here each us’; is a list of new variables, containing one variable for each field
in Cj.

Forinstance,in the example at the beginning of this section, qs2is

{ ( [CONS x xs, NIL }, (B us X Xs) )
( [CONS x xs, CONS y ys], (C us x xs y ys) ) ]
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and C2 is CONS,ps’2'1 is [x, xs], pS2,1 is [NIL], E21 is(B u1 x xs), ps’22is[x, xs],

ps22is[CONS y ys], and E22is (C u: x xs y ys). The corresponding qs’2is

[ ( [x, xs, NIL j, (B us x xs) )

( [x, xs, CONS y ys], (C ui x xs y ys) ) J

The correspondinglist of new variables, use’, is [us,Us].
This notation is, of necessity, rather clumsy. The reader will be pleased to

discover, in Section 5.3, that this transformation can be written as a functional

program whichis more concise and (with experience) easier to read.
Again, the correctness of this rule can be proved using the definition of

match and the semantics of pattern-matching.

5.2.4 The Empty Rule

After repeated application of the rules above, one eventually arrivesat a call
ofmatch wherethe variable list is empty, such as the following:

match []

EC (0), (A us us) ) J
ERROR

This reducesto:

(A U4 Us)

The correctness of this follows immediately from the definition ofmatch, since
Acannotreturn FAIL.

In general, the call ofmatch mayinvolve zero, one or more equations. Zero
equations mayresult if the constructor rule is applied and some constructor of
the type appears in no equations,as in last above. More than one equation can
result if some of the original equations overlap.
Thus, the general form ofa call of match with an emptyvariablelistis:

match []
C({} €: ),

({], Em) J
E

where m = 0. From the definition of match, this reduces to

E,J...g En QE

Further, we can often guarantee that none of E;, ..., Emcan be equal to FAIL.

In this case, the above match expression reduces to E; if m > 0 and to E if
m = 0. Section 5.4.2 discusses this optimization further.
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5.2.5 An Example

The rules given so far are sufficient to translate the definitions ofmappairs and
nodups to the corresponding case-expressions given in the introduction.

Notice that the variable names used in the introduction were chosen for

readability. In practice, the translation algorithm will usually pick new names.

The reader may wish to verify that the rules given above are indeed
sufficient to translate the definition

mappairs f [] ys [}
mappairs f (x:xs) [] {}
mappairs f (x:xs) (y:ys) f x y : mappairs f xs ys

to the equivalent:

mappairs
= AU;,.AUo.AUg.

case ue of

NIL => NIL

CONS us us => case ug of
NIL => NIL

CONS us uz = CONS (ui; U4 Us)

(mappairs ui Us U7)

The reader mayalso wish to check that the function nodups transformsto the
case-expression given in the introduction.

5.2.6 The Mixture Rule

The aboverules are sufficient for compiling most function definitions into
case-expressions. However,there is still one case which has not been covered.

This arises when notall equations begin with a variable, and notall equations
begin with a constructor; that is, when there is a mixture of both kinds of
equation. For example, here is an alternative definition of demo (similar in
structure to the alternative definition of mappairs):

demo’ f [] ys = Af ys
demo’ f xs [] = B f xs
demo’ f (x:xs) (y:ys) = C f x xs y ys

Converting this to a match expression and applying the variable rule to

eliminate f results in the following:

match [u2,u3}

[ ( [NIL, ys 1 (A U4 ys) ),

( [xs, NIL }. (B us xs) )
( [CONS x xs, CONS y ys], (C us x xs y ys) )

ERROR

Neither the variable rule nor the constructor rule applies to this expression,

because some equations begin with constructors and others with variables.
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This is where the third argumentto the match function is useful. The above
expression is equivalentto:

match [u2, us]

[(INIL, ys], (A uy ys)))
( match [u2, ug]

[(ixs, NIL], (B uy xs))]
( match [ue, us]

[(ICONS x xs, CONS y ys], (C uy x xs y ys))]
ERROR ))

Thatis, the equationsare brokeninto groups;first an equation beginning with
a constructor, then one beginning with a variable, and then one beginning
with a constructor again.If the equationin the first call ofmatch fails to match
the arguments then the value of the secondcall ofmatch is returned. Similarly,

ifthe equation in the second call does not match thenthethird callis returned,
andif the equation in the third call does not match then ERRORis returned.
The reader may verify that reducing the three calls of match using the

variable, constructor and basecaserules results in the following definition of

demo’:

demo’

= \ty.AUe.AUg.

case U2 of

NIL => (A uy Us)
CONS ug us =>

case ug of

NIL => (Bu; ud)
CONS ug uy =>

case Uo of

NIL => ERROR
CONS ugus =>

case ug of

NIL => ERROR

CONS ug uz => (C ui U4 Us Us U7)

This involves,four case-expressions. When the second and third arguments
are both non-emptylists then each list is examined twice, as compared with
once for the definition of demo. This confirms the claim made in the
introduction that ‘optimizing’ the definition of mappairs by transformingit
into mappairs’ can actually result in worse code.

It may be possible to devise a compilation algorithm that would produce
better code for this case. This could be done by simplifying a case-expression
that appears inside another case-expression for the samevariable. This sort of
optimizationis straightforward, althoughit requires considerably more book-
keeping. In this case, mappairs’ would compile to the same case-expression as
mappairs, although the compilation process would be rather more
complicated.
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In general, a call of match where some equations begin with variables and
some with constructors may be transformedas follows. Say we are given a call
of match of the form

match us qs E

The equationlist qs may be partitioned into lists qs1, .. ., qS,such that

QS = qSi ++ ... ++ QS

The partition should be chosen so that each qs; either has every equation
beginning with a variable or every equation beginningwith a constructor. (In
the example above, each qs; had length 1, but in general this need not be the
case.) Then thecall ofmatch can be reduced to:

match us qs; (match us qS2 ( ... (match us qs, E)...))

It is easy to use the definition ofmatch to showthatthis rule is correct.

5.2.7 Completeness

Withthe addition ofthe mixturerule,it is now possible to reduce any possible
call ofmatch to a case-expression. This can be seen by a simple analysis. Given
a call (match us qs E) then us will be either empty, so the emptyrule applies,
or non-empty. If us is non-empty then each equation must have a non-empty
pattern list, which must begin with either a variable or a constructor. Ifall
equations begin with a variable thenthe variable rule applies;if all begin with
a constructor then the constructor rule applies; and if some begin with
variables and somewith constructors then the mixturerule applies.

Further, define the‘size’ of an equationlist as the sum of the sizes ofall the
patterns in the equationlist. It can be seen that all four of the rules result in
calls of match with smaller equation lists. This guarantees that the algorithm
must eventually terminate.

5.3 The Pattern-matching Compiler in Miranda

This section presents the transformation algorithm as a functional program in
Miranda.

5.3.1 Patterns

First, it is necessary to give a data type for representing patterns.

pattern ::= VAR variable
| CON constructor [pattern]

variable ==
constructor == [char]
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For example,(x:xs) is represented by (CON “CONS“[VAR “x‘*, VAR “xs‘‘}).

Weneed two functions on constructor names. The function arity given a
constructorreturnsits arity, and the function constructors given a constructor
returnsa list of all constructors ofits type:

arity :: constructor —> num

constructors :: constructor —> [constructor]

For example (arity “NIL“) returns 0, and (arity “CONS") returns 2. Both

(constructors “‘NIL“) and (constructors “CONS“) return the _Iist

[“NIL“, “CONS"].

5.3.2 Expressions

Next, we need a data type for representing expressions:

expression ::= CASE variable [clause]
| FATBAR expression expression
I...

clause = CLAUSE constructor [variable] expression

For example, the case-expression:

case xs of

NiL => E;

would be represented by
CASE “*ys"*

[CLAUSE “NIL“ [] Ey’,
CLAUSE “CONS“ [“y"', “ys”’] E2’]

where E,', Ez’ are the representations of the expressions E;, E2. Similarly,
the expression

E, J E2

would be represented by

FATBAR E,' E2’

The ‘...° in the definition of the type expression stands for other
constructors used to represent other expressions, such as variables,
applications and lambda abstractions. We do not need to know anything
about these other expressions, except that there is a substitution function
defined for them.

Subst :: expression —> variable —> variable —> expression

For example,if E represents the expression (f x y), then (subst E “ui” “x")
represents the expression (f —u1 y).
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5.3.3 Equations

Anequationisa list of patterns paired with an expression:

equation == ([pattemn], expression)

Wewill use the letter q to denote equations, or else write (ps,e).
Weneed functions to determine if an equation begins with a variable or a

constructor. If it begins with a constructor, we also need a function to return

that constructor.

isVar :: equation —> bool

isVar (VAR v : ps, e) = True
isVar (CON c ps’ : ps, 6) = False

isCon :: equation —> bool
isCon q = ~ (isVar q)
getCon :: equation —> constructor
getCon (CON c ps’ : ps, e)= c

5.3.4 Variable Names

Weneed some way of generating the new variable names,u1, u2, and so on.

To do this we introduce a function makeVar that, given a number, returns a
variable name.

makeVar :: num —> variable

makeVar k = “_u” ++ show k

For example, (makeVar 3) returns ‘_u3’. Here we preface each newvariable
name with ‘’ to avoid it being confused with any variable already in the
program.

5.3.5 The Functionspartition and foldr

The implementation of the mixture rule uses a function called partition. The
call (partition f xs) returns a list ([xss,..., xSa] such that

XS = XSq ++ ... ++ XxSn, and such that f x = f x’ for any elements x and x’
in xs, i from 1 ton, and such that f x # f x’ for any elementsx in xs; andx’ in
xsii1, | from 1 to n—1. For example,

partition odd [1,3,2,4,1] = [ [1,3], [2,4], [1] ]

The function partition is defined as follows:

partition 2 (# —> **#) —> [*] —> [ [*] ]
partition f [] =[]
partition f [x] = [ [x] ]
partition f (x:x':xs) = tack x (partition f (x’:xs)), fx = fx’

= [x] : partition f (x’:xs), otherwise

tack x xss == (x : hd xss) : tl xss
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Incidentally, the following definition of tack is not equivalent to the above
definition:

tack x (xS:xss) = (x : xS) : xss

The difference between the twois closely related to the question ofstrict and
lazy pattern-matching, mentioned in Section 4.3.5 in connection with the
functionfirsts.

The pattern-matching compiler also uses the standard function foldr. The
functionfoldr is defined so that

foldr f a [x1, X2, .... Xn] = f x1 (f x2 (... (f Xn ad...)

For example, (foldr (+) 0 xs) returns the sum ofthe list of numbers xs. The
function foldr is defined by:

foldr in (# —> *# —> #4) —> *« —> [#] —> **
foldr f a [] =a
foldr f a (x:xs) = f x (foldr f a xs)

5.3.6 The Function match

Weare nowready to define the function match. Calls ofmatch have the form
(match k us qs def). Here, as in Section 5.2, us represents a list of variables,

qs representsa list of equations anddefis a default expression. The argument
k is added to help in generating new variable names; it should be chosen so
that for every i>k, (makeVar |) is a new variable notin us, gs ordef.

For example,theinitial call to match to compile the definitions of mappairs
would be:

match 3
"ut", "u2", "u3"]

[ ( [VAR "f", CON "NIL"[],
VAR "ys" }, Er),

( [VAR mer CON "CONS" [VAR " VAR "xs",

CON "NIL” [] ], Ez ),
( [VAR mere CON "CONS" [VAR " VAR "xs",

CON “CONS” {VAR ny”, VAR “ys"] 1 Es ) ]

elror

where E;, E2 and Es representthe three expressionson theright-handsides of
the equation, and error represents the expression ERROR.
The definition of match can now be derivedin a fairly straightforwardway

from the description given in Section 5.2. The type ofmatchis:

match :: num —> [variable] —> [equation] —> expression —> expression

The equations for the top-level ofmatch come from the empty rule and the
mixture rule.

match k [] qs def = foldr FATBAR def [e | ([],e) <— as ]
match k (u:us) qs def
= foldr (matchVarCon k (u:us)) def (partition isVar qs)
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The function matchVarCon is given a list of equations that either all begin
with a variableorall begin with aconstructor.It calls matchVar ormatchCon,as

appropriate.

matchVarCon k us gs def
= matchVar k us qs def, isVar (hd qs)

= matchCon k us qs def, isCon (hd qs)

The function matchVar implements the variable rule.

matchVar k (u:us) qs def
= match k us [(ps, subst e u v) | (VAR v : ps, e) <— qs] def

The functions matchCon and matchClause implementthe constructorrule.
Thecall (choose c qs) returnsall equations that begin with constructorc.

matchCon k (u:us) gs def
= CASEu [matchClause c k (u:us) (choose c qs) def | c <— cs]

where

cs = constructors (getCon (hd qs))

matchClause c k (u:us) qs def
= CLAUSE c us’ (match (k’+k)

(us’ ++us)

[(ps’++ps, e) | (CON c ps’ : ps, e) <— qs]
def )

where
k’ = arity c

us’ = [makeVar (i+k) | i <— [1..k’] J

choose c gs = [q | q <— qs; getCon q = c]

This completes the Miranda program for the pattern-matching compiler

5.4 Optimizations

This section discusses some optimizations to the pattern-matching compiler.
Section 5.4.1 describes an optimization which gives greater efficiency when
compiling overlapping equations. This involves furtheruses of [] and FAIL, and
Section 5.4.2 describes how these may often be eliminated.

5.4.1 Case-expressions with Default Clauses

If overlapping equations are allowed, then sometimes the pattern-matching
compiler described above may transform a small set of equations into a
case-expression that is much larger. For example, consider the function
defined by:

unwieldy [} []
unwieldy xs ys

A

B xs ys
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The pattern-matching compiler transformsthis into:

unwieldy = Axs.Ays. case xs of
NIL => case ys of

NIL => A
CONS y’ ys’ => xs ys

CONS x’ xs’ => xs ys

Here the expression (B xs ys) appears twice. If(B xs ys) were replaced by

a very large expression, the increase in size caused by the compilation process
could be very significant.

The problem can be avoided by modifying the rulesgiven in Section 5.2 so
that right-hand sides are never duplicated during the compilation process. In
fact, only one rule can cause right-handsides to be duplicated, the constructor
rule. This rule is modified as follows.

Recall that the constructor rule transformsa call ofmatch of the form:

match (u:us) (qSi ++ ... ++ qs) E

to a case-expressionofthe form:

case u of
C; US;’ => match (us;’ ++ Us) qs,’ E

Ck US,’ => match (us;’ ++ us) qs’ E

where qs, ..., 4S, and qsy’, ..., qs’ are as described in Section 5.2.3.

Normally E will be ERROR,butif the mixture rule is used then E mayitself
be a match expression containing right-hand sides; it is in this case that
duplication may occur. The modified rule prevents this by using [] and FAIL to
avoid duplicating E.
This is done by replacing the case-expression above with the equivalent

expression:

(case u of

Cy US;’ => match (us;’ ++ us) qs;’ FAIL

Ck US,’ => match (us;’ ++ Us) qs;’ FAIL)
Je

If we call the old case-expression C, then the new expression is (C’ ] E),

where C’ is formed by replacing each E in C by FAIL.It is clear that the new
expression is equivalent to the old expression and, as desired, E is not
duplicated by the new rule.
For example, using the new rule, the definition of unwieldy will now
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transform to:

unwieldy = Axs.Ays.
(case xs of

NIL => (case ys of
NIL => A
CONS y’ ys’ = FAIL) (a)

9) FAIL (b)
CONS x’ xs’ => FAIL)

| B xs ys (c)

This expression is a little larger than the previous version of unwieldy, but
now (B xs ys) appears only once. If (B xs ys) stands for a large expression,

then this new expression may be muchsmaller than theprevious one.
As an example of how this sort of expression is evaluated, considerthe call

(unwieldy NIL (CONS 1 NIL))

This is evaluated as follows. First, the outer case-expression is evaluated.
Since xs is NIL, this causes the inner case to be evaluated. Since ys is

(CONS 1 NIL), the inner case-expression returns FAIL; see line (a). So the
expressionafter the inner [] is returned, whichis also FAIL; see line (b). Thus,

the outer case-expression returns FAIL. So the expression after the outer[] is
returned; see line (c). This is (B NIL (CONS 7 NIL)), which is the value

returned bythecall of unwieldy.

5.4.2 Optimizing Expressions Containing {] and FAIL

It is often the case that all occurrences of FAIL, and its companion,[], can be
eliminated. Most of these optimizations depend on reasoning that FAIL can
neverbe returned by an expression, because in this case an occurrence of[]can
be eliminated.
Suppose that FAIL is returned by an expression E. Then it is necessary

(though notsufficient) that one of the following conditions must hold:

(i) FAIL is mentioned explicitly in E;
(ii) E contains a pattern-matching lambda abstraction, whose application

mayfail;

(iii) FAIL is the value of oneofthe free variables of E.

If the pattern-matchng compiler described in this chapter is applied
throughout, then no pattern-matching lambda abstractionswill remain in the
transformed program, and hence (ii) cannot occur. Since the programmer
presumably cannot write FAIL explicitly in his program, it is not hard
(although perhapstedious) to verify that (iii) cannot occureither.
These observations focus our attention on all the places where FAIL can be

introduced explicitly by the compiler. There are only two such places:

(i) In the translation of conditional equations (Section 4.2.6). Fortunately,
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wecan easily transform conditional equations to avoid the use of|] and

FAIL, and we show howto do so below.

(ii) In the variant of the pattern-matching compiler described in the last
section, where the introduction of [] and FAIL seems unavoidable. This

problem motivates the discussion in Section 5.5, in which we describe a

restricted class of function definitions that can always be compiled
withoutusing [] and FAIL.

5.4.2.1 Rules for transforming|] and FAIL
Wenowgive somerulesfor transforming expressionsinvolving|] and FAIL toa
simpler form.In all cases their correctness follows directly from the semantics
of [].

First, we may eliminate[] if FAIL cannot occur on theleft:

E, J} E2 = E
provided that E; cannotreturn FAIL.

For example,this rule is used to derive the optimized version of the empty
rule in Section 5.2.4.
Second, we may eliminate |] if FAIL definitely occurs on the rightorleft:

EQ) FAIL = E and FAIL E # E

Forexample, these rules canbe used to simplify the final definition ofunwieldy in
Section 5.4.1.

Third, there is the following useful transformation involvingIF:

(IF E; E2 Es) JE = IF E, Eo (Es f E)
provided that neither E; nor E2 can return FAIL.

This rule will be useful in simplifying conditional equations, which we now
attend to. ,

§.4.2.2 Eliminating [] and FAIL from conditional equations

The empty rule for match, which was described in Section 5.2.4, resulted in an

expression of the form

E, J... 7 Em Qe

Now,the &; are just the right-hand sides of the original equations. If a
right-hand side consisted of a set of guarded alternatives without a final
‘otherwise’ case, then it will have been translated to the form:

IF Gi A; (IF... (IF Gg Ag FAIL)... )

where g is the numberofalternatives (see Section 4.2.6). If there was a final
‘otherwise’ case (thatis, a final alternative with no guard, so that the right-
hand side neverfails), then it would have been translated to the form:

IF Gy As (IF... (IF Gg-y Ag-y Ag) 0s)
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Notice that G; and A; cannot be equal to FAIL, because they are only the
transformed versions of expressions written by the programmer.

If the right-handsideis of the first form, we can use the third rule of the
previous section repeatedly, followed by the second,to give:

(IF Gi A; (IF ... (IF Gg Ag FAIL)... )) DE

IF Gi Ay (IF oo (IF Gy Ay E)... )

If the right-handside is of the second form,it cannot return FAIL, and so we
can use thefirst rule of the previous section.

Application of these three rules will eliminate all occurrencesof [] and FAIL.
in the expression generated by the empty rule, and incidentally thereby give a
worthwhile improvementin efficiency.

5.4.2.3 Clever compilation
Using these rules, manyofthe instances of {] and FAIL remainingin a function
definition can be eliminated. Later we will consider compiling an expression
into low-level machine code. When wedothis, wewill see thatit is possible to

compile the remaining expressions involving [] and FAIL in a surprisingly
efficient way, so that [] requires no codeatall, and the FAIL simply compiles to
a jumpinstruction. This is discussed in Section 20.4.

5.5 Uniform Definitions

This section introduces a restricted class of function definitions, called

uniform definitions. There are two motivations for studying this class. First,
uniform definitions avoid certain problems with reasoning about function
definitions that involve pattern-matching. Second, uniform definitions are
easier to compile, and are guaranteed to avoid certain kinds ofinefficient

code.
We begin by discussing some problems with reasoning about function

definitions containing pattern-matching. Consider again the alternate
definition of mappairs:

mappairs’ f [] ys = {J
mappairs’ f xs [J = [J
mappairs' f (x:xs) (y:ys) = f x y : mappairs’ f xs ys

Now,consider evaluation of the expression:

mappairs’ (+) bottom []

where the evaluation of bottom wouldfail to terminate (for example, bottom
could be defined by the degenerate equation bottom = bottom). Matching
against thefirst equation binds f to (+) and then attempts to match [J against
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bottom. In order to perform this matchit is necessary to evaluate bottom, and
this of course causes the entire expression to fail to terminate.
On the other hand, considerevaluation of:

mappairs’ (+) [] bottom

Now matching against thefirst equation binds f to (+), matching [] against []

succeeds, and then ys is bound to bottom (without evaluating bottom). So the
expression returns [] instead of failing to terminate. This means that the
definition of mappairs’ is not as symmetric as it appears.

Further,if the first two equations ofmappairs’ were written in the opposite

order, the two expressions above would change their meaning: nowthefirst
would return [] and the second wouldfail to terminate. So even though the
first and second equations have the sameright-hand side, the order in which
they are written is important.

Theoriginal definition ofmappairs has none of these problems:

C}
C)
f x y : mappairs f xs ys

mappairs f [] ys
mappairs f (x:xs) []
mappairs f (x:xs) (y:ys)

Now the asymmetry between (mappairs (+) [] bottom) and

(mappairs (+) bottom []) is apparent from the equations. Further, changing
the order of the equations does not change the meaningofthe function.

In general, one might expect that whenever the equations do not overlap,
the order in which they are written does not matter. In fact, this is not true.
Considerthe definition:

diagonal x True False
diagonal False y True
diagonal True False z

1
2
3

The three equations of this definition are non-overlapping,that is, at most one

equation can apply. However, bythis definition, the evaluationof:

diagonal bottom True False

would return 1. On the other hand,if the order of equations in the definition

were reversed, so the third equation camefirst, then the above expression
would fail to terminate. So even though the equations do not overlap, the
orderin which they are written is important.

Clearly, it would be useful to have a test that guarantees that the order of
the equations does not matter. We nowdefinetheclass ofuniform definitions,
which have this property. The definition of ‘uniformity’ is designed so thatitis
easy to test whether a definition is uniform while applying the pattern-
matching compilertoit.
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DEFINITION

A set ofequationsis uniform ifoneofthe following three conditions holds:

(i) either, all equations begin with a variable pattern, and applying the
variable rule (of Section 5.2.2) yields a new set of equations that is
also uniform;

(ii) or, all equations begin with a constructor pattern, and applying the
constructor rule (of Section 5.2.3) yields new sets of equations that
are all also uniform;

(iii) or, all equations have an empty list of patterns, so the empty rule (of
Section 5.2.4) applies, and there is at most one equationin the set.  
 

Thatis, a set of equations is uniform if it can be compiled without using the
mixture rule (of Section 5.2.6), and if the empty rule is only applied to sets
containing zero or one equations. (It is easy for the reader to check that when
the empty rule is applied to more than one equation, the orderis relevant.)
Such equationsets are called ‘uniform’ because all equations must begin the

same way,either with a variable pattern or a constructor pattern, whereas the
mixture rule applies when some equations begin with variable patterns and
some with constructor patterns.

It is not difficult to prove the following:

 

THEOREM

If a definition is uniform, changing the order of the equations does not
change the meaningofthe definition. 
 

 
The proof is a straightforward induction, and is similar in structure to the
proof of correctness of the pattern-matching compiler that was outlined
(along withits definition) in Section 5.2.
This showsthat being uniform is a sufficient condition for the orderof the

equations not to matter. It is not a necessary condition, as is shown by the
function dummy:

1
1, xs = []

dummy []
dummy xs

Clearly, dummyis not uniform,but the order ofthe equations does not matter.

However,the following result shows that being uniform is indeed necessary if
one considers only theleft-handsides:

 

THEOREM

Ifthe left-hand sides ofa definition are such that the order ofthe equations
does not matter (regardless of the right-hand sides or condition parts of
the equations), the definition is uniform.  
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For example,the orderofthe equations would matter in dummy if the 1 in the
second equation were changed to a 2. Again, the proof of the theorem is a
straightforward induction. These two theorems give us a simpler way of
characterizing uniform equations, without referring to the pattern-matching
compiler. Namely, a definition is uniform if and onlyif its left-hand sides are
such that the order of the equations does not matter.

It is also possible to show that every uniform definition is non-overlapping.
The converseis not true: the function diagonal is non-overlapping but is not
uniform. Researchers have often referred to ‘lack of overlapping’ as an
important property, but perhaps they should refer to ‘uniformity’ instead,
since this is the property that guarantees that the order of equations does not
matter.

Uniform equations are related to strongly left-sequential equations as
defined by Hoffman and O’Donnell [1983], which are in turn related to
sequential equations as defined by Huet and Levy [1979].

Notice that although uniform equations are independentof‘top-to-bottom’
order, they still have a ‘left-to-right’ bias. For example, although the
following definition is uniform:

xor False x

xor True False

xor True True

x
True

False

the samedefinition with the arguments interchanged is not:

xor’ x False = x

xor’ False True = True

xor’ True True = False

Of course, we can always get aroundthis bias by using extra definitions to
rearrange the arguments. For example, we can define

xor’’ x y = xor y X

and then xor’’ is equivalent to xor’, and both xor’’ and xor have uniform
definitions.
The existence of left-to-right bias is due to the semantics of pattern-

matching that we have chosen. A different definition ofpattern-matching that
avoidsleft-to-right bias is possible; see Huet and Levy [1979].
There is a second reason why uniform equations are important: they

are easier to implement. The problems with implementing non-uniform
definitions have been referred to implicitly in previous sections. In summary,
they are as follows:

(i) The resulting case-expressions may examine some variables more than
once (see Section 5.2.6).

(ii) The compiler must use a modified constructor rule to avoid duplicating
the right-hand side of equations (see Section 5.4,1),
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(iii) The resulting expressions may contain [] and FAIL. Implementing such

expressionsefficiently requires additional simplification rules and/or a
special way of implementing FAIL using jump instructions (see Section
5.4.2).

The result is that the pattern-matching compiler must be significantly more
complicatedif it is to deal with non-uniform expressions. Further, thefirst

point above meansthat it may be difficult to know how efficient the code
compiled for a non-uniform definition will be.
An issue related to uniformity is the way conditionals are handled. In

languages such as SASL,conditional expressions and where expressions may
appear anywhere in an expression, and the semantics of each is defined
independently. In Miranda, conditions and where clauses are not separate
expressions, but rather must be associated with the right-hand side of
definitions. This increases the power ofMiranda, in some ways, but onlywhen
non-uniform definitions are used. Hence,a restriction to uniform equations

would alsoallow this part of the language to be simplified.

Onthe other hand, it should be pointed out that non-uniform definitions
are sometimes very convenient. For example, the following definition
reverseslists of length two, and leavesall otherlists the same:

reverseTwo [x,y] = [y.x]
reverseTwo xS = XS

The moststraightforward wayofrewriting this as a uniform definition is much

more long-winded:

reverseTwo [] = []
reverseTwo [x] = [x]
reverseTwo [x,y] = [y,x]
reverseTwo (x:y:Z:WS) = X:y:Z:WS

In this case, it is easy to see another way of rewriting reverseTwo, but, in

general, rewriting may not be so easy.
Functional language designers have long debated whether or not

definitions with overlapping equations should be allowed in functional
languages. As has been shown, it may be more appropriate to debate the
merits of uniform — as opposed to non-overlapping — equations. Several

arguments in favor ofrestricting definitions to uniform equations have been
raised here; butit is also true that non-uniform definitions are on occasion

quite convenient. No doubt the debate will continue to be a lively one.

* * *
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SIX

TRANSFORMING THE ENRICHED
LAMBDA CALCULUS

 

Having now defined the semantics ofpattern-matching, weare in a position to
show howto transform all the constructs of the enriched lambdacalculus into
the ordinary lambda calculus.

Section 6.1 shows how to transform pattern-matching lambda abstractions
into the ordinary lambda calculus, while Section 6.2 deals with let- and

letrec-expressions; Sections 6.3 and 6.4 deal with case-expressions andthe |]
operator.

6.1 Transforming Pattern-matching Lambda Abstractions

In order to translate Miranda function definitions involving pattern-matching
into the enriched lambda calculus, we had to introduce pattern-matching
lambdaabstractions as a new construct. In this section we will show how they
can be transformedinto the ordinary lambdacalculus. For each form of(Ap .E)

we will give an equivalent form that does not use pattern-matching lambda
abstractions.

In the case whenthe pattern is a variable there is nothing to do, because
no pattern-matchingis involved. The remaining cases are when the pattern is
a constant, a product-constructor pattern or asum-constructor pattern. These
are dealt with in the following three subsections.

6.1.1 Constant Patterns

This section shows how to transform a pattern-matching lambda abstraction
(Ak.E), with a constant pattern k, into the ordinary lambdacalculus. First of

104
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all, we recall the semantics of (Ak. E) from Section 4.3.2:

Eval] ak.E J} a = Eval E JJ if a = Eval k Jj
Evalfl Ak.E J} a = FAIL if a # Eval. k JJ anda ¥1
Evaifl Ak.E JL =2L

Operationally, (Ak. E) tests whether its argumentis equalto k; if so, it returns
E, if not it returns FAIL. This simple test can be carried out by the built-in IF
function, using the following transformation:

(Ak.E) = (Av.IF (= k v) E FAIL)

where v is a new variable which does not occurfree in E. It should be clear
(and can be proved, using the semantics of (Ak .E) and the semantics of IF and
=) that these two lambdaabstractions have the same meaning,and hence are
equivalent. Notice the wayinwhich weintroduce a new Avabstraction,so that
we can namethe argumentdirectly in its body.
As an example, consider the Mirandadefinition

flip O 1
flip 1 =

This will be translated to

flip = dx.( ((A0.1) x)
O ((A1.0) x)
| ERROR)

Now,transforming out the pattern-matching lambdaabstractionsgives

flip = dx.( ((av.1F (= 0 v) 1 FAIL) x)
0 ((v.IF (= 1 v) 0 FAIL) x)
ERROR)

It is now easy to verify that

filpO — ... > 1
filp1 —- ... +» 0
flip 2 — ... — ERROR

6.1.2 Product-constructor Patterns

Next we consider the case of (\p.£), where p is the product pattern
(t pr: ... Py), and tis a product constructorof arity r. As before, we recall its
semantics (Section 4.3.4):

Evalll A(t pr... p:)-E J} a = Evalaps...ap,.E J} (SEL-+t-1 a)

(SELa)

To implement this semantics, we invent a new function
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UNPACK-PRODUCT-t for each product constructor t, and use it in this
transformation:

(A(t p1 ... p).E) = UNPACK-PRODUCT-t (Apr. . .Apr.E)

The idea is that UNPACK-PRODUCT-t takes two arguments, a function and a
structured object, and applies the function to the lazily selected components

of the object. It is defined by the following semantic equation:

UNPACK-PRODUCT-t f a = f (SEL-t-1 a) ... (SEL-t-r a)

It can easily be shown that the transformation is valid, by comparing the
semantics of the expression before and after the transformation.

Theright-handside of the transformationstill has pattern-matching lambda
abstractions in it, but they are smaller than the one we began with, and
repeated use of the rules for transforming pattern-matching lambda abstrac-
tions will eliminate them.
As an example, consider the function addPair, which adds together the

elementsofa pair:

addPair = A(PAIR x y).+ x y

This will be transformed to

addPair = UNPACK-PRODUCT-PAIR (Ax.Ay.+ x y)

Wecancheckthatit gives the right results by reducing (addPair (PAIR 3 4)):

addPair (PAIR 3 4)
UNPACK-PRODUCT-PAIR (Ax.ay.+ x y) (PAIR 3 4)
(x.Ay.+ x y) (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
(Ay.+ (SEL-PAIR-1 (PAIR 3 4)) y) (SEL-PAIR-2 (PAIR 3 4))
+ (SEL-PAIR-1 (PAIR 3 4)) (SEL-PAIR-2 (PAIR 3 4))
+ 3 (SEL-PAIR-2 (PAIR 3 4))
+34
7b

e
d
u
u
d
y
i

6.1.3 Sum-constructor Patterns

Finally, consider the case of (ap.E), where pis a sum pattern (s p1 ... pr), and

s is a sum constructorofarity r. The semantics of such lambda abstractions
wasderived in Section 4.3.3:

Evalll A(s p: ... p).E 9 (6 a1... ad) = Evall[ Api...Apr.E JJ ar... ar
Eval[[ A(s p1 ... p).E 9 (s’ a1 ... ar)= FAIL if s # 3’
Eval. A(s p1 ... p).E BL =f

We can makea very similar transformation to the product-constructorcase,
leaving all the hard work to a new function UNPACK-SUN-s:

(A(s Pr... p,) .E) = UNPACK-SUN-s (Apt. . .Apr.E)
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The function UNPACK-SUM-s takes two arguments, a function (in this case
(Ap1...Apr.E)), and a structured object. It checks whetherthe objectis built

with constructor s: if not, FAIL is returned; if so, UNPACK-SUM-s takes the

object apart and applies the function (its first argument) to its components.
UNPACK-SUM-s is specified by the following semantic equations:

UNPACK-SUM-s f (Ss a; ... a) =f a1... a
UNPACK-SUM-sf (s’ a; ... ar) = FAIL ifs # s’
UNPACK-SUM-s f 1 =]

As an example,recall the Miranda definition of reflect:

reflect (LEAF n) = LEAF n
reflect (BRANCH ti t2) = BRANCH (reflect t2) (reflect tt)

Thisis translated to:

reflect = at.( ((A(LEAF n).LEAF n) t)
0) (A(BRANCH tt 12).BRANCH (reflect 2) (reflect t1)) t)
[) ERROR)

Now,applying the transformation gives:

reflect
= \t.( (UNPACK-SUM-LEAF (An.LEAF n) t)

Q (UNPACK-SUM-BRANCH (at? .at2. BRANCH (reflect t2) (reflect t1)) t)
(}] ERROR)

6.1.4 Reducing the Numberof Built-in Functions

The trouble with the transformations of the previous section is that they
introduce several functions associated with each constructor. In this section
we discuss the implementation of these functions.
A structured object will be represented by the implementation as an

aggregate, consisting of the componentfields together with a structure tag,
which distinguishes objects built by different constructors from each other
(see Section 10.3.1). It is this tag which can be used by UNPACK-SUM-s to
identify the constructor used.

In a type-checked system it is only necessary to distinguish objects from
other objects ofthe sametype, so the structure tag can be a smallintegerin the
range 1...n (where n is the numberofconstructors in the type). This means
that, instead of requiring an UNPACK-SUM-s function for each constructors,
it is only necessary to have a single family of functions UNPACK-SUM-d-rs,
whered is the integer structure tag which is recognized by UNPACK-SUM-d-rz,
andr, is the arity of s. In a similar way, the sum constructor functions can be
replaced with a family of functions PACK-SUM-d-rs, which take rs arguments
and construct an aggregate with r, fields and structure tag d.
We can perform an analogous set of replacements for the functions

associated with product types. UNPACK-PRODUCT-t can be replaced with
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UNPACK-PRCDUCT-n, wherer, is the arity of t (there is no need for a structure

tag here, since UNPACK-PRCDUCT does not examine it). Similarly, the
product-constructor functions can be replaced with PACK-PRCDUCT-n, and
the selector functions SEL-t-i can be replaced with SEL-rri. It is sensible to
keep PACK-SUM and PACK-PRCDUCT distinct because, having no structure
tag, objects of product type may havea different representation from objects
of sum type.

To summarize:

s (a sum-constructor function) is replaced by PACK-SUM-d-rs

UNPACK-SUM-s is replaced by UNPACK-SUM-d-rs
t (a product-constructor function) is replaced by PACK-PRCDUCT-r,

UNPACK-PRCDUCT-t is replaced by UNPACK-PRCDUCT-r;
SEL-t-i jis replaced by SEL-rri

where rs = arity ofs,

d = structure tag of s,

fm = arity oft.

For example, assuming that we implementlists with structure tag 1 for NIL
and 2 for CONS,then the following replacements would take place:

NIL is replaced by PACK-SUM-1-0
CONSis replaced by PACK-SUM-2-2

UNPACK-SUN-NIL is replaced by UNPACK-SUM-1-0
UNPACK-SUM-CONSis replaced by UNPACK-SUM-2-2

Likewise,if the type tree is declared as before:

tree ::= LEAF num | BRANCH tree tree

and LEAF and BRANCH areassignedstructure tags 1 and 2 respectively, the
following replacements would take place:

LEAF is replaced by PACK-SUM-1-1
BRANCH is replaced by PACK-SUM-2-2

UNPACK-SUM-LEAF is replaced by UNPACK-SUM-1-1
UNPACK-SUM-BRANCHis replaced by UNPACK-SUM-2-2

Finally, if the type pair is declared as before:

pair * ** ::= PAIR « +*

the following replacements would take place:

PAIR is replaced by PACK-PRODUCT-2
UNPACK-PRODUCT-PAIR is replaced by UNPACK-PRODUCT-2

SEL-PAIR-1 is replaced by SEL-2-1
SEL-PAIR-2 is replaced by SEL-2-2

Since functions with different types may be replaced by the same function
(for example, CONS and BRANCHareboth replaced by PACK-SUM-2-2), these
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replacements should not be performed until after type-checking. For the
same reason, none of these replacements is possible for a system that

performs run-time type-checking (see Section 10.5).

6.1.5 Summary

Figure 6.1 summarizes the transformations developed in this section, and
Figure 6.2 gives the semantics for the two new families of functions we
introduced in order to perform the transformations.

 

(ak.E) = (dv.IF (= k v) E FAIL)
where

v

isanewvariable that does not occurfree
in E

(A(t pr... Py)-E) = (UNPACK-PRODUCT-t (Ap;.. .Apn-E))
(A(s Pr... Pr.) -E) (UNPACK-SUM-s (Ap; oe - APr,. E))

where k is a constant ,
t is a product constructor ofarity r
8 is asum constructor of arity rs   

Figure 6.1 Transforming outpattern-matching lambda abstractions

 

UNPACK-PRODUCT-t f a = f (SEL+-1 a) ... (SEL+t-r a)

UNPACK-SUM-s f (8 a1... a) = fay... ar
UNPACK-SUM-s f (s’ a; ... a) = FAIL if s # 8’
UNPACK-SUM-s f1 =f

where t is a product constructorofarity re
s is a product constructor ofarity rs   
 

Figure 6.2 Semantics of UNPACK-PRODUCTand UNPACK-SUM

6.2 Transformingletand letrec

In Section 4.2.9 we introduced a new complicationto let(rec)-expressions, by
allowingtheleft-hand side ofdefinitions to be an arbitrary pattern rather than
asimple variable. In this section we show how to transform these generalized
lets and letrecs into successively simpler forms, arriving eventually at the
ordinary lambdacalculus. .
Rather than defining the semantics oflet and letrec directly, as we did for

pattern-matching lambda abstractions, we will regard the transformations
described in this section as a definition of their semantics. To define their
meaning in a more direct way would require more mathematical machinery
than we haveavailable in this book.
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Webegin by sketching a new problem whichis introduced by allowing
arbitrary patterns on the left-handside ofdefinitions. This leads us to define a
class of patterns, the irrefutable patterns, which do not suffer from the
problem. Then, before embarking on the transformations themselves, we
give a ‘map’to explain their structure.

6.2.1 Conformality Checking and Irrefutable Patterns

Allowing arbitrary patterns on the left-handside of a definition introduces a
new and somewhatsubtle complication. Consider the expression

let (CONS x xs) = Bin E

Here, the pattern (CONS x xs) appears on theleft-handside ofthe definition.
This raises the nasty possibility that B might evaluate to NIL instead of

(CONS B; Bz2), in which case the pattern would not match, and somesort of

error should, presumably, be reported. This requires that a conformality
check be made,to ensure that B conformswith the specified pattern.

Conformality checking will carry some implementation cost, so we would

like to avoid it whenever possible. It can be avoided in precisely those cases

when the pattern match cannot fail; for example, simple product patterns.
However, there are some nested patterns which cannot fail also, which
motivates the following definition:

 

DEFINITION
A pattern pis irrefutable if it is
(i) either a variable v
(ii) or a product pattern of form (t p1 ... pr) where p1, ..., prare irrefut-

able patterns.

Otherwise the pattern is refutable.   
 

In other words, the irrefutable patterns consist of arbitrarily nested product

constructors with variables at the leaves. These patterns cannotfail to match
in a type-checked implementation. Variables and simple product patterns are
just two examples ofirrefutable patterns.

However,even a single constant or sum constructor (evenifnested insidea

product pattern) makes the pattern refutable,since there is a possibility thatit

may not match. We need to perform conformality checking for refutable
definitions only.

6.2.2 Overview oflet and letrec Transformations

Weare nowreadyto describe the various transformationsto simplify let(rec)-
expressions. While few are complicated, they are quite numerous, so we

begin by offering a ‘map’to aid in navigation through therest of the section.
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For a start, we establish the following terminology:

(i) Theleft-hand side of each definition of a simple let(rec)-expression must
be a variable.

(ii) The left-hand side of each definition of an irrefutable \et(rec)-expression
must be an irrefutable pattern.

(iii) The left-hand side of each definition of a generallet(rec)-expression may
be any arbitrary pattern.

Withtheaid of this terminology, Figure 6.3 depicts the transformations which
will be described below,giving the appropriate section numberin brackets.

Forthe reasonsdiscussed in Section 3.2.4, there are two possible formsinto
which we may wish to transform the program, which differ only in their
treatmentoflet andletrec:

(i) We may transform the program into the ordinary lambdacalculus; this
gives the simplest resulting program.In this case, generallets are trans-
formed into the ordinary calculus via irrefutable lets and simplelets.
General letrecs, on the other hand,arefirst transformed into irrefutable
lets via irrefutable letrecs, and then use the let transformations.

(ii) We may transform the program into the ordinary lambda calculus
augmented with simple let(rec)-expressions; the resulting program is

slightly more complicated, but can be implemented more efficiently
(Section 3.2.4). In this case, general lets are transformed onlyinto simple
lets, and general letrecs are transformed into simpleletrecs, via irrefutable

 

 

 

 

 
 

 

 
 

 
      
 

 

letrecs.

Dependency analysis (6.2.8)

Y
Generallet(rec) expressions

| Conformality transformation (6.2.7) |

Irrefutable | Irrefutable
lets (6.2.6) letrecs

| (6.2.4) 1 (6.2.5)

Simple Simple
lets letrecs

| (6.2.3)

Ordinary
lambda calculus      

Figure 6.3 Map of let(rec) transformations
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Both possibilities are catered for by the transformations shownin Figure 6.3.
In what follows, when considering let-expressions we assume that they

contain only one definition. This gives no loss of generality, since a let-
expression with multiple definitions is trivially equivalent to a nested set of
single-definitionlet-expressions.
The followingsectionsdealwith the transformationsdepicted in Figure 6.3.

6.2.3 Transforming Simple lets Into the Ordinary Lambda Calculus

Once wehavearrived at an expressionin whichall let-expressionsare simple,
it is easy to remove them altogether, using the transformation given in Section
3.2.1:
 

ltv=BinE = (av.E)B
  
 

For example,

let x = 4 in (+ x 6) = (Ax.+ x 6) 4

6.2.4 TransformingIrrefutable lets into Simple lets

Considerthe case of an irrefutable let-expression, of the form

letp=BinE

wherep is irrefutable. Since the pattern on the left-handside of the definition
is irrefutable, it must either be a variable or a product pattern. In the former
case there is nothing to do, since the let-expression is already simple. In the
latter case,the let-expression takes the form

wherethe pare irrefutable patterns, and Band E are expressions. Wecan now
make the following transformation:
 

let v= 8B
in (let p1 = SEL-t-1 v

let (tpi: ...p) =BinE

Pr = SEL-t-r v
in E)

wherevis a new variable that does not occurfree in E.    
The pjare boundto selector functions applied to v, whichis in turn bound to

B. Repeated application of this transformation will eliminate all non-simple
irrefutable let-expressions.
To take an example, the expression

let (PAIR x y) = Bin E
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would be transformed to

let v = B in (let x = SEL-PAIR-1 v
y = SEL-PAIR-2 v

In ©)

Notice that if neither x nory ts evaluated in E, then B will not be evaluated

either, so the transformation implements lazy product-matching. Lazy
product-matching ts just as much of an advantage here as it was in function
definitions. For example, we could recode the function‘firsts’ from Section
4.3.5 in the following way:

firsts [] = (0, 0)
firsts (x:xs) = (x, ev), odd x

= (od, x), even x
where
(od, ev) = firsts xs

Wewould expect this definition to behave just like that ofChapter4, so thatif
lazy product-matching ts used for function definitions then it should also be
used forlet(rec)-expresstons.

(Note: an alternative transformation would have been possible in this
section, namely:

kt p = Bin E& = (aAp.€) B

where p is an irrefutable pattern. From a semantic point of view, this ts
entirely equivalent to the transformation used above. However, for the
efficiency reasons outlined in Section 3.2.4, we prefer to stay in the world of
let-expressionsas long as possible; hence our choice.)

6.2.5 TransformingIrrefutable letrecs into Simple letrecs

The transformation from letrec involving only irrefutable definitions into a
simple letrec is very similar to that for let-expressions:
 

letrec (tp: ...p) =B = ltetrecv = 8B
<other definitions> Pp: = SEL+-1 v

in E woe

pr = SEL-t-r v
<other definitions>

in Ee

wherev is a newvariable that does notoccurfree in E or B.   
All the transformed definitions must be in a single tetrec, to ensure that

variables in the patterns p; are in scope in B. The ‘<other definitions>’ simply
takes into accountthe fact that the letrec may contain multiple definitions, and
this transformation should be applied to each ofthem separately.
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Repeated application ofthe transformationwill simplify the pisuccessively,
until the letrec is simple.

6.2.6 TransformingIrrefutableletrecsinto Irrefutable lets

In showing how to eliminate letrec-expressions altogether, we could take as
our starting-point the simple letrec-expressions produced by the transform-
ation described in the preceding section. However,it is slightly more efficient
to start from an earlier stage, the irrefutable letrec-expressions.

First of all, we recall from Section 3.2.2 how to transform a simple letrec
containing only a single definition:

(letrec v = B in E) = (let v = Y (Av.B) in E)

Wesimply use the built-in function Y, which was introducedin Section 2.4, to

make the definition non-recursive. Now that the definition is non-recursive,
we canuselet instead ofletrec, and the job is done.

Whenthere is more than one definition, we apply the following sequence of
two transformations.First of all, we apply the transformation

letrec p:) = B; = letrec (t pi... Pn) = (t Bi... Bn) in E
 

Pn = Bn

in E

wheret is a product constructorofarity n.   
In other words, we simply packageuptheright-handsides into a tuple and

match it against a product pattern on the left-hand side. Furthermore, since
the p, are irrefutable, the pattern (t p; ... pn) is also irrefutable.

Nowtheletrec containsonly a single definition with an irrefutable pattern
on its left-hand side, and we can proceed by analogy with the simple case
described above,using Y. This analogy yields the following transformation:
 

‘lerec p= Bin E = let p = Y (Ap.B) inE

wherep is an irrefutable pattern.   
Y is used exactly as before, to make the definition non-recursive. The new

feature is the use of a pattern-matching lambda abstraction, where we used
only a simple lambda abstraction before. The resultis a let-expression with an
irrefutable pattern on its left-hand side, which is therefore amenable to the
transformationsofSection 6.2.4.
To see this transformation in action, consider the following |letreo-

expression:

letrec x = CONS 1 y
y = CONS 2 x

in x
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It defines theinfinite list [1,2,1,2,.. .,]. Applying the first transformation, we
packageup the definitions into one:

letrec (PAIR x y) = PAIR (CONS 1 y) (CONS 2 x) in x

Now,applying the second transformationgives:

let (PAIR x y) = Y (A(PAIR x y).PAIR (CONS 1 y) (CONS 2 x)) in x

It is vital that the pattern-matching lambda abstraction should use lazy
product-matching. If it were to use strict product-matching instead, the
expression would yield | rather than [1,2,1,2, .. .,]. In fact, mutual recursion
cannotbe implementedusingYwithoutsome form oflazy product-matching.
Using the transformations for let-expressions and pattern-matching lambda

abstractions, we could complete the transformation of the current example as
follows:

(AV. (Ax. AY.x) (SEL-PAIR-1 v) (SEL-PAIR-2 v))
(Y (UNPACK-PRODUCT-PAIR (Ax.ay.PAIR (CONS 1 y) (CONS 2 »))))

This expression is not a prettysight, butit gives the correct answer(thatis, the
infinite list [1,2,1,2,1,2,. . .,]).

It should be clear from this example that implementingletrec using tuples
carries a run-time cost, both to build the tuple and to take it apart. This is one
of the reasons why moresophisticated implementations implement simple
let(rec)s directly (see Section 3.2.4 and Chapter14).

6.2.7 Transforming Generallet(rec)s into Irrefutable let(rec)s

In Miranda, arbitrary patterns may appear on the left-hand side of a
definition. For example, consider the following Miranda definition of the
function head, which extracts thefirst elementofa list:

head xs = y

where (y:ys) = xs

The pattern (y:ys) appears on the left-hand side of the definition in the
where-clause. But this raises an awkward question: what would happenif the
pattern (y:ys) did not match the result of evaluating xs? In particular, what

would happenifwe evaluated (head [])?
It is clearly unacceptable for the system to proceed in ignorance that

anything is wrong, so it is necessary to check that xs matches the pattern,
rather than assumethatit always will. This is called the conformality check,
since it checks that xs conforms to the pattern.

Notice that the possibility of a mismatch onlyarises in the case of refutable
patterns, involving sum-constructor patterns or constants. The irrefutable
patterns, involving variables and product-constructor patterns only, cannot
fail to match (in a type-checked implementation).
The translation into the enriched lambda calculus does not affect the
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problem of conformality checking. For example, the definition of head
translatesto:

head = Axs.(letrec (CONS y ys) = xs in y)

The pattern (CONSy ys) is refutable, and mayfail to match. The problem
applies equallyto lets and letrecs.
Having decided that conformality checking is essential, the next question

is: when is the conformality check performed? There ate two possible
answers:

(i) Whenthe evaluation of the entire let(rec)-expression begins.

(ii) Onthefirst occasion wheneithery orys is used.

To illustrate the consequences of this choice, consider the (rather
contrived) expression

let (CONS y ys) = NIL in 6

Thefirst answerspecifies that the evaluation of this expression should cause
an error, while the second specifies that it should return 6.

In keeping with its lazy approach, the semantics of Miranda specifies the
second of the two answers, and so this property should be inherited by
let(rec)-expressions. Howis this to be achieved? The simplest way seemsto be

to transform the expression

let (CONS y ys) = B in E

into

let (PAIR y ys) = (((A(CONS y ys).PAIR y ys) 8) [] ERROR) in E

andrely on the transformation of Section 6.2.5 to cope with the simple product
pattern(PAIR y ys). Theexpressionon the right-handsidewill evaluate B, check
that it is an object constructed with CONS,take it apart, and construct a pair

cohtaining its twocomponents. Thesecomponents arethenboundtoy andysusing

a simple product pattern on the left-hand side.
If it is not an object constructed with CONS, then the application of the

pattern-matching lambdaabstraction to B will return FAIL, and [] will retum its
second argument, namely ERROR.
There are two points to notice aboutthis transformation:

(i) No conformality check will be made if neither y nor ys is used in E,

because the lazy product-matching ensures that the right-handside ofthe
definition is not evaluated unless at least one of the components of the
tuple is used.

(ii) The conformality check is made at most once. The evaluation of y or ys

will cause the evaluation of the right-handside of the definition, at which
point the conformality check will be made, and the tuple built. Now,
further use of y or ys will simply access the componentsofthis tuple.
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It seems hard to improve on these two properties, so we now generalize the
method to handleanytet(rec)-expression. Given a definition of theform

p=B

wherep is a refutable pattern, we use the following transformation:

p=B = (t v1... Va) = ((Ap.(t v1 ... Vp)) B) J ERROR

wheret is a product constructorofarity n. The resulting definition now has an
irrefutable pattern on the left-hand side. We call this the conformality
transformation, and it applies separately to any definition in a ‘et or fetrec
which has a refutable pattern on the left-hand side.
The variablesv; ... Va are simply the variables that appear anywherein the

pattern p. This suggests a new definition.

 

DEFINITION

For any pattern p, the set of variables of p, abbreviated Var(p), is defined
thus:

if pis a variable v, then Var(p) = {v}
if pis a constant k, then Var(p) = {}
if pis a structured pattern (c pi ... pr),

then Var(p) = Var(p:) U... U Var(pr)   
Now weseethat the variables v; ... vn in the conformality transformation
are simply the variables of p, namely Var(p). Hence, we can express the
conformality transformationas follows:

 

p=B = (t vy... Vn) = ((Ap.(t v1... Vn)) 8) J ERROR

where {¥1, ..., Va} = Var(p),

t is a product constructorof arity n.   
We would like to use the pattern-matching compiler of Chapter 5 to

transform the new right-handside of the definition to an efficient form, and a

small modification to the conformality transformation will make its result
directly amenable to such transformation:

 

p=B = (t vi... Vn) = letv=B
in ((Ap.(t vi... Vn) Vv) ] ERROR

where { V1, wo wy Vn } = Var(p),

tis a product constructorofarity n,
vis a new variable whichis distinct from all the v;.   

The pattern-matching compilerrelies on the fact that the pattern-matching
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lambda abstractions are applied to variables only, which we achieve by
binding B to a new variable v using a let-expression. Now the expression

((Ap.(t vi... Vn) v) I] ERROR

can be transformed by the pattern-matching compiler.

There are some unexpected consequences of the rule that the complete
conformality check is performed whenever any variable from the pattern is
used. For example, consider the following Miranda function definitions:

flx=ywheey =x

(hit) = [J
f2 x = y where (y,(h:Q) = (,[]})

f8 x = y where (y,z) = (x[]})
(hit) = z

Given the rules of this section, f1 will behave as the identity function,

ignoring the mismatch between(h:t) and []. The function {3 will behave in the

same way;it binds z to [], but ignores the mismatch between (h:t) and z.
However, f2 will always return ERROR, because when extracting y from the

pair it will perform a conformality check on the whole pattern, and discover
that (h:t) does not match []. Nevertheless, the programmermightbe forgiven

for thinkingthatf1, f2 and f3 should all behave in the same way.
In this section we have given a complete and consistent semantics for

refutable patterns in let(rec)s, which we believe accurately describes the
(current) semantics of this part of Miranda. As we have seen, however, the
semantics gives results which may occasionally be unexpected, which is only
to say that it is not the only possible choice. The examples of unexpected
behavior were suggested by Simon Finn, of the University of Stirling.

6.2.8 Dependency Analysis

The transformation ofwhere-clauses given in Section 4.2.8 does not introduce
any let-expressions. The reasonforthis is thatall definitions in a where-clause
may potentially be mutually recursive, so we assumethe worst and generate a
single letrec-expression. Similar remarks apply to the overall scheme
describedin Section 3.3.
This is often unnecessarily pessimistic, and in this section we show how to

replaceletrecs with lets wherever possible, and how to sort mutually recursive
definitions into minimal groups. For example, consider the following letreo-
expression:

letrec x = fac z
fac = An.IF (= n 0) 1 (* n (fac (— n 1)))
z =4
sum = Ax.Ay.IF (= x 0) y (sum (— x 1) (+ y 1))

in sum x z
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An equivalent expression, which exposes moreinformation, would be

let

z=4

in letrec
sum = Ax.Ay.IF (= x 0) y (sum (— x 1) (+ y 1))

in letrec
fac = An.IF (= n 0) 1 (# n (fac (— n 1)))

in let
x = fac z

in
sum Xx Z

In this latter form, the structure of the expression exposes clearly which
definitions depend on each other, and the use ofletrec is restricted to the
occasion whereit is actually necessary. Even whenrecursion is being used,
separate groupsofrecursive definitions are in separate letrecs (so that sum and
fac are in separateletrecs).

This transformationis called dependency analysis, since it sorts definitions
into groups according to the dependency relationships which hold between
them.It is closely related to dataflow analysis techniques used in conventional
compilers.

It is highly desirable to perform dependency analysis, for two reasons:

(i) Let-expressions can be implemented considerably moreefficiently than
letrec-expressions, so the use of the latter should be avoided unless
recursionis actually present.

(ii) Type-checking may be impossible if dependency analysis is not
performed (see Chapter 8). Furthermore, other steps such as strictness
analysis (see Chapter 22) become considerably moreefficient if depen-
dency analysis is performed first.

Wewill now describe the dependency analysis algorithm in more detail,
using the following exampleas anillustration:

letrec

m
o
r

®

i

a
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z
r
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n

=
)
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b
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©

in

The example is a simple letrec, but the algorithm requires only minor
modification to deal with general let(rec)s.
The algorithm divides into four steps, which are performed separately on

each letrec.
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(1) For each letrec construct a (directed) graph in which the nodes are the
variables bound by the letrec. There is an arc from one variable, f, to
anothervariable,g,ifg occurs free in the definitionoff(i.e. the definition
of f depends directly on g). We call this graph the dependency graph.
Figure 6.4 shows the dependency graph for our example.

 

 

  

|
_    .   
 

Figure 6.4 Example dependency graph

(2) Now,twovariables x and y are mutually recursiveifthere is a path (direct
or otherwise) in the dependencygraph from x to y and from y tox. Butthis

is precisely the defimition ofastrongly connected componentofa graph, so
the next phaseis to discover the strongly connected components of the
dependency graph. There are a numberofstandard algorithmsfor doing
this (see, for example, Ahoetal. [1974, 1983a] and Dijkstra [1976]).

In our example,the strongly connected components are

{c,d} {f.g,h} {b} {a}

(We put non-recursive variables, such as a and b, in a singleton

component.) Each of the variables in each group depends on the others,
andtheseare the largest such groups.

(3) Next we needto sort the stronglyconnected componentsintodependency
order. In our example abovethis is to ensure that the let-expression fora
will enclose the let-expression for b. First of all we coalesce each strongly
connected component to a single node, forming a new graph (the
coalesced graph) which is guaranteed to be acyclic. Figure 6.5 shows the
effect of this operation. Now we can perform a topologicalsort to put
them in dependency order(this is again a standard algorithm [Ahoetal.,
1983b]). A topologicalsort puts the nodes ofan acyclic graphinto a linear
order such that no nodehas anarc to an earlier node. Alternatively, a
suitable strongly connected componentalgorithm (such as those given
above)will produce the components in topologically sorted order,so that
a separate topological sort would not be necessary.
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Figure 6.5 Example coalescedgraph

A possible result of the topological sort in our exampleis

{c,d}, {b}, {fig.n}, {a}

Thistells us thatit is acceptable for the definition of {a} to enclose that of

{f,g.h}, which encloses that of {b}, which encloses that of {c,d}. An
alternative result is

{cd}, {tg.h}. {b}, {a}
Thefact that more than oneresultis valid reflects the lack of dependency
between {f,g,h} and {b}.

Non-recursive definitions will be singleton components which do not
point to themselves in the dependency graph; we will producelet-
expressionsfor these.

(4) Finally we generatea let- or tetrec-expression for each definition groupin
the topologically sorted order. For our example this would generate the
following expression:

let
a =

in let
b =...a...

in letrec
f =...g...h...a
g —...f...
h =...g...

in letrec
c =...h...b...d
d =...C...

in

6.3 Transforming case-expressions

The translation scheme of Chapter 5 made use of the case-expression

construct, and we now demonstrate how case-expressions may be
transformed into an expressionin the ordinary lambdacalculus.
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Werecall that a case-expressionis of the form

case v of
Ci Vit... V4.0 => E,

Ca Vn,1 soe Vawtn => En

where Ci, ..., Cn are a complete family of constructors of a structured type, v
is a variable and the E, are expressions.

Asusual, there are two possibilities to consider, depending on whetherthe
constructors in the case-expression are those ofa sum type or a product type.

6.3.1 Case-expressionsInvolving a ProductType

The general case-expression for product types is of the form:

case v of
t Va... Vp => E,

where t is the constructor of a product type. This case-expression is
degenerate, since there is no need to test v to determine which caseto pick, so

weshould perform lazy product-matching. We can therefore use the follow-
ing transformation:

case v of = UNPACK-PRODUCT-t (Av;..“AWy- Es) v
tv, ...V, = €E,

remembering that UNPACK-PRODUCT workslazily. For example, consider
the following Miranda definition of addPair:

addPair (xy) = x + y

 

   

Translated into the enriched lambda calculus, and transformed into case-

expressions, this becomes

addPair = Aw.(case w of (PAIR x y) = (+ X y))

Nowtransforming the case-expression gives

addPair = Aw. (UNPACK-PRODUCT-PAIR (Ax. ay.+ x y) w)

anda final y-reduction is now available, givingfinally

addPair = UNPACK-PRODUCT-PAIR (Ax.Ay.+ X y)

6.3.2 Case-expressions Involving a Sum Type

Now suppose that the constructors are those of a sum type. Then the case-
expressionis of the form:

case v of

$1 Via... Ving = Es

Sn Vn,1 eee Vata => E,
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where S;, ..., Sn are the constructors of asum type T. Wecan transform this
case-expression using the following transformation:

 

case v of

81 Vi... Ving = Es

Sn Vn, eee Van > En

= CASE-T v (UNPACK-SUM-S; (AVi,1.. .AVis,-E1) V)

 (UNPACK-SUM-Sp (AVnt.. -AViin-En) V)   
The function CASE-T,ofwhich there is one for each sum type T, selects one

of its n arguments depending on the constructor used to build its first
argument:

CASE-T (S: a1... @q) bi... b} ... Dn = Dy
CASE-T | bi... bi... Dn = L

where T is a sum type. Operationally speaking, CASE-T evaluatesits first
argument and returns the argument correspondingto the constructor.
Wecould use CASE-Tto translate the definitionofreflect, for which we have

the following case-expression (see Section 4.4):

reflect = At.case t of

LEAF n => LEAF n

BRANCH tt t2 => BRANCH (reflect t2) (reflect t1)

Applying the transformation gives:

reflect
= \t. CASE-tree

t

(UNPACK-SUM-LEAF (An.LEAF n) t)
(UNPACK-SUM-BRANCH

(Att .At2. BRANCH (reflect 12) (reflect t1)) t)

This is a more satisfactory definition than the one we produced in Section
6.1.3, because it will execute in fewer reductions, and because no check for

FAIL need be made by CASE-tree. Furthermore, UNPACK-SUM-LEAF is
guaranteed only to be applied to leaves, so it need not check the constructorof
its argument, thus giving a further gainin efficiency. Similar remarks apply to
UNPACK-SUM-BRANCH.

6.3.3 Using a let-expression Instead of UNPACK

The transformations given in the previous sections both introduced a new
lambda abstraction. For all but the simplest implementations, simple tet-
expressions can be implemented much more efficiently than lambda
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abstractions (Section 3.2.4), so in this section we will see how to transform
case-expressionsinto simple let-expressionsinstead.

In the case of a product type, we use the following transformation:

 

 

case v of = let v; = SEL-+-1 v

t V4 ...V, > E; eee

v, = SEL-+t-r v

in E;   
This transformationis precisely equivalent to the one given before, as can be
confirmed by transforming the let-expression into lambda abstractions using
the transformation that defines simple let-expressions (Section 3.2.1). The
addPair example would then become

addPair = Aw. (let x = SEL-PAIR-1 w
y = SEL-PAIR-2 w

in (+ x y))

This looks more complicated than the previous version, but it is more
efficient, because addPair can now be applied in fewer reductions.

This idea can be applied to the sum-constructorcaseaswell, by applying the
transformation

 

case v of

S41 Via... Vary = Es

Sn Vn... Vn => En

= CASE-T v (let vi, = SEL-SUM-s;-1 v

Vig = SEL-SUM-S;-r v
in E,)

(let Vai = SEL-SUM-Sp-1 v

Vig, = SEL-SUM-Sirfn V
in E,)   

Theselector function SEL-SUM-s-i selects the ith componentofan object built
with the sum constructor s. (Rememberthat the selector functions SEL-t-i
apply only to objects of product type.) Again, the correctness of this trans-
formation can easily be shown using the equations for CASE-T and the
definition of simple let-expressions.
As before, the transformation seems to increase the complexity of the

expression, but it achieves the important objective of eliminating a lambda
abstraction. The result may run less efficiently on simple implementations,
butit will run much moreefficiently on sophisticated implementations (see
Sections 20. 10.4 and 20.11).
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6.3.4 Reducing the Numberof Built-in Functions

Theideas of Section 6.1.4 can be applied to case functions also, to reduce the
numberof built-in functions required.

Specifically, CASE-T can be replaced by CASE-n, wheren is the numberof
constructors for the type T. The integer structure tag of the first argument can
be used directly to select the appropriate one of the other arguments.
Similarly, SEL-SUM-s-i can be replaced with SEL-SUM-r-i, wherer is the arity
of s. As before, these replacements should only take place after type-
checking.

Asa bonus,the use of let-expressions instead of lambda abstractions has

also avoided the introduction of UNPACK-SUM and UNPACK-PRODUCT.Ifall
pattern-matching is compiled to case-expressions, then UNPACK-SUM and
UNPACK-PRODUCT donot need to be implemented atall!
The CASE-T function has deliberately been defined to select one ofits

arguments (based on the constructorofits first argument), rather than apply
one of its arguments to the components ofits first argument. This latter
approach mightatfirst seem moreefficient, but there are two reasonsfor not
taking it:

(i) When performing the replacements described in this section, CASE-T
would have to be replaced by CASE-n-ri-re. . .-fn, where 1; is the arity of
the ith constructor of type T. This seems rather excessive!

(ii) More importantly,it allows us to use let-expressions rather than lambda
abstractions, when transforming case-expressions to the ordinary lambda
calculus.

6.4 The |] Operator and FAIL

Finally, we must transform the [] construct into the ordinary lambdacalculus.
This is not difficult, because the [] construct was only syntactic sugar which
allowed us to write [] as an infix operator. We therefore use the trans-
formation:
 

 
E; ] E2 = FATBAR E: Ee

  

where FATBARis a built-in function, with the same semantic equations as |:

FATBAR a b=a ifa # FAiLanda # 1
FATBAR FAIL b = b

FATBAR | b=]

It would be betterstill to eliminate [] and FAIL from the program altogether,
and optimizations which often succeed in doing this are described in Section
5.4.2. Any remaining occurrences of {] and FAIL canstill be compiled sur-
prisingly efficiently by a sophisticated implementation (Section 20.4).
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6.5 Summary

In this chapter we have seen howto transform all the constructs of the
enriched lambda calculus into the ordinary lambda calculus, using Y to
express recursion. This is the method wewill assume for the early implemen-
tations of Part II.

In addition, we haveseenthatit is also possible to transform the program
into the ordinary lambdacalculus augmented withsimplelets andletrecs. This
is essential for type-checking, though it can be transformedinto the ordinary
lambdacalculusafter that, but the use oflet and letrec makesit easier for later
parts of the compiler to produce more efficient code. Subsequent implemen-
tations, from Chapter 14 onwards, will therefore use the latter form
exclusively.
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LIST COMPREHENSIONS

Philip Wadler

List comprehensionsare a syntactic feature of several functional languages,
which, like pattern-matching, can greatly increase the ease with which one

can read and write functional programs. Like pattern-matching, they add no

fundamental new powerto the language, andit is easy to translate a program
containing list comprehensions into an equivalent program that does not
contain them.

This chapter is organized as follows. Section 7.1 explains the list compre-
hension notation. Section 7.2 gives a formal semantics oflist comprehensions
in terms of reduction rules. Section 7.3 presents a method oftranslating
comprehensions into the enriched lambda calculus, and Section 7.4 uses
program transformation techniques to improvethis method. For simplicity,
Sections 7.2-7.4 do not allow patterns in comprehensions,andthe results of
these sections are extendedto include patternsin Section 7.5.

7.1 Introduction to List Comprehensions

Set comprehensions were introduced by Burstall in an early version of the

language NPL (which later evolved into Hope, but without set compre-
hensions). List comprehensionswerefirst used by Turnerin KRC,where they
were called ZF expressions [Turner, 1982]. List comprehensions have since
been included in several other functional languages, including Miranda and
SASL(in both of which they are called ZF expressions), and Orwell.

(List comprehensions have sometimes been called set abstractions. This

127
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nameis unfortunate, since they operate on lists rather than sets, and since the

word ‘abstraction’ already has too many other meanings.)
List comprehensions are analogous to set comprehensions in Zermelo-

Frankel set theory. An example of a set comprehension in mathematics is

B = {square x | x € A & odd x}

that is, the squares of the odd elements of the set A. For example, if A is

{1,2,3} then B is {1,9}. The corresponding list comprehension in Mirandais

ys = [ square x | x <— xs; odd x ]

The only difference in notation is that the curly braces are changed to square
brackets, the&is changed to a semi-colon, and the symbol€ is changed to <-,
which is pronounced‘drawn from’. A much more importantdifference is that
the result is a list, not a set. Thus,if xs is [1,2,3] then ys is [1,9] andifxs is [3,2,1]

thenys is [9,1].

In general, a list comprehension has the form,

[<expression> | <qualifier>; ...; <qualifier>]

where each <qualifier> is either agenerator (such as ‘x <— xs’) ora filter (such

as ‘odd x’).
Here are some more examplesoflist comprehensions. The function cp finds

the Cartesian productof twolists:

cp xs ys = [ (x,y) | xX <— xs; y <— ys ]

For example,

ep ['a’,’b'] [1,2,3] = [ (‘a',1), ('a’,2), (’a',3),
(b',1), ("b',2), ("b’,3) ]

Notethat the last generator changes mostrapidly.
The function pyth returnsa list of all Pythagorean triangles with sides of

total length less than n:

pyth n = [ (a,b,c) | a, b, c <— [1..n}
at+tb+c<=n;

Square a + square b = square c ]

(Here [1..n] returns the list of numbers from 1 to n, and a generator such as
‘xy <— zs’ is shorthand for ‘x <— zs; y <- zs’.) This function may be
written a little more efficiently as

pyth n = [ (a,b,c) i a <— [1..n]};
b <— [1..n—a];
c <— [1..n—a—b];

Square a + square b = square c ]

A later qualifier may refer to a variable defined in an earlier one, but notvice
versa.

The function sort sorts a list into ascending order. The method used is that
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of quicksort: the list is divided into those elements less than or not less than
the first element, and the two sublists are sorted recursively:

sot[] =[]
sort (x:xs) = sort [y | y <— xs; y < x]

++ [x] ++
sort [y | y <— xs; y >= x]

(Here, ++ is list append.)
Patterns may appearto theleft ofthe <— arrow. For example, suppose that

the function zip returns a list of pairs of corresponding elements of a pair of
lists, so that

zip ((1,2,3], [4,5,6) = [(1,4), (2,5), (3,6)}

Then wecan define a function vecAdd for performing vector addition (adding
corresponding elements oftwolists) as follows:

vecAdd xs ys = [x+y | (xy) <— zip (xs,ys)]

The pattern (x,y) appears to the left of a <— arrow. For example,

vecAdd [1,2,3] [4,5,6] = [5,7,9]

It is often convenientto use zip with list comprehensions in this way.
More generally, in a generator ‘p <— Lthe pattern p mayberefutable. In

this case, elements of the list L which do not match the pattern are simply
filtered out. The function singletons takes a list of lists and returns the

elements of eachlist of length one:

singletons xs = [x | [x] <— xs]

For example,

singletons [ [1,2], [5], [], [2} ] = [5, 2]

Herethe‘[x]’ to the left of the arrow is the refutable pattern. The elements

[1,2] and [] do not match the pattern, and so are filtered out.

For simplicity, in Sections 7.2-7.4 we will ignore the fact that a pattern may
appearon the left ofthe <— arrow, and only deal with variables. Theresults of
these sections will then be extended to patterns in Section 7.5.

(In Miranda there is a second form of ZF expression, written with curly
braces, which indicates that duplicates should be removed from the resultlist
and generators should be ‘diagonalized’. This form will not be dealt with
here. There is also another form of generator which we do not coverhere.)

' 7.2 Reduction Rulesfor List Comprehensions

Just as reduction rules (suchas the f-rule) can be given to define the behavior
of lambda abstractions, so can reduction rules to define the behavioroflist

comprehensionsbe given.
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To presentthese rules, we will write comprehensions in the form

(E 1 Q]

where E is an expression and Q is a sequence of zero or more qualifiers. The
sequence Q will

(i) either begin with a generator, in which case therule is of the form

fE iv <-—L; QJ

wherevis a variable andL is a list-valued expression;
(ii) or begin with filter, in which case the rule is of the form

(E | B; Q'’]

whereB is a boolean-valued expression;
(iii) or will be empty, in which case theruleis of the form

[Ei]

Onedoes not normally see comprehensions with no qualifiers such as [E | ],

but they are useful for defining reduction rules in a uniform way.

Abbreviations should be expanded so that all comprehensions are in the

above form. In particular, generators of the form

Vai, oc Vn <-L

should be expanded to

Vi <— Ly... Va <-L

where vi, ..., Vnare variables.
After abbreviations are expanded, the followingfive reductionrules suffice

to define list comprehensions:

 

(1) (Ei v <— []; Q] > []
(2) (Elv <—E:L’; Q] — [EF 1 QUEEN] ++ [Ei v <— LV’; Q]

(3) [E | False ; Q] —> []
(4) [E 1 True ; Q] — [E11 Qj

(5) (E'] — [E]  
 

Thefirst two rules define the behavior of generators, the second two define

the behaviorof filters, and the last ‘cleans up’ after all the generators and
filters have been processed. The secondrule uses the substitution notation of
Chapter 2, so (E | Q][E’/v] means [E | Q] with all free occurrences of v
replaced by E’.
From rules (1) and (2) we can see that

(2b) [E 1 v <— [E;, ..., En Q]
— [Et Q)[Ev/v] ++ ... ++ [E 1 Q\[E/v]
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which maybean easier wayto think ofthe rule for generators. For example,

[square x | x <— [1, 2, 3]; odd x]
— [square t | odd t] ++ [square 2 | odd 2] ++ [square 3 | odd 3]

‘(by rules(1) and (2))
-—> [square 1 | True] ++ [square 2 | False] ++ [square 3 | True]

(reducing odd)
— [square 1 | ] ++ [] ++ [square 3 | ]

(by rules (3) and (4))

— [square t] ++ [] ++ [square 3]
(by rule (5))

— [t, 9]

These rules are based upon using append (++) to combinetheresult lists,
rather than cons(:) as one might expect. This is necessary in order to makeit
easy for filters to remove elements (by reducing to the emptylist, as with
[square 2 | odd 2] in the example above). It is also necessary for multiple
generators,as in the example below:

cp ['a’,’b’] [1,2,3]
— [(xy) | x <— ['a’,"b’]; y <— [1,2,3] ]

(definition of cp)

> (ary) ty <— [12,31] ++ [Cby) ty <- [1,23] ]
(by rules (1) and (2))

—> [(a’,t) |] ++ [Ca’.2) 1] +4 [(a’,3) 1] 44+
[(b’,t) 1] ++ [('b’,.2) 1] +4 [('b’3) 1 ]

(by rules(1) and (2) again)
> [(a’,1), (2.2), ('a’,3),

("b’,1), ('b'.2), ("b,3) ]
(by rule (5))

Thecareful reader will have noticed that the above examples have ignored
lazy evaluation. A lazy evaluator would begin to reduce thefirst example as
follows:

[square x | x <— [1, 2, 3]; odd x]
-> [square 1 | odd 1] ++ [square x | x <-— [2, 3]; odd x]

(by rule (2))
-—> [square 1 |] ++ [square x | x <— [2, 3]; odd x]

(byrule (4))
-—> [square 1] ++ [square x | x <—-[2, 3]; odd x]

(by rule (5))
— 1: [square x | x <— [2, 3]; odd x]

and so thefirst element of the result can be returned without examining the
entire inputlist.
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7.3 Translating List Comprehensions

The above rules provide a concise definition of list comprehensions. In this
section we will see that a very similar set of rules can be used to translate
Mirandalist comprehensionsinto the enriched lambdacalculus.
The translation requires one new function, flatMap. This is defined in

Mirandaas follows:

flatMap f []
flatMap f (x:xs)

(]
(f x) ++ (flatMap f xs)

Thatis, (flatMap f xs) applies a list-valued function f to each elementofa list
xs, and then appendsall the resulting lists together.

Therulesfor translation can be expressed by giving some extra rules for the
TE scheme, which wasintroduced in Chapter 3, and Figure 7.1 gives these
extra rules.

 

flaMap(Av.TE(E | Q) I) TE. L I
IF TEL B ]} TEL (E | Q] 3 NIL

CONS TE E Jj NIL

(a) TEL (Et v <-—L; Q]]
(b) TEL (E 1 B; Q)]
(c) TER (E 1) 0
where E is an expression

B is a boolean-valued expression
L isa list-valued expression
Q is a sequenceof zero or more qualifiers
v isa variable   
 

Figure 7.1 Translation scheme for list comprehensions

It is not hard to see that rule (a), together with the definition offlatMap,is
equivalent to rules (1) and (2) of the preceding section. Similarly, rule (b)is
equivalentto rules (3) and (4), andrule (c) is equivalentto rule (5).
Here are two examples, showinghow to compile comprehensions like those

used in the examples in the preceding section:

TEIL [square x | x <-— xs; odd x] ]]
= flatMap (ax.TE[[ [square x | odd x] J) xs (rule (a))
= flatMap (ax.IF (odd x) TEI[ [square x | ] ]] NIL) xs (rule (b))
= flatMap (ax.IF (odd x) (CONS (square x) NIL) NIL) xs (rule (c))

TEL [iy) | x <— xs; y <— ys] JI
flatMap (Ax.TEI [(y) 1 y <— ys] J) xs (rule (a))
flatMap (xx.flatMap (ay.TEM [(<y) | ] J) ys) xs (rule (a))
flatMap (ax.flatMap (ay.CONS TEI[ (xy) J] NIL) ys) xs (rule (c))
flatMap (dx. flatMap (ay.CONS (PAIR x y) NIL) ys) xs

It is left as an exercise for the reader to evaluate the terms above (for some
suitable values of xs and ys) and verify that they return the desired results.
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7.4 Using Transformationsto improve Efficiency

Thetranslation scheme described in the previous section is complete, butis
not the most efficient translation method possible. This section uses well-
known techniques of program transformation to derive a more efficient
translation scheme.
The translation scheme will be improved in two steps. The first step

improvesefficiency using the well-known idea of expanding-out a program in
place. Notice that an expression of the form

flatMap (Av.E) L

maybe replaced by the equivalent enriched lambdacalculus expression

letrec

h = Aus. case us of
NIL => NIL
CONS v us’ = APPEND (h us’)

in (h L)

where h, us and us’ are new variable names.It is straightforward to show that

this expansion correspondsto the original definition offlatMap.

 

TEE (E | v <- L; Q]]
= letrec

h = Aus. case us of
NIL = NIL
CONS v us’ = APPEND TE§ [E | Q] J (h us’)

In (h TEG L DP

where h, us and us’ are new variables which do not occurfree in E, Lor Q   
Figure 7.2 Improved rule (a)for translation scheme

If we apply this transformation to rule (a) then we get a new, equivalent
tule, shown in Figure 7.2. Combining this rule with rules (b) and (c) gives a
more long-winded, but more efficient, translation scheme. An example ofthe
use of this schemeis shownin Figure 7.3.

 

  

TE [square x | x <— xs; odd x] J

= letrec
h = Aus. case us of

NIL = NIL
CONS x us’ = APPEND

(IF (odd x) (CONS (square x) NIL) NIL)

(h us’)
In (h xs)
 

Figure 7.3 Exampleoftranslation using the Improved rule
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This translation schemeis quite efficient, but there is room for further
improvement. For instance, the example shown in Figure 7.3 contains the
expression

APPEND (IF (odd x) (CONS (square x) NIL) NIL) (h us’)

andit would have been moreefficient to generate the equivalent expression

IF (Odd x) (CONS (square x) (h us’)) (h us’)

instead.
In general, it would be desirable to eliminate all calls of APPEND. The

reason forthis is simple: rather than generating twolists and then appending
them,it is better to generate the desiredlist directly. This will be significantly
moreefficient, since evaluatingAPPEND requires time and space proportional
to the length ofits first argument.

Surprisingly, it is indeed always possible to translate list comprehensionsin
such a way that APPENDdoes not appearin the final result. The second, and
final, improvementin the translation scheme will be derived by applying
program transformation methods to the first schemeto eliminate all appear-
ances of APPEND.

Observethat the only place that APPEND appears in the currenttranslation
schemeis in the following phrase in the improved rule:

APPEND TE] [E | Q] ]] (h us’)

This suggests that we might define a new translation schemethat will translate
the above expression directly. That is, we wish to define a new translation

schemeTQ, such that

TO [E | Q]) ++ L 9 = APPEND TE] [E | OQ] FTE LD (7.1)

for any expressionE,list of qualifiers Q and list-valued expression L. Then we
can replace the previous expression by:

TQ [E | Q] ++ (h us’) J

It is easy to provethis is equivalent to the previous expression using rule (7.1).
The rules defining TQ are given in Figure 7.4. Readers familiar with

program transformationwill see thatit is easy to derive the new rules (A), (B)
and (C) from the modified rule (a), and rules (b) and (c). For example,hereis
the derivation ofrule (C):

TAT (E | J ++ Lc 9X

= APPEND TE[[ [E ! ] ] TER L I (by (7.1))
= APPEND (CONS TEL E 9] NIL) TEI, L (by rule (c))
= CONS TE E I TE. L I (by definition ofAPPEND)

The derivation of the other rules is not much harder, andis left as an exercise

for the interested reader.
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TEL (FE 1 Q])] = TALE 1 Qj) + [))
 

(A) TOE (E | v <— Ly; Q] ++ Le J
= letrec

h = \us. case us of
NIL => TEL Lo ]

CQNS v us’ => TQ[E | Q] ++ (h us’) J
in (h TEE Ly D

(B) TOL (E18; Q)++L] = FTELB ]TAL (Ei Q)++L TELL J
(C) TO (E1]++L 2 = CONS TEf E § TELL J

whereh, us and us’ are new variables which do not occurfree in E, Li, Lzor Q   
 

Figure 7.4 Optimal translation scheme forlist comprehensions

 

TE[ [square x | x <— xs; odd x] J
= letrec

h = \us. case us of

NIL => NIL
CQNS x us’ => IF (odd x) (CQNS (square x) (h us’)) (h us’)

in (h xs)

TEL [(xy) | x <— xs; y <— ys] J
= letrec

g = Aus. case us of

NIL => NIL
CQNS x us’ >

letrec
= \vs. case vs of

NIL => (g us’)
CQNS y vs’ = CAQNS (PAIR x y) (h vs’)

in (h ys)
in (g xs)   

Figure 7.5 Exampletranslations using the optimal scheme

Figure 7.5 shows two examples of the translations produced by the new
scheme. These should be compared with the examples at the end of the
previous section. The readerwill see that the new translations are consider-
ably longer, but also considerably more efficient. Indeed, the translations
produced by the new schemeare as goodas the best translations one would
make by hand. ,

Moreprecisely, we canstate that the new translation schemeis optimalin
that it performs the minimum number ofCONSoperations.Fora list compre-

hension, this means performing exactly one CONSoperation for each element
in the returnedlist. The old translation scheme performed rather more CONS
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operations than this, because of the extra CONS operations performed by
APPEND. However, the new schemeis indeed optimal in this sense, as the

reader mayverify (informally or by a simple inductive proof).
Although the work here has been presented in an informalstyle,it is an

excellent example of the power of formal methods. As has been pointed out,
starting from the reduction rules of Section 7.2, one may derive the trans-
lation scheme of Section 7.3 and the improved translation scheme of this
section. Noneofthe transformationsteps is particularly difficult. On the other
hand, had formal methods not been used, the development would have been
much more troublesome, and quite possibly the optimal translation scheme
described here would not have been discovered.

7.5 Pattern-matching in Comprehensions

Sections 7.2~7.4 have ignored the fact that in general a pattern rather than a
variable may appear to the left of the <— in a generator. This was done in
order to make the presentation of the material a little simpler. This section
updates the results of the previous sections to allow patterns in generators.

First, we consider the reduction rules that define the semantics of list
comprehensions. Recall that the reductionrules for generators are:

@) (Eliv<-{] ;Q) -—> 0
(2) [Etv<- El’ ; Q) > [E | QUE’) ++ [EI v <- Lv; Qj

Toallow for patterns in generators, these are replacedby:

 

(’) (Eip<-f) ;Q) => 0
(2') [El p <- Ect’; Q) > ( (Qp.(E | Q) ©) 00))

++ [E | p <— L’; Q]   
The only changesare that the variable v has been replaced by the pattern p,
andthatin the secondrule the phrase

(E | Q)[E’/)

has been replaced by

(Ap.(E | Q) E) 11)

Thus, instead of substitution we use a pattern-matching lambda abstraction,
as described in Chapter4.Ifthe pattern does not match then []is returned;so,
as desired,if an element does not match a pattern itis as if it had been filtered
out ofthelist.
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Notice thatif the pattern p is replaced by a variable v then

(Qav.[E 1 Q) E) 0]
— [Et QvEW 00) (by 6-reduction)

— [Et Q\[E’N) (by definition of [])

so the rule for variablesis just a special case of the rule for patterns...
Hereis an example using the new reductionrules:

[x | [x] <~ [ (1,2), (5) C1, (2) 3:)

> (Lx). 1) (1.2) 007) +
(Lx). | D (5) OC) ) ++
(Ox). 1 DCD Of)) ++
(Ix).1) (2) O])

(by rules (1’) and (2’))

—> (FAL OC) + GI) 0) ++ FAL OC) + (2) 00)
(by the rules of pattern-matching andrule (5))

> [) ++ 6) + [] + [2]
(by definition of [])

— [5, 2]

whichis the desired result, as described in Section 7.1.

The modification to the translation schemeis analogous to the modification
to the reduction rules. The only rule which contains a generatoris rule (a):

(a) TER [E 1 v <- 1; Q] 9 = flatMap (v.TER[ [E | Q] TER L

For patterns, this is modified to:

 

(@v’) TER [Ei p<-tGQ\)
= flatMap (Au.(((ATEIL p B.TER [E | Q] ® u) J NIL )) TEL LO

whereu is a new variable which doesnotoccurfree in p, E or Q.   
Notice that the subexpression

(QTE p Y.TER [E | Q) B® u) J NIL

is in exactly the right form to be further translated by the pattern-matching
compiler described in Chapter 5. Moreover, in the case that the pattern is
just a variable v, applying the pattern-matching compilerto rule (a') will yield
the sameresult as rule (a), so again the rule for variablesis just a special case
of the rule for patterns. Further, just as one can show thatrule (a) follows
from rules (1) and (2), one mayshowthatrule (a’) follows from rules (1') and
(2').

Finally, the optimal translation scheme maybe generalizedin a similarway,
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Thetranslation rule (A) of Figure 7.4 should be replaced by the rule

 

(A') TOD (E! p <— Li; Q] ++ Le]
= fetrec

h = Aus. case us of

NIL => TEte

CONS u us’ =>

( (ATE p 91.TQT (E | Q] ++ (h us’) 9) u)
0 (h us’) )

in (h TED Li DD

whereh,u, us and us’ are new variable names which do not occur
free in E, Ly, Leora.   
Again,the central phrase ofthis rule is in just the right form for further

processing by the pattern-matching compiler, and the rule for variables
emergesas a special case of the rule for patterns. And,again,just as rule (A)
can be derived from rule (a), so rule (A’) can be derived from rule (a’).
Furthermore, the new translation schemeisstill optimal, in that it performs

‘ the minimum numberofCONSoperations.
In short, extending the results of the previous sections to allow patterns in

generators is straightforward, the new rules have the old rules as a special
case; the correctness ofthe new results may be shownin the same way;and the

efficiency of the translations is unimpaired.
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POLYMORPHIC TYPE-CHECKING

Peter Hancock

 

In common with several other modern programming languages, Miranda
has the property that a programmerneed notspecify the types of the objects
defined in his program. The compiler can work out those types, ifthe program

can be consistently typed at all. The part of the compiler that does this is

usually called the ‘type-checker’. It attempts to infer the types of expressions

in the program from their contexts. This kind of type-checking wasfirst
implementedfor the language ML,around 1976. The type discipline wasfirst
expoundedby Milner [1978].

Whetheror not a type-checker requires information from the programmer
to check that a program is well typed, type-checking is of great value in
drawing the programmer’s attentionto a variety of errors, from trivial slips in
program entry, to gross logical blunders.It helps us to write robust programs.

Another advantage of type-checking is that it helps to build faster
implementations of programming languages. If a program is passed by the

type-checker, then no type error should occur at run-time, such as the use of
an integer as if it were a function, a boolean asif it were an integer, or a
function asif it were a tuple. In Milner’s words, well-typed expressions do not
‘so wrong’: at run-time we will never misinterpret the representation of an
expression. By omitting run-time checksfor such errors, the implementation

ofa language can bemadesimplerand faster. Ofcourse, any implementation
should still provide for diagnosis of its own internalerrors.
The purposeofthis chapter is to explain in some detail how a type-checker

works. Then, in Chapter 9, we put the ideas into practice by constructing a
type-checker for a simple functional language. The type-checker is con-
structed in Miranda, in the hope that the development of such a functional
program mayitself be ofsome additional interest.

139
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Giventhe informalspirit of this book, and its concentration on setting up
intuitions rather than on attaining impregnable conceptual rigor, it is not
appropriate to proceed ‘from the ground up’. Instead, we shall assumethat

the reader already has some understandingofthe notion ofa type, and wishes
to see how that notion can be applied in practice. Nevertheless, some
cautionary remarks may be in order, and they are made at the end of the
chapter.

This chapter is organized as follows. Section 8.1 reviews some basic
concepts, and notations for types. Section 8.2 illustrates the concept of
polymorphism,using several examples. Section 8.3 shows in an informal way
how types maybeinferred from the structureof a definition. Section 8.4 sets
out the languageforwhich wewill build a type-checker. Section 8.5 considers
the detailed type structure of expressions in the language, and attempts to
clarify the rules of type inference, which are summarized in Section 8.6.
Section 8.7 contains the cautionary remarksreferred to before.

Important note: The type-checker described here is actually somewhat
moreliberal than that of the Miranda compileritself, in that it will succeed in

type-checking some programswhich the Miranda compiler wouldreject. This

difference is explained in Section 8.5.5. The Miranda type-checkeris also
considerably more sophisticated than the one we describe here, becauseit
supports features, such as abstract data types and a module structure, which

are beyond the scope ofthis book.

8.1 Informal Notation for Types

The types with which we are concerned in functional programminginclude
groundtypes such as characters, numbers and booleans, typesof tuples,lists
and,of course, functions. To talk about these types, wewill use the following
notation. Capital letters will be used for type variables. A type variable A
standsfor a type in much the same waythat a numerical variable n stands fora
number in mathematics. Lower-caseletters will be used for the elements of
types. The notation

a: A

meansthat a has type A. For example, 42::num, ‘f'::char, where num is the

type of numbers, and charis the type of characters. (Note: the notation used
for types in this chapter differs from that of Miranda — in Miranda an upper
case letter cannotstandfor a type.)

8.1.1 Tuples

Given types A and B,(A,B) is the type of orderedpairs (a,b) where a::A, and
b::B. Using Descartes’ terminology,a is the first coordinate of (a,b), and b is
the second. Moregenerally, ifn = 2 and Aj,...,An ate types, then
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(A1,. . .»An)

is the type whosevalues are ofthe form oftuples

(a4poe An)

where a1::Aj,..., an::An. The important points about tuples,so far as typing is
concerned,are:

(i) the coordinates of a tuple need not be of the same type;
(ii) the type of a tuple determines the numberof its coordinates (thatis, its

dimension), and their types.

8.1.2 Lists

Given a type B, [B] is the type of lists whose entries are of type B. More
specifically, an object of type [B] must be

(i) either the empty list, which is denoted by [];
(ii) or a non-emptylist, formed by prefixing an object b::B to a list bs::[B],

which is denoted by b:bs.

If all the successive entries by,.. .,b, of a finite list are known, we may write
it using the notation

[bi, ..., Dx]

The importantpoints aboutlists, so far as typing is concerned,are:

(i) In contrast with the coordinates of a tuple,all entries of a list must be of
the same type. For example, it would make no sensetoform list in which
the entries were alternately characters and truth values. (Wecould in fact
define a type of such entities, but they wouldnotbelists.)

(ii) In contrast with the dimension of a tuple, the length ofa list is not
determined by its type. Indeed, when programmingin a lazy language,
we may operate with infinite lists such as the list of positive integers.
There is no requirementthata list must be built up from the emptylist by
a finite numberof applicationsofthe prefixing operation (b:bs), or that a
principle of well-founded induction on the structure oflists should be
valid.

8.1.3 Structured Types

Tuple types and list types are both examples of structured types, which were
introduced in Chapter4. As explained there, in Miranda the general form ofa
declaration of an operatorfor forming structured types is:

name Va... Ve = Cr otha... tty

I}...
I Cm tm.1 eee tm.tm

| where m=1, n=O for 1si<m, and k=0. Here v1, ..., vx stand for schematic
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type variables, which in Miranda have the special form *, **, ***, etc. Also,

t1,1,. . .»tms, are type expressions, built up using variables from thelist vj,. . ., Vk
and namesfor type-forming operations which are either built-in or declared
elsewherein the script.
For example,in the type declaration

tree * ::= LEAF + | BRANCH (tree *) (tree *)

Vi is *, C1 is LEAF, and ty, is *; co is BRANCH,andto1, to. are both (tree *).

‘tree’ is a type-forming operatorsince,given a type as ‘argument’, it produces a

type as its ‘result’; for example, (tree char), (tree num), (tree (tree num)). In

this sense, the built-in basic types (such as char, num, bool) are simply type-
forming operators which take no arguments.
A declaration with the form above meansthat an object of a type

name t'; ... Uk

must have one ofthe constructed forms

Cj M1... My

where xj::t'\; for 1sjsr;, and ty denotes the result of simultaneously
substituting the type expressionst's,.. .,t'k for the type variables v;,.. .,V« in
the type expressiontj.
For example here is an objectof type (tree char):

BRANCH (LEAF ‘a’) (LEAF ‘b’)

In this case, t'; is char; the form of the object is a BRANCH, and x; is

(LEAF ‘a’)::tree char, x2 is (LEAF ‘b’)::tree char.

8.1.4 Functions

Given types A and B,weusethe notation:

A->B

to denote the type of functions f applicable to objects a::A, whose values(f a)

are of type B.
For example, (char —> num) is the type of integer-valued functions of

characters. The function ‘code’ which maps a characterto its ASCII code is of
this type.

(char —> bool) is the type of boolean-valued functions of characters. For
example, the function

isdigit ch = (code ‘0’ <= x) & (x <= code ‘9’)
where x = code ch

is a function of this type.
([char] —> [num]) is the type of functions whose arguments are lists of

characters, and whose valuesarelists of integers. The function which returns

the list of ASCII codes correspondingto a characterlist is of this type.
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(Note: in functional programming, we consider a function to belong to a
type (A —> B) even though it is nottotally defined on the domain type A. For
example,the partial function which assigns to every even numberits successor
has type (num ~> num).)
The arrow in the function type notation (A —> B) is considered to be a

right-associative binary operator. So

A->B->C

means the same as

A -> (B -> C)

and

(A -> B -> C)
-> (A —> B)
—>A

—>cC

means the same as

(A -> (B —> C)) —> ((A —> B) —> (A -> C))

(Weshalloftenlay out a large type expression over severallines, as above.)
The reason we choose —>to beright associative can be seen by considering

a (curried) function f of two arguments a::A and b::B. Then wehave:

f =: A->B->C
(fa) = B->C
(fab): C

If —> were left associative, we would have to write

f: A -—> (B -> C)

whichis less convenient, since it uses more brackets.

8.2 Polymorphism

Manyofthe functions we define in a functional program are to a greater or

lesser degree indifferent to the types of their arguments. This can be
illustrated with a few examples.

8.2.1 The Identity Function

Theidentity function id, defined by

idx =x

works equally well on arguments of any type. For example, in

id 3 =3
id 'g’ = 'g!
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id (3,'a’) = (3,’a’)

the functionid is used with the types

num —> num
char -—> char

(num,char) —> (num,char)

In this sense,id is indifferent to the type ofits arguments. However,id always
returns a result of the same type as its argument. We express this by saying
that idis of type A —> A,for all types A.
Sometimes we omit the ‘for all types A’ (the jargon for which is schematic

generality; A is said to be a schematic (or generic) variable). When the
schematic variables are not given explicitly, every type variable is here to be
understood as a schematic variable.

To say thatid is of type (A —> A) forall types A meansthat the nameid can
occurin a larger expression in any context suitable for a function whose typeis
of that form. When weindicate a form by means of a type expression, we
should say whichpartsofthe expression mayvary, by indicating the schematic
variables. To say that a type T is oftheform

...A...B...A...0...

where A and B are the schematic variables, is to say that Tmay be obtained by
substituting certain types TA and TB for the schematic variables. In other
words,T is a substitution instance ofthe indicated type. The types

num —> num
char —> char

(num,char) —> (num,char)

are all substitution instances of the form

A->A

whereit is understoodthatA is the schematic variable.
Fora final example, consider the expression:

id (code (id ‘a’))

Thefirst occurrence of id must have type (num —> num), and the second must
have type (char —> char). Since these are both substitution instances of the
type of id, (A —> A), the expressionis correctly typed.

Note: What wehere call schematic type variables are called in Miranda
generic type variables and written using the special symbols *, **, etc. to

distinguish them from ordinary (non-generic) namesfortypes.)

8.2.2 The length Function

The function whichreturnsthe length ofa list may be defined by the equations

length [] 0

length (x:xs) (length xs) + 1
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The function length works equally well on anylist, regardless of the typeofits
entries. For example, in the equations:

length [7,1,4] =3
length (’7',1',°4',’2’] = 4

length {(3,’a’),(26,'z’)] = 2
length [id,id] = 2

the function is used with the types:

{[num] -> num
[char] -> num
{(num,char)] -—> num
((A —> A)] -—> num

respectively. We express the type of length by

length :: [A] —> num,for all types A

which conveys that

(i) length is a function;
(ii) its arguments arelists;
(iii) its values are numbers;
(iv) the type of the entries in the argumentlist does not matter.

8.2.3 The Composition Function

Let us represent the composition of two functions f and g with a right-
associative infix dot, and define:

(ff. g) x =f (9 x)

(Weshall write the composition function ‘compose’ when we do not wantto
indicate its arguments.) Composition is well defined so long as bothits left-
and right-hand arguments are functions, and the type of arguments ofits
left-hand argument is the same as the type of values of its right-hand
argument. For example, the following makeperfect sense:

(i) decode . succ . code

wheresucc denotesthe successorofan integer. The expression denotes a
function which returns ‘b’ from ‘a’, ’c’ from ‘b’, and so on. The composi-
tion function isused here with the type:

(num —> char) —> (char —> num) -—> char —> char

atits first occurrence, and with the type:

(num —> Num) —> (char —> Num) —> char —> num

at its second.
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(ii) code . id, andid . code

where id is the identity function discussed above. In these expressions, the

composition function is used with the types:

(char -—> num) —> (char —> char) —> char —> num

(num —> num) —> (char —> num) —> char -> num

respectively.

(iii) isdigit . decode

which is the predicate of an integer which is itself the ASCII code of a
decimaldigit. Here the composition functionis used with type:

(char —> bool) —> (num -—> char) —> num —> bool

Wecan express the constraint on the types of the arguments of compose by

saying:

compose :: (B —> C) -> (A -> B) -> A->C

where A, B and arethe schematic variables.

8.2.4 The Functionfoldr

The function foldr may be defined by the equation

foldr f b [] =b

foldr f b (a:as) = f a (foldr f b as)

Again,foldr is to a certain extent indifferent to the types of its arguments. For

example, the following make perfect sense:

(i) foldr plus 0 [7,1,4]

whereplus meansbinary addition. The functionfoldr is used here with the

type:

(num —> num —> num)
-> num
—> [num]
-> num

(ii) foldr append [] [‘‘str1”,“str2”,"‘st3”]

Here append is the function which concatenates twolists. The function

foldr is being used here with type:

(string —> string --> string)
—> string
—> [string]
—> string
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(iii) foldr cons [] (5,4,1,4,1]

Here cons x y = x:y. In this expression,foldr is used with the type:

(num —> [num] —> (num)
—> [num] —> [num] —> [num]

In general, foldr may be used in any context which requires a type ofthe form:

(A -> B -> B)
->B

—> [A]
->B

whereA and B are the schematic variables.

8.2.5 What Polymorphism Means

Polymorphism is a style of type discipline which seems to have beenfirst
identified by Christopher Strachey [1967]. A programming language has a
polymorphic type disciplineif it permits us to define functions which work
uniformly for arguments ofdifferent types. For example, in a polymorphic
language, we can define a single function length of type:

[A] -—> num

In contrast, a language with a monomorphic type discipline forces the
programmer to define different functions to return the length ofa list of
integers, a list of fioating point numbers,a list of binary numerical functions,
and so on. Languages such as Pascal and Algol 68 are monomorphic.
Strachey distinguished between ad hoc polymorphism, and parametric

polymorphism. A type discipline exhibits ad hoc polymorphismif it permits
the use of the same expression to denote distinct operationsatdistinct types,
such as the use of the addition symbol to denote addition of integers,
rationals, real numbers, ordinals, complex numbers, and so on. This char-
acteristic of a language is often now described as the ability to overload
expressions. On the other hand, parametric polymorphism is just poly-
morphism as explained above.
The words polymorphic and monomorphic are also sometimes used to

distinguish between objects whose types are described by expressions with
schematic type variables, and those whose type expressions have none. For
example, the empty list is polymorphic, the functions Id, compose, length and
foldr are polymorphic, while the function decode which returns from an
integer the character with that ASCII code is monomorphic.

::  Apolymorphic object may take on different types at different occurrences,
_ Where these different types are substitution instances ofthe schematic type of
+: the function. For example, we do notneed to have different versions of foldr
:, for each pair of types that instantiate A and B in the type expression

& * (A -> B —-> B) -> B -> [A] -> B
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or to parameterize foldr with the type variables A and B. Precisely the same
code is executed whatever the types A and B (at least in a naive implemen-
tation of the compiler), and it would be artificial to duplicate that code, or
nameit differently for each pair of types.
The terminology is also sometimes (perhaps unfortunately) applied to

types themselves. For example,it is said that foldr possesses a ‘polymorphic’
type, meaningthatits type is expressed with schematic variables. (Going by
etymology, ‘polymorphic’ should mean ‘of many forms’,andit is precisely in
order to identify a single form that we use an expression with schematic
variables.)
A polymorphic type discipline wasfirst worked out for the language ML

around 1976, and since then has been incorporated in a numberoffunctional
and imperative languages. In pragmatic termsat least, polymorphism repre-
sents a significant advance over the type disciplines of languages such as
Pascal or Algol 68.

8.3 Type Inference

This type discipline is not only polymorphic;it has the property that the only
places in a program where we have to mention typesatall are in the type
definitions themselves. The type-checkeris able, as part of a single process,

(i) to determine whetherthe program is well typed; and
(ii) if the programiswell typed, to determine the type ofany expressionin the

program.

(Of course, to make a program easier to understand we should almost always
accompanya definition with a specification of the type of the defined entity.)

Before delving into the details of type-checking, we should ask ourselves

how wecan informally deduce the types offunctions given only their defining
equations.

Considerthe definition:

isdigit ch = (code ‘0’ <= x) & (x <= code '9’)
where x = code ch

From the right-hand side of the definition we can see that, if the function is
well defined at all, its value must be a truth-value, since the outermost

operator & (conjunction) produces truth-values. Moreover,the infix operator
<= which suppliesits values as arguments to & also producestruth-values. (So
we can see that & is used consistently withits type.) The arguments to <= must

both have the type num,andthis is clearly the case for the actual arguments,
namely (code ‘0’) and (code ‘9’). It follows that x must be a number, and for

this to hold, ch must have type char. So the right-handside of the definitionis
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well typed, with type bool, provided that the argumentch has type char. Since
the left-hand side of an equation must have the sametype as the right-hand

side, we deduce that:

isdigit :: char -> bool

Consider now the definition of length, repeated here:

length [] 0
length (x:xs) (length xs) + 1

From thefirst equation,it is clear that the type of length is of the form

[A] —> num

Wemustalso look at the second equation to see whetherit constrains the
type A any further. For example,if the second equation were somethinglike

length (x:xs) = (length xs) + 1, x = ‘a’
= length xs

(using a conditional expression), we would have to concludethat the type A is
not in fact completely general, but completely specific:it is the type char. But
in the case of the function length, the second clause imposes no further
constraint, so we can say that

length :: [A] —> num,for all typesA

Consider now the functionfoldr, with definition

fold fx = gwhereg[] =x
g (a:as) = f a (g as)

Thelocal function g is evidently a functiononlists, since it is defined by cases
on the two constructors of list form. So suppose g has type ([A] —> B).
Both x and (f a (g as)) must be of type B. Since (g as) has type B, f must
have type (A -> B —> B). So,allin all,

foldr :: (A -> B —> B) -> B —-> [A] -> B

In general, by examining the context of an expression, we may be able to
deduce an expression for the form of the type of an object which can fit into
that context. By examining the expressionitself, we may be able to deduce the
form of the types which that expression can take on. So we have two type
expressionsthatwill usually contain variables, the first giving the form of the
type required by the context (deduced from the ‘outside’), and the second
giving the form of type which the object can take (deduced from the‘inside’).
For the whole expression to be well typed, these two type expressions must
match,in the sense that by substituting for the schematic variables of the type
expressions, they can be broughtto the same form.
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8.4 The Intermediate Language

The languageforwhich wewill construct a type-checkeris the language ofthe
lambdacalculus. We will use the form of that language in which recursionis
expressed using the letrec construct rather than by using the Y combinator.
Briefly, the forms of expression are these:

(i) Variables: x, y, etc.

(ii) Lambda abstractions: Ax .E
(iii) Application: E; Ee
(iv) Simultaneousdefinitions (Jet-expressions):

let x1 = Ey

Xk = Ex
in E

(v) Mutual recursion (letrec-expressions):

letrec x1 = Ey

Xk = Ex
in E

The type-checker should be invoked when the source program has been
brought into this form, and before lambda-lifting, or transformation to a
supercombinator program (see Chapter 13). It is, however, important that
the programissubjected to the dependency analysis referred to in Section 6.2.8
before type-checking. This is for the following reason. If we include in a
letrec-expression a definition whose right-hand side doesnot‘really’ depend
on the other namesdefinedin the letrec, we may notbe able to type-check the
program atall. (For an explanationof this, see Mycroft [1984}.)
The most conspicuous absentee from this list of constructs is anything

corresponding to function definitions by pattern-matching. But as is shown in
Chapters 4-6, we can replace such definitions by using instead built-in case
functions associated with the type-forming operations defined by the
programmeror supplied by the system. The namesof these case functions,
and indeedof the associated discriminators and selectors, can be regarded as
the names ofvariables with predeclared types. Hence they are of no special
interest in the type-checker.

(In the samevein, we might have taken the easy way outin our treatmentof
recursion, and used the Y combinator, regarding this as having a priori the
predeclared type

Y :: (A —> A) —> A,for all typesA

However,the issues involved in the problem ofhow a type discipline should
treat recursion are rather subtle. Although the solution we have adoptedis in
fact precisely equivalent to adoption of the Y combinatorfor the expression of
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recursion, we take the point of view that to do this would be to sweep the
problem underthe carpet.)
The type-checking algorithm canstill be developed when pattern-matching

is present in the language. Indeed for practical reasons it is better to type-
check while the programis still close to the form in which it was entered, in

orderthat error messages can refer to program text that the programmercan
recognize.

8.5 Howto Find Types

Presumably, when weconstruct an expression E in a program, we reason to
ourselves that it is well typed. As a product of this reasoning, we are in a

position to say what the type is of any subexpression E’ of E. We can,asit
were, label each subexpression with the type which wethink it has. When we
enter that expression into the text of our program,that ‘labelling’ has been
lost. It is the job of the type-checker to reason out the type structure of the
expression once again, and to recoverthe labelling.

If we accept that type-checking is a species of inference, this raises the
question as to what formsofinference we mayvalidly employ in checking the
type of an expression. Weshall not go so far as to try to state those forms of
inference explicitly (akin to an exercise in formal logic), but rather by
considering a sufficient variety ofexamples(as it were, particular syllogisms),
try to work up someconfidence thatwecantell the difference between right
and wronginference.

8.5.1 Simple Cases, and Lambda Abstractions

In order to make enough spaceto expose the type structure of an expression,
let us lay it out as a tree, where at the topwe havethe variables and constants,
and as we proceed down towards the root, we pass through nodeslabelled
with the constructors applied in the formation of the expression. For an
example containing both application and abstraction nodes, take the
expression

(Ax.Ay.AZ. x Z (y z))

Laid out as a tree this becomes

x z y z

\/J \/S
@ @
Ne

|
AX. Ay.AZ.

Each node in this tree corresponds to a subexpression of the original
expression, and should therefore possess a type. Assign arbitrary type labels
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TO, Ti, ... , T7 to the nodes of the tree. Drawing the tree in a slightly
different way to use less space, we get:

 

x: TO z: TI y: T2 z: T3
@ —(@

T4 TS
———

Té
——AX. Ay. AZ.
T7

In ordertobe sure than an expression (E; E2) of application form is well typed,
the function E; must have a functional type (A —> B), where E2is of type A,
and (E; Ez) is of type B. So whatever else is clear, the types of the sub-
expressions mustbe related by the following equations:

To = Ti -> T4
T2 = T3 -> T5
T4 = 15 -> T6

Substituting back in the tree, we get

xn T1-—> 75 ->7T6 zz Th oy: T3-> TS 2: T3.
@ @

TS -> T6 TS
@

 

 

T6
——x. Ay. AZ.
17

Now what should we say about the abstraction? Certainly T7 will have the
form

(Ti —> T5 —> T6) -> (13 -> T5) ->...

but it is not immediately clear what to do about the two type labels T1 andT3
for the two occurrences of the variable z. It would be simple if we could see
some reason to say that the labels Ti andT3 muststand for the same type. For
then we could add two more equationsto the set above, namely

Tt =T3
T7 (f0 -—> T2 -—> T1 —> T6)

and then on substituting back in the tree we would get

x Tt -> T5 -—> T6 z: Ne yi T1 -> TS 2: TI
 

T5 -> T6 TS
 @

T6
 Ax. Ay. AZ.
(T1 —> TS —> T6) -> (TI —> T5) —> Ti —> Té6

Ontheother hand,we havealready seen in Section 8.2.3 expressions such as

I. code . I
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which make perfect sense, but in which the two occurrences of the
composition function receive different types (to be sure, types sharing a
commonform, but nonetheless different).
So it is not obvious that we should require all occurrences of a variable

boundby a lambdaabstraction to have the same type. However,let us take
this requirement as an assumption, and explore its consequences using the
following example

F = Af.Aa.Ab.Ac. c (f a) (f b)

andlaid outas a tree, the expression is

 

f: Toa: T1
—————@

e: T2 T3 {: 74 b: TS
——_—_—_—_—___—_@ mnenncenenemnemaene

Té 7
@

Ts
—Af.Aa.Ab.Ac.

T9

from which wederive the equations

TO = Ti -—> T3
T2 = T3 -> T6
T4 = T5 => T7

Té = T7 -> T8

if we now require that the different occurrences of f have the same type, we
can add the equation TO = 14to thelist above. But then we must also have
that T1 = T5 and T3 = T7, whichgivesthe tree

f: T1 —->T3 aM

c :: T3 —> T3 —> Ts T3 f:171—->T3 b:: T1
@

T3 —> Ts T3

 

 @
Ts

Af.Aa.Ab.Ac.
(11 —> T3) -> T1 —> Ti —> (T3 —> T3 —> Ta) —> Ts
 

By demanding that both occurrences of f should have the same type, we
have forced a and b to beofthe same type. Renamingvariables, the function F
has type

(A -> B) -> A.-> A -> (B -> B -> C) -> C

according to our assumption.

It is not hard to think of contexts (F f a b) which would make sense when a
and b are of different types. For example

F 10 ‘a’
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seems to be the function which when applied to a function c of type
(num —> char —> A)returns the value (¢ 0 ‘a’). On the other hand,

F code 0 ‘a’ K

would certainly be an error, since it would result in the evaluation of (code 0),

whereas the function codeis applicable only to characters. At last we can see
the point of the assumption. In order for an expression to be well typed,it is
not enough that it cannot ‘go wrong’ when evaluated on its own, or in a
particularly favorable context. We have to makesure that it cannot ‘go wrong’
whenpluggedinto any well-typed context.
So weshall require that variables bound in a lambdaabstractionreceive the

same type at all their occurrences. Without ‘outside knowledge’ of the
arguments to which an abstractionwill be applied, we must assumethe worst:
all occurrences of a variable bound by the same lambda abstraction must

share the sametype.
To sum up,sofar we have adoptedthe followingrules:

(i) The function part f of an application (f a) has a function type (A —> V),
where A is the type of the argument part a and is the type of the
application(f a).

(11) All occurrences of a A-boundvariable must have the same types.

Moreover, when solving a system of equations, we have used the following
rule:

If(vi -—> T2) = (T1’' —> T2’), then T1 = T1’ andT2 = T2’

(This follows from a more general law whichstates thatif two compoundtype
expressions are equal, then they must be formed with the same construction,
and their corresponding parts must be equal.)

8.5.2 A Mistyping

Consider the expression

An.Aa.Ab. bn (n a b)

(This is sometimesused to define the successorfunction on natural numbers in
the type-free lambda calculus.) Written as a tree, the expression is:

n: TO a: T1

——————-@
b: T2 n: T8 4 b: T5
—————@ —_—_—_—__——-@

Té6 7
@ 

 



Section 8.5 Howtofind types 155
 

From which weget the equations:

To = Ti -> T4

j2 = 73 -> T6
T4 = T5 -> T7

Té6 = T7 -> T8

T9 = TO -> T1 -> T2 -—> T8

T3 = To

T5 = T2

Eliminating T4 and T6, these become

To = T1 -> T5 -—> T7

T2 = T3 -> T7 -> T8

T3 = To -> Ti -> T2 -> T8

= TO

T2TS

Now note that these equations contain a circularity. If we try to use thelast
two equationsto eliminate T3 and T5, we get

To = T1 -> T2 -> 17 (since T5 = T2)
= 71 -> (13 -> T7 -> T8) -> T7
= T1 -—> (10 —> T7 -—> T8) -> T7 (since T3 = TO)

So it is clear that the type TO is notfinite, and so neither is the type T9.
Nevertheless, T9 possesses an infinite type, which may be expressed

informally:

TO -> T1 -> T2-> T8

where

TO = T1 -—> (TO -—> T7 -> T8) -> T7

There are many difficulties in dealing with infinite types. We shall simply
avoid them by imposingthe rule:

lfT1 = ...T1..., where the type variable T1 occurs properly within the
right-hand side of the equation, then the system of equations cannot be
solved, and the expression from which the system was derived is ill-typed.

As a consequence ofthis, the definition in Section 2.4.2 of the fixed-point
combinatorY isill-typed.

8.5.3 Top-levellets

Consider the expression

let S = Ax. Ay.Az. x z (y 2)
K = AX.Ay. x

in SKK
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It seemsintuitively reasonable that we allow K to take on different typesatits

different occurrencesin the body ofthe let-expression. Indeed,it is hard to see
what polymorphism would mean ifweinsisted that variables introduced by a
let definition should have the same type, as with variables boundby \X.
To examinethetype structure of this expression, we need to extend the tree

notation to representit:

S$: T —> T7 —> T8 K:: Té
 

 

@
T7 -—> T8 K :: T7

Tree—S Tree—K —_——__-__—_——-@
s: TS K :: TK Ts

let SK.
T9

Since we already know how totype-check the right-hand sides of the
definitions of S and K, we have merely indicated their type trees, to save
space. Moreover, we have skipped a few steps in representing the type
structure of (S K K). The equations for the type structure of the right-hand
sides of the definitions of S and K can besolved to yield:

TS = (TO -> Ti -> T2) -> (TO -> Ti) -> TO -> T2
TK = T3 -> T4 -> T3

The new constraints we have to considerare those relating T& to T9, and the

types TS and TKto the types of their occurrences in the body of the let-
expression.

For the first constraint, plainly we should require that T8=T9. As for the
second, the constraint is that the type of the occurrence of S should be an

instance of the type TS, and the types of the two occurrences of K should each
be an instance of the type TK. But how should we represent such a require-
ment by meansof an equation?
Whenworking out the equations by hand,it is quite natural to proceed as

follows: refrain from making any such representation at the outset. Instead,
obtainfirst a fully evaluated expressionfor the type ofTS and TK (as we have
done). Then introduce new typelabels for the instantiated variables at
each occurrence of S and K in the body of the let-expression. (In this case,
there are three such variablesin the type for S, namely TO, T1 and T2; and two |
in the type of K, namely T3 and T4.) Ifwe use a fresh set of variables for each
occurrence, then we canstill work with equations, and leave the values of

those fresh variables to be worked out while we are exploring the type
structure of the body. So in this case we should add new variables T10, T11,

T12 to instantiate TS atits first occurrence, T13 and T14 to instantiate TK atthe
first occurrence of K, and T15 and T16 to instantiate TK at the second
occurrence of K. We then add the equations

T6 -> T7 -> T8 = (T10 —> THt -> T12)

—> (T10 —> TIt) -—> TI0 -> Tt2
Ti3 -—-> T14 -> T13

T15 —> T16 -> T15

T6

T7
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From thefirst of these we derive:

T6 = T10 -> Til -—> T12

T7 = T10 -> TI1

Ts = T10 —-> Ti2

reasoning that if(T1 —> T2) = (T1’ —> T2’), then Ti = Ti’ andT2 = T2’.

By the samereasoning, we have

T10 = T13 = T12
Ti1 = T14
T10 = T15
T11 = T16 -—> T15

which allowsus to express the types of the two occurrences of K as

T6 = T10 -> (T16 -> T10) -> T10
T7 = Ti0 -> T1i6 —-> T10

and the type of the whole expression as

T9 = T8 = T10 —> T10

So the rule we adopt as the type-constraint for let-expressions is that the
types of the occurrences of the defined namesin the body must be instances of
the types of the corresponding right-hand sides. The procedure we adopt to
compute those instancesis to instantiate the variables in the types of those
right-hand sides with new variables, making a fresh instance for each
occurrence of the defined namein the bodyofthe let. In fact, we shall not in

general be able to instantiate all the type variables, as we shall see shortly.

8.5.4 Top-levelletrecs

Turning nowto letrecs, it seems clear that a variable introduced by a letrec
definition should be capable of taking on different types in the body of the
program governedbythe letrec, just as in the case oflet-definitions. So in

letrec f = (...)
in (...f...f...f...)

we expect f to be capable of taking on different types throughout the
expression body. However, there is a new question we must answer. The
variable introduced by a recursive definition can also have many occurrences
in the right-handside ofits definition, as it were ‘while’ it is being defined, as

well as ‘after’. In general, when there are several mutually recursive
definitions, as in

letrec X1 = (...X1...Xi.. Mk...)

Xk = (.. Ma... Xp.. kee)
In (...Xa.. Min. Xp. Mie oo)



158 Chapter 8 Polymorphic Type-checking
 

any one of the defined names x; can occur many times in many right-hand
sides, as well as in the body. Should weinsist that all these occurrences have
the same type, in the sense of requiring equality to hold between the type
labels for the variable occurrences in the definitions? Orshould wetreat them
as we treat them in the body, and require only that at each such occurrence,
the type be an instance of the type of the corresponding right-hand side?
Unfortunately, in the nature of things, there is no obvious answer. Never-
theless, to see what the question means, consider the example

letrec Y = (Af. f (Y f)) in...

Written outas a tree, thefirst definition is

Y: 70 f€: Ti
——————-@

f : T2 T3
—_——__———_-@

af.
T4

Y¥::T5

Theconstraints we can write down straight away are these:

Ti = T2

TO = T1 -—-> T3

T2 = 713 -> TA
T5 = T1 -—> T4

from whichit follows that

TO = (T3 —> T4) -> T3

and

TS = (T3 —> T4) -—> T4

The question is, should we ask that TO = T5, or only that TO be an instance
of T5? In the formercase, the only solution is T5 = ((T4 —> T4) —> T4),
as we would expect of a fixed-point function. On the other hand,
the alternative requires only that T3 be an instance of T4, so again
TS = ((T4 —> T4) —> T4)is asolution.

Weshall adopt the (usual) approach according to which ‘during’ such
definitions all occurrencesofthe defined variables must share the sametypeas
the right-hand side of their definitions. On the other hand, ‘after’ the
definitions, the defined variables are polymorphic, and the type of such a
variable can be instantiated differently to satisfy the local constraints on
different occurrencesofthe variables in the body ofthe definition. If nothing
else, this approach hasat least the merit of simplicity.
Some different approaches to the type-checking of recursive definitions

have been explored by Mycroft [1984]. In some (but notall) of these
approachesthe problem ofwhether an expressionis well typed becomes only
semi-decidable.
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8.5.5 Local Definitions

Wehavepresented type-checkingas the search for the solution of a system of
constraints, represented by equations T’ = T between type expressions. So
far, we know that when type-checking an expression oflet or letrec form, we
should impose the constraint that the types of the occurrencesof the defined
variables in the body should equal new instances of the types derived for their
right-handsides. But just which type variables may be instantiated?
To understand this issue, we have to probea little into the reason for our

conviction that a defined namecan take on different types in the bodyofits
definition. The reason seemsto be this:

An expression (let x = E in E’) is well typed just in case the expression
E’[E/x] is well typed, whichis the expression obtained by substituting E for
the free occurrences ofx in E'.

For each occurrence of x in E’, we should be able to instantiate the type
variables in the type tree for E in such a waythatit forms a subtree of the type
tree for E'[E/x]. This instantiation is only possible ifwe do not thereby violate

the law that occurrencesofa \-boundvariable must have the sametype,or the
correspondinglaw for tetrecs.

Consider the expression (Ax. let y = x in y y). By the principle above, this

is well typed just in case (Ax.x x) is well typed, whichit blatantly is not. The
problem is that the type expression for y contains(is!) a variable occurring in
the type of a more global \-bound variable. We cannot instantiate that
variable differently at the different occurrencesofy in (y y).

Considerthe partial expression

dX.
let | =hZ.2Z

prxl = Ac. (c x |)
pt = dxX.Ay. x
p2 = dx.Ay. y

in...

Informally, the types of the defined namesare

1 : A> A

prxl :; (X —> (A -> A) -> B) -> B
pt :A->B-—->A

p2 : A—>B->B

where A and B are schematic variables, and is the type of x. If we take the
bodyofthe let-expression to be the expression

prxl pt (prxl pt)

then it cannot be typed.Forto satisfy the type constraints of this body, we
would have to instantiate X differently at the different occurrences of pnd. On
the other hand,if the body were

Pprxt p2 (prxi p2)
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then the expressionis well typed. For the structure of that expression does not
constrain X to be instantiated differently at the different occurrences ofprxl.
Whenweare type-checking the body B ofa let orletrec definition, we must

therefore distinguish the type variables in the type derived for a defined name
according to whether they may or maynotbe differently instantiated at the
various occurrencesof the name. Variables of the former kind are those that
do not occur in the type of any constrained variable in the definition of the
name. A constrained variable is one which is a bound variable of a lambda
abstraction enclosing B, or one defined in a letrec-expression enclosing B in

oneofits right-hand sides.

This is one of the points at which the type regime of Mirandadiffers from
that of the type checker described here. The Miranda compiler requires that
all occurrences of a variable boundin a local definition share a single type.
This has the effect that local definitions cannot introduce new polymorphism
into a program. Wewill not explore the implications of this difference here —
the type checking rules given in this and the following chapter are for a
standard implementation of the Milner typediscipline.

Wehaveused the notion of type trees to help elucidate the type structure of

expressions, and guide us towards a sharper view of the rules we use when
constructing and checking the types of expressions. In the next section we

summarize those rules. With luck, the device will have served its purpose, and

we can then consider how to turn ourintuitions into algorithms.

8.8 Summary of Rules for CorrectTyping

The following rules are intended to describe the local ‘look’ of the type
structure of a well-typed expression. To lighten the notational burden, we
shall sometimes simplify the expression whose type tree is depicted in the
figures. The simplifications are indicated in the commentary.

8.6.1 Rule for Applications

A->B A
 

B

8.6.2 Rule for Lambda Abstractions

 

 

A->B    
Notethatall occurrencesof the variable x bound by the abstraction must have
the sametype.
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8.6.3 Rule for let-expressions
 

 

 

{...yuC...}
eee ee xi Al... xAM

A ceeeeeee 5ceeee

let x
B

{ see }

{ ay. }
{ - }   

Here we have shown only the case where just one definition is made in the
let-expression: let x = E in E’.

Restriction: A' and A"are instances of A. No variable maybe instantiated
which occurs in the type of a variable bound in a more global lambda
abstraction or letrec-expression (i.e. one further down the tree). The portions
of the figure in curly brackets indicate such a situation. Any type variables inA
shared with C maynotbe imstantiated in forming A’ and A’’.

8.6.4 Rule for letrec-expressions
 

 

 
  

Here we have shown only the case where just one definition is made in the
letrec-expression: letrec x = E in E’. Note that the occurrencesof x within
the right-handside of the definition must have the sametype.

Restriction: just as in thelet rule.

8.7 Some Cautionary Remarks

There is a beguiling similarity between the notion of type which we use in
mathematics, and the notion which we use in functional programming.It isall
too easyto transfer intuitions concerning the mathematical notionof type to
thenotion used in programming. There areatleast two importantdifferences.

First, the types in a functional language are types ofpartial objects, whose
evaluation may not terminate. In contrast, the mathematical notion of type,
whose study began with Frege [Gaeck and Black, 1970] and Whitehead and
Russell [1910-1913], concerns total objects, whose definitions are well
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founded. The purpose of the mathematical notion of type is to elucidate the
foundations of mathematics. The purpose of the notion in functional pro-
grammingis to assure us at compile-time that a program will not ‘go wrong’,
where wedo not count a program to have gone wrongif it does not terminate,

or a functionis applied to arguments for which it has not been defined.
Second, in functional programming ‘recursion’ is interpreted in a very

liberal sense, going far beyond recursion on well-founded structures, or

positive inductive definitions. As a direct result of this, the notion of a typein
functional programming cannot be the same notion that we use in
mathematics. For example, in a functional program wecan define an integer
omega, where

omega = omega + 1

and this cannot belong to the (mathematical) type of integers. Another
symptom ofthis liberal attitude to recursion is exhibited by the definition of

the algebraic type

D ::= LAMBDA (D —-> D)

in which the defined type occurs negatively (to the left of the arrow) on the
right-hand side of the definition. This is not to say that there is no mathe-
matical sense in the functional programming notions. On the contrary, there
is a rich and sophisticated theory (domain theory) which aims to give a
mathematical interpretation to just such constructs. But while constructing

that theory, and reasoning about the mathematical structures it involves, we

are using on the metalevel the ordinary mathematical notion of type.
Wehopethat this chapter has shown that a naive understanding of the

notion of type certainly gives us plenty to go on. We also hope to have
achieved anothergoal: that of showing that there are limits to the questions
wecansettle on a naive basis alone.
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A TYPE-CHECKER

Peter Hancock

In this chapter we will construct a type-checker in Miranda, taking the rules
developed in the previous chapteras the basis for the type discipline.

Sections9. 1 and 9.2 show howthe expressionsofthe intermediate language
and its type expressions can be represented as Miranda data types. Sections
9.3 to 9.6 are concerned with the basic mechanismsofthe type-checker, which
is itself defined in Section 9.7.

9.1 Representation of Programs

Since we propose to write a type-checker in Miranda, we will have to
represent the program to be type-checked as a Mirandadata structure, which
is passed as an argumentto the type-checking function.
The program to be checked will be represented by an objject of the

structured type vexp, defined below. Eachlineofthe type definition is derived
directly from the corresponding construct in the concrete syntax.

vname == [char]
vexp ::= VAR vname

| LAMBDA vname vexp
| AP vexp vexp

| LET [vname] [vexp] vexp
| LETREC [vname] [vexp] vexp

In a sense, this type encompassesslightly too much. Weshall suppose that the
program is not‘trivially’ malformed: in a LET or LETREC construct,thelist of
variables must have the same length as the list of right-hand sides; the
variable list in a LET or LETREC construct must not be empty, and should

163
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contain no repetitions. Moreover,the free variables in an expression must be
among those associated with predeclared types, either because they are
supplied by the system, or because their types can be deduced from type
definitions in the program. Wecan assure ourselvesthatthese restrictions are
met in a simple recursive scan through the program.
To understandthe representation,let us take for an example the following

trivial program:

let S = Ax.Ay.Az. x z (y 2)
K = dx.Ay. x

in SKK

Considered as an object in the type vexp, the program becomes:

LET [(“S",“K"] [rhs_S, rhs_K] main
where
varS = VAR “S*
varK = VAR “K*
varx = VAR “x
var_y = VAR “y“
varz = VAR “z"
main = AP (AP var_S var_K) varK
rhs_S = plambda [xtty"fz"] body_S

ths_K = plambda [“x',“y‘] body_K
body_S = AP (AP var_x var_z) (AP var_y var_z)
body_K = var_x
plambda vs e = foldr LAMBDA e vs

which the reader may write out without using ‘whereif so inclined.

9.2 Representation ofType Expressions

To construct the type-checker, we will need torepresent type expressions by
Miranda datastructures. We need a type forthenamesoftype variables and,
for the moment, wewill takethis to be the type oflists of characters. (For
technical convenience, wewill revise this definition in Section 9.6.)

tvname == [char]
type_exp := TVAR tvname

| TCONS [char] [type_exp]

This definition says that a type expression must be either a type variable or a
compound type (such as (A —> B), [A] or (A,B)). We represent such
compound types by the name of the operator (e.g. “arrowfor (A —> B),
“cross” for (A,B)), and a list of the operands.

Whateverother type-forming operators we have, wewill certainly need the

function type operator. So let us define:

arrow <. type_exp —> type_exp —> type_exp
arrow ti 12 = TCONS “arrow’ [tt 12]
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If ti and t2 are of type type_exp, and we know whattypes they represent, then

(arrow t1 2) will represent the type offunctions from ti tot2. Using Miranda’s
dollar notation for infixes, we maywrite this in the form (ti $arrow t2), which
adheres moreclosely to the informal notation.

The other type-forming operations we have mentioned could be
representedin a similar way:

int =: type_exp
int = TCONS “int” []

cross :: type_exp —> type_exp —> type_exp

cross ti t2 = TCONS “cross”[t1,t2]

list :: type_exp —> type_exp
list t = TCONS “ist” [t]

The function tvars_in returnsa list of the variable namesthat occurin a type
expression. (Thelist may contain repetitions.)

tvars_in :: type_exp —> [tvname]
tvars_in t = tvars_in’ t []

where
tvars_in’ (TVAR x) |! = x:l
tvars_in’ (TCONS y ts)! = foldr tvars_in’ | ts

9.3 Success and Failure

Since type-checking is something that can succeed orfail, we have to choose a
mechanism for representing success and failure within Miranda.
Weshall use the type (reply *) for the type of the values of a function which

may succeed (returning an object of type *) or fail (returning noindication as
to why).

reply * ::= OK * | FAILURE

It would not be acceptable for a practical type-checker to return no indication

as to why a checkhas failed. One might then use a slightly more complicated
operator, such as

reply’ * ** ::= OK’ * | FAILURE’ **

which is capable of returning error information.It is notoriously difficult to
write error-handling code without obscuring the code to handle correct cases,
so we will use instead the simpler, less informative operator. Any error
detected while type-checking will be propagated upto the top level without
further examination of the program. Here, too, there may be grounds for
complaint, which we counter with the same excuse.

(There is more than one way to represent success and failure. An
.. alternative approachto the one taken hereis described by Wadler[1985].)
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9.4 Solving Equations

Considertype-checking an application (AP e1 62), where wehaveworkedout
the type ti for e1 and the type t2 for e2. To do this, we try to ‘solve the
equation’

ti = t2 —> (TVAR n)

where n is a type variable namethat has not been used before. As we have
seen, the structure of an expression gives rise to a system of such equations.
How should werepresent solutions of systems of type equations? In

mathematics, the solution of simultaneous equations

ait XXy + Ay2 X X2 = b,

a1 XX + Az. XX = b,

is expressed by giving values for each of the unknownsx, and x, whichsatisfy
the equations. Analogously,an alleged solution of a system of type equations
can be expressed as a function from type variables (the unknowns)to type
expressions (their values). The allegation is that the equationsare satisfied
when wereplace (i.e. substitute) the unknowns by their values under the
function. We therefore take

subst == tvname —> type_exp

to be the type of substitutions. We shall see how to determine whethera set of
equations between type expressionshasa solution, andifso how to construct
a substitution that satisfies them. Weshall use identifiers such as phi, phi’, psi,

as variables over substitutions.

9.4.1 Substitutions

Given a substitution function phi and a type expression te, we define
(sub_type phi te) to be the type expression obtained by performing the phi
substitution onall the type variablesin te:

sub_type :: subst —> type_exp —> type_exp
sub_type phi (TVAR tvn) = phi tvn
sub_type phi (TCONS tcn ts) = TCONS tcn (map (sub_type phi) ts)

Here mapis the function that applies a function to each entry in list:

map :: (# —> #**) —> [«*] —> [*#*]

mapf{} ={[]
map f (x:xs) = f x : map f xs

Two substitutions can be composedto give a further substitution:

scomp :: subst —> subst —> subst
scomp sub2 sub1 tvn = sub_type sub2 (sub1 tvn)
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Thecrucial property ofscompis that

sub_type (scomp phi psi) = (subtype phi) . (sub_type psi)

(Rememberthat function composition is represented by an infix dot.)
The identity substitution id_subst has the property that

sub_type id_subst t = t

for all t::type_exp. It can be defined by:

id_subst :: subst

id_subst tvn = TVAR tvn

A delta substitution is one that affects one variable only. We define:

delta :: tvname —> type_exp —> subst

delta tvn t tvn’ = t, tvn = tvn’
= TVAR tvn’

Hence,(sub_type (delta tvn t)) is the function that maps a type expression to
one that contains t where before it had (TVAR tvn).

In fact, all the substitutions we need will be built up from the identity

substitution id_subst by composition on the left with substitutions of delta
form.

In general, a substitution may associate a variable with a value whichitself
contains variables. If those variablesin turn are given values different from
themselves, then the substitutionis not ‘fully worked out’. Whenwe work out

a set of equations

X1 = ty ...5 Xk = tk

by substituting t; for x; at all of its occurrences in ty,...,tk, we may have to
iterate the substitution many times before the equations stabilize to their final
forms. (Of course, this iterative process does not terminate if there is a

circularity in the equations.) In general, we are interested in obtaining ‘fully
worked out’ substitutions, which do not have to be re-applied. The next
definition is intended to capture what we mean by such a substitution.
A substitution phi is idempotentif

(sub_type phi) . (sub_type phi) = sub_type phi

or equivalently, if (phi $scomp phi) = phi. In other words, if you apply the

substitution twice, you get nothing different the second time. A type
expressiontis afixedpoint of a substitution phi if

sub_type phi t = t

In particular, if (TVAR x) is a fixed pointofphi, then we say that x is unmmoved

by phi.
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Notethatif phi is idempotent, and phi moves tvn, then

sub_type phi (VAR tvn)

is a fixed point of phi, and hence cannotcontain tvn.

9.4.2 Unification

In this section we will show how to construct a substitution which solves a
givenset of type equations, using a process called unification.
A system of type equations can be represented bya list of pairs of type

expressions, where eachpair (t,t2) represents the equation

ti = te

To solve the equations, we haveto find a substitution phi which unifies the left-
and right-handsides ofall equations in the system, where phi unifies the pair

(ts,ta) if

sub_type phi t; = sub_type phi te

If this equation holds,phiis said to be a unifier of ty andte. If phi is a unifier of

eachpairin thelist representing a set ofequations, we may think then ofphi as
a simultaneoussolution of the equations.

If the substitution phi solves a system of equations, then clearly any
substitution psi’ of the form (psi $scomp phi) is also a solution, but phi will

usually be a more general solution than psi’. A substitution phi is no less
general than a substitution psi if there is a substitution rho such that

psi = rho $scomp phi

If such an equation holds, then psi is said to be an extension ofphi.

If we have constructed a solution phi of a system of type equations, and we
have done no morethan is necessary to satisfy the equations, we will have a
solution which is maximally general, in the sense thatit is no less general than
any othersolution.
For an example(in informal terms), consider the type expressions

T1 (A —-> B) -> C
T2 (B —> A) —> (A —> B)

Thesubstitutions phit and phi2, where

phit A = B, phit C = (8 —> B)
phi2 B = A, phi2 C = (A —-> A)

are both unifiers ofT1 andT2.In fact, they are examples of maximally general

unifiers: they each do (one versionof) the minimumnecessary to makeT1 and

T2 equal, so that any other unifier ofT1 andT2is an extension ofeach ofthem.
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The problem of unificationis to find amaximally general idempotent unifier
of a set of pairs of expressions. The method we use is Robinson’s [1965]
unification algorithm.It is convenient when coding the algorithm to concen-
trate on the problem of extending a given substitution, which solvesa set of
equations

tr = ty; 20. 5 tk = te’

to one that solves an extended set

fy = ty) 22.5 te = th! 5 thar = that’

So we shall pose the problem in the following way. Givena pair(t;,t2) of type
expressions, and an idempotentsubstitution phi, our algorithm should return
FAILUREif there is no extension ofphi which unifies(t;,t2), and it should return

(OK psi), where psi is an idempotent unifier of (t:,t2) which extendsphi. (In
fact, the one we construct will be maximally general among such extensions of

phi.)
The simplest equation we can consideris one ofthe form

TVAR tvn = t

To handle such cases in the unification algorithm, we will make use of the
following function:

extend :: subst -—> tvname —> type_exp —> reply subst
extend phi tvn t = OK phi, t = TVAR tvn

FAILURE, tvn $in tvars_in t
OK ((delta tvn t) $scomp phi)

An expression (extend phi tvn t) will be evaluated only when:

(i) phiis an idempotent substitution (the solution weare trying to extend);
(ii) t is a fixed pointofphi;
(iii) tvn is unmovedbyphi (tvn doesnot already havea value underphi).

The value of the expression is either FAILURE, or of the form (OK phi’),
where phi’ is an idempotentsubstitution extendingphi, such that

sub_type phi’ t’ = t if ¢ = TVAR tvn
= sub_type phi t’ otherwise

In fact, phi’ is maximally general among extensions of phi which solve the
equation:

TVAR tvn = t

Note thatif phi is idempotent, t is a fixed point of phi and tvn is moved by phi,
then tvn can occurin neither (phi tvn) nort.
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We can codethe unification algorithm as follows:

unify :: subst —> (fype_exp, type_exp) —> reply subst

unify phi ((TVAR tvn),t)
= extend phi tvn phit, phitvn = TVAR tvn

= unify phi (phitvn,phi)
where

phitvn = phi tvn
phit = sub_type phi t

unify phi ((TCONS ten ts),(TVAR tvn))
= unify phi ((TVAR tvn),(TCONS ten ts))

unify phi ((TCONS ten ts),(TCONS ten’ ts’)
unify! phi (ts $zip ts’), tcn = tcn’

. FAILURE

The function zip, which is generally useful, turns a pairof lists into a list of
pairs, whose length is the sameas thatof the shorter ofthelists:

zip :: [+] —> [*+#] —> [(+,**)]
zip [] xs =f]
zip (x:xs)[] = []
zip (x:xs) (y:ys) = (xy):zip xs ys

The functionunify! is defined such that (unifyi phi pts) constructs a substitution

extending phi which unifies corresponding entries in thelist of pairs pts. This

functionis also generally useful, so it is defined globally too.

unify! :: subst —> [(fype_exp,fype_exp)] —> reply subst

unifyl phi eqns = foldr unify’ (OK phi) eqns
where

unify’ eqn (OK phi) = unify phi eqn
unify’ eqn FAILURE = FAILURE

This completes the definition of the unification algorithm.
It is important to see why the unification algorithm terminates. Afterall, in

the definition above we havedefined the value of (unify (TVAR tvn) t) in terms
of (unify phitvn phit) where phitvn = (phi tvn) and phit = (sub_fype phi t),

which may be very much larger expressions than (TVAR tvn) and t. However,
we only use that clause of the definition in circumstances when tvn cannot

occurin phitvn or phit. Define the solution set of phi to be the set of variables

which occur in an expression (phi tvn’), where tvn’ is moved by phi. We can

prove that (unify phi (t1,t2)) terminates, by a nested induction: the outer

induction is on the numberof variables in t1 and t2 which are not in the
solutionsetofphi, and the inner induction is on the combined length oft1 and
f2.

Theunification algorithm has manyapplications other than type-checking.
In particular it is a key algorithm in the implementation of programming
languages suchas Prolog.
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9.5 Keeping Track of Types

When type-checking an expression with free variables, there are two ways to
proceed.

9.5.1 Method 1: Look to the Occurrences

Wecanfind the constraints imposed on the types of the free variables by the
mannerinwhich they occurin the expression. Inacomplete program,the free
variables must stand for the system’sbuilt-in functions or functions associated
with type definitions. We would then look to see whether the types deduced
for each occurrence of a free variable can be instances of the type supplied a
priori for that variable. When type-checking a lambda abstraction (Ax .E), we
would check that the types deduced for the various occurrences ofx within E
can be unified to the same type expression, andwe would handle occurrences
of defined variables in the right-hand sides of a letrec-expression in the same
way.

It is quite possible to develop a type-checker along these lines: one is
presented in Damas [1985].

9.5.2 Method 2: Look to the Variables

It is technically rather a nuisance thatdistinct occurrences ofthe samevariable
in an expression are associated with different type expressions. Is there
something which we can associate with each variable instead?
Suppose we wish to type-checka let-expression. First of all we type-check

the definitions of the let, thus deducing a type for each variable defined by the
let. Then it seems that we could associate each variable with its type, and

proceed to type-check the body ofthe let-expression. At each occurrence of
oneof these defined variables in the body, we should construct an instance of
its associated type, substituting fresh type variables for the schematic
variables in the type (see Section 8.5.3). However, as we discovered in
Section 8.5.5, someofthe variables in the type are constrained and should not
be substituted for, and the instantiation mechanism musttake accountofthis.
Whatis needed,therefore,is to associate with each variable a kind of type

template, in which the schematic variables are distinguished from the non-
schematic variables. Then the template can be instantiated by copyingit,
substituting a fresh type variable for each occurrence of a schematic variable
(but copying non-schematic variables unchanged). This type template is
called a type scheme. To summarize:

(i) The schematic type variables in a type schemeassociated with a variable
are those that may be freely instantiated to conform with the type
constraints on the various occurrences of that variable.

(ii) All the other (non-schematic)variables in a type schemeare constrained,
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and mustnotbe instantiated wheninstantiating the type scheme. As we
remarkedin Section 9.4, they behave in a similar way to the unknownsof
a mathematical equation. For example, consider the simultaneous
equations

ay KX +12 XX = b,

42.1% X1+a22% X2 = bp

Weseek values for the unknownsx; and x2, by solving the equations, but
_ they mustbe consistently instantiated, so that x, stands for the same value
whereverit occurs (and likewise x2).

By analogy, we will refer to the non-schematic variables of a type
scheme as unknowns. Theyare the type variables whose values we seek
by solving the system of type constraints implied by the structure of an
expression.

(In papers about type-checking, schematic variables are often called generic
variables, and unknownsare called non-generic. We mention this only to
makeit easier to link up with theliterature, and will not use that terminology

here.)
Thereis a partial analogy between type schemes and lambda abstractions.

The schematic variables of a type scheme correspondto the formal parameter

of a lambda abstraction, and the unknownsof a type schemecorrespond to
the free variables of a lambda abstraction. Applying a lambda abstraction to
an argument involves constructing an instance of its body, substituting the
argumentfor occurrences of the formal parameter(but copying free variables
unchanged). This is very similar to the process of instantiating a type scheme,

. which involves constructing an instance of the type scheme template,
substituting fresh type variables for occurrences of the schematic variables
(but copying unknowns unchanged).
Wewill represent type schemes by objectsof the type

type_scheme ::= SCHEME [tvname] type_exp

A type variable occurring in a type scheme (SCHEME scvs e) is schematicif
its name occurs in the list scvs, otherwise it is an unknown.

unknowns_scheme :: type_scheme -—> [tvname]
unknowns_scheme (SCHEME scvs t) = tvars_in t $bar scvs

where

bar :: [*] —> [+] —> [+]
bar xs ys = [ x <— xs I ~ (x $in ys) ]
in :: * —> [*] —> bool
in x’ [] = False
in x’ (x:xs) = True, xX =x’

= x’ $in xs
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During the course of type-checking we will have occasion to apply a
substitution to a type scheme,to reflect additional information we haveonits
unknowns. Whendoing this, we should take care that only the unknownsare
affected (remember that the schematic variables function like the formal
parameterofa lambdaabstraction, and have only local significance):

sub_scheme :: subst —> type_scheme —> type_scheme
sub_scheme phi (SCHEME scvs t)

= SCHEME scvs (sub_type (exclude phi scvs) t)

where

exclude phi scvs tvn = TVAR tvn, tvn $in scvs
= phi tvn

In Section 2.2.6 we demonstrated the irritating problem of ‘name-capture’,
wherebya free variable ofa lambda abstraction could become bound bybeing
substituted inside another lambda abstraction. There is a similar problem
here with substitution into type schemes. We must take care that the
expression

sub_scheme phi (SCHEMEscvs t)

is only evaluated when the schematic variables scvs are distinct from any
variables occurring in the result of applying the substitution phi to any of the
unknownsof t. Otherwise a type variable in the range of the substitution
(which is always an unknown) might surreptitiously be changed into a
schematic variable. The way in which we ensure this is to guarantee that
the names of the schematic type variables in the type scheme are always

distinct from those which can occurin the range of the substitution (which are
always unknowns).

9.5.3 Association Lists

Having decided to associate a type scheme with each free variable in an
expression, rather than a type expression with each occurrence of a free
variable, we now haveto decide howthis information should be provided to
the type-checker. There are two requirements on the data structure we use:

(i) It should provide a mapping from thefree variables of the expression to
type schemes.

(ii) We shouldbe able to determine the range of that mapping.

To understand the second point, consider type-checking (let x=E in E’). We
start by deriving a type t for E, in a type environment

Xq on: Sy, 22.5 XktSK

which associates atype schemets, with each variable x, free in E (thets; thus
constitutethe range of the type environment). In other words, we attempt to
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build a solution phi to the type equations implied by thé structure of E, such
that

E::t providedthat x1 :: tsi’, ... , Xm 3s: tS’

wherets;’ is the image ofts, under the substitution phi. We then form the type
schemets to be associated with x when type-checking E’, in the extended
environment

Xi: toy’, 2... , Metsk’ yp X nts

The schematic variables ofts are all of the type variables oft except those that
are unknown (non-schematic) in any of the schemes ts;’, ... ,tsx’. So
whatever data structure we choose to represent the environment of the
type-checker,it should give us ready access to the set of unknownsin its range
(the ts;’).
An association list provides us with a suitable data structure.

assoc_list + ** == [(+,*+)]

Here * stands for the type of keys, and ** for the type of associated values. A
key k is associated with a value v by meansof the pair (k,v). The partial

functionitself is represented bya list of such associations. Weshalluseal,al’,

etc. as variables over associationlists.

dom :: assoc_list * #* —> [+]
dom al =[k! (kv) <— al]

(dom al) returnsa list (possibly with duplications) of the keys associated with
values in the list, which is how we shall represent the domain of a partial
function.

val :: assoc_list * *#*# —> * —> #

val alk = hd [ v I (k’,v) <— al; k =k’ ]

Ifk is a key in (dom al), then (val al k) returnsthe first value in the list whichis

associated with k. When using this function, we should be careful to ensure
that the second argumentbelongs to the domain ofthe associationlist.

install al k v = (k,v):al

(install al k v) returns an association list which implements the samepartial
function as al, except that the key k is now mapped to the valuev.

rng :: assoc_list * #* —> [##]
rng al = map (val al) (dom al)

The property which mg is intended to satisfy is that every entry in (rng al) isa
valueof(val al).

Weshall represent the information passed to the type-checker about the



Section 9.6 New variables 175
 

types of the free variables of an expression by means of an object of the
following type:

type_env == assoc_list vname type_scheme

Weshall use gamma, gamma’, etc. as variables standing for type environ-
ments. The functions unknowns_scheme and sub_scheme can be extended to
act on type environments, in the obvious way:

unknowns_te :: type_env —> [tvname]
unknowns_te gamma = appendlist (map unknowns_scheme (rng gamma))

appendiist :: [ [+] ] —> [+]
appendiist lls = foldr (++) [] lls

sub_te :: subst —> type_env —> type_env

sub_te phi gamma

= [ (x,sub_scheme phi st) | (x,st) <— gamma ]

9.6 New Variables

When type-checking a closed expression, wefirst assigned a distinct type
variable to each subexpression, and then wrote down equations expressing
the constraints on those variables imposed by the structure of the expression.
Whentype-checking an expression containing variables defined in a let- or
letrec-expression, we chose first to work out the schematic types of those
variables (i.e. we checked the definitions first). We then assigned to each
occurrence of such a variable a type expression obtained by substituting new
unknown variables for the schematic variables, using a distinct set of
unknowns for each distinct occurrence.

So we will need a mechanism that enables us to ‘make up’ new type
variables, and guarantees that they are distinct from type variables we may
introduce in the future. There are many ways to provide such a mechanism.
The one we adopthereis to postulate that there is a type name_supply, and
functions

next_name :: name_supply —> tvname
deplete 3 Name_supply —> name_supply
split :: name_supply —> (name_supply,name_supply)

such that ifns is a name supply,then (next_name ns)is distinct from any name
supplied by (deplete ns), and if (ns0,ns1) = split ns, then any name supplied
from ns0is distinct from any name supplied by ns1. One way to implement
such a typeis to (re)define tvname,thus:

tvname == [num]
name_supply == tvname
nextname ns = ns
deplete (n:ns) — (n+2:ns)
split ns = (0:ns,1:ns)
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For example,ifwe start with the name supply [0], then the namesit will supply
are [0], [2], [4], ..., while the names supplied bysplitting the supply into [0,0]
and [1,0] will be [0,0], [2,0], [4,0], ..., and [1,0], [3,0], [5,0], ..., respec-

tively. (The +2 in the definition ofdeplete is only an artifice to ensure that the
two halvesofa split name supply are foreverdistinct.)
The function name_sequence returns from a name supply an infinite

sequence of distinct names derived from that supply:

name_sequence :: name_supply —> [tvname]
name_sequence ns = next.name ns : name_sequence (deplete ns)

In practice, it is probably better to adopt an approachotherthan the supply
of new variables, according to which variables are namedbyintegers, and the
name supply represented by the nameofthe next variableto be allocated. The
type-checker would then take the name supply as an argument, and return the
depleted supply as part of its value. We have adopted an approach which
wasteslarge portionsofthe variable namespace, in order not to encumberthe
type-checker code with a further avoidabledetail.

9.7 The Type-checker

Finally, we are in a position to define the type-checker. This will take the form
of a function (tc gamma ns e) where

(i) gammais a type environment, associating type schemes with each of the
free variables of e. When the type-checker is invoked upon a complete
program, this type environment should be initialized to contain
declarationsof the types ofthe built-in system-supplied identifiers.

(ii) ns is a supply of type variable names.
(iii) e is the expression to be checked.

The value returned will be a :reply, which in the case of success will return a

pair of the form (phi,t) where

(i), phi is a substitution defined on the unknowntypevariables in gamma.
(ii) t is a type derived for the expression e, in. the type environment

(sub_te phi gamma). It will in fact be a fixed point ofthe substitution phi.

In other words,if

tc gamma ns e = OK (phit,t)

then e::t can be derived from gamma, provided that each unknowntn in
gammahasthe value givenit byphl.

Weshall define the function tc by induction on the structure of the
expression, with a different clause for each form which an expression can
take:
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tc :: type_env —> name_supply —> vexp —> reply (subst, type_exp)
tc gamma ns (VAR x) = tovar gamma ns x

tc gamma ns (AP e1 e2) = tcap gamma ns e1 e2
tc gamma ns (LAMBDA e) = tclambda gamma ns x e

tc gamma ns (LET xs es e) = tclet gamma ns xs es e
tc gamma ns (LETREC xs es e) = tcletrec gamma ns xs es e

Wewill describe each of thesecasesin a separate section, beginning at Section
9.7.2. First, however, we define a useful auxiliary functiontcl.

9.7.1 Type-checking Lists of Expressions

It is convenientto define a function (tcl es gamma _n) whichapplies to list of
expressionses,and will return in the case ofsuccessasimilar resultOK (phi,ts),

wherets is a list of types derived for corresponding componentsofthelist es in
the type environment (sub_te phi gamma). phi embodies all the constraints

on gamma necessary to derive those types simultaneously. The function is

defined from tc by the equations:

tcl :: type_env —> name_supply —> [vexp] —> reply (subst, [type_exp])
tcl gamma ns [] = OK (id_subst,[])
tcl gamma ns (e:es) = tcli gamma nsO es (tc gamma ns1 e)

where (ns0,ns1) = split ns

tell gamma ns es FAILURE = FAILURE
tell gamma ns es (OK (phi,t)) = tcl2 phi t (tcl gamma’ ns es)

where gamma’ = sub_te phi gamma

tcel2 phi t FAILURE FAILURE
tcl2 phi t (OK (psi,ts)) OK (psi $scomp phi, (sub_type psi t) : ts)

Thesubstitution can be thoughtof as built up in twostages. In thefirst stage,
we type-check each entry in thelist, in the type environment‘seen’ through
the substitutions derived for previous entries. Then in the second stage, we
form the substitution by cumulative composition, and ensure that each type
returned for an expressionis a fixed point of the composite substitution.

9.7.2 Type-checking Variables

Whentype-checking a variable x in a given type environment gamma, with
name supply ns, we look up the type schemeassociated with that variable by
gamma. Recall that in a type scheme, a type variableis either schernatic, in
whichcase wesubstitute a fresh type variable for it, orunknown, in which case
weleaveit as itis.

So we return a new instance of the schematic type associated with the
variable, in which the schematic variables have been replaced by fresh type
variables. In this way, the type constraints on different occurrences of a
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variable x can be resolved independently, as indicated by the schematic

variables in the type schemeassociated with x.

tcvar :: type_env —> name_supply —> vname

—> reply (subst,type_exp)
tcvar gamma ns x

= OK (id_subst, newinstance ns scheme)
where scheme = val gamma x

where

newinstance :: name_supply —> type_scheme —> type_exp
newinstance ns (SCHEME scvs t)

= sub_type phi t
= sevs $zip (name_sequence ns)

phi = alto_subst al

Here wehavebuilt an association list between the schematic variables and
an initial segmentof the name sequence built on the given name supply. Such
an association list can be made into a substitution, by meansofthe function:

al_to_subst :: assoc_list tvname tvname —> subst

al_to_subst al tvn = TVAR (val al tvn), tvn $in (dom al)
= TVAR tvn

9.7.3 Type-checking Application

When type-checking an expression (AP e1 e2) with respect to a type

environment gamma, wefirst of all try to construct a substitution phi which
solves the type constraints on e1 and e2 together. Suppose that the types t1
and t2 are derived for e1 and e2. Wethen try to construct an extension ofphi
whichsatisfies the additional constraint

ti=t->t

wheret’ is a new type variable. We obtain this extension,as usual, by unifying
ti with t2-> tt’.

tcap :: type_env —> name_supply —> vexp —> vexp

—> reply (subst,type_exp)
tcap gamma ns e1 e2

= tcap1 tvn (tcl gamma ns’ [e1,e2])
where tvn = next.name ns

ns’ = deplete ns

tcap1 tvn FAILURE
= FAILURE

tcap1 tvn (OK (phi,{t1,t2]))
= tcap2 tvn (unity phi (t1,t2 $arrow (TVAR tvn)))

tcap2 tvn FAILURE FAILURE
tcap2 tvn (OK phi) OK (phi, phi tvn)
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9.7.4 Type-checking Lambda Abstractions

Whentype-checking (LAMBDA x e), we know nothingat the outset about the
type of x. So we associate x with a scheme of the form
(SCHEME [] (TVARtvn)), where tvn is a new type variable. Because this
scheme has no schematic type variables, the various occurrences of the

variable will be assigned the value of the same type variable. This is the formal
counterpart of ourdecisionto insist that all occurrences of the same LAMBDA-

bound variable should have the same type.

tclambda :: type_env -—> name_supply —> vname —> vexp

; —> reply (subst,type_exp)
tclambda gamma ns x e

= tclambdal tvn (tc gamma’ ns’ e)
'where ns’ = deplete ns

gamma’ = new_bvar (x,tvn) : gamma
tvn = nextmame ns

tclambdai tvn FAILURE
= FAILURE

tclambda1 tvn (OK (phi,Q)

= OK (phi, (phi tvn) Sarrow t)

new_bvar (x,tvn) = (x,SCHEME [] (TVAR tvn))

9.7.5 Type-checkinglet-expressions

Whentype-checking an expression (LET xs es e), wefirst of all type-check

the right-handsidesin the list es. We then have to update the environmentso
thatit associates the appropriate schematic types with the names inthelist xs,

and type-check the body e. The details of constructing the ‘appropriate’
schematic typesare slightly involved, so weshall hide them in the definition of
a function add_decis.

tclet :: type_env —> name_supply
—> [vname] —> [vexp] —> vexp
—> reply (subst, type_exp)

tclet gamma ns xs es e

= tcleti gamma nsO xs e (tcl gamma ns1 es)
where (nsO,ns1) = split ns

tcleti gamma ns xs e FAILURE
= FAILURE

tclet! gamma ns xs e (OK (phi,ts))
= tclet2 phi (tc gamma’ ns1 e)

where gamma’’ add_decis gamma’ ns0 xs ts
gamma’ sub_te phi gamma
(nsO,ns1) split ns
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tclet2 phi FAILURE
= FAILURE

tclet2 phi (OK (phi’,t))
= OK (phi’ $scompphi, t)

The purpose of add_decls is to update a type environment gammaso thatit
associates schematic types formed from the types ts with the variables xs. The
variables which become schematic variables are those that are not unknowns
in gamma. Thedefinition is slightly complicated by our obligation to ensure
that the names of the schematic variables are distinct from the names of any
unknownvariables which can occur in the range of a substitution. Weuse the
name sequence ns to supply new names for the schematic variables.

add_decis':: type_env —> name_supply
—> [vname] —> [type_exp] —> type_env

add_decis gamma ns xs ts
= (xs $zip schemes) ++ gamma

where schemes map (genbar unknowns ns) ts
unknowns unknowns_te gamma

genbar unknowns ns t

= SCHEME (map snd al) t'

where al = scvs $zip (name_sequence ns)
scvs = (nodups (tvars_in t)) $bar unknowns
t' = subtype (alto_subst al) t

Here snd is a function which projects a pair to its second coordinate. The
projection functions for pairs are defined by

fst :: (#,**) —> *

fst (x,y) = x

snd :: (#,*#) —> *#

snd (x,y) = y

The function nodups returns a list with the same set of entries as its

. argumentlist, but without duplicates:

nodups :: [+] —> [+]
nodups xs = f [] xs

where

f ace [] = acc
f acc (x:xs) = f acc xs, x $in acc

= f (x:acc) xs

9.7.6 Type-checking letrec-expressions

The definition of the function invoked to type-check expressions
(LETREC xs es e) is rather intricate, as there are many things to do. In
outline, they are these:
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(i) Associate new type schemes with the variables xs. These schemeswill
have no schematic variables, in accordance with our decision to insist

that all occurrences of a defined name in the right-hand sides of a
recursive definition should have the sametype.

(ii) Type-check the right-hand sides. If successful, this will yield a
substitution and a list of types which may be derived for the right-hand
sides if the type environmentis constrained by the substitution.

(iii) Unify the types derived for the right-handsides with the types associated
with the correspondingvariables, in the context ofthat substitution. This
is in accordance with our decision that the right-hand sides of recursive
definitions must receive the same types as occurrences of the corres-
ponding variables. Should the unification succeed, that constraint can be
met.

(iv) We are now in muchthe samesituation as wewere in with expressions of
LET form, when the definitions had been processed, and it remained to

type-check the body e, after updating the type environment with
appropriate schematic types.

tcletrec :: type_eny —> name_supply

—> [vname] —> [vexp] —> vexp

—> teply (subst, type_exp)
tcletrec gamma ns xs es e

tcletrec! gamma nsO nbvs e (tc] (nbvs ++ gamma) ns? es)
where (ns0,ns’) = split ns

(nst,ns2) = split ns’

nbvs = new_bvars xs ns2

new_bvars xs ns = map new_bvar (xs $zip (name_sequence ns))

tcletrect gamma ns nbvs e FAILURE
= FAILURE

tcletrec! gamma ns nbvs e (OK (phi,ts))
= tcletrec2 gamma’ ns nbvs’ e (unifyl phi (ts $zip ts’))

where ts’ = map old_bvar nbvs’
nbvs’ = sub_te phi nbvs

gamma’ = sub_te phi gamma

old_bvar (x,SCHEME [] t) = t

tcletrec2 gamma ns nbvs e FAILURE
= FAILURE

tcletrec2 gamma ns nbvs e (OK phi)
= tclet2 phi (tc gamma’’ ns1 e)

where ts = map old_bvar nbvs’
nbvs'’ . = subte phi nbvs _
gamma’ sub_te phi gamma

gamma’’ add_decis gamma’ nsO (map fst nbvs) ts
(nsO,ns1) = split ns

The definition of the type-checkeris now complete.
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PROGRAM REPRESENTATION

At this stage, we assume that we have successfully translated the functional
program into a lambdaexpression. In the next few chapters wewill show how
to execute the program, reducing the lambda expression to normal form.

First of all we have to establish some representation for the lambda
expression,as it is held in the computer’s memory. This chapter outlines the
possibilities.

10.1 Abstract Syntax Trees

In all implementations of graph reduction, the expression to be evaluated is
held in the machinein the form ofits syntax tree.

Theleaves of the tree are constant values (such as 0, ‘a’, TRUE), built-in
functions (such as +, —, *), or variable names.

Theapplication of a function f to an argumentx is represented thus:

@

JN
f Xx

The ‘@’ signis called the tag of the node, and indicates that the node is an
application. We deal with functions of several arguments by currying:

@
J»
/N\+ 4

This tree denotes the expression (+ 4 2), which showsthe function + applied
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to the argument 4, giving a function (+ 4), which is then applied to the

argument2. Figure 10.1 showsa slightly more complicated example.

Ynn

q°

 

*

Figure 10.1 The tree of (+ 3 (* 2 8))

A lambdaabstraction (Ax. body) is represented thus:

Ax
|

body

The Ax tells that the node is a lambda abstraction and gives the formal
parameter.

Thegraph of the expression (CONS E; Eg) will look like this
@
/\

Es@
J\

CONS E;

  
 

(E; and Egstand for arbitrary expressions, as usual.) The result ofevaluatingit
will be a CONScell, which we depict likethis:

aN
E, Eo

wherethe ‘:’ tag labels the node as a CONScell (just as @ labels a node as an
application).

10.2 The Graph

The process of reduction performs successive transformations on the syntax
tree. During this process the tree becomes a graph, for reasons that will
becomeclear in Chapter 12. We use the term ‘graph’ here in the sense of

‘network’, a collection of nodes connected together by some directed edges.
Figure 10.2 shows an example graph.

 

|A——__—_——_—_—B

daNode D  
 

Figure 10.2 An example graph
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A graphdiffers from a tree in that two edges can point to the same node.
For example, in Figure 10.2 node D is a descendant of nodes A and C (we say
that it is shared). A graphis said to be acyclic if there is no path from a node
backto itself (Figure 10.2 is not acyclic, since there is a path from node A to
itself, via node C). A directed acyclic graph is often abbreviated DAG.

10.3 Concrete Representations of the Graph

The pictures we have shown are still somewhat abstract. In a typical
implementation each node of the tree would be represented by a small
contiguous areaofstore, calleda cell. A cell holdsa tag whichtells the type of
the cell (application, number, built-in operator, lambda abstraction, CONS
cell, etc.), and two or morefields. The numberoffieldsin a cell varies between
implementations. Many implementfixed-size cells with two fields, but some
havevariable-sizedcells. This issue is further discussed below. Wemay draw a
cell thus:
 

   
Tag Field 1 Field 2

  

A field may contain the address of anothercell, in which case wesaythatit

is a pointer, and that it points to the cell. We draw a pointerfield like this:
 

Address |Anothercell
  
 

 

Alternatively, a field may contain an atomic (non-pointer) data value. We
draw a non-pointerfield like this:
 

A data value
   

Each nodeofthe abstract syntax tree (or graph) correspondsto a cell of the
concrete representation. The tag on the node goesin thetag field of the cell.
Possible concrete representations for the syntax tree nodes we have metare
given in Figure 10.3, and, using these, our (+ 4 2) tree, for example, would

be represented as in Figure 10.4. Such pictures are rather laborious to draw,
so we will normally use the abstract version.

10.3.1 Representing Structured Data

Werecall from Chapter4 that an implementation of Mirandahas to support a
family of constructor functions, of which NIL and CONS are particular
examples. A constructor function builds a structured data object, which is
simply an aggregate of values together with a structure tag to distinguish it
from other constructors of the same data type. Typically the structure tag will
be a small integer, between 1 and the numberofconstructorsofthe type (but
see below, where tags and type-checking are discussed).
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Figure 10.3 Possible concrete representations
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Figure 10.4 The concrete tree of (+ 4 2)

If the implementation supports variable-sized cells then we can implement
theSe structuresdirectly:

 

  
Tag | Filed 1 |---| Fieldn

   
 

If the implementation supports fixed-size cells only, with twofields, then

the structure will have to be implemented as a linked collection ofcells:
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Notice that, since the size of the structured object is determined by the

structure tag, the last cell can contain thelast twofields.

10.3.2 Other Uses for Variable-sized Cells

As we have seen, the provision of variable-sized cells gives a much more
efficient representation of structured data objects. However, variable-sized
cells may also be useful to contain other objects such as:

(i) arrays;
(ii) arbitrary precision integers;
(iii) blocks of compiled code;
(iv) multiple applications; for example, we could represent(f a b) as a single

three-field cell containing f, a and b. This takes less space than the normal
method, which requires two two-field cells.

Unfortunately, variable-sized cells carry an implementation cost, as wewill
see in Chapter 17.

10.4 Tags and Type-checking

In whatfollows wewill find it convenient to distinguish two families of tags.
The structure tags identify data objects, and distinguish them from one
another. For example, a CONScell and NIL would havedistinct structure tags.
System tags identify cells holding systern objects, such as application nodes,
lambda abstractions, built-in operators, and so on. The ‘. . . and so on’is
highly implementation-dependent. Forexample, some implementations may
tag an application node differently if it is discovered to be irreducible, so that
repeated efforts to reduce it can be avoided.
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10.5 Compile-time versus Run-time Typing

Somefunctional languages are polymorphically typed (see Chapter 8), and
type-checked at compile-time. In this case, only enough distinct tags are
required to identify system objects uniquely and to distinguish data objects of
a given type from each other(e.g. to distinguish a CONScell from NIL). Thus
relatively few distinct tags are required, and a tag is typically represented in
eight bits or fewer.
Other languages rely on run-time type-checking, where each built-in

operator checks the type of its arguments before proceeding. This requires
that each data type be distinguishable from all the others used in the program.
Such run-time type-checked languages normally haveonlya fixed set oftypes,

and do notallow the user to introduce new types, so a fixed-size tag is still

sufficient.
Even in a type-checked system it is often considered desirable to carry

around type information at run-time to aid in system debugging. This is
problematic in languagesthat allow the programmerto introduce new types,

because there is no bound to the number of types which have to be distin-
guishable. In this case an escape mechanism is normally used for user-defined

types, whereby the first field of the cell representing the object carries a
unique type identification.

10.6 Boxed and Unboxed Objects

In Figure 10.4 each numberseemsto require cellto itself. This seems rather
profligate, since a field of a cell is normally large enough to contain a number.

Thus,insteadofafield pointing to a cell which contains a number,it would be
better to put the numberdirectly in the field. For example, the tree repre-
senting (+ 4 2) using unboxed representations would look like Figure 10.5
(compareFigure 10.4).
Data objects which can be completely described by a singlefield are called

unboxed, while those which are represented by one or morecells are called

boxed (the cell ‘boxes’ the data object). Typical candidates for an unboxed
representation are integers, booleans, characters and built-in operators
(which can be identified by a small integer or code pointer). For example,
Figure 10.4 incorporates boxed representations of integers and built-in
functions, while Figure 10.5 gives them unboxed representations.It is clear
that significant savings in the numberofcells allocated can be achieved by
using unboxedrepresentations.
 

 

 

 

e|, [2
~

el[+[4        
Figure 10.5 The concrete tree of (+ 4 2) (unboxed representations)
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In a boxed system, the tag of a cell completely determines whichfields of
the cell are pointers and which are not; for example, the two fields of an

application cell are always pointers (see Figure 10.4).
In contrast, in an unboxed system, any field which may contain a pointer

mayalso contain an unboxed object. Forexample,a field of an application cell

mayeither be a pointer or an unboxed (i.e. non-pointer) object (see Figure
10.5). Hence, all such fields must have an extra bit, called the pointer-bit, to
distinguish pointers from unboxed objects. Fields now looklikethis:

 

 

 

_

A pointerfield: | 1 | Address ———|»

A non-pointerfield: 0 A data value     

A minor shortcoming of unboxed objects for run-time type-checked
systemsis that unboxed objects are not tagged (since tags are attachedtocells
not fields). In Figure 10.4, the N tag on numbers enables the + built-in

operatorto check that its arguments are indeed numbers, whereas this is not
possible with a basic unboxed system. However, an unboxed system can still
incorporate run-time type-checking by reducing the numberof bits in the
unboxed object sufficiently to fit a tag into the field as well. Non-pointerfields
would then looklikethis:
 

 
0 Tag A data value

    

Even for compile-time type-checked systems it is vital that built-in
functions (such as +) are able to distinguish evaluated operands from
unevaluated ones (so that an unevaluated operand canfirst be evaluated).
Fortunately this is easy becauseif the operand is a pointer the tag on the cell

pointed to will show whetherit is evaluated or not; and if the operandis a
non-pointerthen it is an unboxedobject which requires no further evaluation.

10.7 Tagged Pointers

Some implementationsputa tag into pointerfields also, thus

 

  
1 Tag Address ——_|—»

   

For example, both the SKIM [Clarke et al., 1980] and NORMA[Richards,
1985] reduction machinesdo this, though they use the tag in different ways.
NORMA regardsthepointer tag as a cacheforthe tag of the cell pointedto.
Thusif the pointer tag is valid (one value of the pointer tag is reserved for
INVALID)it containsthe tag ofthe cell to which the pointer points. Like any
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cache, this technique should be regarded purely as an optimization of the
ordinary tagged-cell approach.

In SKIM,however;there are no tags on cells at all. The only tags are in the
fields. This has the advantage that a cell now consists of two identicalfields
(instead of two identical fields plus a tag), which allows a more uniform
hardware design for SKIM. However,it means that a cell cannot change its
tag; for example, an application cell must remain an application cell, because
it would be impossible to change the tags ofall pointers to the cell at once.
This makes reduction slightly more awkward.

In summary, both a pure tagged cell and a pure tagged pointer approach
can adequately support reduction. The tagged cell approach makes reduction
rather easier, butgives rise to a rather less uniform hardware implementation.
The NORMA cacheing approach is more complexstill, but may give some
performance improvement.

10.8 Storage Managementandthe Need for Garbage Collection

As reduction proceeds wewill need to build new pieces of graph. In order to
do so wehavetoallocate new cells. Cells are allocated from a (large) area of
storage called the heap, whichis simply an unorderedcollection of cells. The
term ‘heap’ emphasizes that the physical adjacency of two cells is purely
coincidental; what matters is which cells point to which.
As well as allocating newcells, the reduction process will also discard cells,

or rather it will discard pointers to cells. We must re-use cells whenever
possible, because if we never did so we would soon run outof heap space.
Unfortunately, in a graph there maybe manypointers to the samecell, andwe
can only re-use a cell when there are no further pointers to it. So long as there
are further pointers to a cell from elsewhere in the graph,it cannot be re-used
becauseitis still in use. Cells with no pointers to them are said to be garbage.
It is quite tricky to identify garbage cells, and all implementations of
functional languages include a garbage collector whose purposeis to identify -
and recycle garbage cells.

The wholeactivity of cell allocation and garbage collectionis called storage
management, andis further discussed in Chapter 17. As we will see there,
fixed-size cells allow for a rather more simple garbage collector than variable-
sized cells.
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SELECTING THE NEXT REDEX

Whenthe graph of a functional program has been loaded into a computer, an
evaluator is called to reduce the graph to normal form. It does this by
performing successive reductions on the graph, which involves two distinct

_ tasks:

(i) selecting the next redex to be reduced;
(ii) reducingit.

In this chapter weshall address the first issue, before turning our attention to
the secondissue in the next chapter.

AsSection 2.3 has shown, the order in which reductions take place has a
profoundeffect on the behavior of the program. We begin by discussing the
nature of this effect.

11.1 Lazy Evaluation

In an ordinary imperative language (such as Pascal), arguments to a function
are evaluated before the function is called (call by value). However,it is
possible that the argument thus passed is never used in the body of the
function, so that the work donein evaluatingit is wasted. This suggests that a
better scheme might be to postponethe evaluation of the argumentuntil its
vatue is actually required (call by need). Catt by need is in fact rarely
implemented in imperative languages for two main reasons:

(i) The evatuation ofan argument maycause someside-effects to take place,
and may produce a result which depends on the side-effects (such as
assignments) of other parts of the program. Hence, the exact time at
which the argumentis evaluated is crucial to the correct behaviorof the

193
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program. However,it can be quite tricky to work out exactly when the
argumentwill first be needed (and hence evaluated).

(ii) Call by need is hard to implementin a stack-based implementation.

In the context of functional languages, call by need is often called lazy
evaluation,since it postpones workuntil it becomes unavoidable. Conversely,
call by value is often called eager evaluation.

11.1.1 The Case for Lazy Evaluation

In the context of functional programming, there are strong reasons for
providing lazy evaluation in the language.

It adds a new dimension of expressive powerto the language, allowing, in
particular, the construction and manipulation of infinite data structures and
streams. A full justification of this point of view is outside the scope of this
book,since it lies in the area of software engineering rather than implemen-
tations, and the readeris referred to Chapter 8 of Henderson’s book [1980],
Section 3.4 of Abelson and Sussman [1985] and the author’s paper [Peyton
Jones, 1986].

Notall functional languages have lazy semantics. For instance, ML and
Hopearestrict, while SASL, KRC, LML, Miranda, Orwell and Ponderare
lazy.

11.1.2 The Case Against Lazy Evaluation

There is only one argumentagainst lazy evaluation, butit is a very persuasive
one: the price of lazy evaluation is execution speed. There seems to be no
avoiding this in practice. Faster implementations are possible when the
argumentsto functions can be evaluated before the functionis applied.

Languageslike ML and Hope havestrict (call by value) semantics, but
support lazy evaluation whereit is explicitly requested by the programmer
(particularly in data constructors). The argumentis that the price for lazy
evaluation should only be paid where it is actually required.

11.1.3 Normal Order Reduction

Any implementation of lazy evaluation has two ingredients:

(i) Arguments to functions should be evaluated only whentheir value is
needed, not whenthe function is applied.

(ii) Arguments should only be evaluated once; further uses of the argument
within the function should use the value computedthefirst time. Since the
language is functional we can be sure that this scheme gives the same
result as re-evaluating the argument.
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Ina nutshell, arguments should be evaluated atmostonce and,ifpossible, not

atall.
Any implementation of a lazy language must somehow support these two

ingredients. Wewill have to wait until the next chapter before we see how to
support the second ingredient, but the first is rather easy — it is directly
implemented by normalorder reduction!

Recall from Section 2.3 that normal order reduction specifies reducing the
leftmost outermost redex first. Given an application of a function to an
argument, the outermostredex is the function application itself, so a normal
order reducerwill reduce this prior to reducing the argumentto normalform.
For example, in the expression

(Ax.3) <bomb>

where <bomb> does not terminate, normal order chooses to apply the
lambda abstraction (giving the result 3) rather than first evaluating the
argument <bomb>. Hence normalorder reduction directly implements the
first ingredientof a lazy evaluator.

In terms of reduction order, strict semantics means reducing the argument
to a lambda expression before reducing the application of the lambda
expression to the argument.This is called applicative order reduction.

Aswewill see in this chapter, normal orderis actually an extremely natural
and easily implemented reduction order, since the rule for identifying the next
redex turns out to be rather simple. Thus graph reduction gives a ‘goodfit’
with lazy evaluation.

11.1.4 Summary

There are strong arguments for and against lazy evaluation, but a detailed
discussion of the question is beyond the scope of this book. (The authoris,
however, convinced that lazy evaluationis a crucially important feature for
functional programming.)

It seems undeniable, however, that graph reduction is a particularly
effective implementation techniquefor lazy languages. Since graph reduction
is the subject of this book, we will henceforth restrict our attention to

languageswith lazy semantics, implemented using normalorder reduction.
Arvindetal. [1984] give a moredetailed description ofsomeoftheseissues.

11.2 Data Constructors, Input and Output

Suppose that the result of evaluating our program is an infinite list. We want
this list to be printed outas it is generated. We certainly do not want to wait
until it has all been evaluated before printing anything, because we would
have to wait forever! Similarly, we do not want the program to evaluateits
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entire input before producing any output. These observations focus our
attention on the mechanismsavailable for input and output.

Input and output are regarded as side-effects in imperative programming

languages, so functional systems have to take a different view since they do
not support side-effects. The accepted solution is to regard the functional

program as a function from mputdata to output data:

 

  
Input ——»| Functional program ———»Output
data data
 

The input data are normally presented to the program as aninfinite list of
characters, which might, for example, come from the user’s keyboard. The
output data are the result of applying the program to the inputlist, and are
normally some kindofdata structure which might, for example, be displayed
on the user’s screen.
As well as getting the correct results to the program, however, we also want

it to have ‘nice’ operational behavior, namely that outputis printed as soon as
it is available, and that inputis notconsumed untilit is needed. In the next two

sections we discuss how this operational behavior can be achieved, beginning
with the printing mechanism.

11.2.1 The Printing Mechanism

Since we wantto print out a data structure as it is generated, we see that the

evaluation of a functional program is driven by the needto printits result, and
that the evaluatoris called from the printing program. The printing program
calls the evaluator, and then looks at the root of the result (i.e. the root of the

evaluated graph). If it is a number(or boolean, character, etc.), the printer
prints it and evaluation is complete. If, on the other hand,the result is a data

constructor (such as a CONScell), the printing program cancall the evaluator
successively to evaluate the components ofthe data structure, printingout the
results as it goes. The whole printing process can be repeated recursively on
the components ofthe data structure.
Assuming that our functional program always evaluates to a numberor a

CONScell, we might write a pseudo-codeprinting program likethis:

Print( E )
begin

E’ := Evaluate( E )

if (isNumber( E’ )) then Output( E’ )
else begin

Print( Head( E’ ) )
Print( Tail( E’ ) )

end
end



Section 11.3 Normalforms 197
 

WhenEvaluate(E) yields a CONScell it is vital that its head andtail are not
yet evaluated. If they were evaluated immediately then the entire data
structure would be evaluated before any of it could be printed. This is
achieved by using /azy constructors; that is, constructors that do not evaluate

their arguments.
It has become quite common for printing mechanisms to print the

components of a data constructor one after the other, with no separating
characters. This hides the underlying shape ofthe data structure, but gives the
functional programmer complete control over the character stream actually
outputto the printer. SASL,for example, behavesin this way [Turner, 1983],
though Miranda doesnot.
So far we have assumedthat the result of a program will be printed, but

there is no reason whyit should not be putin a file, or fed into some other
program instead. This routing of output would be controlled by the ‘printing
mechanism’, possibly directed by routing information containedin the output
data structureitself.

11.2.2 The Input Mechanism

In order to extract characters from the input list, the program will need to

evaluate thelist, element by element. Just as in the case of the printer,it is
vital that the first evaluation does not force evaluation of the entire list,

otherwise the entire input list would have to be evaluated (thatis, read in)
before any of it could be used. This would effectively rule out interactive
programs,in whichlater input data depend onearlier output data.

11.3 Normal Forms

Our consideration of both input and output have led us to the same
conclusion, namely that

evaluating an expression whose result is a CONScell should not entail
evaluating its head andtail.

This means that we should stop reduction when there maystill be some
redexesleft in the graph (in the head andthetail). None of these redexeswill
be reduced by a normalorder reduction scheme until the whole expression
has been evaluated to a CONScell, becauseuntil then there will always be a
top-level redex which normal orderwill select.
Hence, what we needto dois to pursue normal order reduction, but stop

whenthere is no top-level redex (even though there maybe inner redexesleft
in the graph).



198 Chapter Il Selecting the Next Redex

11.3.1 Weak Head Normal Form

To express this idea precisely we need to introduce a new definition:

 

DEFINITION

A lambdaexpressionis in weak headnormalform (WHNF) ifandonly ifit
is of the form

F E; Eo... En

where n = 0;
and either Fis a variable or data object

or F is a lambda abstraction orbuilt-in function
and (F E; Eo ... Em) is nota redex for any m=n.

Anexpressionhas no top-levelredex ifandonlyifit is in weak headnormal
form.   

For example, the following expressions are in weak head normalform:

3
A CONScell

+ (— 4 3) top-level + does not have enough arguments

(Ax.+ 5 1) not applied to anything

The last two examplesare in weak head normal form, but not in normalform,

since they contain inner redexes. Weak head normal form is often confused

with head normalform; this point is discussed at the end of the section.
Our reduction order is therefore to reduce the top-level redex (there can

only be one such) until weak head normal form is reached. We can thinkofit
like this:

 

Original expression

Normalorder reductions

of top-level redexes

Weak head normalform (no top-level redexes)

Normalorder reductions

of inner redexes

Normalform (no redexes atall)  
 

We pursue normal order reduction, but stop at WHNF rather than
proceedingall the way to normal form. Thisis an essential ingredient of lazy
evaluation, since reducing through to normal form risks performing unneces-
Sary reductions.
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11.3.2 Top-level Reduction is Easier

Theresult of a functional program neverhas any free variables. For example,
(+ x 1) is not valid functional program since it has the free variable x, whose
valueis not specified.

Since we only ever reduce the top-levelredex, which has no free variables,
it follows that the arguments of the redex have nofree variables either. This
means that the name-capture problem described in Section 2.2.6 can never
arise in our implementations, which is a considerable relief. It is also an
essential property if we are to compile our programs (see Chapter13).

11.3.3 Head Normal Form

Head normal form is often confused withweak head normal form,soit merits

some discussion. The content of this section is, however, largely academic
since for most purposes head normal form is the same as weak head normal
form. Nevertheless, we will stick to the termWHFforthe sake ofprecision.

 

DEFINITION

A lambdaexpressionis inheadnormalform (HNF) ifand onlyifit is ofthe
form

AX1.AX2..-AXn.(v Mi Mo ... Mm)

where n, m = 0;

v is a variable (xi), a data object, or a built-in function;
and (v M; Mz... Mp)isnot a redex for any p=m.   

Anything in HNFis also in WHNF,but not vice versa. For example, the
following expression is in WHNF but not HNF:

Ax. ((Ay-y) 3)

To reach HNFthe inner redex should be reduced.
The difference between HNF andWHNF is onlysignificant whenthe result

is a lambda abstraction,since for data objects and built-in functions they are
identical. For the purists, though, the question is whether we should perhaps
reduce to HNFrather than WHNF. This raises some practical difficulties,
since it will involve performing inner reductions where the argument may
have free variables, so the name-capture problem of Section 2.2.6 comes
back.

Taking this idea further, Barendregt etal. [1986] advocate a reduction order
called innermostspine reduction. This is a modification ofnormal orderwhich
evaluates the body of a lambdaexpression before applyingit to an argument.
For example

(Ax. ((Ay.y) 3)) 4
—> (Ax.3) 4

—» 3
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This is based on the insight that the body of the lambda expression will
subsequently be evaluated anyhow, so we do not risk non-termination by
evaluating it before applying it. Thus Barendregt et al. show that innermost
spine reduction never takes more reductions than normalorder, and some-
times takes fewer. As mentioned above,the serious problem with innermost

spine reductionis that it entails performing reduction in the presence of free
variables. From an implementation point of view (only), this objectionis so
serious (see Section 11.3.2) that we abandon innermost spine reduction
forthwith.

This view is not universally held; see, for example, Watsonetal. [1986].

11.4 Evaluating Arguments of Built-in Functions

Some built-in functions, such as + and HEAD, need to evaluate their

arguments before they can execute. For example, consider

+ (- 43)5

The inner redex (— 4 3) must be evaluated before the + can proceed. Wesay
that + is strict in both arguments (see Section 2.5.4).
When the evaluatorfinds that the top-level redex is an application of a

built-in function which evaluates its argument(s), it has to check whetherthe
appropriate argunient(s) are already m WHUNF.If they are not, it must

recursively invoke itselfto reduce them toWHNF before proceeding with the
application of the function. For example,in the expression

IF (NOT TRUE) f gh

wewill select the redex (IF (NOT TRUE) f g) for reduction. Now,the function

IF must evaluateits first argument (only), and that argumentis not yet in
WHNF. So the evaluator recursively invokes itself on the (NOT TRUE)
expression, which returns FALSE,at which pointthe IF can proceed.
As another example, consider

HEAD (CONS NIL)

The outerlevel redex is the application of HEAD, and HEAD mustevaluate its
argument to WHNF(thatis, until it is a CONS cell). So the evaluator invokes
itself recursively to evaluate

CONS 2 NIL

This evaluation produces a CONScell in one reduction, from which HEAD
extracts the result, 2.

To summarize, the evaluatorhas to invokeitself recursively to evaluate the
argumentsofstrict built-in functions.
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11.5 How to Find the Next Top-level Redex

Having decided to implement normal order reduction of top-level redexes
only, we must ask howto find the appropriate redex given a graph to reduce.
Our expression can only be of the form

f E, Eo... En

whose graph lookslike this:

@
/N\

. En

,

A
A "
@ E2
1

f Ey

Here,f is a data object, a built-in function or a lambdaabstraction (but not an
application or we would have drawn anotherlevelin the picture), and there
may be zero or more arguments (Ej), which are arbitrarily complicated
expressions. There are now variouspossibilities:

(i) f may be a data object such as a numberor a CONScell, in which case the
expression is in weak head normal form and we are done. However,in
this case n should be 0;if not, the data object is being applied to an
argument. This corresponds to a typeerrorin the original program, such
as using a numberas a function, andwill neveroccur if the program has
been type-checked.

(ii) f may be a built-infunction taking, say, k arguments.In this case we must
check to see whether there are enough arguments available (i.e.n = k);
ifso, (f E; ... Ex) is the outermost redex which normal orderwill select.
For example, in Figure 11.1(a) the redex is (IF E; Eo Es) and the $
marksthe root of this subgraph.

If there are too few arguments (n < k) then the expression is in weak
head normalform.

(iii) f may be a lambdaabstraction.If it has an argumentavailable (n = 1) the
redex we should reduce nextis (f E,). For example, in Figure 11.1(b) the
redex is ((Ax.body) E;), and the $ marks this application node.

If there are no arguments (n = 0) then the expression is in weak head
normal form.

According to our abstract expression syntax there is one other possibility
forf: it could be a variable name. However,in this case the variable must occur
free in the entire expression, so we mayjustifiably give.an error.
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@ @

oa A*
Es $@ E2-

o \e wt \ 1

IF’ Ey body

(a) . (b)   
Figure 11.1 Finding the next redex (marked $)

Someevaluators insist that an expression always reducesto a data object in
the end. They will therefore treat the case of a built-in function with too few
arguiments or lambda expression with no argumentsas anerror.If in addition
the program is type-checked the test can be omitted altogether, since there
will always be enough argumentsfor a function. (Note: this is not true for
other reduction orders. For example, an applicative order reducer will
evaluate the argument to a function before applying a function, and the
argument mightitself be a partially applied function.)

Thusto find f we just go downthe left branch of each application node from
the root. This left-branching chain of application nodesis called the spine of
the expression, and the act of ‘going down’ the spine is sometimescalled
unwinding the spine. Continuing the analogy, the vertebrae of the spine are
the application nodes encountered during unwinding, the ribs are the
argumentsof the vertebrae (the E; in Figure 11.1), and thetip of the spineis
the extreme bottom ofthespine(IF is at the tip of the spine in Figure 11.1(a)).

It is therefore rather easy to find the next redex to reduce. We just unwind
the spine until wefind a function, and then, based onthe function wefind, we

go back upthespinetofind the root of the redex.
Notice that the most naturalway to proceedis to reduce the top-level redex,

so there is a good ‘fit’ between normal order reduction and graph reduction.
We haveto go to extra trouble to evaluate arguments to functions before
applying the function.

11.6 The Spine Stack

So far we have said that we should ‘unwind the spine’ and ‘go back up the
spine’, without saying how to do so. In particular, as we unwind the spine we
pass by the argumentsthat wewill subsequently require during the reduction
of the function (built-in or lambda abstraction) foundatthe tip. This suggests
that we should keep a stack of pointers to the vertebrae as shown in Figure
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11.2. Now the arguments are all readily available, and the number of
argumentsis given by the depth of the stack. Furthermore, the vertebrae
themselves are also accessible from the stack. This will prove to be crucially
important once westart to consider how to perform a reduction (in Chapter
12), since the root of the redex is overwritten with the result of performing the
reduction.
 

Stack base

 

Stack top   
Figure 11.2 The spine stack

Whenwerecursively evaluate the arguments to a built-in function, we need
a brand new stack. Fortunately,

(i) the existing stack will not change until the argument evaluation is
complete,

(ii) the new stack can be discarded when the argument evaluation is
complete,

so the new stack can be built directly on top ofthe old one. Wemust, however,

take care to save the depth of the old stack first, so that we can restore it when
evaluation of the argument is completed. Most implementations have a
separate stack, called the durnp, for this purpose. Alternatively, the depth of

the old stack can be saved on the stack itself. This technique is rather
reminiscentof the stackframes of imperative languages.

11.6.1 Pointer-reversal

In somewaysthestack is rather a nuisance because its size has no convenient
bound,so it is not clear how much spaceto allocate to it. This problem is
particularly pressing in machinesspecifically designed to do reduction, where
the stack might have to be embodied in hardware.

It turns outthat a clever trick, knownas pointer-reversal, allowsus to get
away without a separate stack at all. It is borrowed from a well-known
garbagecollection technique (the Deutsch—Schorr—Waite algorithm [Schorr
and Waite, 1967]), and consists ofsimply reversing the pointers in the spine as
we unwindit.
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Specifically, we hold two pointers, F and B (for forward and backward). To

begin with, F points to the root of the expression, and B points to a uniquecell
called TOP.Thisinitial set-up is shown in theleft-hand columnofFigure 11.3,
where wehavedepicted the spine vertically on the page. Then to unwind one
level, we set

F = Left( F )
Lefi( F) =8B simultaneously
B =F

whereLeft( F ) meanstheleft field of the node F points to. This operation is
showntakingplace in the subsequent columnsof Figure 11.3. When we reach
the tip, F will point to the tip and B will point back up thetrail of reversed
pointers to the root. Thus the vertebrae nodes and the arguments to the
function can be found by following pointers from B.
When going back up (rewinding) the spine, we simply reverse the

operation,putting the pointers backinto their original state. We caneasily tell
when wereach the top because B becomes TOP.

 

B—» TOP TOP . TOP

F—»@—r»R B—»@-—»R @—> R @-—»R

—>oO]| F—-@-—ro B—-»@—r0 i> °

@—r> P |. @—>P F_»@—» P Boxe P
Vv Vv
f f F —»f

Initial Step 1 Step2 Step 3       
Figure 11.3 Pointer-reversal in action on (f P O R)

11.6.2 Argument Evaluation using Pointer-reversal

There is a slight problem when we needto evaluate the argumentsto strict
built-in function. Consider the expression (IF (= x 0) P Q). When we have

unwoundthe spineto find the IF, the graphlookslike the left column ofFigure
11.4, Now weneedto evaluate the argument, so we must unwindthespine of

the argument. Unfortunately, we cannotinitialize B with TOP, because we

would then notbe able to find our way back to the parent spine. Instead we

simply pointer-reverse our way into the argument spine, but marking the

parentspine vertebrae, in some way. To ‘turn the corner’ into the argument
spine, we perform the following operations:

F Right( B |
FRight( B )

Mark( B )
simultaneously
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TOP TOP TOP

CoQ cs @—»Q

@—» P @—» P —»>P 8B

B-»>G———_->@-»0 BP@* F rer0 9" <—_—-@-»0

F —y IF aa \ @-» x IF F —»@—»>x

After unwinding After turning the Afterfirst unwind
the IF spine comer on the arg spine     

Figure 11.4 Pointer-reversal for argument evaluation

In the diagram we have markedthe vertebra with #. Now when rewinding
the argument spine, we know wehave reached the top when we encounter a
node marked with #, at which point we know that we have completed
evaluation of the argument, and can resume evaluation of the parentspine.
This technique was discovered by a numberof researchers independently,

andis described by Stoyeetal. [1984].

11.6.3 Stacks versus Pointer-reversal

Given the alternative, then,is pointer-reversal better than a stack?

(i) A stack is significantly faster than the pointer-reversing scheme. The
stack gives instant access to arguments and vertebrae, without having to
follow chains of pointers. This is particularly important in a parallel
machine, where there are much higher overheads associated with
accessing the (global) heap than the (local) stack. Furthermore, all
reversed pointers have to be un-reversedlater, resulting in heap accesses
which a Stacking implementation may not have to make.

(ii) Pointer-reversal usesvery little extra storage. All that is requiredis a bit
in each cell to control the evaluation of arguments to strict built-in
functions. There is no (reasonable) boundto the possible length of a
spine, so not only does a separate stack require Some extra Storage, but

also (more seriously) we cannot know in advance how much extra
storageto allocate. This is a significant complication for machines which
implementthestack in hardware (e.g. NORMA [Scheevel, 1986]).

(iii) It turns out that the stack offers a large numberoffurther opportunities
for performance improvement, and we address this topic morefully in
Chapters 20 and 21.

(iv) For a pointer-reversing implementation, the complete state of the
evaluation is described by the two pointers F and B (together with the
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graph). This is useful for a parallel machine, when evaluations may need

to be suspendedandtheir state saved somehow.This topic is discussed in
Chapter24.

It seems, therefore, that pointer-reversal alone is suitable only for small
experimental implementations. A stackis necessary for high performance,
but a parallel machine maywell use both schemestogether.
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Twelve
 

GRAPH REDUCTION OF LAMBDA
EXPRESSIONS

Wehavenow deait with the issue of which redex to reduce next, and how to
find it. In this chapterwe will complete the implementation byshowinghowto
perform a reduction.

Performing a reduction constitutes a local transformation of the graph
representing the expression, so the process of reduction successively modifies

the graph until it reaches its final form, the result of the computation.
As we haveseenin the previous chapter, the function at the tip ofthe spine

maybe either a lambdaabstraction,or a built-in function (if, that is, the graph
has a top-level redex atail). We will deal with these two cases separately.

12.1 Reducing a Lambda Application

Suppose the redex consists of a lambda abstraction applied to an argument.
Then we must apply the 6-reduction rule to the graph. That is, we must
construct an instance of the body of the lambda abstraction, substituting the
argumentfor free occurrences of the formal parameter.
Wewill sometimes refer to this process as ‘constructing a new instance of

the body of the lambda abstraction’, but we will often abbreviate this to
‘instantiating the lambda body’. Figure 12.1 gives an example.
 

 

@ reduces to @
/X\ /\
¥ TRUE NOT TRUE

A
Nor x (Ax.NOT x) TRUE -» NOT TRUE  
 

Figure 12.1 Instantiating the body of a lambda abstraction
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Three importantissues of implementation arise here:

(i) The argument may be bulky and/or contain redexes, so we should
substitute pointers to the argumentfor the formal parameter(see Section
12.1.1).

(ii) The redex may be shared, so we mustphysically overwrite the root of the
redex with the result (see Section 12.1.2).

(iii) The lambda abstraction may be shared, so we must construct a new
instance of the lambda body,rather than substituting in the original body
directly (see Section 12.1.3).

Wewill deal with these issues in the following sections.

12.1.1 Substituting Pointers to the Argument

Whensubstituting the argumentfor the formal parameter, we could just copy
the argument whenever the formal parameter occurred. But copying the
argument maybe very wasteful, because

(i) the argument might be a very large expression, in which case we are
wasting space by making multiple copies of the same object;

(ii) the argument mightcontain redexes, in which case we are wastingwork by
duplicating redexes which may subsequently have to be separately
reduced(if they are needed).

Both of these problems can be avoided by substituting pointers to the

argumentfor the formal parameter. This gives rise to sharing, whereby there
may be many pointers to the same expression, andit is for precisely this

reason that the expression tree becomesa graph. Figure 12.2 is an example of

this process in action, in which the (NOT TRUE) expression becomesshared.

Sharing by meansofpointers wasfirst suggested byWadsworth [1971], who
called it graph reduction.It is the key idea that turns reductioninto a practical
technique. The alternative, of copying the argument whereverit is used, is
called tree reduction or string reduction and is normally considered pro-

 

@ reduces to @

4 Ne @\

b wot Yrue AND! ~~
UE@ NO

/\
AND x

(Ax.AND x x) (NOT TRUE) -> AND (NOT TRUE) (NOT TRUE)   
Figure 12.2 Pointer substitution
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hibitively expensive (though Mago’s parallel reduction machine uses it
[Mago, 1980], relying on massive parallelism to overcometheinefficiency).

12.1.2 Overwriting the Root of the Redex

If we are to exploit sharing successfully we must ensure that when an
expression is reduced we modify the graph to reflect the result. This will
ensure that shared expressions will only be reduced once. For instance, in
Figure 12.2 the (NOT TRUE) expression will be reduced next (since AND
requires its arguments to be evaluated), andwe would like to arrange that this
reduction is only done once.

Wecan achieve this by the simple expedient of physically overwriting the
root of the redex with the (rootof) the result. Here is an example in which the
node marked‘$’is the root of the redex, and is physically overwritten with the
result of the reduction:
 

-P reduces to @

@
/ /

AND @$ AND FALSE $
No. ‘TRUE NOT TRUE  
 

Notice that fragmentsofthe redex (in this case just the NOT andTRUE nodes)
are not affected by the overwriting, and become completely detached from
the part of the graph we are considering. They cannot be recovered and
re-used immediately because they may be shared with other nodesnotin the
picture. If not, then they will eventually be recovered by the garbage
collector.

There is an important complication associated with overwriting the root of
the redex, which we discuss later, in Section 12.4.

12.1.3 Constructing a New Instance of the Lambda Body

Asthe word ‘instance’ implies, when applying a lambda abstraction we must
make substitutions within a new copy of the body of the lambda abstraction
rather than updating the original body directly with the substitutions. This is
necessary because the abstraction may be applied many times, and its body
serves as a ‘master template’ from which an instance is constructed each time
it is applied; the master template shouldnotbe altered by the copying process.
Thus the example in Figure 12.1 should really look like this:
 

 

@$ reduces to @$
/N\ /\
“ TRUE AX NOT TRUE

@ @

J \
NOT x NOT x   

Theoriginal lambda abstraction remains intact in case it is shared.
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We may describe the instantiation operation by a recursive function
Instantiate(Body,Var,Value), which copies Body substituting Value for free
occurrences of Var. This function implements precisely the substitution
operation described in Figure 2.3. Specifically:

Instantiate(Body,Var,Value) constructs Body[Value/Var]

instantiate proceeds by case-analysis on the root node of Body, and each case is
a direct transcription of the correspondingline of Figure 2.3:

(i) if Body is a variable x and Var = x then return Value (here we substitute

Value for an occurrence of Var),

(ii) if Body is a variable x and Var + x then return Body,
(iii) ifBody is a constant orbuilt-in function then return Body,
(iv) if Body is an application (E; Eo) then return the application

(Instantiate(E1,Var,Value) Instantiate(E2,Var,Value)),
(v) if Body is a lambda abstraction Ax.E and Var = x then return Body — the

new lambdaabstraction binds Var anew,so no substitutions should occur

inside it, and hence we can avoidinstantiating it altogether,

(vi) if Body is a lambda abstraction Ax.E and Var + x then return
Ax. Instantiate(E,Var,Value) — we mustinstantiate the lambda abstraction

in case there are free occurrences of Varinsideit.
This case is much simpler than the corresponding rule of Figure 2.3,
because we are assuming that Value has no free variables (see Section
11.3.2).

Figure 12.3 gives a possible definition of instantiate in the C language.
The instantiation process is simple enough, but it risks copying large

expressions in which Var does not occurfree atall, and hence which could be
shared. We could alleviate this by adding a new first clause to the definition of
instantiate:

ifBody does not contain any free occurrencesof Varthen return Body.

This would, however, be an expensive test to make. We might imagine some
sort of annotation scheme whereby wecould precompute such information,
butit is hard to do in general (even Wadsworth did not give an algorithm!).
An implementation which manages to perform this test, or which does
something equivalent,is said to befully lazy. We discussfull laziness in detail
in Chapter15, but ignoreit until then.

12.1.4 Summary

In the previous chapter we saw that lazy evaluation had two ingredients:

(i) arguments to functions should be evaluated only if needed;
(ii) once evaluated, they should never be re-evaluated.
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Instantiate( Body, Var, Value )
expression *Body, *Var, * Value;.

if (IsAp( Body )) /* Is Body an application node? */
return( MakeAp( Instantiate( GetFun( Body ), Var, Value ),

if (IsVar( Body )) /* Is Body a variable? */

return{ Value );

else

retum( Body );

f (IsLam( Body )) /* Is Body a lambda abstraction? */

return( Body );
else

return MakeLam( GetVar( Body ),

}
/* So Body must be a constant or built-in function */

return( Body );

Note: IsAp(B) tests whetherB is an application node
GetFun(B) gets the function from an application node
GetArg(B) gets the argumentfrom an application node
MakeAp(F,A) makes a newapplication node

IsVar(B) tests whetherB is a variable node

IsLamn(B) tests whetherB is a lambda abstraction node
GetVar(B) gets the formal parameter from an abstraction
GetBody(B) gets the body from an abstraction node
MakeLam(V,B) makes a new lambda abstraction node 

Instantiate( GetArg( Body ), Var, Value ) );

if (Body == Var) /* Is Body the variable Var? */

if (GetVar( Body ) == Var) /* Same formal parameter? */

Instantiate( GetBody{ Body ), Var, Value )));

  
Figure 12.3 The instantiate function in C

Wesaw that normalorder evaluation implemented thefirst ingredient. We
can nowsee that the second ingredientis implemented by the combination of
two things:

(i) substituting pointers to the argument rather than copying it avoids
duplicating the (unevaluated) argument;

(ii) updating the root of the redex with the result ensures that further uses of
the argumentwill get the benefit of the work done.

To summarize:
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Normalorder evaluation

to weak head normal form
+

Substitute pointers = Lazy evaluation
+

Update redex root
with result    

This implementationstrategyis called lazy graph reduction.

12.2 Reducing a Built-in Function Application

Supposethe redexconsists of a built-in function applied to the correct number
of arguments. First of all, any arguments whose values are needed must be
evaluated by recursively invoking the evaluator. Then the built-in function
can be executed,and the result physically overwrites the root of the redex.
For example, consider the expression (+ 6 (* 3 4)), which has the graph

i
L \ JN

/™

Wefirst select node $ for reduction, but discover that + needs to evaluate its

arguments. So we recursively invoke the evaluator on thefirst argument, only
to discoverthatit is already in WHNF. Then weinvoke the evaluator on the

second argument, which causes node # to be selected for reduction. Again,
we recursively reduce the arguments of the * (they are already in WHNF),
and now we can execute the *. The result of this multiplication overwrites

node #, thus

 

  
 

 

@$

1te
mon 4

*   
Asalways, we see that fragments of the original graph remain, subsequently
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to be recovered by the garbage collector. Now the evaluation of the

arguments of + is complete, andit executes, giving
 

18 $

@ 12%

f \, @ 4

/\
* 3   

The node §$, the root of the original expression, is the result, the other
fragments being garbage. From now onwewill no longer draw the garbage
nodes in ourpictures.

12.3 The Reduction Algorithm So Far

Wenowreview our reduction algorithm, putting together the material of the
previous twosections.
 

REPEAT

(1) Unwind the spine until something other than an application
nodeis encountered.

(2) Examine the objects found at the tip of the spine (see
Section 11.5).
(a) A data object. Check thatit is not applied to anything.If

not, the expression is in WHNF so STOP, otherwise
there is an ERROR.

(b) A built-in function. Check the number of arguments
available.If there are too few arguments the expression
is in WHNF so STOP. Otherwise evaluate any
arguments required, execute the built-in function and
overwrite the root of the redex with the result.

(c) A lambda abstraction. Checkthat there is an argument;
if not the expression is in WHNF so STOP. Otherwise
instantiate the body of the lambda abstraction,
substituting pointers to the argument for the formal

' parameter, and overwrite the root of the redex with the
result.  END
 

12.4 Indirection Nodes

In Section 12.1 we described how to reduce an application of a lambda
abstraction by constructing an instance ofthe bodyofthe lambda abstraction,
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substituting pointers to the argumentfor the formal parameter, and updating
the rootof the redex with the result. The final operation, updating the root of
the redex, contains a hidden danger, whichthis section will expose.

Suppose, then, that we have instantiated the body of the abstraction and
are about to update the root of the redex. The most obvious way to do this
seemsto be simply to copy the rootcell of the result on top of the rootcell of
the redex.Thisis all very well, but it suffers from two shortcomings:

(i) The result ofthe reduction maynot havearootcell to copy. For example,
consider

(ax.4) 5

In an unboxed implementation the result, 4, is represented as a non-

pointer, and hence does not occupya cell atall.
(ii) It is slightly inefficient, because the root cell of the result is constructed

(by instantiate), copied over the root of the redex, and then discarded,
because there are no further pointers toit.

It would be moreefficient to build the rootcell of the result directly on
top of the rootcell of the redex, thus avoiding ever constructing the root
cell of the result in thefirst place.
However, in a reduction such as

(Ax.x) (f 6)

the root cell of the result is not a newly constructed cell so we cannot
construct the rootcell of the result on top of the root of the redex.

It appears, therefore, that lambda abstractions in which the body consists of
an unboxed constantorasingle variable, form a special case. We consider the
formerpossibility first.

12.4.1 Updating with Unboxed Objects

Werecall from Chapter 10 that an unboxed object is one whichis represented
as anon-pointer, rather than as a pointerto a cell. Howcan we update the root
of the redex with such an object?

Weare forced to introduce a new type of cell, an indirection cell. An

indirection cell has a tag, IND say, which identifies the cell as an indirection,
and a single field which is the contents of the cell. When updating an
application cell with an unboxed object we overwrite the application with an
indirection cell whose contentis the unboxed object. For example:

 

@$ reduces to 8

x
4   
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where we use V to identify indirection nodes.
This expedient seems not to be necessary in an implementation in which

everything is boxed, since we can just copy the top node of the object over the
root of the redex. However, westill need to take care as the next section
shows.

12.4.2 Updating where the Body is a Single Variable

Consider our example, the expression ((Ax.x) (f 6)):
 

@$
wv ‘ex

, «%   
There are two ways in which we can update the rootof the redex:

(i) We could copy the root cell ofthe resulton top of the rootcell of the redex
thus:

@$ reduces to @$

kK wt (92)

lA /’

 

6    
Nowtheresult (seen from the point of view of node $) is quite correct
(viz. (f 6)). However, now the application of f to 6 has been duplicated,
(f 6) may be evaluated twice ifnode # happens to be shared. This would be
wasted workif (f 6) were expensive; we havelost laziness. Notice that this
problem canonlyariseifthe body of the lambda abstraction consists of a
single variable. If the body is an application, then the root of the result
will be a newly constructed application cell, and hence cannot be shared.
Even if this were not the case, and the (f 6) were already in normal

form, node$ is a duplicate of node #, whichis a waste of storage space.
Furthermore, this alternative might not be possible in an implemen-

tation supporting variable-sizedcells, if the root cell of the argument was
bigger than the rootcell of the redex.

(ii) We could takethe hint from Section 12.4.1, and use an indirection node.
We would then overwrite node $ with an indirection to node #, thus:
 

@$ reduces to ys

‘ of p ft

Xx i f \   
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_The trouble with introducing indirection nodes is that they can then
appearat any point in the graph, so the reduction machine mustcontain
tests for indirection nodes in manyplaces.
Furthermore there is a danger that long chains of indirection nodes

might build up (for example, suppose (f 6) evaluated to an indirection
node), which would clog up the machine.

Theissue ofwhetherto copyor to use indirection nodesarises in other cases
also. For example, HEAD selects the head of its argument (which it first
evaluates to a CONS cell), and meets the same problem in overwriting the root
of the redex with the result. IF is another example of such a function.
Functions like these which simply select some component of their
argument(s) are called projectionfunctions.

All the arithmetic and boolean functions will suffer too in an unboxed
implementation, becausetheir result is unboxed.

In general, any function whose result is not a cell constructed during the

reductionwill raise the question ofhow to update theroot.

12.4.3 Evaluating the Result before Updating

A solution which overcomes the major problems of either method is to
evaluate the result before updating the root of the redex. We can justify this
approachwith the following two observations:

(i) We are currently trying to reduce node $ to weak head normal form. So
the first thing we are going todo once this reduction is completeis to
reduce theresult of the reduction ((f 6) in this case) to WHNF.
Hence wecansafely reduce node # to WHNEFbefore overwriting node

$ with the result.

(ii) Once an expression is in WHNFits root is never again overwritten,
becauseit is never again selected as the rootof a redex.

Observation (i) meansthat if the result of the reduction of node # was an
indirection to a CONScell *, we could overwrite node $ with an indirection to
node * (not node #).

 

@$ reduces to V$

woYor v#

! ( 3 \__\, *
/\

p oq   
Thus we would never get more than oneindirection nodein a chain.

Observation(ii) tells us thatit is safe to copy node # onceit is in WHNF
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since it will never again be overwritten; by copyingitwe still waste space, but
weno longerrisk duplicated reductions. For example,if the (f 6) evaluated to
a CONScell, copying would givethis:
 

@ reduces to : $
/™N

Ax @

x f 6 :#

/\
p q

12.4.4 Summary:Indirection Nodes versus Copying

   

Thisis a slightly tricky section, and we shall summarize our conclusions.

(i) When the root of the result is constructed during the reduction, andis
sufficiently small, it should be constructed directly on top of the root of
the redex, rather than being allocated elsewhere, copied and discarded.

(ii) Ifthe root ofthe resultwas not constructed during the reduction, thenwe
can overwrite the root of the redex either with a copy of the root of
the result, or with an indirection to theresult.

(iii) The cases coveredby(ii) arise for
(a) functions (both lambda abstractions and built-in functions)

returning unboxedresults,

(b) lambdaabstractions whose body consists of a single variable,
(c) built-in projection functions, which include HEAD,TAIL andIF.

(iv) In the cases covered by(ii), the result should be evaluated to WHNF
before overwriting the rootof the redex. If this is done, no sharingis lost
and the numberof reductions performedis the sameeither way.

There are the following arguments in favorof using indirections:

(i) There is no alternativeif the result is an unboxed object.
(ii) They use no fewercells at the time the reduction takes place. However,

indirection nodes can be ‘shorted out’ and recovered by the garbage
collector, thus recovering the storage they occupy, whereas the garbage
collector cannot recover the duplicated storage allocated by the copying
technique (see ChapterI7).

(iii) There is no problemifthe root of the result is bigger than the root of the
redex.

(iv) Chains of indirection nodes can be prevented.
(v) It has been suggested by Hughes [1985] that implementations of

functional languages should incorporate memo functions; that is,
functions which remember what arguments they have been applied to so
far, together with the corresponding results, and when reapplied to one
of these arguments deliver the corresponding result directly. This idea
worksbetter in a system based on indirection nodes, since if we make
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copies of nodes then identical arguments maylookdifferent to the memo
function.

There is only one argument against indirection nodes, but it is rather
persuasive:

(i) The reduction machine has to make continual tests for the presence of
indirection nodes, and de-reference them as they crop up. This adds a
large numberof potentially slow tests to the implementation. Hardware
support wouldlargely alleviate this problem.

On balanceit looks as if copying has a short-term advantage of speed, but the
generality of indirection will probably win out in the end.

12.5 implementing Y

Wehavesaid in Chapter2 that Y is always implemented directly, and we now
discuss howthis is done. The reductionruleforYis

Yf o> FY f}

and there are two waysof implementingthis:
 

(i) $@ reduesto $

v\ ay
iN

(ii) y
YN reduces to a

f \__

Thefirst is straightforward, but the second is moreinteresting. The right
branch ofthe result node $ points back at node $. To see thatthis is a correct
implementation, consider the reduction rule for Y. On the right-handside of
the rule, the thing fis applied to is (Y f), but the original redex was (Y f)andso
f can be applied to the root of the original redex.

Anotherwaytoseethisis to try taking the reduction sequence forY further:

f(y f)
ff (Y f)
a)

> FEE.)
whichis just what the suggested graph represents.

This is the first time our graphs have incorporatedcycles andthis is indeed

 

   
 

Yf

t
h
d
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the only source ofcycles in many implementations. This form ofY is therefore
sometimescalled cyclic Y or knot-tying Y.

Cyclic graphs give important economies in the use of storage. Using the
acyclic version of Y means that the graph representing (Y f) grows without
limit as each recurrent (Y f) redex is evaluated. In contrast, using a cyclic
version of Y meansthat(Y f) is represented by a single cell. Hence cyclic
graphsgive finite representations of someinfinite objects (such as recursive
functions and someinfinite data structures).
The principal disadvantage of a cyclic Y is that the presence of cycles

prevents the use ofsimple reference-countinggarbage collection (see Chapter
17).
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Thirteen

SUPERCOMBINATORS AND
LAMBDA-LIFTING

 

Since the operation of constructing an instance of a lambda body while
substituting for the formal parameter is the fundamental operation of our
implementation, we will now consider how to makeit more efficient.

In this chapter and the next we will show how to transform a lambda
expression into a form in which the lambdaabstractionsare particularly easy
to instantiate. These special lambda abstractions are called
supercombinators, and the transformationis called lambda-lifting. Then, in
Chapter15, we will show how to enhance the lambda-lifting transformation to

be fully lazy, a property alluded to in Section 12.1.3. The terms
‘supercombinator’ and‘fully lazy’ were both coined by Hughes, who was the
first to combine full laziness with lambda-lifting [Hughes, 1984].

13.1 The idea of Compilation

The operation of instantiating the body of a lambda abstraction wascalled
Instantiate in the previous chapter, and was performed bya recursive tree-walk
overthe lambda body. Such anInstantiate operation is ratherinefficientfor the
following reasons:

(i) at each nodeofthe body,Instantlate has to do a case analysis on the tag of
the node;

(ii) at each variable nodeInstantiate has to test if the node is the formal
parameter;a similar test has to be made at each lambda node;

(iii) new instances of subexpressions containing no free occurrencesof the
formal parameter will be constructed when they could safely and

220
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beneficially be shared (we discuss this point in more detail in Chapter
15).

A moreefficient alternative to this is compilation, whereby we associate
with each lambda bodyafixedsequence ofinstructions which will construct an

instance of the lambda body. Then the operation of instantiating a lambda
body would consist simply of obeying the sequenceofinstructions associated
with the lambda body.

This instruction sequence can be constructed in advance by a compiler, and
contains implicitly the knowledge aboutthe shape of the body and wherethe
formal parameter occurs. Hence we would expect the compiled code to run
much faster than the Instantiate method, for just the same reasons that

compiled code runsfaster than interpreted code in conventional languages. In
effect, all the tests in instantiate are made in advance by the compiler.
Furthermore,it turns out that compilation opens up many new avenuesfor
optimization, which offer considerable further efficiency increases.

Unfortunately, notall lambda abstractions are amenable to compilation in
this way. Consider, for example, the lambda abstraction

AX.(Ay.— y x)

Whenweapply the Ax abstraction to an argument, 3 say, we instantiate its

body, thus creating a brand new lambda abstraction (Ay.— y 3).

Furthermore, each application of the Ax abstraction to a different argument
will create a new anddifferent Ay abstraction, thus making a nonsense of our

hope to compile a single fixed code sequence for each lambdaabstraction.
The problem is that x occurs free in the body of the Ay abstraction, so that

we have to make a new instance of the Ay abstraction wheneverx is bound to a

new value by an application of the ax abstraction. In the case of lambda
abstractions which have nofree variables there is no problem, and we can
compile a code sequence forit as outlined above.
One way around this problem would be to allow the code sequence to

access the values of the free variables in some way, thus parameterizing the
code sequence onthe values of the free variables. This approach leads us to
the SECD machine [Landin, 1964; Henderson, 1980], in which the code

sequence for a lambda abstraction has access to an environment which
contains values for each of the free variables, thus allowing a single code
sequence for each lambda abstraction. It is also the route followed byall
block-structured languages, in which the valuesoffree variables are found by
looking in the appropriate stack frame.

In this book, however, we will study a totally different approach, called
supercombinator graph reduction, which does not require the addition of an
environment to our model of graph reduction. The idea is to transform the
program into an equivalent one in which all the lambda abstractions are
amenable to compilation. This transformation algorithm, which is called
lambda-lifting, is of considerable interest in its own right, and we devote the
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rest of this chapter and the next to it. After this, we spend a chapter discussing
an important optimization to lambda-lifting, calledfull laziness, and Chapter
16 then digresses to describe an importantalternative transformation, into SK
combinators. Finally, the bulk of the third part of thebook (Chapters 18-21)
is spent in an extendeddiscussion ofhow to compile the transformed program
into a linear instruction sequence,and the optimizations whichthis opensup.

13.2 Solving the Problem of Free Variables

In this section we outline our strategy for dealing with the problem of free
variables. We do so by using a modified form ofB-reduction, in which we may
effectively perform several B-reductions at once.

Considerourcurrent example

AX.Ay.- y Xx

Supposewe appliedit to two arguments,thus:

(Ax.Ay.— y x) 3 4

The lambda reducerdescribed in Chapter 12 would proceedlike this:

(Ax.Ay.— y x) 3 4
— (ay.- y 3) 4

— —43

There is no reason, however, why we should not perform the dx and Ay

reductions simultaneously, thus:

(Ax.Ay.— y x) 3 4
> -—43

This ‘multi-argument’ reduction entails constructing an instance of the body
(— y x) whilst substituting 3 for free occurrences of x, and 4 for free
occurrencesofy. The following observationsare crucial:

(i) Muchis gained by performing the reductions simultaneously. Firstly,
doing so builds less intermediate structure in the heap, since the inter-
mediate result of the Ax reduction is never constructed. Second (and
more important), no problems are presented by the free occurrence of x
in the Ay abstraction.

(ii) Nothing is lost by performing the Ax and Ay reductions simultaneously.
The result of performing the \x reduction aloneis a Ay abstraction, and
(assuming that we perform normal order reduction until WHNF is

reached) no further work can be doneonthedy abstraction untilit is given
another argument.
Hence we mayas well wait until both arguments are present and then

perform both reductions at once. This applies evenif the application of the
\x abstraction to a single argumentis shared.
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13.2.1 Supercombinators

Whatsort of lambda abstractions are amenableto this sort of multi-argument
reduction? Simply lambda abstractions of the form (Ax1.AX2. . .AX%n.E). This

motivates a new definition:

 

DEFINITION

Asupercombinator,$8,ofarity nisalambdaexpression ofthe form

AX} .AX2.. AM. E

where is not a lambda abstraction (this just ensures that all the ‘leading
lambdas’ are accounted forby x; . . .Xn) such that

(i) $S has no free variables,
(ii) any lambda abstraction in E is a supercombinator,
(iii) n = 0; that is, there need be no lambdas at all.

A supercombinator redex consists ofthe application ofa supercombinator
to n arguments, where is its arity. A supercombinator reduction replaces
asupercombinatorredexbyan instanceofthe supercombinatorbody with
the arguments substituted for free occurrences of the corresponding
formal parameter.   

For example,

3
(+ 2 5)
AX.X
AX. + x 1

AX.+ X X

AX.Ay.— y X
Af.f (Ax. + x x)

are all supercombinators, while the following are not:

AX.Y (y occurs free)

aAy.- y Xx (x occurs free)

Af.f (Ax.f x 2) (inner Ax abstraction is not a supercombinator,since f
occurs free)

13.2.1.1 Supercombinators ofuou-zero arity
Supercombinators of non-zero arity (that is, having at least one d at the front)
are important becausetheywill be our unitofcompilation. Since they have no
free variables (clause (i)) we can compile a fixed code sequence for them.
Furthermore, clause (ii) ensures that any lambda abstractions in the body
have nofree variables, and hence do not need to be copied wheninstantiating
the supercombinatorbody.
Such a supercombinatoris somewhat analogousto a Pascal function which
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takes several (value) parameters, which does notreferto any globalvariables,
and whichhas noside-effects.

13.2.1.2 Supercombinators ofarity zero and CAFs
A supercombinatorofarity zero (that is, having no)s at the front) is just a
constant expression (rememberthatit has no free variables). These super-
combinators are often called constant applicative forms or CAFs. For
example,

3
+45
+3

are all CAFs. The last example makes the point that CAFs canstill be
functions.

Since a CAFhasno)sat the front, they are never instantiated. Hence, no

code need be compiledforit, since a single instance of its graph can freely be
shared.

13.2.1.3 Combinators
A ‘supercombinator’ soundslike a specialsort of ‘combinator’ and indeedthis
is the case:

 

DEFINITION

A combinatoris a lambda expression which contains no occurrences of a
free variable [Barendregt, 1984].   

A combinatoris a ‘pure’ function in the sense that the value of a combinator
applied to some arguments depends onlyonthe values of the arguments, and

not on any free variables. The term ‘combinator’ hasa long pedigree [Curry
and Feys, 1958].

Thus some lambda expressions are combinators, and some combinators are
supercombinators.

13.2.2 A Supercombinator-based Compilation Strategy

If only all the lambda abstractions in our program were supercombinators!
Thenit would be easy to compile them all, for the reasons mentionedin the
last section. Real programs, of course, have many lambdaabstractions which
are not supercombinators, butit turns out to be relatively straightforward to
transform the program so thatit contains only supercombinators. This will be
our strategy, and we embark on the transformation in Section 13.3.

Forthe sakeofclarity wewill often give names to supercombinators. These
namesare entirely arbitrary, since the lambda abstractions are anonymous,
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and wewill normally begin them with a $ to make them distinctive. Thus we
could write

$XY = AX.Ay.-- y X

but to emphasize their special status further we will write the definition like
this:

$XY xy=-yxX

Ourstrategy is therefore to transform the lambda expression we wish to
compile into:

(i) aset of supercombinatordefinitions, plus
(ii) an expression to be evaluated.

To emphasize the inseparability ofthese two components we use a box, just as
wedid in the case of Miranda programs (Section 3.3), thus:

 

Supercombinatordefinitions

 

Expression to be evaluated    
For example, we could represent the expression

(Ax.Ay.—- y x) 3 4

as

 

$XY xy=-yx
 

$XY 3 4   
A crucial pointin the definition of a supercombinator given aboveis that a

supercombinator reduction only takes place when all the arguments are
present. For example,

($XY 3)

is not a supercombinator redex, and will not be reduced. We can therefore
regard the supercombinatordefinitions as a set of rewrite rules. A reduction
consists of rewriting an expression which matches the left-hand side of a rule
with an instance of the correspondingright-handside. Such systemsare called

term rewrite systems and have been much studied in their own right
[O’Donnell, 1977; Klop, 1980; Hoffman and O'Donnell, 1982].
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13.3 Transforming LambdaAbstractions into Supercombinators

To summarize our progress so far, we have seen that certain sorts of lambda
abstractions, the supercombinators, are particularly easy to compile. Our
implementation effort now breaks into two parts:

(i) a translation algorithm which transformsall the lambda abstractions in
the program into supercombinators;

(ii) an implementation of supercombinator reduction.

First of all we consider how to transform lambda abstractions into super-
combinators. Here is an example program (in which neither lambda
abstraction is a supercombinator):

 

 

(Ax. (Ay. + y x) x) 4
  
 

Considerfirst the innermost lambda abstraction (Ay.+ y x).

It has a free variable, x, so it is not a supercombinator. However, a simple

transformation will makeit into one:

make each free variable into an extra parameter (we sometimes call this
abstracting the free variable).

Thus we would transform

(Ay. + y x)

to

(AX.Ay.-+ y X) X

(This operationis simplyB-abstraction.)To see that these two expressionsare
equivalent, just perform a B-reduction on the secondto getthe first. To make
it slightly clearer we could perform an a-conversion on the Ax abstraction to
give

(Aw. Ay.+ y Ww) X

This clarifies the distinction between the two xs which occurred in the previous
version. Now the lambda abstraction (Aw.Ay.+ y w) is a supercombinator!

Performingthis transformation on ouroriginal program gives
 

 

  
(Ax. (AW. AY. + y W) x Xx) 4
 

Next we give the supercombinatora name,$Y say,like this

 

$Y wy =+yw
   (Ax. $Y x x) 4
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Now we see that the ax abstraction also fulfills the conditions for

supercombinatorhood,and wegiveit the name $X, thus

 

 

$Y wy=tyw
$X x = $Y x x

$X 4    
We can now execute our program by performing supercombinator

reductions:

$X 4

—> $Y 44
> +44

— 8

To review the algorithm so far:

UNTIL there are no more lambdaabstractions:

(1) Choose any lambda abstraction which has no inner lambda
abstractionsin its body.

(2) Take outall its free variables as extra parameters.
(3) Give an arbitrary name to the lambda abstraction (e.g. $X34).
(4) Replace the occurrence of the lambda abstraction by the name

applied to the free variables.
(5) Compile the lambda abstraction and associate the name with the

compiled code.
END

_ It is easy to see that we suffer an increasein the size of the program during this
transformation, butit is a price we pay willingly in exchange for the easier
reductionrules.
Whenwehave completedthe algorithm wearrive at a program ofthe form
 

. supercombinatordefinitions .
 

E   
Butwhat about the expression E? [t must have nofree variables,since itis

the top-level expression to be evaluated, so we can makeit into a zero-
parameter supercombinator (a CAF) thus

 

. supercombinatordefinitions . . .

$Prog = E
 

   $Prog



228 Chapter 13 Supercombinators and Lambda-lifting

thus completing the transformation of the program into supercombinators.
So far we have not made any explicit mention of recursion. This topic is so

important that we devote the whole of the next chapterto it.
Following Johnsson [1985], we call the transformation from lambda

expressions to supercombinators ‘lambda-lifting’ since all the lambda

abstractionsare lifted to the top level.

13.3.1 Eliminating Redundant Parameters

In this section and the next we will consider two simple optimizations to the
lambda-lifting algorithm. Consider the expression

AX.Ay.- y X

It is actually a supercombinatoras it stands, but suppose we blindly applied
our algorithm as described above. First we choose the Ay abstraction, noting
that x is free, and transform it to

 

$¥ xy=-yxX
 

  AX. $Y xX
 

(Here wehave chosento use x instead ofw as the nameofthe extra parameter
to the $Y supercombinator. This choice is arbitrary, but we will normally
choose the same nameas the free variable being abstracted.) Now dealing

with the Ax abstraction, we get

 

$Y xy=-yx
$X x = $Y x
 

$X   
. Itis clear that we can simplify the definition of $X to

$X = $Y

(This is just -reduction, of course.) Having done this we see that $Xitself is

redundant, and $X can be replaced whereverit occurs by $Y,giving

 

$Y Xy=—-— yx
 

$Y   
So there are two optimizations to consider:

(i) Remove redundant parameters from definitions by n-reduction.
(ii) Where this produces redundantdefinitions, eliminate them.
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These optimizations together exploit supercombinators that appear naturally
in the original program, and sometimes catch other y-reductionsas well.

Caveat: it turns out that, for more sophisticated implementations,
performing such y-reductionsis actually undesirable, unless they succeed in
eliminating a definition, which is always desirable. For a full explanation of
this point, see Section 20.3.4.

13.3.2 Parameter Ordering

Whenwetake outseveral free variables from a lambda abstraction as extra
parameters the order in which we put them seemsrather arbitrary. For
example, consider the program
 

 

(...
(AX.AZ.+ y (* x Z))
..-)   

where the ‘...’ stands for some expression enclosing the Ax abstraction. It
could be transformed to
 

$Sxyz=+y(# xz

(.

 

| Ox,$8 xy)   
or alternatively it could be transformed to
 

$Syxz=+y (* x 2)

(.

 

  
ax.$8 y x)

ee)
 

Both xand y are free, and it does not seem to matter which orderwe take them

out in. However,let us take the second possibility one stage further, bylifting
the Ax abstraction:
 

 

$S yxz=+y (* x 2)

$Tyx =$S yx

(...

ory   
Nowwe can remove the redundant parameters from the definition of $T, and
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eliminate the definition of $T altogether (since it is the same as $S). This
would not have been possible hadwe put the extra parameters x andyfor$S in
the other order. Hence we should orderthefree variables, with those boundat
innerlevels cominglast in the parameterlist of the supercombinator.
This suggests that we could associate a lexical level-number with each

lambdaabstraction, so that the lexical level-numberofa lambdaabstractionis

defined to be one more than the numberof textually enclosing lambdas (the
experienced readerwill recognize these level-numbers as de Bruijn numbers
{de Bruijn, 1972]). For example, consider

(Ax.Ay.+ x (* y y))

Theax abstractionis at level 1, while the Ay abstraction is at level 2 (since it is
enclosed by a Ax abstraction).
The lexical level of a variable is now defined to be the lexical level of the

lambdaabstraction whichbindsit. If the level ofx is less than y we say thatx is
freer thany, since it is bound further out.

Constants(includingbuilt-in functions such as + , and previously generated
supercombinators) can be regarded as being bound atthe top level, and so
should be at level 0. There is, of course, no need to abstract out constants as
extra parameters during lambda-lifting.
To summarize:

(i) The level-numberof a lambda abstraction is one more than the number
of lambda abstractions which textually encloseit. If there is none, then
its level-numberis 1.

(ii) The level-number of a variable is the level-number of the lambda
abstraction which binds it.

(iii) The level-numberof a constantis 0.

It is simple to determine the lexical levels of all variables in a single
tree-walk over the expression. On theway downthetree the level-numbersof
the lambdas are recorded in a sort of environment, while on the way up the
level of each variable is computed, using the environment.
Now to maximize the chances of being able to apply -reduction we can

simply sort the extra parameters in increasing orderoflexical level.

13.4 implementing a Supercombinator Program

All the preceding work has shown how to compile our program into a set of
supercombinatordefinitions. What happens now? We have spoken ofthe
supercombinators being compiled in some way,butin fact there is a spectrum
of possible implementations:

(i) We could keep the body of the supercombinatorasa tree, and instantiate
it using a function similar to Instantiate. This is the supercombinator
equivalent of the lambda reducer in the last chapter, and all the
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mechanismsdescribed in the previous chapters concerning howto find
the next redex, how to perform a reduction, indirection nodes, the stack
and so on arestill valid. The only-change required is in the implemen-
tation of instantiate. It is simplified because all lambda abstractions are
known to be supercombinators (which have no free variables, and hence

need neverbe copied), but is made more complicated becauseit has to
substitute for several variables at once.

Wecall this the template-instantiation implementation.
(ii) We could keep the body of the supercombinatoras a tree, but held in a

contiguous block of store. Now the instantiation can be done with a
modified block move, which can be implemented much moreefficiently

than a tree-walking instantiation. This idea is used by Keller [1985]. It is
possible because supercombinators are constructed once and forall at
compile-time, rather than being generated onthefly at run-time.

(iii) We could compile the bodyto a linear sequenceofinstructions which will
create an instance whenexecuted.This is the idea behind the G-machine
{Johnsson, 1984], which we discuss in Chapters 18-21. Thisis fasterstill,

and also opens the way to manyfurther optimizations, as we shall see.

The fundamental pointis that all we can do with a supercombinatoristo apply
it, and hence weare free to choose a representation for the supercombinator
that makesthis operationefficient.
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Fourteen
 

RECURSIVE

SUPERCOMBINATORS

So far we have made no explicit mention of how our lambda-lifter should
handle recursive definitions. One wayto doso is to translate all our recursive
definitions into non-recursive ones, using the fixpoint combinator Y, as
described in Chapter2. This is inefficient and slow for the following reasons:

(i) There is no reason why the supercombinators should not be explicitly
recursive since, unlike lambda abstractions, they have namesso they can
refer to themselves. For example

$F x = $G (SF (— x 1)) 0

(ii) To make $F non-recursive using Y would require an auxiliary definition,
thus:

$F = Y $F1

$F1 F x = $G (F (— x 1)) 0

Defining $F in this way will require more reductions than the explicitly
recursive version, since the Y has to be reduced.

(iii) In Chapter6 the translation into the ordinary lambdacalculusofa letrec
involving mutual recursion was handledbyfirst grouping the definitions
into a tuple, and then making this definition non-recursive with Y. Not
only is it annoying to have to introduce tuples to handle mutualrecursion
of functions, but it is also very inefficient since the tuple has to be
constructed and then taken apart.

We conclude that explicitly recursive definitions of supercombinators will

give a better performance. We now describe the techniques requiredtoobtain
a set of mutually recursive supercombinatordefinitions without using Y.

232
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14.1 Notation

Since wewantto treat recursion directly, we do not wantit to becompiled into
applications of the Y combinator. Hence we assume that the high-level
functional programis instead translated into the lambda notation augmented
with the simple let andletrec constructs, as was described in Chapter3.

In passing we observe that the notation

 

 

 
  

$S1 x y = B1
$S2 f = B2
etc.

E

is precisely equivalent to

letrec

$S1 = Ax.Ay.B1
$S2 = aAf.B2
etc.

in
E

so that the lambda-lifting process can be regarded as a source to source
transformation of the enriched lambdacalculus.

14.2 Lets and letrecs in Supercombinator Bodies

Suppose we wanted to write a textual description for the graph

@

[,
a3

/

Whilst expressions such as (f (g a) b) can describe trees, they cannot express

the sharing and cycles embodiedin the above graph. One solution would be to
name the nodes(a, b and c, say, working top to bottom) and express the
graph thus:

 

   

a=cb

b=c3
c=fb

. We would also wantto identify a as being the root of the graph. But we have
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just reinventedthe letrec! The graph can be described by theletrec expression

lerec a=cb
b=c3

c=fb
ina

This gives us the idea that letrec expressions can be regarded as textual

descriptions ofa cyclic graph. Hence a letrec in a supercombinatorbody can be
regarded as the description of a graphical portion of the supercombinator
body.

Up to now we have considered a supercombinator body to be a tree, and
applying the supercombinator involves constructing a new instance of the
tree. Now wesee that allowingletrecs in a supercombinator body allows the
body to be a graph, and applying such a supercombinator involves con-

structing a new instance of this graph. We say that such a supercombinatorhas
a graphical body.
For example,consider the following supercombinatordefinition:

SY f = letrec yf = f yf
in yf

This is a definition of the cyclic version of the familiar Y combinator, whose

body is a graph. When $Yis applied, we make an instance of the graph,
substituting for occurrences of the formal parameter, f. During the
instantiation we mustbe careful to preserve the cycles of the original graph.
A compiling implementation would compile code which would, when

executed, construct the graph with the appropriate substitutions made. The
wayin whichthis is done is described in Chapter18.

In a similar way we can allow supercombinator bodies to contain let-
expressions, regarding them as descriptions of (acyclic) graphs. This will
actually save us reductions, because we can now describedirectly expressions
such as

letx = 3 in E

where we would previously have translated this to

(ax.E) 3

which requires a reduction to explicate.
To summarize, wesee that

(i) it is quite easy to extend supercombinators to allow them to have bodies
which are general graphs, rather than being restricted to trees;

(ii) graphical supercombinator bodiescan easily be described using letrec
(ora let in the case of acyclic bodies);

(iii) to instantiate a letrec (orlet), we simply construct the graph described by
the letrec (orlet);

(iv) using graphical bodies can save us reductions.
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Wenowdiscuss how to transform recursive programs into supercombinators
with graphical bodies.

14.3 Lambda-lifting in the Presence ofletrecs

Our lambda-lifting algorithm will work as before, lifting the lambda
abstractionsto the top level. No special note need be taken ofletrecs; they can
be treated just like any other expression. In particular, lambda-liftingstill
applies only to lambda abstractions, not to letrecs as well. Some lambda
abstractions will haveletrecs in their bodies, which will give rise to super-
combinators with graphical bodies.
The question arises, however, of what lexical level-numberto assign to

variables boundina letrec.
The variables boundin letrec will be instantiated when the immediately

(textually) enclosing lambda abstractionis applied to an argument, since that
_ is when weconstruct the instance of the letrec, substituting for all the free

variables. Hence the variables boundin a letrec should be given the lexical
level-numberof the immediately enclosing lambda abstraction.
Whatif there is no enclosing lambda abstraction? In this case the natural

level-numberfor such variables should be 0. Butthis gives us a hint, since 0 is
the level-numberweassign to constants and supercombinators.If there is no
enclosing lambda abstraction, then the definition bodiesofthe letrec can have

no free variables (otherthanthe variablesdefined in theletrec); in otherwords,

they are combinators. All that is needed to turn them into supercombinators
is to lambda-lift them to remove any inner lambdas. Notice that the variables
bound in such level 0 letrecs will not be taken out as free variables because
constants (level 0) are not taken out.
Suppose wehaveto lambda-lift this program, which computestheinfinite

list of 1s.

 

 

letrec x = CONS 1 x

in x   

The letrec is at level 0, and there are no lambda abstractions, so x is a

supercombinatoralready,and weget

 

$x = CONS 1 $x
 

$x   
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As an example ofa recursive function, consider the factorial function:

 

 

letrec fac = An.IF (= n 0) 1 (# n (fac (— n 1)))
in fac 4   
 

Theletrec is at level 0, and there are no lambdaabstractionsinside the body of
the An abstraction. Hence,fac is already a supercombinator and weget

 

$fac n = IF (= n 0) 1 (* n (Sfac (— /n 1)))
$Prog = $fac 4

 

$Prog   

14.4 Generating Supercombinators with Graphical Bodies

So far none of our supercombinators has had a graphical body. This occurs
whena letrec has somefree variables. Consider, for.example, the program

 

 

let

inf = Av.(letrec vs = CONS v vs in vs)
in

Inf 4   
 

(Inf v) returnstheinfinite list ofvs. Again,Inf is at level 0 and contains no inner
lambdaabstractions,so it is already a supercombinator, and we get

 

 

$inf v = letrec vs = CONS v vs in vs
. $Prog = $inf 4

$Prog   
 

Notice that the graphical body of the supercombinator preserves the(finite)
cyclic representationofthe (infinite) data structure.

14.5 An Example

Weshall now work through an example to show the lambda-lifting algorithm
in action. Here is a Miranda program to sum thefirst 100 integers.It is written
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in aslightly odd style in order to demonstrate various aspects ofthe algorithm:

 

 

sumints m = sum (count 1)
where

count n = [], n>m
=n: count (n+1)

sum [] = 0
sum (n:ns) = n + sum ns

-gumints 100   
Translating this into the enriched lambdacalculus gives

 

 

letrec
sumints
= \m.letrec

count = An.IF (> nm)
NIL
(CONS n (count (+ n 1)))

in
sum (count 1)

sum = Ans.IF (= ns NIL) 0 (+ (HEAD ns) (sum (TAIL ns)))
in

sumints 100   
(Note: this is not exactly the translation that will be produced by the pattern-
matching compiler described in Chapter 5,butit is a correct translation, and
will suffice for present purposes.) The variables sumints and sum are defined at
level 0, but sumints has an inner lambda abstraction. This An abstraction has
the free variables m and count. We lift them out to generate a super-
combinator, which wearbitrarily name $count, thus

 

$count count m n = IF (> nm) NIL (CONS n(count (+ n 1)))
 

letrec

sumints

= d\m.letrec

count = $count count m

in

sum (count 1)

sum = Ans.IF (= ns NIL) 0 (+ (HEAD ns) (sum (TAIL ns)))
in

sumints 100   
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Now sumints and sum have no inner abstractions, and they are at the top
level, so they are supercombinators. Lifting them directly, and adding the
final $Prog supercombinator, gives

 

$count count m n = IF (> n m) NIL (CONS n (count (+ n 1)))
$sum ns = IF (= ns NIL) O (+ (HEAD ns) ($sum (TAIL ns)))
$sumints m = letrec count = $count count m

in $sum (count 1)
$Prog = $sumints 100

 

$Prog  
 

Weare done.

14.6 Alternative Approaches

The technique described earlier is not the onlyway of lambda-lifting recursive
functions. For example, Johnsson [1985] describes an algorithm which
constructs graphical supercombinatorbodies for data structures, but not for
functions.

Briefly, his technique workslike this. Suppose we have a program with a
recursive function f containing a free variable v:

 

 

(...
letrec f = Ax.(...f...v...)
in (...f...)

..)  
 

We generate a recursive supercombinator $f from f by abstracting the free
variables (just v in this case) but not f itself. Instead,all uses of f are replaced
with ($f v), including those in the body of$f itself. This yields
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To illustrate the method we will recompile the sumints example given
earlier. Recall that we begin with the program

 

 

letrec

sumints
= )dm.letrec

count = An.IF (> n m)

NIL
(CONS n (count (+ n 1)))

in
sum (count 1)

sum = Ans.IF (= ns NIL) 0 (+ (HEAD ns) (sum (TAIL ns)))
in

sumints 100  
 

First we lambda-lift the An abstraction, abstracting out the free variable m,

butnotcount. Instead, we replace all calls to countwith ($count m), which gives

 

$count mn = IF (> n m) NIL (CONS n ($count m (+ n 1)))
 

letrec
sumints
= Am.sum ($count m 1)
sum = Ans.IF (= ns NIL) 0 (+ (HEAD ns) (sum (TAIL ns)))

in

sumints 100   
There were twocalls to count, one in the body ofthe An abstraction and one in
the definition ofsumInts, both ofwhich were replaced with ($count m). Notice
that this substitution could equally well be carried out using let-definition to
bind count to ($count m).

Nowsumints and sum are supercombinators, so welift them out to give

 

$count mn = IF (> n m) NIL (CONS n ($count m (+ n 1)))
$sum ns = IF (= ns NIL) 0 (+ (HEAD ns) ($sum (TAIL ns)))
$sumints m = sum ($count m 1)
$Prog = $sumints 100
 

$Prog  
 

Notice that (unlike our previous method) no supercombinator hasagraphical
body;all the recursion is handled by direct recursion of supercombinators.

However, it turns out that cyclic data structures have to be treated in a
different way, and do require supercombinators with graphical bodies.
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The new method has one major advantage. In our previous approach the
recursive Call to count in the $count supercombinator was madeto a function
passed in as a parameter(called count). In contrast, the new method makes
the recursive call directly to the supercombinator $count. This means that the
compiler can see which function is being called, and this information can
make the compiled code considerably more efficient (see Chapter 20).
On the other hand, the $count supercombinator generated by the new

method is larger than that generated by the previous method. It contains an
extra application node ($count m), and a new instance ofthis application node

will be constructed on every application of $count, which will consume more
store.

In the case of mutually recursive functions, it tums out that each function

needs to be passed thefree variables of all the other functions in the mutually
recursive set, as well as its own. This involves doing the sort of dependency
analysis described in Section 6.2.8. Furthermore, as mentioned above, data
structures and functions mustbe treatedin different ways by the new method,
which makes the compiler more complicated.

Thetrade-off between the two techniques is not yet clear.

14.7 Compile-time Simplifications

Once lambda-lifting has been completed there are some simple optimizations
that further improve the lambda-lifted program. These take the form of
compile-time simplifications of the program.

14.7.1 Compile-time Reductions

It may be advantageous to perform certain reductions at compile-time. For
example, considerthe definitions

$F x y = + ($G y) x
$G p=+*tpp

The ($G _y) in the body of $F is a redex which will be created every time $F is

applied. We could, however, reduce it at compile-time, giving

$F x y = + (* yy) x

thus performing the $G reduction once and for all at compile-time. This
processis directly analogous to expanding out the code for a procedure call
in-line, a Common optimization in conventional compilers. In order to
preserve sharing we should replace the redex with a let-expression:

$GE — lettp=Ein*#pp

Sometimes we can evaluate subexpressions completely, as in the definition

$H x = + x (* 3 4)
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where we can safely evaluate the (+ 3 4) once and for all at compile-time.

Thisis called constant folding in conventional compiler technology.
The question of exactly which redexes to reduce is not completely straight-

forward, especially in the case of recursive functions, because indiscriminate

useof the technique may cause the codesize to increase significantly. The

decision is not clear-cut, because it dependson therelative priorities ofspeed
and code size. Hudak and Kranz [1984] give an interesting discussion of a
particularly thorough-going use of compile-time reduction.

14.7.2 Common Subexpression Elimination

Sometimes(for clarity) the programmer may write an expression such as

* ($F x) (SF x)

Rather than compute ($F x) twice, we can replace the expression with

let fx = $F x in * fx fx

Identifying common subexpressions may be doneby a hashing algorithm
' which checksto see if an expression already exists before building a new one.

This simplification seems always to be beneficial, but see Chapter 23 for a
warming about some possible drawbacks.

14.7.3 Eliminating Redundantlets

Sometimeslets of the form

let x = yin E

arise, in which the right-handside of the definition is a single variable. These
can safely be eliminated by replacing occurrencesofx by y in E.

It is also quite common to encountercodeinwhich a variable definedin alet
is used only once in its scope. For example, consider the supercombinator

$sumSq x y = let xsq = * x x

ysq= *yy
in

+ xsq ysq

In this case we mayas well substitute the right-hand side of the definition for
the (single) occurrence of the variable, giving

$sumSq x y = + (* x x) (# y y)

This is simpler and,it turns out, slightly more efficient. It may be achieved
simply by accumulating information on the number of textually distinct
occurrencesofeach variable in the body ofa let.
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Fifteen
 

FULLY LAZY LAMBDA-LIFTING

Aswediscussed in Chapter 11 our implementations support lazy evaluation.
However, there is one major way in which an implementation based on

lambda-lifting can be made still lazier than the version we have described so
far. The purpose of this chapter is to describe the opportunity and the
modifications required to exploitit.

15.1 Full Laziness

As we remarked in Section 12.1.3, a straightforward implementation of the

template-instantiation procedure risks constructing multiple instances of the
same expression, rather than sharing a single copy of them. This wastes space
because each instance occupies separate storage, and it wastes time because
the instances will be reduced separately. This waste can be arbitrarily large;
for example, the duplicated instances might each separately perform some
large calculation.
The loss of sharing can best be seen using an example. Consider the

function

f = r»y.+ y (sqrt 4)

Wheneverthis functionis applied to an argumentwewill slavishly construct a
new instance of the subexpression (sqrt 4) in its body, despite the fact that all

instances of the (sqrt 4) reduce to 2. It would be better not to construct a new

instance of such constant subexpressions, but to share a single instance
instead. This can do no harm,since the constant subexpression does not
contain any occurrences of the formal parameter, and hence its value cannot
change between one application and another.

243
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It looksasif these constant subexpressions could be spotted:and markedby.
a compiler, but they can be generated ‘on the fly’. Consider the Miranda
program

 

f=94

gxy=y + (sqrt x)
 

(f 1) + (f 2)   
This compiles to the lambda expression:

 

 

letrec f = 9g 4
g = Ax.Ay.+ y (sqrt x)

in + (f 1) (f 2)   
Therefore, when evaluating the expression, we get

+ (f 1) @ 2)

—- *O0G2

 em ((Ax.Ay.+ y (Sqrt x)) 4)

— *OnGa

 m (dy.+ y (sqrt 4))

> + 5 1) (+ 2 (sqrt 4))

 m (Ay.+ y (sqrt 4))

> oe

 > (y.+ y (sqrt 4))

—> + (+ 1 (Sqrt 4)) 4
> +34

—» 7

The crucial point is that the (sqrt 4) is evaluated twice, because a fresh

instance ofit is made each timethe Ay is applied. The reason forthis is thatit is
a dynamically created constantsubexpressionofthe Ay abstraction.

Not surprisingly, just the same problem occurs with supercombinators. Our
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example compiles to

 

$g x y = + y (sqrt x)
$f = $g 4
$Prog = + (Sf 1) ($F 2)
 

$Prog   
The reduction proceeds as follows:

$Prog

—> + " 1) " 2)

 m ($9 4)

> *e 1) (+ 2 (Sart 4))
 > (69 4)

> a

 > ($9 4)

+ (+ 1 (sqrt 4)) 4
+34
7L

h
d

Again wesee that the (sqrt 4) has been evaluated twice.

To be as lazy as possible we would like to share even these dynamically
created constant expressions. Specifically, the effectwe want to achieveis that
every expression is evaluated at most once after the variables in it have been
bound. This is called full laziness. It corresponds closely to an optimization
sometimes performed by conventional compilers on loops, in which
expressions not.involving the loop variable (i.e. free expressions) are moved
out of the loop so that they are not repeatedly evaluated.

15.2 Maximal Free Expressions

The problem we havediscoveredis that laziness can be lostif we instantiate
too muchof the body of a lambda abstraction. “
Which parts should not be instantiated? The parts of the body that should

not be instantiated are those subexpressions which contain no (free)
occurrences of the formal parameter, because if the formal parameter does
not occur then the value of the subexpression will be the same betweenall



246 Chapter 15 Fully Lazy Lambda-lifting
 

instances, and hence may be shared. To formalize this we need a new
definition.

 

DEFINITION

A subexpression Eofa lambda abstraction isfree in ifall variables in E
are free in L. A maximalfree expression ot MFEof L is a free expression
which is not a proper subexpression ofanother free expression of L. (Eis a
Propspuberpeession of F if and only if is a subexpression of F and
E +F   

Examples
In the following lambda abstractions the maximal free expressions of the Ax
abstractions are underlined.

(1) (Ax. sqrt x)
(2) (Ax.x (sqrt_4))

(3) (ay.ax.t x (* y y)
(4) (Ay.Ax.+ (# y y) x)
(5) (Ax.(Ax.x) x) (here the (Ax.x)is free despite the nameclash)

To achieve full laziness, therefore, when performing a B-reduction we must
not instantiate the maximal free expressions of the lambda abstraction.
Instead of instantiating them we must substitute a pointer to the single shared
instance in the body of the lambda abstraction. This key idea was first
recognized by Wadsworth [1971]. Toillustrate, recall our example from the
previoussection
 

 

letrec f = g 4
g = AXx.Ay.+ Y (sqrt x)

in + (f 1) (f 2)   
The reduction sequence begins in the same way

+ (f 1) ( 2)

—> ONG?

 em ((Ax.Ay.+ y (Sart x) 4)

 
> *Gnga

 wm (Ay.+ y (sqrt 4))

But nowweseethat(sqrt 4)is free in the Ay abstraction, and hence should not

be instantiated when the abstraction is applied. Thus weget
 

> toned

 m (Ay.+ y (sqrt 4))
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The instance contains a pointer back to the (sqrt 4) in the body of the

abstraction.

> +qneed \

 

 

 

 

wm (Ay.+ y 2)

> +4

> (ry.+ y 2)

> +(41h)4 \

2

> +34
—> 7

Now the(sqrt 4) is only evaluated once, as we had hoped.

15.3 Lambda-lifting using Maximal Free Expressions

In order to achieve full laziness in the lambda reducer of Chapter 12 we
appear to need to identify maximalfree expressions dynamically. Aswe noted
there, this is rather difficultto do efficiently

Fortunately,it turns out that we can modify the lambda-lifting algorithm so
that a straightforward implementation of the resulting supercombinator
program is automatically fully lazy. The algorithm was invented by Hughes
[1984].

15.3.1 Modifying the Lambda-lifting Algorithm

The modification we need is to abstract the maximalfree expressions, rather
than free variables, when lambda-lifting a lambda abstraction.

In our running example, the function g has the lambda abstraction

Ax. Ay. + y (sqrt x)

When doing lambda-lifting on the Ay abstraction, we abstracted x out as an
extra parameter,since it occurs free. Insteadwe should abstractoutthe entire
(free) subexpression (sqrt x) as an extra parameter, thus generating the
supercombinator

$g1 sqrix y = + y sqrix

The name‘sqrt’ is an arbitrary name invented for the extra parameter. We
replace the Ay abstraction with the supercombinator $gi applied to the
subexpression, thus:

dx. $gt (sqrt x)
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Completing the compilation in the normal waygives
 

$g1 sqrix y = + y sqrix
$g x = $g1 (sqrt x)
$f = $9 4
$Prog = + (Sf 1) (Sf 2)
 

 $Prog   
We get an extra supercombinator because we lose an opportunity for

n-reduction when we take out (sqrt x) as an extra parameter rather than x.
However, in compensation,the execution will be fully lazy, because the uses
of(sqrt _x) will be shared. Now we can follow the reduction sequence again:

$Prog

—> + (@ 1) (¢ 2)

 > ($9 4)
—> + (¢ 1) (¢ 2)

  
 > ($g1 (sqrt 4))
 

—> Fo need

 > ($g1 (sqrt 4))
 

_> Ha need

 

 

 

> ($1 2)
—> *G 1) 4

> ($g1 2)

> taba | \

2
> +34

—> 7

The(sqrt 4) is shared, and hence only evaluated once.

So to preserve full laziness we should, during lambda-lifting,

abstract out the maximal free expressions (rather than only the free
variables) of a lambdaabstraction as extra parameters.

This modification is sufficient to preserve full laziness. Wecallit fully lazy
lambda-lifting.

Oneslight optimization is that if a maximal free expression turns out to
haveno free variablesatall (so it is a CAF), then instead of abstractingit out
as an extra parameter, it can simply be given a name and madeinto a
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supercombinator. The namecan then beusedinstead of the expression. This

is illustrated in the next section.

15.3.2 Fully Lazy Lambda-lifting in the Presence of letrecs

Asin Chapter 14, our strategy needs to take accountofletrecs. Consider the

program
 

 

let
f = dx.letrec fac = An.(...)

in + x (fac 1000)
in

+ (f 3) (f 4)
 

Thealgorithm of Chapter 14 will compileit to
 

$fac fac n = (...)
$f x = letrec fac = $fac fac

in + x (fac 1000)

+ (Sf 3) (Sf 4)   
The function facis defined locally in the bodyof f, and hence (fac 1000) cannot

belifted out as a free expression from the bodyof f. Unfortunately, this means

that (fac 1000) will be recomputed each time $f is applied, so we havelostfull
laziness.

Thesolution is to recognize that the definition of fac does not depend onx.
With this in mind wecan ‘float’ the letrec forfacoutwards, giving this program
 

 

letrec
fac = An.(...)

in let
f = Ax.+ x (fac 1000)

in

+ ( 3) ( 4)   
Nowourfully lazy lambda-lifter will produce a fully lazy program:
 

$fac n = (...)
$faci000 = $fac 1000
$f x = + x $faci000
$Prog = + (Sf 3) (SF 4)
 

 $Prog   



250 Chapter 15 Fully Lazy Lambda-lifting
 

This example also illustrates the utility making a maximal constant
expression into a supercombinator ($faci000 in this case), rather than
abstracting it out as a parameter.

Ourstrategy now breaks into two phases:

(i) Float out letrec (andlet) definitions as far as possible.

(ii) Perform fully lazy lambda-lifting.

Howfaroutcan a letrec definition be fioated? The value of a variable boundin
a letrec will generally depend on the values of certain free variables. We call
the set of free variables on which a variable x depends,x’s free variable set.
Once we know x’s free variable set we can fioat the definition of x outwards
until the next enclosing lambda abstraction binds one of the variables in the
free variableset.

This step has the additional benefit that definitions which have no free
variablesatall will be floated out to the top level, where they will be turned
into supercombinators directly.

15.4 ALarger Example

Weshall now work through a larger example to show the lambda-lifting
algorithm with full laziness modifications in action.
The example is the: function: ‘foldl’, being:used to add up the numbers

between 1 and 100.
 

sumints n = foldt (+) 0 (count 1 n)

count nm = [{], n>m
count n m = n : count (n + 1) m

foldi op base [] base
foldl op base (x:xs) foldl op (op base x) xs
 

sumints 100   
Translating the example into the enriched lambdacalculus, we get
 

 

letrec

sumints = An.foldk + 0 (count 1 n)

count = An.Am.IF (> nm) NIL (CONS n (count (+ n 1) m))

foldl
= \op.Abase.Axs.IF (= xs NIL)

base

(foldi op (op base (HEAD xs)) (TAIL xs))  in sumints 100
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(Note:as before, this is not exactly the translation that would be produced by
the pattern-matching compiler, butit suffices for present purposes.) Applying
the algorithmto foldl,, we choose the innermost lambdaabstraction, (Axs. . .),

and look for maximal free expressions, which: are. (fold! op), (op base) and

base. Wetake these out as extra parameters, p, q and base respectively,giving

 

$R1 p q base xs = IF (= xs NIL) base (p (q (HEAD xs)) (TAIL xs))
 

letrec

sumints = An.foldt + O (count 1 n)

count = An.Am.IF (> n m) NIL. (CONS n (count (+ n 1) m))

foldt = Aop.Abase.$R1 (fold{ op) (op base) base
in

sumints 100   
Now the innermost lambda abstraction is \base, and its maximal free

expressions are ($R1 (fold! op)) and op, which wewill take out as r and op
respectively, giving

 

$R1 p q base xs = IF (= xs NIL) base (p (q (HEAD xs)) (TAIL xs))
$R2 r op base = r (op base) base
 

letrec

sumints = An.foldi + O (count 1 n)

count = An.Am.IF (> n m) NIL (CONS n (count (+ n 1) m))

fold! = Aop.$R2 ($A1 (fold! op)) op
in

sumints 100

bo

   
Nowall the definitions in the top-level letrec are supercombinators, because

we havelifted out all the inner lambdas, so after lifting out any constant
expressions wecan lift them directly to get

 

$sumints n = $foldiPlusO ($countt n)
$foldiPlusO = $foldi + 0
$count1 = $count 1
$count n m = IF (> nm) NIL (CONS n ($count (+ n 1) m))

$foldt op = $R2 ($R1 ($foldl op)) op
$Prog = $sumints 100
$R1 p q base xs = IF (= xs NIL) base (p (q (HEAD xs)) (TAIL xs))
$R2 r op base = r (op base) base
 

$Prog   
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Notice that we cannot eliminate the op parameter of $foldi, since it is used

twice on the right-handside.

15.5 Implementing Fully Lazy Lambda-lifting

Wenowturn ourattention to algorithms for achieving the transformations
required byfully lazy lambda-lifting.

15.5.1 Identifying the Maximal Free Expressions

Howcan weidentify the maximal free expressions of a lambda abstraction?
Wecan use the conceptof lexical level-numberintroduced in Section 13.3.2,
and computethe lexical level of expressions as well as variables. The lexical
level of an expression should be the maximum of the levels of the free
variables within it. Then when lambda-lifting a lambda abstraction at level n,

we should take out as extra parameters any subexpressions within the body
whoselevelis less than n.
For example,in the base of the lambda abstraction for g, which is

AX.Ay.+ y (sqrt x)

the Ax abstraction is at level 1 and the Ay abstraction is at level 2. Hence the

various subexpressions have level-numbers as follows

+ level 0

(+ y) level 2

sqrt level 0

(sqrt x) level 1

(+ y (sqrt x)) level 2

To summarize:

(i) The level-numberofa constantis 0.
(ii) The level-numberofa variable is the textual nesting depth of the lambda

which bindsit.

(iii) The level-number of an application (f x) is the maximum of the level-
numbersof f and x.

Given an expression E,its native lambda abstraction is the enclosing lambda
abstraction whose level-numberis the sameas that of E. Looking ‘outwards
from E’it is the first lambda abstraction which binds any variable in E.

All the maximal free expression information can be determined, and

lambda-lifting performed,in a single tree-walk over the expression:

(i) On the way down the tree, the level-number of each lambdaabstraction
is recorded.

(ii) On the way up, the level of each expression is computed, using tlie
environment and the levels of its subexpressions. If it is applied to
another expression with the same level-number, then the two are
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merged, otherwise they are given new unique names (since they will be
maximalfree expressions of distinct lambda abstractions). The merging
is the mechanism whereby free expressions are combined to form
maximal free expressions.

(iii) When a lambdais encountered on the wayup,it is transformed into a
supercombinator, and the lambda abstraction is replaced by the super-
combinator applied to the maximal free expressions. The maximalfree
expressions are those subexpressionswith level-numberless than that of
the lambdaabstraction, after the merging has taken place.

15.5.2 Lifting CAFs

The maximalconstant expressions (level 0) need slightly different treatment.
It would be correct to take them out as extra parameters, but thereis an easier

way. We can simply define a new supercombinator of zero arguments to be
the constant expression, and use the nameofthe supercombinatorinstead of
the expression. No benefit is obtained, however, by doing this with constant
expressionsconsisting of a single constant (such as 3 or $F), so they can beleft
as they are.

For example, in the expression

AxX.+ 1X

the (+ 1) is a maximalfree expression at level 0, and can be madeinto a
supercombinator$inc:

$inc = + 1

Nowthe expression becomes

Ax. $inc x

In this case all that we achieve is the sharing of the (+ 1) graph for each
application of the lambdaabstraction,butifthe constant expressionisitself a
redex (like (+ 1 3), for example) then wealso save repeated evaluation ofthe
redex. There was an example of the utility of this in the $fact000 super-
combinatorofSection 15.3.2. (Note:thereis actually a strong case to be made
for notlifting out a constant expression unless it is in fact a redex—see Section
15.6.1.)

15.5.3 Ordering the Parameters

In Section 13.3.2 we put the parameters of a supercombinatorin order of
increasing level-number, to maximize the opportunities for n-reduction. The
same ordering is useful for maximal free expression parameters, for two
reasons.

Thefirst is the same as before. A maximalfree expression will often be just
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a single free variable, and in this case, we should still like to have a chance of

7-reduction.

The second reason concerns the size of the MFE. To maximize sharing
(whichis the object ofthe exercise) we shouldlike to make our MFEs as large
as possible.
Suppose wehave the lambdaabstraction

aAx.(...G...F...E...)

where E, F and G are MFEs ofthe Ax abstraction, and

level of F < level ofG < level of E

It would be best to define the supercombinator

$S fg ex = (...g...f...e...)

and replace the abstraction with

$S FGE

because then ($S F G) will have a smaller level-numberthan E, and hence will

be taken out of E’s native lambda abstraction as a single MFE. If we had
arranged the parameters in the reverse order, G and F would have had to be
taken out separately.
This will not affect the amount of computation involved (since ($S F G)

cannotbe reducible), but it will mean that there is only one instance of the
($S F G) tree rather than one for each application of E’s native lambda

abstraction. Thus, correctly ordering the parameters should make the
maximal free expressions /arger andfewer.

The examplein the Section 15.4 showed an example of this optimization in
action. We abstracted (fold! op), (op base) and base from the body of the Axs_
abstraction, calling them p, q and base respectively. Though we did not

mentionthis at the time, we putp first, since (foldl op) is freer than (op base)

and base. This subsequently enabled us to abstract ($R1 (foldl op)) from the

\base abstraction.

Weconclude that ordering the parameters by increasing level-numberis
better in both these respects.

15.5.4 Floating Out the lets andletrecs

Werecall that to maintain full laziness we must‘fioat’ definitions given in lets
andletrecs outwards. In this section we discuss the algorithm in more detail.

Since wewill fioat out all the definitions in a letrec together, we assumethat

the dependency analysis described in Chapter 6 has already been performed.
If it were not performed, then a definition might not be fioated out as far as
possible, merely because it happened to be defined in the sameletrec as a
definition which could not be floated out so far. For the same reason we
assumethatlets contain only a single definition.
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In practice, the algorithm of this section could probably be combined with
the dependency analysis algorithm.

How far out should a let(rec) be floated? We can compute the ‘correct’

level-number of its variables, by computing the level-numbers of their

definition bodies. This level-numberis correct in the sensethatit identifies the
innermost lambda abstraction on which the definition depends. The let(rec)
should then be floated out until the nearest enclosing lambda abstraction has

this level-number.
This still leaves some freedom in choosing exactly how far out a let(rec) can

be floated. The algorithm which we describe below specifies that:

(i) The immediately enclosing lambda abstraction has the same level-
numberas that of the variables boundin thelet(rec).

(ii) Thelet(rec) does not appear in the function position of an application.
(iii) It should be floated outas little as possible subject to the constraints (i)

and(ii).

The second condition rejects expressions such as:

(let v = E in Es) Eo

in favor of the following equivalent expression, in which thelet is floated out
one morestage:

let v = E in (E1 Es)

(and similarly for letrecs). This has no effect on laziness, but allows an
importantsimplification in Chapter20.

Thefinal condition specifles that a let(rec) should be floated out no further
than is necessary to meetthe first two conditions. To see why this may be
important, consider the expression

IF E (ax.let v = F in G) H

whereE, F, G and H are arbitrary expressions, and F does not contain x. The

algorithm will transform this to

IF E (let v = F in (Ax.G)) H

A sophisticated implementation may be able to avoid constructing the graph
of H if E turns out to be TRUE,and vice versa (see Chapter 20). If we were to
float the let out further, we would get the expression

let v = F in (IF E (Ax.G) H)

whichis less good, because then the graph of F would haveto be constructed
whatevervalue E turned outto have.

Wecan nowoutline the algorithm as follows. Working from the outside
inwards,for each let(rec) perform the followingsteps:

(1) Computethe level-numbers ofeach definition body. Whiledoing so for
a letrec, assume that the level-numberof the variables defined in the
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letrec is zero. The reason for this is that the level-numberofa recursive
definition depends only onits free variables, and not on the (asyet
unknown)level-numberofthe recursive definitionitself.

(2) For a letrec, compute the maximum of the level-numbers of the
definitions’ bodies. This is the correct level-numberfor the variables
boundin theletrec. Forlets, the correct level-numberis that computed

in Step 1. This level-numbershould be used for the variables bound in
the let(rec) when processingits body.

(3) Float outthe definitions until the next enclosing lambdaabstraction has
the same level-numberas that of the variables defined in thelet(rec),

which was computedin Step 2.
(4) Finally, if the let(rec) now appears in the function position of an

application, continue to float it out until it doesnot.

Note:if a letrec re-binds a variable that is already in scope, then it cannot be

floated outwards withoutrisk of capturing occurrencesof the outer variable.
Thesolutionis to systematically renameoneofthe variables.

15.6 Eliminating Redundant Full Laziness

The transformations required to achieve full laziness have a price. There are
at least three ways in which wepay:

(i) Supercombinators with many arguments (for all the MFEs) are
generated. This increasesthe size ofthe redex and slows downreduction.

(ii) More seriously, more supercombinators may be generated because of

the loss ofopportunities for n-optimization. Tosee this, refer back to the

example in Section 15.4, where three combinators were generated for

fold! where one ‘would havesufficed for a non-fully lazy implementation.

More supercombinators mean morereductions.

(iii) Most serious of all, the program is broken up into small fragments,
fragments of the bodies of functions being exported piecemeal. For a

straightforward template-instantiation implementation this is not a

problem,butif the bodies of supercombinators are compiled then many
opportunities for optimization may be lost. This will becomeclearer in
Chapter 20, but consider for example the lambda abstraction

AV.AX.IF (= v QO) (+ x 14) (+ x 2)

The non-fully lazy lambda-lifter will generate a single supercombinator:

$R v x = IF (= v O) (+ x 1) (+ x 2)

An optimizing compiler will produce code for $R which first tests the
value ofv, and then evaluates either the (+ x 1)or(+ x 2), tocomputea
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numerical value. No heap will be consumed. A fully lazy lambda-lifter
will produce two combinators:

$S1 if-v-zero x if-v-zero (+ x 1) (+ x 2)
$S v $S1 (IF (= v 0))

andwill replace the Av abstraction with $S. The compilerwill now have to
generate code for $S1 toconstruct (+ x 1)and(+ x 2)in the heap before
unwinding the spine of theif-v-zero function, about which it now has no
information.

These objections are substantial, but on the other handfull laziness can save

very large amounts of time and space in some cases. Further study reveals,
however, that the fully lazy lambda-lifter often abstracts out an expression
when nothing is gained by so doing. Hence we could improve the trans-
formation by selectively performing ordinary (rather than fully lazy) lambda-
lifting where nothing is gained by the fully lazy method. This section is
therefore devoted to identifying certain situations where fully lazy lambda-
lifting gains nothing, and is based on workby Fairbairn [1985] and Hudak and
Goldberg [1985].

15.6.1 Functions Applied to Too Few Arguments

In the example above,the fully lazy lambda-lifter took out (IF (= v 0)) as an
extra parameter. However, IF requires 3 arguments to reduce, so no workis
saved by sharing this expression. Moreprecisely, just as much work would be
saved by taking out (= v 0) as an extra parameter, thus

$11 v-zero x = IF v-zero (+ xX 1) (+ X 2)
$T v = $T1 (= v 0)

and replacing the Av abstraction with $T. In a straightforward template-
instantiation implementation some space would be saved by taking out the
‘larger expression (since the application of IF to (= v 0) would only be built
once), but even this is not always true in a compiled implementation (see
Chapter20).
The conclusionis that no workis saved by abstractingout expressions which

consist of a built-in operator or supercombinator applied to too few
arguments. As the example shows, however, the arguments of the function
may be considered for abstraction.

' This applies equally to constant expressions which might otherwise be
candidates for a new supercombinatordefinition (see Section 15.5.2). As an
illustration of this, consider the example in Section 15.4, where.the $foldiPlusO
and $count! supercombinators are irreducible; nothing is gained by treating
them as separate supercombinators.
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15.6.2 Unshared Lambda Abstractions

Continuing with the same example, suppose the lambda abstraction under
consideration appeared in a contextlikethis:

let
f = Av.Ax.IF (= v O) (+ x 1) (+ x 2)

in
...(f 4 5)...

and suppose that the (f 4 5) is the only use of f. In this case, the partial
application (f 4) cannot be shared, since it is used immediately. Using the $S
combinatorfor f, the reduction (f 4 5) wouldgo likethis:

£45 $S 45

$S1 (= 40) 5
IF (= 4 0) (+ & 1) (+ 5 2)
+52
7a

a

Since the partial application cannot be shared, neither can the painstakingly
abstracted expression (= 4 0). No sharing would be lost by using the original
$R combinatorinstead. From this example wecan derive a generalrule:

given a lambda abstraction Ax.E in a context in which it cannot be shared,
we should not abstract free expressions from E because they will not be
shared. Instead we should abstract only the free variables.

Wecanjustify this rule by observing that free expressions abstracted from E
cannot be shared because:

(i) they are not shared inside E, since they are abstracted from a single place
in E;

(ii) they are not shared outside E, because thewhole lambda abstraction ax.E
is not shared.

Thesharing of partial applications is just a specific instance of this general
rule. Notice thatfor thefirst time our lambda-lifting strategy becomescontext-
dependent. Thetrick is to work out when a lambda abstraction might be
shared.Thisis notat all obvious. For astart, it might be passed as an argument

to another function, in which case a complete analysis would involve looking
at the body of that function. More subtly, consider an extension of our
example:

let
f = Av.AX.IF (= v 0) (+ x 1) (+ x 2)
g = Ax.Ay.+ 1 (FX y)

in

. .€xpression not mentioning f. . .
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It does not look as if a partial application of f can be shared. Butif a partial
application of g is shared we will abstract (f x) as an MFE from the Ay
abstraction in g, so then the partial application of f is shared.

Discovering information aboutsharingis potentially very difficult (it seems
to be another application of abstract interpretation; see Chapter 22), but the

saving grace is that we can give up at any time and assume that a partial
application may be shared. The details are beyond the scopeofthis book but
Fairbairn [1985] and Hudak and Goldberg [1985] each describe their
algorithms.
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Sixteen

SK COMBINATORS

\
In this chapter weshall examine another graph reduction technique based on
a fixed set ofsupercombinators. The most important members of this set are
called S and K; hencethetitle of this chapter. The idea of having a fixedsetof
supercombinators contrasts with the approach previously described, in which
the supercombinatordefinitions are generated from the program.
The method is appealing because it gives rise to an extremely simple

reduction machine which, in effect, only has to support built-in operators and
needs no template-instantiation mechanism. In addition it turns out that the
implementationis, in a certain sense, lazier than our bestefforts so far, but as
weShall see, these benefits are wonata price.

(Note: in this chapter we*shall use lower-case letters to stand for
expressions, to avoid confusion with the combinators, which are written in
uppercase.)

16.1 The SK Compilation Scheme

Ourstrategy is to transform the program into one containingonlythe built-in
operators and constants, together with the combinators S, K and |. These
combinators are described by the reduction rules

Sfgx > fxg)
Kxy —> x
Ix —> xX

The motivation for choosing this particular set should becomeclearer as we
proceed. S, K andI are all supercombinators,since they satisfy the definition
given in Chapter 13, but for the purposesofthis chapter, and for compatibility
with other published work, we will use the more general term ‘combinator’.

260
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16.1.1 Introducing S, K and |

Consider the lambda abstraction Fun, where

Fun = (Ax.@1 @2)

where e, and e2 are arbitrary expressions. Given the reduction rule for S, an
equivalent expression is Fun’, where

Fun’ = S (Ax.@1) (AX.@2)

Wecan demonstrate that Fun and Fun’ are equivalent by applying them to the
same argument:

Fun arg = (AX.@1 Qe) arg

— (e:[arg/x]) (e2[arg/x})

Fun’ arg = S (AX.@1) (AXx.@2) arg

—> ((ax.e1) arg) ((Ax.e2) arg)
—> (e:{arg/x]) (e2[arg/x])

Hence Fun = Fun’ by extensional equality.
Wecall the transformation from Fun to Fun’ the S-transformation, and

denoteit using a ‘=>’ arrow,in the following way:

AX.01 @2 => S (AX.@1) (AX.@2)

Notice the difference between the arrows ‘=>’ and ‘>’. Both denote the
transformation of one expression into an equivalent one, but the former
denotes a compile-time transformation and the latter denotes a run-time
reduction.
As an exampleofthe use of the S-transformation, consider the expression

h = Ax.OR x TRUE

Applying the S-transformation twice, we get

Ax.OR x TRUE
S = S (Ax.OR x) (Ax.TRUE)
S = S (S (ax.OR) (Ax.x)) (Ax. TRUE)

(We use an ‘S’in the left margin to indicate that the S-transformationrule is
being used.)
As we perform the S-transformation, the x gets pushed down onelevel

each time, because so long as its body is an application we can apply the
S-transformation again. Each timewe apply the S-transformationwe produce
two new Ax abstractions, but with smaller bodies. In the end the body will be
an atomic object, and there are two cases to consider:

(i) The expressionis (Ax.x). This is just the identity function, which wecall |,
with the definition

1x —> x
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The !-transformation replaces (Ax.x) with |, thus:

AX.x => |

There was an instance of this in the previous example, and applying the
-transformation, we would get

S (S (Ax.OR) (Ax.x)) (ax.TRUE)
| => § (S (Ax.OR) }) (Ax. TRUE)

(ii) The expressionis (Ax.c), where c is a constant or a variable other thanx.
This is a function which takes one argument, discards it, and returns c, so
we can replace it with (K c), where

Kcx ~ C

The K-transformation rule is therefore:

AXx.c = Ke

where c is any constant, or a variable other than x. As in the case of S, the

equivalence of (Ax.c) and (K c) can be shown by extensional equality.
There are two instancesofthis in our example, (Ax.OR) and (Ax. TRUE).

Replacing these with (K OR) and (K TRUE) weget

S (S (Ax. OR) 1) (Ax.TRUE)
K = S (S (K OR) }) (K TRUE)

To summarize, we have developed the transformation rules and the reduction
rules for the combinators S, K and | shown in Figure 16.1.

 

S-reduction: Sfgx > fx
K-reduction: Kex > ¢
-reduction: Ix —+ xX

|-transformation: AX.X => |
K-transformation: AX.c¢ > Ke (c + x)
S-transformation: AX.@1 @2 = S (Ax.e1) (AX. e2)    

Figure 16.1 The SKI rules

Wecan use the reduction rules to evaluate the transformed program:

hx
S (S (K OR) I) (K TRUE) x
S (K OR) I x (K TRUE x)
K OR x (I x) (K TRUE x)
OR (1 x) (K TRUE x)
OR x (K TRUE x)
OR x TRUE

(Weuse an S, Kor in the left margin as a reminder of which reductionruleis
being applied.)

X
—
~
K
X
W
W

t
i
h
u
d
d
u
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16.1.2 Compilation and Implementation

The S, K and| transformations together constitute a complete compilation
algorithm (the SK compilation algorithm), which will transform any lambda
expression into an expression involving only S, K, ! and constants!

Here,then,is the SK compilation algorithm to compile an expression e:

 

WHILE e contains a lambda abstraction DO

(1) Choose any innermost lambda abstraction of e.
(2) Ifits body is an application, apply the S-transformation.
(3) Otherwise its body must be a variable or constant, so apply

the K or I transformation as appropriate.

 END   
By transforming the innermost lambda abstractionsfirst we ensure that the

body of the chosen lambda abstraction contains no lambdas. This, inciden-
tally, means that we do notruninto any a-conversion problems, either during
compilation or evaluation of the combinator expression; a very desirable
property in view of the subtle problems encountered in Chapter2.
As an example, let us compile the expression ((Ax.+ x x) 5).

(AX. + xX x) 5
S (Ax. + x) (Ax.x) 5
S (S (Ax.+) (Ax.x)) (Ax.x) 5
S (S (ax. +) 1) (Ax.x) 5
S (S(Ax.+) D195
S$ (S (K+) U5X

-
-
O
W

7

The successive lines showthestateofthe expression at successive iterations of

the algorithm’s WHILE loop. To reassure ourselves that the algorithm has
produced an equivalent expression, we can evaluate the result using the
reduction rules for the combinators:

S (S (K +) ) 15
S (K +) 15 (15)
K + 5 (1 5) (i 5)

(I 5) (I 5)
5 (It 5)
5

V
b
t
d
u
e

+

+

+

10

To summarize, we have developed a compilation algorithm which will
compile any expression into an expression involving only S, K, ! and constants
(including built-in functions). All the variables have disappeared! Recursion
may be dealt with using Y, as previously explained in Chapter 6. Y is then
treated as a built-in function by the combinator compilation algorithm.

Figure 16.2 expresses the SK compilation algorithm more formally using
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Name Syntactic object

e, @1, G2 Expressions

f, fy, fo Expressions with no innerAs
x A variable
cv A constant(including function constants, such as +, Y,

etc.), or a variable

 

Ce } Compiles e to SK combinators

CE e; e2 J] = Ce; ] Ch eo J
C—[ Ax.e } =Ax[Che 9]
C[w]} =a

 

Axf{[f 9 Abstracts x from f.

Ax fi fo J =S(AxEf; DP) Ax fe D
Axx] = |
Ax ow] = K ov    

Figure 16.2 SK compilation algorithm

the [[]] notation. Wegiveit here becauseit is easy to express optimizationsto
the method usingthe[[]] notation, which weshall do in later sections.

TheCfunction compilesan expression into combinators,while theAfunction
(which C calls) compiles the body of a lambdaabstraction by abstracting the
variable from the body. The only notational addition is that the function A

takes two parameters instead of just one: a variable and an expression in [J]
brackets.
Notice that we apply C to the body of a lambdaabstraction before applying

A; this ensures that any inner lambdas are dealt withfirst, so that A only has to
deal with atoms and applications. Unfortunately, this also means that the
algorithm is quadratic, because the expression has A applied to it once for
each enclosing lambda.

Let us compile the same expression ((AX.+ x x) 5) using the new notation:

CI (Ax.+ x x) 5 JJ

=Ax {CI + xx]
=Ax[—+xx 5
=SAxQf+xDP Axx D5
=S(SAxQ™—+ DPD AxLx D)t5
=S§(S (K+) N15



Section 16.1 The SK compilation scheme 265
 

16.1.3. Implementations

The combinators S, K, I, etc. are simply particular examples of super-

combinators, so the reduction machine required to execute them is a cut-
down version of the supercombinator reduction machine. The method of

finding the next redex by sliding downthe spine,the choice ofa spine stack or
pointerreversal, the implementationofY,the use of indirection nodes, and so

on, all apply exactly as described in Chapter 12. The main differencesare that

(i) the combinators are implemented directly as built-in functions by the
reduction machine,rather than indirectly via a general supercombinator
bodyinstantiation mechanism;

(ii) the reduction machine does not need to implement the template-
instantiation mechanism described in Section 12.1, since there are no
lambdaabstractionsto instantiate.

This meansthat a graph reducer based on SK reductionis one of the simplest
implementations of graph reduction.
The implementations of Turner’s languages SASL [Turner, 1976] and

Mirandaare based on SK combinators, exactly as described above, with some

minor enhancements(especially to assist pattern-matching).

The family of SK combinators can be thoughtofas the built-in instruction

set of a graph reduction machine, and,.thus amenable to direct implemen-
tation in hardware. This idea has been taken up in two machines designed
specifically to implement SK reduction, the Cambridge SK1M machine
[Stoye, 1985 and 1983] and Burroughs’ NORMAmachine[Scheevel, 1986].

16.1.4 SK Combinators Perform Lazy Instantiation

A program compiled into SK combinators executes even morelazily than a
supercombinator program. For example, consider the supercombinator
definition

SF x = IF @o er ef;

where e; and e; are textually large expressions. When $F is applied, new
instances of e; and e; are constructed, despite the fact that one or otherwill

certainly be discarded. Let us instead compile it using SK combinators:

AX.IF @c ef OF

Ss => § (Ax.IF @c ef) (AX.ef)
Ss => § (S (Ax.IF @o) (Ax.e@9)) (Ax. e8)
Ss => § (S (S (K IF) (Ax.ec)) (AX.e9)) (AX.e9)

Supposethat(Ax. e,) compiles to a combinator expressioncg, (Ax. e;) compiles
toc, and (Ax.e1) compiles to c;. Then the whole expression compilesto

S (S (S (K IF) cc) cy) cr
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Whenweapply this compiled expression to an argumentx, the reduction
sequence beginslikethis:

S (S (S (K IF) cc) cy) cr x
S (S (K IF) cc) ce x (Cr x)
S (K IF) ce x (Ct Xx) (Cr xX)
K IF xX (Cc x) (Ct xX) (Cr Xx)

IF (Cc x) (Ct xX) (Cr X)L
i
d
s

Notice that we have not constructed an instance of e; or e; as we did in the
supercombinator case. Instead we have postponed this instantiation by
building the expressions (c; x) and (c; x). Only the branch selected by the IF
will be evaluated anyfurther.
The effect of S is to push the argument downonelevel (only) into the body

of the function. This is advantageousif any parts of the body are discarded.
The price paid for this laziness is the allocation of intermediate nodes to

hold the partially instantiated branchesofthe IF. For example, the application
node(c; x) would not have been allocated by a supercombinator implemen-
tation. In addition, the reduction steps are rather small. This question is
further discussed at the end of the chapter.

16.1.5 lis Not Necessary

Curiously enough, S and K are sufficient on their own, because the expression
(S K K) is extensionally equalto I:

SKKx 1x
—> Kx (K x) > x

> x

Hence! = S K K

It is for this reason that this chapteris entitled ‘SK combinators’, rather than
‘SKI combinators’. However, it is only of theoretical interest; all reasonable

implementationsinclude|.

16.1.6 History

This remarkable and counter-intuitive transformation of lambda expressions
into combinators was first developed by Curry and Feys [1958], but was
thoughtto be ofmore mathematical than practical interest until DavidTurner
used it as the basis of an implementation of the functional language SASL
(Turner, 1979a and 1979b]. In these papers he described a number of

optimizations to the basic compilation scheme which wewill examinein the
next section.
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16.2 Optimizations to the SK Scheme

The examples given above showthatthe basic compilation algorithm tends to
produce rather large combinator expressions from quite innocuous-looking

lambda abstractions.In fact, in the form given aboveit is virtually unusable,
because the combinator expressions becomeso large, and require so many
reductions to reduce to normalform.

Fortunately there are some optimizations which render the technique quite
practicable, which we will develop in this section. To perform these
optimizations weshall need to introduce five new combinators (B, C, S’, B’
and C’).

16.2.1 K Optimization

Considerthe expression

AX. + 1

Whenwecompileit, we get

S (KK +) « 1)

This is very stupid, because x is not used at all in the body of the lambda
abstraction. A far better result would be

K (+ 1)

This optimizationis easily achieved, by the optimization rule

SK p) Kq) > K (pq

It is a simple matter to prove the extensional equality of these expressions:

S (K p) K q) x K (p q) x
> Kpx(Kqx) > pq
> p(Kq x)
> pq

Hence S (K p) K q) = K (@ q)

Whenapplied to an argument (K (p q)) requires only one reduction,instead
ofthree for (S (K p) (K p)), so the optimized versionis indeed more efficient.

Theeffect of applying this rule consistently is that

Axfle J =Ke ifandonlyif xisnotusedine

This property shows that the K optimization is just what is needed to
preserve full laziness. Toillustrate this, suppose that f = (Ax.p q), where p
and q do not use x. We can now produce two combinatortranslations forf,
with and without the Koptimization:

f= dx.pq = S (Kp) Kq) (unoptimized version)
=> K (pq) - (optimized version)
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Nowif we use the unoptimized version of f, whenever we apply f to a new
argumentx, we get

S (K p) (K q) x
> Kpx(Kq x)

— p(Kq x)
> pq

and this application of p to q, (p q), is brand new. However, if we use the

optimized version, we get

K (Pp q) x
> pq

and this (p q) is the original shared instance in the (K (p q)) expression. Thus,

not only doesit take fewer reductionsto getto (p q), but we will only compute
(p q) once;that is, we have fully lazy implementation.

16.2.2 The B Combinator

Considerthe lambda abstraction

AX.— X

This compiles to

S (K -) |

which wastes time and effort passing x into the left branch (K —) whereit is
promptly discarded. Whatwe wouldlikeis a version of S which passesx to the
right only;let us call it B. The reduction rule for B is

Bfgx > fg

The appropriate optimizationruleis

S(Kp)q > Bpgq

whichsays‘if x is not used in the left branch (as shown by the K), then use B
instead of S’. This rule would optimize our example thus

S(K-)| = B-I

Notice that this optimization saves work at compile-time (because the
resulting program is smaller) and at run-time (because there are fewer
reductions to be done). In fact, this particular example can be optimized
further. The expression

(B p |)

is the same as

p
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For, applying (B p |) to any argumentx, we see

Bpix:
> p (ix)
—> px

So we can use anotheroptimization rule

Bpl > p

which optimizes our example further:

B-l > -

This is a very good translation for (Ax. — x), which is the same as that
obtained by 7-conversion.In fact the (B p 1) optimizationis just y-conversio
in a new guise.

16.2.3 The C Combinator

Just as (B f g x) sends x into g but not f, so it is convenient to have a

combinator C, which sends x into f butnot g, thus

Cfgx - fx g

The optimizationrule for C is

Sp(Kq) > Cpq

Figure 16.3 summarizes the extra reduction and optimization rules we have
developed so far. The validity of these rules can readily be proved using
extensional equality. For example:

S (K p) q x Bpqx
> Kpx (qx) > Pp (qx)
> Pp (qx)

Hence S (K p)q=Bpq

 

Reduction rules

Bfgx — f(g x)
Cfgx > fxg

Optimizationrules

S (Kp) Kq) > K(Pq
S Kp)! > p
S «p)q > Bpq
S p (K q) > Cpq    

Figure 16.3 B, C and K optimizations
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Axf{Lf ]} Abstracts x from f

AXx{fi fo} = Op SAxfh D Axe fe DF
Ax{x} =
Ax {cv } = K cv

Opt e 3 Optimizes e

Opti S (K p) (K q) ¥
Opt S (K p) | ¥ =p
Opt, S (K p) q 3 =Bpq
Opt{ S p (K q) B =Cpq
OptE Sp q B =Spq   
Figure 16.4 Modifications to SK compilation algorithm to include B and C

Wecan formalize the optimizations in the [[]] notation by introducing a new
function Opt, which optimizes a combinator expression. Figure 16.4 shows the
definition of Opt and a modified version ofAwhichusesit.

Let us apply the new algorithm to the example in Section 16.1.2. We omit
someofthe steps, which are rather laborious.

cl (Aax.+ xx 5 JJ

a
h
o
b

il
>

= w w R t e
e

e
e wn

Onill S+iq}5
s$+15

Wecan now evaluate the expression thus

$+15
— + (I 5)

— 10

The compiled expression is much smaller, and the reduction sequence much
shorter, than before.

16.2.4 The S’ Combinator

There remains one major opportunity for improving the code produced bythe
compilation algorithm. It occurs when abstracting many variables from an
expression. Suppose we were compiling

AXn. . -AX2.AX4.P Q

where p and q are complicated expressions, which both use xj, x2,...,Xn. We
define

Pp=Ax fp ll
D=Ax fp I

and so on.
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Now,weare going to have to abstract xi, x2,...,Xnin turn from (p q). This
gives the followingresults:

Original expression pq
First abstraction (x:) $ ‘p ‘gq
Second abstraction (x2) $ (B S p) ¥q
Third abstraction (x3) S$ (B S (B (B S) %p)) °q
Fourth abstraction (x4) $ (B S (B (B S) (B (B (B S)) ‘p))) “a

Thesize of the expression expands quadratically with the numberof variables
abstracted. This happens because the combinators introduced by one
abstraction complicate subsequentabstractions.
Wewouldlike to deal with the general problem ofabstracting a variable, x:,

from

<combinator expression> p q

where <combinator expression> contains no variables. At the moment the

abstraction goeslike this:

A:x1 [[ <combinator expression> p q ]]
= § (B <combinator expression> ‘p) ‘q

andit is the fact that we introduce two new combinators (S and B), one of

which is nested, that causes the problem. Suppose we invent a new
combinator, S’, with the following optimization rule

S(Bxy)}z > S’ xyz

Now wegeta simpler abstraction:

A x: {[ <combinator expression> p q JJ
= S’ <combinator expression> ‘p ‘q

We must choose the reduction rule for S’ to make this optimization valid, so

S’'cfgx
= §(Bcf)gx (tomake optimization valid)
> Bcecfx (gx)

=> c¢ (fx) gx)

which gives us the reduction rule for S’, namely

S’cfgx — c (fx) (x)

ThusS’is like S, but ‘reaches over’ one extra argument.
Let us see whateffect the S’ optimization has on multiple abstraction:

Original expression pq
First abstraction (xi) S$ ‘p ‘gq
Secondabstraction (x2) S’ S 2p °q
Third abstraction (xs) S’ (S’ S) 3p 4q

Fourth abstraction (x4) S$’ (S’ (S’ S)) ‘p “q
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Now thereis only a Jinear build-up of combinators as we perform successive
abstractions. This key optimization renders the whole system practicable.

16.2.5 The B’ and C’ Combinators

Sometimes the variable being abstracted will only be used in p or q, sowe need
companion combinators B’ and C’, with reduction rules

Bo cfgx — cfg)
Cicfgx > ci(fxg

each of whichis like its undashed counterpart, except that it ‘reaches over’
one extra argument. Wealso need the corresponding optimization rules

Bicf}g => Bctfg

C(Bcfig > Ccfg

We can,as usual, show the correctness of these rules by showing that the two
sides are extensionally equal, which follows directly from the definitionsof
the combinators.
The optimization rule for B’is slightly surprising, since it does not look

quite like the optimization rules for S’ and C’. Furthermore, the ‘optimized’
version requires no fewer reductions to evaluate than the ‘unoptimized’
version, and worse still, experiments show that this B’ optimization actually
degrades performance!

This seems to have something to do with the B’ optimization rule. We gain
nothing when introducting a B’, because the sizes of the two graphsare the
same, and weactually lose an opportunity for optimization at an outerlevel,

because wedestroy a (B c f) pattern that might be useful in building an S’ or
C’. For example, the expression

CCH gh
will become

C (B’ cf g)h

if the B’ optimizationis used, but will become

C’ (cf) gh

if not. A different combinator, B+, has been suggested by Mark Sheevel of

Birroughs Corp.It has the reduction rule

Bectgx > c (f(g x)

and optimization rule

Bc(Bfg) > Becfg

This rule looks morelike the optimization rules for S’ and C’, and experi-
ments show that this B+ does indeed give a performance improvement. This
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little tale serves to show thatthe choice ofa set ofcombinators is by no means
an entirely systematic process.

Figure 16.5 gives the final compilation algorithm, including all the
optimizations we have discussed. The only point to notice is that the
optimization rules for B* and C’ are expressed in termsofS, rather than going
via the intermediate B and C forms. Figure 16.6 gives a summary of the
reduction rules for each combinator.

 

Cf e J Compiles eto SK combinators

C[ e1 e2 J = Ce: I Cl eo J
C[ x.e }] =Ax[ Cle] ]
ClLwv] -=c

Ax{[[ff J Abstracts x from f

Ax fi fo 7 = Op S (Ax fi D (Ax fe Dd
Ax[x] = |

= K wAx[o ]

Opt{ e J Optimizes e

Opt[ S (K p) (K q) J = K (p q)
Opt{ S (K p) | J =p
Opi S (Kp) (Bqn J =Bepaqr
Opt S (K p) q J =Bpq
Opti S(Bpq) (Kn J} =C’ paqr
Opt S p (K q) J =Cpq
Opt[ S (Bp q)r J = S’pqr   

Figure 16.5 Final SK compilation algorithm

 

1x > Xx
Kcx > Cc

Sfgx —> fx(@gx)
Bfgx = f(g x)
Cfgx — fxg
S'cfgx — c(fx (gx)
Bt cfgx — C (f (g x)
C’cfgx — ci(fxg   

Figure 16.6 Summaryofcombinator reduction rules

16.2.6 An Example

We conclude with an example of the compilation algorithm in action. The
example is a function that implements Euclid’s algorithm for finding the
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greatest common divisor (gcd) of two integers, a and b, where b=a. In

Miranda,the functionis

gcd a b = a, b=0

gcd a b = gcd b (a rem b)

where ‘rem’ is the built-in remainder function. Compiling to lambda

expressions, we get

gcd = \a.db.IF (= 0 b) a (gcd b (REM a b))

This is cheatingslightly, because we should have dealt with the recursivecall

to gcd using Y, which would give

ged = Y (Aged.Aa.Ab.IF (= 0 b) a (gcd b (REM b)))

However, the workis laborious enough without doingthis, so we shall use

the previous version. Abstractingfirst b and then a gives

gcd = a.Ab.IF (= 0 b) a (gcd b (REM a b))

=> ya.S (C (B IF (= 0)) a) (S ged (REM a))
=> §' S (C (B IF (= 0))) (B (S ged) REM)

Wecantest this by evaluating (gcd 35 7):

0)) 35) (B (S ged) REM 35)
0)) 35 7 (B (S ged) REM 35 7)

(= 0) 7 35 (B (S ged) REM 35 7)
0 7) 35 (B (S ged) REM 35 7)

FALSE 35 (B (S gcd) REM 35 7)
(S ged) REM 35 7

o
e

O
n
R
A
D
A
M

IF (= 0 (REM 35 7)) 7 (B (S ged) REM 7 (REM 35 7))
IF (= 0 0) 7 (B (S ged) REM 7 0)
IF TRUE 7 (B (S ged) REM 7 0)
7h

a
d
a
:

Combinator compilation and reduction is very simple but very laborious — a

task well suited to a computer!

16.3 Director Strings

It seemsat first that combinator compilation totally destroys the structure of
the original expression, leaving a tangle of Ss and Ks, butthis is not the case.
Gaininginsightinto the structure of a combinator expressionwill lead us toa
moreefficient implementation.
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16.3.1 The Basic Idea

Supposeweare abstracting a variable x; from an application (p q) where pand
q are complicated expressions, and suppose it compiles to (S 'p ‘q). (Recall
that 'p denotes the result of abstracting x; from p, and similarly 'g.) The
syntax trees of (p q) and (S ‘p ‘g)are

@ @
/\ /%
p q @ q

oN
Ss \p

Wecould, however, regard the S as an annotation of the expression ('p ‘q),
and draw it thus:

PY (S 1 'g)
. p
'p \a

This annotated syntax tree is intended to be no more than an alternative
representation for(S ‘p ‘q). Thesannotates the application node, saying‘this
node is a function expecting one argument, which should be sent into both
branches’. .

Supposethatwe now abstracted anothervariable xefrom (S 'p ‘g), and got
(C' S 7p ‘q); thatis, x2 is used in p but not in q. Then we could draw the
annotated syntax tree like this:

@cs
2,/ Na (c’ S *p ‘q)

The cs annotationsays ‘this node is a function of two arguments,the first of
which should be sentto the left branch, and the second ofwhich should be sent
to both branches’. These annotationsarecalled directorstrings, and consist of
a string of directors which direct the flow of successive arguments into the
graph. In addition to the s and ¢ directors we also need a b director which
directs the argumentto the right branch only.

Directorstringswere developedbyKennawayandSleep[1982aand 1982b],
who used the moremnemonicsymbols ‘*’, ‘\’ and ‘/’ for s, band crespectively.
The advantageofthis representationis that it obviously preserves the original
structure ofthe expression, andyet has a simple equivalent combinator form.
In particular,

Pov’ isequivalentto (V’ (W’ (...(Y’ Z)...)) p q)

Pp oq

where v, w... are chosen from {is, b, c}, and V’, W’...Z are the corre-
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sponding combinators. To give a concrete example, consider the lambda
abstraction

AX.AY. + (+ X y) x

This has the syntax tree

The annotated syntax tree, together with its associated combinator represen-
tation, lookslike this:

@ sc S' Cri

aa hos
Ls \

@ cb C' Bel

de Ka
JN

Annotated syntax tree Combinator representation

The combinator representation is diagrammatic, and when flattened out
lookslike this:

sce Bt+C BB+) )!

The ts in the left-hand tree indicate leaf nodes (they are bona fide |
combinators). Some of these Is would not be present in the compiled
combinator form because of 7-optimization, so if we convert the annotated
syntax tree to combinators we would geta slightly suboptimal combinator
expression. Notice that not all nodes have the same numberof annotations;
the bottom nodehas only one becauseonly x gets senttoit.
The simple equivalence between director strings and combinators

mentioned above gives a more systematic basis for the choice of combinators
we madein thefirst part of this chapter.
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16.3.2 Minor Refinements

Consider the lambda abstraction

Ax.Ay.+ y 1

This doesnotuse x atall, so we need a director which says ‘the argumentis not
neededin either branch’. Wecall this directorj. It can only occurat the root of
a lambda abstraction, becausein the rest of the expression the arguments are
only sent where they are needed. Thus the lambdaabstractionwould have the
annotatedtree |

ke
LN
@b 1

@

b

f\

Correspondingto the director are the J and J’ combinators

Jfgx g
J’ kfgx f

— f
—> kfg

Another awkward problem is what to do when given a lambda abstraction
such as

Ax. Ay.3

Here the bodyis not even an application, sowe cannot annotateit. In this case
we use the old K combinatorfor the ay abstraction, transformingit to

Ax. K 3

Now the bodyis an application, so the annotation for x can go as before.

16.3.3 Director Strings as Combinators

Wenowturn ourattention to the implementation ofdirectorstrings.
So far we have two representations for programs, namely SK combinator

expressions, and syntax trees annotated with directors. To each director there
corresponds exactly one combinator in the combinator representation, each
of which takes a whole node. Since there are only four directors (j, s, b and
c), we could encodeeach directorin two bits. Encodinga string ofdirectors as
a bit-string would give a dramatic decrease in program size over the
combinator representation, since we would need only two bits instead of a
whole nodeto store each combinator. This would make the program execute
faster, too, since there would be less ofit to fetch from store.
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This suggests a third representation of the program:

Represent we »-¥Z as Av

p q q

\
/

Dvw...yz

where Dw. . .yzis one ofa family ofcombinators with the following reduction
rules:

Divww...yz pqx — Dw...yzpq
Dsvw...yzp qx — Dw...yz (p x) q x)
Dbvw...yzpqx — Dw...yz p (q x)
Dov«Wz Ba x > Dww.-.¥Z XG

~~

This new representation, together with the D reductionrules,is a perfectly
executable combinator program, except that it is represented much more
compactly thantheoriginal. The onlycostis a slight increase in the complexity
of the reduction machine. An escape mechanism is also required to deal with
the case where there are too many directors in the string to fit in the D
combinator family. Stoye [1985] describes an implementation of director
strings on SKIM.

16.4 The Size of SK CombinatorTransiations

Oneobviousfeature ofthe examples givenin this chapteris thatthe translated
program is often muchlarger than in its lambda form;in fact Kennaway[1982]
showsthatthe size of the combinator expression can be proportional to the
square of the size of the lambda expression in the worst case. To become
convinced of this, the reader is encouraged to construct the director string
form of the lambda abstraction

AMn. . -AX2.AXq. (Ki Xo... Xn)

A closely related observation is that the SK combinator compiler repeatedly
re-scans the code it has already partially compiled. This can be seen in the
compilation rule

C—[ xx.e J=Ax[ Cle] ]

in Figure 16.5.

Burton [1982] describes a method for balancing the expressiontree, at the
expenseof introducing extra redexes; this gives a complexity of 0(NlogN),



Section 16.5 Comparison with supercombinators 279
 

but with a larger constant. Joy et al. [1985] summarize these and other related
results.
By way of comparison, Hughes [1984] shows that the supercombinator

technique has a worst case complexity ofO(NlogN), but is typically linear.
Toconclude,for a lambda expression ofsize N, SKcombinator compilation

time and codesize is worst case 0(N’) and typically O(NlogN), while super-
combinator compilation time and code size is worst case O(NlogN) and
typically linear.

16.5 Comparison with Supercombinators

SK combinators represent one extreme of graph reduction techniques.
Complex reductions are reduced to the composition of many fast, simple
reductions, so the ‘grain’ of execution steps is about as small as it can
conceivably be. This is a mixed blessing, and we attempt a summary ofthe
pros and cons atthis point.

16.5.1 In Favor of SK Combinators

(i) A small, fixed set of combinators can be implemented directly in
hardware, thus bypassing a level of interpretation. This is analogous to
moving from machine code to microcode.

(ii) The instantiation of lambda bodies is done lazily, thus avoiding
instantiating sections of graph which are subsequently to be discarded.

(iii) The techniqueis fully lazy.
(iv) The reduction machineis relatively simple to implement.

16.5.2 Against SK Combinators

(i) The ‘grain’ of execution steps is too small. Since the arguments to a
function are pushed down into its body one level at a time, many
intermediate application nodes are created and almost immediately
taken apart again. This means that an SK combinator reducer consumes
a lot of transient storage, which increases the load on the garbage

collector.
(ii) The translation to combinators is expensive compared with super-

combinator techniques, and the resulting program is larger (see Section
16.4).

(ii) With SK combinators, the larger program increases the number of
storage accesses required, as does the creation and subsequent examina-
tion of intermediate application nodes.

(iv) Any scheme for improving performance using cacheing must operate
with a unit of cacheing of a single node. A supercombinator machine can
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cache whole supercombinator bodies, another consequence of the

coarsergrain of supercombinators.
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STORAGE MANAGEMENT AND
GARBAGE COLLECTION

As mentioned in Chapter10, agraph reducer requires the support ofa storage

managementsystem whichallocates cells on request, and recovers garbage

cells for subsequent re-use. Storage managementand garbagecollectionis a

subject on whichthereis a large literature. Cohen [1981] gives an excellent

survey with a comprehensivelist of references.

The purposeofthis chapteris to sketch the standardalgorithms, to give an

assessment of their characteristics, and to make a brief survey of more

recently developed techniques.

17.1 Criteria for Assessing a Storage Manager

Whenconsidering a garbage collection techniqueit is helpful to keep in mind

the criteria against which it should be assessed. The main onesare:

(i) Whatare its overheads (in space and time)? All garbage collection

systems consume resources, both in the form of per-cell extra storage

requirements and in the CPUcycles taken to perform the collection.
(ii) Does it support compaction? If a storage manager repeatedly allocates,

recovers and re-allocates variable-sized cells, the free storage tends to

becomefragmented into many small separate blocks. This can mean that
a cell cannot be allocated because no free block is large enough, even
thoughthetotal free storage is adequate. This phenomenonis known as
storage fragmentation [Knuth, 1976], and it can only be avoided by
periodically compacting all the cells together at one end of the address
Space, so as to produce a large contiguous free area from which to
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allocate new cells. Compaction also has a beneficial effect on virtual
memory performance.

(iii) How well does it supporta sparsely usedheap and virtual memory? There
has been muchrecentinterest in very large persistent heaps. The idea of

persistence is that a functional operating system, for example, could
incorporate a filing system as part of its data structures in a very large
heap, rather than treating thefiling system as something external to the

program (an ideafirst implemented in Multics). In such a system, only a
small fraction of the heap will be in active use at any time, and a virtual

memory system is essential to cache the active portion in fast memory.

(iv) Can it operate on a parallel machine, or in real time? One of the
attractions of functional languages is that they offer a natural way to

exploit the power of parallel architectures (see Chapter 24), which
requires storage managers that are capable of running on such a dis-

tributed system.

Some garbage collection techniques require the computation to be
stopped while garbage collection takes place, leadingto an ‘embarrassing
pause’ during which the system appears to do nothing. This is unaccept-
able in real-time applications, and garbage collectors have been

proposed which work in parallel with the useful computation. Such

parallel collectors may also be suitable for parallel architectures.

(v) What is the effect of heap occupancy? The performance of some
algorithms drops sharply when the heapgets full.

(vi) Can it recover cyclic structures?

These issuesare all discussed by Cohen.

17.2 A Sketch of the Standard Techniques

There are several well-known garbage collection techniques. Among these
are mark-scan, copying and reference-counting garbage collectors. In this

section wewill give a brief sketch of the algorithms and their characteristics.
Cohen[1981] is the reference where no reference is given explicitly.

Mark-scan algorithms operate in two phases.First, all accessible cells are

marked by traversing the entire accessible structure. Then a linear scan
through memory recovers all unmarkedcells.
Copying algorithms work by copying the entire accessible structure from

one portion of the address space (from-space) into another (to-space),
therebyleavingall the garbage behind in from-space. Cells being copied into
to-space are placed contiguously, beginning at one end of the space, and
hence when copying is complete there is a contiguous area in to-space from

which newcells can be allocated. When to-space fills up with new cells, the
spaces areflipped (i.e. to-space becomes from-space and vice versa) and the
process is repeated. The algorithmissurprisingly simple, andiswell described

in Baker’s classic paper [1978].



Section 17.2 A sketch ofthe standard techniques 283
 

Reference-counting relies on keeping an extra field, called the reference-
count, in each cell. The reference-countfield holds the numberof references

to the cell (i.e. the numberofpointers to the cell). This countis incremented
whenevera pointer is duplicated, and decremented whenever a pointeris
discarded. Whenthe reference-count drops to zero the cell must be garbage,
since no othercells pointtoit.

Against ourcriteria, the techniques have the following characteristics.

(i) Overheads. A mark-scan collector requires a mark bit in each cell to
indicate that the cell has been visited. In addition it appears atfirst that
the mark phase will require an auxiliary stack to guide its recursive
tree-walk. Furthermore, the only bound onthesize of this stack is the
numberofcells in the heap, though this bound would only be attained in
pathological cases. This would be a heavy price to pay, but fortunately
the Deutsch-Schorr—Waite pointer-reversing algorithm [Schorr and
Waite, 1967] reduces the space overheadsofthe mark phase algorithm to
a single bit per cell (in addition to the mark bit). This algorithm was
explainedin a different context in Section 11.6.1.

Copying collectors appear to have a 100% space overhead, but in a
virtual memory system the semi-spacethatis not in use will be paged out,
so there is very little overhead in fast memory. Even during copying,
activity only takes place at twosites in the target semi-space (to-space),
so only two pagesof to-space need to be paged in.

Reference-counting collectors require a reference-countfield in every

cell. In principle this field should be as wide as an address,since every cell
in the heap could point to a single cell, but in practice reference-counts
are almost always small. Hybrid systems have therefore been proposed,
which have a limited-width reference-count field. When there are too
manyreferences to a cell and the reference-countfield overflowsit is set
to a special value meaning‘infinity’, which is never decremented(so the
cell is then irrecoverable). Cells irrecoverable by reference-counting are
subsequently recovered by an occasional invocation of a mark-scan or
copyingcollector.

Reference-counting' collectors are also somewhatless easy to use.

Great care must be taken in the implementation never to duplicate a
reference without incrementing the reference-count, though thisis not,

of course, a criticism of the adequacy of the algorithm itself. More
seriously, many extra storage accesses are required to update the
reference-counts.

(ii) Compaction. Compaction can be combined with the scanning phase of a
mark-scan collector. This is usually done using sliding compaction,in
which cells are slid down to one end of the address space, maintaining
their address order. This meansthat cells which point to cach otherwill
not normally end up physically adjacent.
Acopying collectoris inherently compacting, since the cells are copied



Chapter 17 Storage Management and Garbage Collection
 

(iii)

(iv)

(v)

(iv)

into a contiguous area in to-space. Furthermore,it is fairly easy to
arrangethat cells that point to one another get copied into physically
adjacent locations, which significantly improves locality and gives
opportunities for extra-compact list representations (cdr-coding)
[Baker, 1978]. This process is sometimes called linearizing since linked
lists get copied into a contiguous linear area of store, and it further
reduces the storage overheads of a copying collector. The improvement

in locality may also give improved paging performance in a virtual
memory system.

Reference-counting does not inherently perform any compaction, but
there is no reason why a compactor could not run concurrently with a
reference-counting garbage collector.
Sparsely used heap/virtual memory. Mark-scan and copying collectors

visit all accessible cells, not just those in immediate use. In contrast,

reference-counting collectors visit only cells in current use. For heaps in
which only a small fraction of the accessible data is in active use, this
represents a strong advantage for reference-counting.
Without compaction the accessible cells get thinly spread through the

address space, giving appalling paging behavior. Thelocality-improving
possibilities of copying collectors (or reference-counting plus a copying
compactor), mentioned above, thus make them preferable to sliding
compaction.
Parallel machines andreal-time performance. Since garbage collection
began, researchers havetried to find ways to run garbagecollection in
parallel with useful computation, in an endeavor to eliminate the

‘embarrassing pause’. For mark-scan collectors this may be achieved by
arranging that garbage collection is performed by a process (or
processor) in parallel with useful computation. The algorithm is, of
course, more complicated [Steele, 1975; Kung and Wong, 1977; Dijkstra

etal., 1978].
For copying collectors, an ingenious scheme allows the copying

process to take place incrementally, a fixed small amount being
performed whenevera cell is allocated [Baker, 1978]. This scheme

increases the overheads of the useful computation somewhat, in both
time and space, andfails completely if to-space fills up before copyingis
completed.

Reference-counting collectors are inherently distributed in time, and
hence need no modification for real-time performance.

Effect of heap occupancy. The performance of mark-scan and copying

collectors degrades sharply as the heapgets full, since all the accessible
data have to be visited in order to recover the few unused cells.
Reference-counting, on the other hand,is unaffected by heap occupancy.
Cyclic structures. Mark-scan and copying collectors have no problem
with cyclic structures, but reference-counting cannot recover them. The
reasonis that whena cell refers to itself it may have a non-zero reference-



Section 17.3 Developments in reference-counting 285
 

count even thoughit is not accessible from anywhereelse (and henceis
garbage). Recent developments in this area are discussed below.

17.3 Developments in Reference-counting

The overheads of reference-counting, and its inability to recover cyclic
structures, have often led to its dismissal as a garbage collection technique,
except in specialized contexts. However, recent work has made progress
towardsalleviating these problems, and the inherently real-time and distri-
buted nature of reference-counting is becoming increasingly attractive as
parallel architectures gain in importance.

17.3.1 Reference-counting Garbage Collection of Cyclic Structures

Hughes [1982] has suggested an extension to the conventional reference-
counting algorithm that would allowit to reclaim circular structures, based on
previous work by Bobrow [1980].
The key idea is simple and elegant. We regard the accessible data in the

heap as a directed graph, and divide this graph into its strongly connected
components, In this context we recall that

(i) a graphis strongly connectedif, for any two nodes A and B,thereis a path
from A to B, andvice versa;

(ii) a strongly connected component of a graph is a maximal strongly
connected subgraph.

Now,it is clear that

(i) if one node of a strongly connected componentis accessible, thenall its
nodesare (andvice versa);

(ii) if we coalesce all the nodes in each strongly connected component, then
the resulting derivedgraph is acyclic.

But now,since the derived graphis acyclic, it is amenable to conventional
reference-counting garbage collection; and when a nodeofthe derived graph
becomes unreferenced,all the nodes ofthe corresponding strongly connected
component have become unreferenced.

Hughestherefore suggests adding a second reference-countfield to each
node, which either contains the shared reference-count for the strongly
connected componentof which the nodeis a part, or is used to point at the

node which does hold the shared reference-count. He gives algorithms for
incrementally maintaining the information about which components are
strongly connected, and showsthat they are rather cheap, except where a
strongly connected componentis broken up.

It appears that this technique can successfully alleviate the ‘circular data
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structure problem’, and thus allow exploitation of the other desirable
characteristics of reference-counting. Aertes [1981] describes an essentially
identical system. Brownbridge [1985] describes a different reference-
counting technique, also claimed to be capable of recovering circular
structures.

Interestingly, all of these techniques will only work for implementations
free of side-effects. In other words, they will work for implementations of
functional languages, but not for Lisp (at least, not if the program uses
RPLACs). Perhapsthis is a new pointin favor of functional languages!

17.3.2 One-bit Reference-counts

The logical extreme of the limited width reference-count idea is a one-bit

reference-countfield. This is not a new idea [Wise and Friedman, 1977].
Recently, however, a numberofresearchers noticed that instead of storing

a one-bit reference-countin the cell it would be possible to store the reference-
countin thepointer. A singlebit in each pointeridentifies the pointer as being
a unique reference or a shared reference. Cells are created with a unique
reference to them; when a unique reference is duplicated, both copies become
shared references. When a unique reference is discarded the cell to which it
points can be immediately re-used; when a shared reference is discarded nc
recovery is possible. Like all elegant ideas it is marvellously obvious ir
retrospect.

Theprincipal advantage ofstoring the reference-countin the pointeris tha
it completely eliminates the extra store accesses required to increment anc
decrement reference-counts.
The benefits of even such a narrow reference-count are dramatic. Stoye e

al. [1984] report that up to 70% ofall garbage cells are recovered immediatel
they become unused in the SKIMSK combinatorreduction machine. Furthe
performance improvementis gained in the SKIM implementation becaus:
reclaimed cells are often re-used immediately, rather than being attached t:
the free list.

17.3.3 Hardware Support for Reference-counting

Much of the time overhead of reference-counting would be alleviated
hardware support were available. Wise [1985] describes hardware for
‘smart’ memory module, capableofdetectingwhen onepointer is overwritte
with another. When this occurs, the module sends a ‘decrement’ message t
the module which holds the cell pointed to by the old pointer, and a
‘increment’ message to the module which holdsthe cell pointed to by the ne’
pointer.



Section 17.5 Exploiting celllifetimes 287
 

17.4 Shorting out Indirection Nodes

In. Chapter 12 we discussed the introduction of indirection nodes to preserve
sharing when updating the root of a redex with its result. This is the only
purposeof indirection nodes, andin all other respects they are a burden on
the implementation, since they take up storage, and have to be ‘jumped over’
when traversing the graph.

It turns out that a rather simple modification to the garbage collector can
‘short out’all the indirection nodesin a graph,so they are no longer required.
Consider a mark-scan collector. Whenit reaches an indirection node during
the mark phase, it does not mark the indirection node. Instead it overwrites
the pointer to the indirection node with the contents of the indirection,
effectively shorting it out. Thus:

   

 

           
>| IND ———————_>

   

becomes
   

IND ————_—_—_»>
              

 A

Since all pointers to indirection nodeswill be updated in this wayit follows
that the indirection nodes themselves will be unreferenced (and unmarked),
so they can be collected with the rest of the garbage. Not only does this save
store, but it also saves time when following the pointers that have been
updated. A very similar technique will work for a copying collector.

17.5 Exploiting Cell Lifetimes

Another approach recently suggested by Lieberman and Hewitt [1983] is
based on the observation that

The longera cell has lived,
the longerit is likely to live.

Consider, for example, a heap which includesa filing system. Manyfiles will
be unused for long periods, while data structures that are currently being
processed will have relatively short lifetimes. A conventional copying
collector will copy the entire filing system each time it runs — a very wasteful

activity, since it is unlikely to recover any space from the inactive majority of
the filing system.

Hewitt and Lieberman therefore suggest dividing the address space into
regions of increasing age. Most pointers point backwards in time (thatis, if
they cross region boundaries, they will mostly point from youngerregions to
older ones). Where pointers point from an older region into a younger one
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(only update operations can cause this), they are constrainedtogo via an entry
table associated with the younger region.

_ Now the youngest region can be garbage-collected independently, using
Baker’s algorithm, so long as we preserveall cells referenced from its entry

table. In general, any region can be garbage-collected without touching any

older information. So all we have to do is to garbage-collect young regions
(where garbagecollection will be fruitful) more often than older ones (where
it will be less fruitful, but eventually necessary).

17.6 Avoiding Garbage Collection

Another approachto garbagecollectionis to try to avoid it altogether. Wadler
[1984] suggests a technique for compiling a certain class offunctional program
into afinite state machinewith a fixed numberofregisters and no heap. This, in
effect, performs memory allocation in advance (rather as a conventional
Pascal program has no problem with memory allocation). He calls his
compiler the listless transformer.
The functional programs to which this technique is applicable are, not

surprisingly, those that can be evaluated using boundedinternal storage. This

includes, for example, functions that find the length of a list, add up a list,

concatenate or merge twolists, or divide list into two lists of odd and even

elements. It excludes, however, functions that sort a list, append a list to

itself, or work on tree-shaped data.
Clearly the applicability of the method is limited, but where appropriate it

is extremely effective, since the finite state machine can be madevery fast.

Wadlerhas a working implementation ofhis listless transformer, written in

KRC.

17.7 Garbage Collection in Distributed Systems

Efforts to develop garbage collectors which work in parallel with useful
computation have gained new impetus with the advent of parallel archi-
tectures, where the problem generalizes to many computation and garbage

collection processes.
Most work has been addressed to architectures with a single large address

space (closely coupled systems), for example Hudak [1983a and 1983b] and
Ben-Ari [1984].

Otherefforts have been directed towards loosely coupled systems in which

the heap is distributed between a number of processing elements, and
accessing a cell held by another processing element is recognized as a
relatively expensive operation. Examples include Mohamed-Ali [1984] and
Hughes[1985].
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THE G-MACHINE

Theheart of any graph reduceris the implementationoffunction application.

In Chapter 12 we saw that a lambdaabstraction can be applied to an argument

by constructing an instance of the body of the abstraction with substitutions

made for occurrences of the formal parameter. Unfortunately, this involved
an inefficient traversal of the tree representing the body of the abstraction,

and the presence of free variables seemed to make a moreefficient imple-
mentation ratherdifficult.
With this in mind, we developed the supercombinator transformation in

Chapter 13, which yielded particularly simple lambda abstractions (the
supercombinators), which hadnofree variables. This simplified the process of
instantiating the body of such an abstraction, but at the (minor) price of
having to substitute for several variables at once. However, the principal
incentive for developing the supercombinatortransformation wasthe hopeof
compiling the body of a supercombinator to a fixed sequence of instructions
which, when executed, would construct an instance ofits body.

The payoff comesin this chapter,in which we will examine the G-machine,

an extremely fast implementation of graph reduction based on super-
combinator compilation. The G-machine was developed at the Chalmers
Institute of Technology, Géteborg, Sweden, by Johnsson and Augustsson.
This chapter and the subsequent three chapters draw heavily on the G-
machine papers [Johnsson, 1984; Augustsson, 1984]. Many of the ideas in

these chapters are theirs, and notall of them have appeared in the published
literature.
The developmentof the G-machineis presented informally, but it would be

an interesting exercise to give a formalproofofits correctness [Lester, 1985].

293
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18.1 Using an Intermediate Code

Once we have decided to compile supercombinator bodies to a sequence of
instructions we have to decide on the language in which the instructions

should be written. It would be possible to produce, say, VAX machine code
directly, but this approach suffers from two disadvantages. Firstly, we would
have to start all over again if we want to generate code for some other
machine,and, secondly, we would be in dangerofmixing up the issues of how

to compile supercombinators to a sequential code with issues of how best to

exploit particular features of the VAX.
This is not a new problem, and a commonsolution is to define an

intermediate code, which can be regardedas the machine codefor an abstract
sequential machine. Then the compilation process can besplit into two parts:
first generate the intermediate code, and then generate target code for a
particular machine from the intermediate code. Changing the code generator

to generate code for a different target machineis then relatively easy, and

improvements madein the compilation to intermediate code benefit all such
code generators. Examples of this approach include Pascal’s P-code [Clark,

1981], BCPL’s O-code [Richards, 1971] and Portable Standard Lisp’s
C-macros[Griss and Hearn, 1981].

18.1.1 G-code and the G-machine Compiler

For these reasons, the designers of the G-machine defined an intermediate
code called G-code, into which supercombinator bodies are compiled. The
compiler for the G-machine follows a sequence similarto that described in the
first two parts of this book. Inparticular:

(i) The source languageis a variant of ML with lazy evaluation semantics,
called Lazy ML (or LML).

(ii) Early phases of the compiler perform type-checking, compile pattern-
matching and do dependency analysis. At this stage the program has
been translated to the lambdacalculus (augmented withlet and letrec).

(ii) A lambda-lifter transforms the program to supercombinator form. The
full laziness optimization is not performed,buthis feature could easily be
added.

(iv) Now the supercombinators are compiled to G-code.
(v) Finally, machine code for the target machine is generated from the

G-code.

Figure 18.1 shows the structure of the G-machine compiler.
Ourdescription of the G-machine compilerfalls into three parts:

(i) a description of the compilation algorithm which translates the source
languageinto the intermediate code;

(ii) a description of the intermediate codeitself, giving a precise description
of whateachinstruction does;
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Source program
1
 

Compile to lambda expressions
   

1
Lambdacalculus plus let andletrec

t
 

 
Lambda-lifting

1
Set of supercombinatordefinitions

  

 

 
Compilation to G-code Chapters 18, 20, 21

  
1

G-code program Chapters 18, 19
1
 

 
Code generation Chapter 19

  
4

Target machine code   
Figure 18.1 Structure of the G-machine compiler

(iii) a description of the code generator.

Wewill discuss thefirst of these parts in this chapter andthelatter two in the
next chapter. First, however, we will mention somerelated work.

18.1.2 Other Fast Sequential Implementations of Lazy Languages

The implementationofPonder [Fairbairn, 1982], developed by Fairbairn and
Wray,is based on similar approach to the G-machine. The Ponder Abstract
Machine (PAM)is atleast as sophisticated as the G-machine, though they
were developed independently, and is described in Fairbairn’s thesis
[Fairbairn, 1985; Fairbairn and Wray, 1986]. An interesting developmentof
this work is a cross-compiler which compiles Ponder abstract machine
instructions into SK1M microcode [Elworthy, 1985].
A related approach, though one whichdiverges from graph reduction,is to

use a lexically scoped dialect of Lisp, such as Scheme[Steele and Sussman,
1978] or T [Rees and Adams, 1982], as an intermediate code. This takes
advantage of the immense amountofeffort which has been spenton building
fast Lisp implementations, andis the approach taken by Hudak [Hudak and
Kranz, 1984].
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A fast VAX implementation of Hope [Burstall et al., 1980] based on an
intermediate code called FP/M has recently been developed at Imperial
College [Field, 1985] (remember, however, that Hopeis a strict language).

18.2 An Example of G-machine Execution

Webegin with an example,to give the flavor of the G-machine. Consider the
Miranda program

 

 

from n =n: from (succ n)
succ nm = n+1

from (succ 0)    
It generates the infinite list [1,2,3,...,]. The functions from and succ are
supercombinators already, so the lambda-lifting is trivial, yielding

 

 

$from n = CONS n ($from ($succ n))
$succ n= +n 1
$Prog = $from ($succ 0)

$Prog    
The G-machine usesa stack, and execution begins with a pointerto the initial
graph ontop ofthe stack (Figure 18.2(a)). The spineis then unwound,exactly
as previously discussed in Section 11.6, without using pointer-reversal. The
difference comes when the spine has been completely unwound,so that there’
is a pointer to $from on the stack (see Figure 18.2(b)). By following this
pointer the machine extracts

(i) the numberof arguments expected by $from (one in this case);
(ii) the starting address for the code for $from.

First it checks that there are enough arguments on the stack for $from to
execute, and finds that there are. It then rearranges the top of the stack
slightly (see the transition from (b) to (c) in Figure 18.2) and then jumpsto the
code for $from. The rearrangementof the top of the stack puts a pointerto the
argument to $from on top of the stack. We will discuss the stack rearrange-
ment in more detail later. Notice also that the machine jumps to $from rather
than calling it. An instruction at the end of $from will complete evaluation of
the graph after the $from reduction is done.
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Control has now passed to $from. A G-machine compiler will produce the

following G-code for $from, which is executed in sequence:
 

G-codefor function $from

PUSH 0; Push n

PUSHGLOBAL $succ; Push function $succ

MKAP; Construct ($succ_n)

PUSHGLOBAL $from; Push function $from

MKAP; Construct ($from ($succ n))
PUSH 1; Push n

CONS; Construct (n : ($from ($succ n)))
UPDATE 2; Updatethe root of the redex
POP 1; Pop the parameter n
UNWIND; Initiate next reduction    

The execution of $from is shown step by step in Figure 18.2. We can make

several observations by examining the code given above:

(i) At the point ofentry, the parameternison top ofthe stack, and a pointer

to the root of the redex is immediately below it (Figure 18.2(c)).
(ii) Items which are not on top of the stack are addressed relativeto the top of

the stack, with the top element having offset zero. For example, the

PUSH 1 instruction takes the elementnext to top in the stack, and pushes
it onto the stack. Stack items cannot be addressedrelative to the base of
the stack because a reduction takesplace at the tip of the spine, with an

unknown numberofvertebrae above. (An alternative would have been
to assume a frame pointer, and relegate offset calculation to code
generation time.)

(iii) Someinstructions take their operands from the stack and puttheir result
on the stack in the mannerof a zero address machine. MKAP and CONS
are examples of such instructions.

Apart from the last three instructions, the sequence simply constructs an
instance of the body of $from (see Figure 18.2(1)).
The UPDATE instruction updates the root of the redex with a copyof the

root ofthe result (there is a slight inefficiency here, since the root ofthe result
is discarded almost immediately it is constructed; we will address this
efficiency question later). Notice that the G-machine updates the rootof the

redex using copying, rather than using indirection nodes (but this is not an
inherent property of the G-machine — see Section 19.4.4).

The POP 1 instruction removes the parameters (only one in this case) from

the stack, leaving a pointer to the reduced graph ontop of the stack. Finally
UNWIND examinesthe tag ofthe root nodeofthe reduced graph.Inthis case it
is a CONScell, so evaluation is complete.

This concludes our example,for now. (Note:in order to reduce the number



Section 18.3 The source languagefor the G-compiler 299
 

of execution steps, the example contains some optimizations which we will
not study until Chapter 20.)
Wewill now develop the G-machinein a stepwise fashion, beginning with a

very simple implementation, and developing the compilation algorithm and

the G-code together. First, however, we will specify the language from which
we are compiling.

18.3 The Source Languageforthe G-compiler

The compilation to G-code begins with a program consisting of a numberof
supercombinatordefinitions of the form

$S x1 X2...X, = E

where E is an expression containing no lambdas, but which may containlets
andletrecs. Figure 18.3 gives a reminderof the syntax of expressions. Notice

 

<E> ::= <constant>

(| <identifier>
| <E> <E>

| let <identifier> = <E> in <E>
! letrec <identifier> = <E>

<identifier> = <E>

in <E>    
Figure 18.3 BNF for syntax of expressions

that the left-hand side of a definition in a Jet or letrec can consist only of a

single variable; local function definitions have been removed by lambda-
lifting. For example,

letfx=+x1

in E

cannot occur. Notice also that we allow only one definition in a Jet. Multiple
definitions can be handled bynestedlets, and the restriction slightly simplifies
the compiler.

It is worth having a formal description of the syntax, because our compiler
will need to contain a case for each construct. Referring to the syntax enables
us to confirm that all cases havebeen covered.
To save repetitive work in this chapter we will use a stripped-downset of

built-in functions and constants, shown in Figure 18.4. The stripped-downset
has been chosentoillustrateall the features of the compiler. The operators in
the right-hand column behaveexactly like those in the left-hand column.
Assuming that we implementlists with structure tag 1 for NIL and 2 for
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Stripped-downset Others which behavesimilarly

integer constants boolean, character constants

NEG (unary negation) NOT

+ — *, /, REM
<,s, =, 2, >

IF CASE-n

FATBAR

CONS PACK-SUM-d-r, PACK-PRODUCT-r

HEAD TAIL, SEL-r-i, SEL-SUM-r-i   
Figure 18.4 Built-in functions and constants

CONS, we use CONS, HEAD and TAIL as abbreviations for PACK-SUM-2-2,

SEL-SUM-2-1 and SEL-SUM-2-2 respectively. These abbreviations are easier
to remember,andare used in the G-machine papers.
We do not treat UNPACK,since it is eliminated by the transformation

described in Chapter6.
Wewill postpone a treatmentof the FATBAR function until Chapter 20.

18.4 Compilation to G-code

Forthe rest of this chapter we will discuss the compilation ofsupercombinator
definitions to G-code,leaving the code generation for the next chapter.
The compilation of a program to G-code andits execution by the G-

machine are purely optimizations to the simpler template-instantiation
implementation. We begin with the simplest possible G-machine, where the
connection with template-instantiation is very direct. Later on, in Chapters20

and 21, we will develop a numberofoptimizations which considerably speed
up the operation of the machine.
The G-code compilation algorithm behaveslike this:
  

    

$F ...=...

$G...=... G-code A G-code
wee -—> compilation —

|

program
$Z....=...

$Prog   
The compilation algorithm takes a set of supercombinator definitions,
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together with a distinguished one ($Prog), and produces a G-code program.
The G-code program will consist of the following parts:

(i) A segmentof initialization code, which will perform any run-time
initialization necessary.

(ii) A segment of G-code which evaluates the distinguished super-
combinator $Prog and prints its value. This will probably follow
immediately after(i).

(iti) A segment of G-code corresponding to each supercombinatordefinition.
Eachofthese will be identified by an initial label.

(iv) Labelled segments of G-code corresponding to each built-in function
(such as + or CONS). This constitutes the run-time library,sinceit is the
sameforall programs.

The code segments for(i) and(ii) can befairly simple. All we need for(i) isa
G-code instruction BEGIN which labels the beginning of the program and
initializes anything necessary. Then to evaluate $Prog wewillfirst push it onto
the stack (using a G-code instruction PUSHGLOBAL), then evaluate it (using
the EVALinstruction) and thenprintit (using the PRINT instruction). Hereis a
code sequencethat could be generatedtoinitialize the system and print $Prog:

BEGIN; Beginning of program

PUSHGLOBAL$Prog; Push $Prog onto stack
EVAL, Evaluateit
PRINT; Print the result

END Endofprogram

Wehavefelt free to invent G-code instructionsoutofthin air to perform the
steps of the program. Wewill continueto dothis, andwill wait until the next
chapter before giving them a more precise meaning. The EVAL instructionis
discussed in Section 18.8.1.

Wenowturn ourattentionto (iii), compiling code for supercombinators,
leaving (iv) for Section 18.8.

18.5 Compiling a SupercombinatorDefinition

We maydepict the compilation of a supercombinatordefinition likethis:
  

$F Xi X2 = E OO G-code

F for $F   
   

Wecan regard the compiler as a function F, which takes a supercombinator
definition as its argument,and returns the compiled G-codeasitsresult. Using
the {[ J] notation:

FIL $F x1 x2 = E 9 = ...G-codefor $F...
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Wecall the function F a compilation scheme, and we will use a number of
other compilation schemesasauxiliary functions to F. Usingthis notation will
allow us to express quite subtle compilation techniques in a compact and
elegant way.

Nowwewill ‘turn up the magnification’still more, and consider what the
G-code for $F might look like. Before we can do this we mustestablish the
context in which the code for $F will execute, and in particular the
configuration of the stack which $F expects.

18.5.1 Stacks and Contexts

Suppose the G-machine was evaluating the expression ($F p q r s), and $F
was a supercombinatorof two arguments. After the spine of the graph has
been unwound,the stack would looklike this:
 

Stack base

@

/\
@ 8

é
/ Ng
@

<’s

 

  Stack top
 

(In all the pictures the stack grows downwards.) This is not the most
convenient configuration during execution of $F, because in order to access
the arguments p and it needs to do anindirect access via the vertebrae. The
solutionis to rearrange the stack after unwinding is complete, and before the
supercombinatoris executed, so that the elements on the stack point directly
to the arguments, thus:

 

Stack base

 

  Stack top
 

The rest of the spineis still there, of course, but it has not been drawn.
Notice that we do retain a pointer to the root of the redex, because wewill



Section 18.5 Compiling a supercombinatordefinition 303
 

subsequently need to update it. Now the arguments p and q are conveniently
accessible. The supercombinator$F itself has been popped off, because this

stack rearrangementis actually carried out by a prelude to the target code for
$F.
 

Stack base

 

 

( Root of redex

Argn

Current
context Arguments

(d+1

items) Arg 1

Intermediate

\ values  Stack top

Figure 18.5 The stack during G-code execution

Wesee, therefore, that during the execution of the G-code for a super-

combinator, the stack looks like Figure 18.5. The section at the top of the
stack, including the pointer to the root of the current redex, the arguments

and the intermediate values, is called the current context. It always sits at the
top end of the stack, but there may be other stack elements betweenthe stack
base and the base of the current context. At the end of the execution of a
function, the root of the redex will be updated andall the items in the context
will be popped,leaving only the pointer to the root of the redex.
To summarize, here are two groundrules, which will hold throughout:

 

(1) When executionof (the code corresponding to) a supercombinator body
begins, the arguments are on top of the stack, and underneath them is a
pointerto the root of the redex.

(2) When execution of the supercombinator completes, only the pointer to
the reduced graph remains on the stack. The reduced graph is not
necessarily in WHNF, so the last instruction in the supercombinator
initiates the next reduction.

During compilation of a supercombinator the compiler needs to maintain a
model of what the stack lookslike. In particular, it needs to know where the
value of each variable is held, relative to the top of the stack. For all our
compilation functions this information will be held as:

(i) p, a function which takes an identifier and returns a numbergiving the
Offset of the corresponding argument from the base of the current
context, counting the bottom elementofthe context as having an offset of
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0. The pointer to the rootofthe current redex therefore has an offset of0,
and the last argumenthas an offset of 1 (see Figure 18.5).

(ii) d, the depth of the current context minus one.

From these we can calculate the offset of a variable, x, from the top of the
stack as(d — p x), counting the top elementofthe stack as having anoffset of
0.

(Note: the G-machine paper [Johnsson, 1984] uses ‘r’ instead of ‘p’ and ‘n’
instead of ‘d’. It also uses slightly different conventions for nandr(n = d+1
andr x = 1 + p x).)

For example, consider the context shown in Figure 18.6. The depth of the
context is 5, so d=4. The function p mapsthe variable x to 2. and y to 1, and we
write

p = [x=2, y=1]

Theoffset of the value of x from the top of the stack is

(d-px)=(4-2)=2
 

Stack base

 

Rootofredex

Atgy

context Arex
| Intermediate

values

Stack top    
Figure 18.6 An example context

18.5.2 The R Compilation Scheme

Wecan nowgive the complete definition of the compilation scheme F we
referred to above:

Fil f x1 x2... % = E JJ
= GLOBSTARTfn; REE E J) [xi=n, x2=n-1,...,xn=1] n

wherefstands for a supercombinator name. The ‘GLOBSTART f,n’ isa G-code
pseudo-instruction which labels the beginning of a function called f, which
takes n arguments. Then calls a function R to compile code for the body, E,

of the supercombinator, passingit the correct p and d (in that order).
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We must nowdescribe what R does. As wesaw in our example, the code for
a supercombinatorhasto do four things:

(i) construct an instance ofthe supercombinator body, using the parameters
on the stack;

(ii) update the root of the redex with a copy of the root of the result (note:
there are the usual complications if the body consists of a single variable,
which wedealwithlater);

(iii) remove the parameters from the stack;
(iv) initiate the next reduction.

This translates directly into a compilation schemefor R:

REE 9 p d = Cf E J] p d; UPDATE (d+1); POP d; UNWIND

We use another auxiliary function, C (for Construct Instance), which
producescodeto construct an instance ofE andput a pointerto it on the stack,
which constitutes step (i). The UPDATE instruction overwrites the root of the
redex (which is now at offset (d+1) from the top of the stack) with the newly
created instance, which is currently on top of the stack (step (ii)); UPDATE
then pops it from the stack. Thenthe POPinstruction pops the arguments(step
(iii)), and the UNWINDinstruction initiates the next reduction (step (iv)).
Figure 18.7 summarizes the F and R compilation schemes.
Warning: whileit will give the correct results, the code generated by R may

give bad performancefor projection functions, such as

fxyz=y

where the body of the function consists of a single variable. The reasons for
this were explained in Section 12.4. As given, the UPDATE instruction
generated by the R schemewill copy the root of the argumenty, withoutfirst
evaluating it. This risks duplicating the root of a redex, which would lose
laziness. Wewill fix this problem in the next version of R, at the beginning of
Chapter20.

All we haveleft to do is to describe the C compilation scheme.

 

F[[ SCDef }

generates code for a supercombinatordefinition SCDef.

FIL f x1 x2... X» = E 9 = GLOBSTART f n;
RE E F bun, xe=n—1,..., x»=1] 0

 

REE dpd

generates cade to apply a supercombinatortoits arguments.
Note: there are d arguments.

REE Tp d = Cll E 9p dG; UPDATE (d+1); POP d; UNWIND   
Figure 18.7 The R compilation scheme
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18.5.3 The C Compilation Scheme

The C compilation scheme compiles code to construct an instance of an
expression.It is a function with the following behavior:

(i) Arguments: the expression to be compiled, plus p and d, which specify
where the argumentsofthe supercombinatorare to be foundin the stack.

(ii) Result: a G-code sequence which, when executed, will construct an

instance of the expression, with pointers to the supercombinator
arguments substituted for occurrences of the corresponding formal
parameters, and leave a pointer to the instance on top of the stack.

To defineC fully, we must specify the result of the call

CL EI pd

for every possible expression E. The expression E can take a numberofforms
(see Figure 18.3), and we defineCby specifying it separately for each form of
E. The cases are described in the following sections.

18.5.3.1 Eis a constant
There are actually two cases to consider here. First, suppose E is an integer,i
(Or a boolean,or other built-in constant value). All we need do is to push a
pointer to the integer onto the stack (or the integer itself in an unboxed
implementation), an operation whichis carried out by the G-codeinstruction

PUSHINT i

We maywrite the compilation rulelike this:

CIL i I] p d = PUSHINT |

Secondly, suppose E is a supercombinatororbuilt-in function, called f. We
must push a pointer to the function onto the stack, using the G-code
instruction

PUSHGLOBAL f

Wewrite the rule in the same wayas before:

Cll f ]] p d = PUSHGLOBALf

18.5.3.2 Eis a variable

The next case to consideris that of a variable, x. The value of the variableis in

the stack, at offset (d — p x) from the top, and the G-codeinstruction

PUSH (d — p x)

will copy this item onto the top of the stack. Hence we maywrite the rule

Cll x ]] p d = PUSH (d — p x)

B
P
H
T
O
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18.5.3.3 E an application
If E is an application (E; E2), where E; and E2 are arbitrary expressions, then
the expression to be constructedis the application of E; to Eo. It is easy to do
this: first construct an instance of E2 (leavingapointer to the instance on top of
the stack), then construct an instance of E; (likewise), then make an
application cell from the top two items on the stack, and leave a pointerto the
application cell on top ofthe stack. Thiscan be achieved by the followingrule:

CIE E: Eo Hp d = Ci Ex Ip d; CE E: I p (+1); MKAP

Notice that the current context is one deeper during the second call toC, so we
passedit (d+1) instead ofd.
MKAP is an instruction which takes the top two items on the stack, pops

them, forms an application nodein the heap, and pushesa pointer to this node
onto the stack. If MKAP took its arguments in the other order, we could
construct first E; and then E2. This might seem to be a morelogical order, but
we will see later that it is more convenient to construct Ezfirst.

18.5.3.4 Eis a let-expression
Next, considerthe rule forlet-expressions

CIE fet x = Ex in Ep J pd

where x is a variable and E,, Ep are expressions (we consideronly the case of a
single definition). We recall that a let in a supercombinator bodyis just a way
ofdescribing a graph (with sharing) rather than tree. We can dealwith let ina
very straightforward way.

(i) First we construct an instance of E,, leaving a pointerto it on the stack.
(ii) Then we augmentp to saythatx is to be foundat offset (d+1) from the

base of the context (which is true, since it is on top ofthe stack).
(iii) Then we construct an instance of Ep, using the new values of p andd,

leaving a pointer to the instance on top of the stack.
(iv) Now a pointerto the instance of Ep is on top of the stack, and underneath

it is a pointer to the instance of E,. We no longer wantthe latter, so we
squeezeit out by sliding down the top elementof the stack on top ofit.

Figure 18.8 showsthe execution ofa let after these four stages.

In symbols:

Cf let x = E, in Ep pd
= Cf Ex i p d; Ci Ep Bt plx=d+1] (d+1); SLIDE 1

Remembering that p is a function taking a variable as its argument, the

notation ‘p[x=d+1] means ‘a function which behavesjustlikep except whenit
is applied to x, in which case it delivers the result (d+1)’. In other words,
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Before (i) Before (iii) LN

i aoe

=~ (fa\ x
Before(iv) After(iv) LN

Figure 18.8 Execution of a let

p[x=d+1] is just p augmented with information about where to find x.

Symbolically,

p[x=n] x =n

plx=n] y = py ifx#y

The ‘SLIDE 1’ instruction squeezes out one elementfrom the stack.
The job was fairly easy to do because we could access the graph constructed

by the let definition in just the same way as we access the parameters of a
supercombinator. This is another strong reason for performing the stack
rearrangementdescribed in Section 18.5.1.

 

 

 

 

       

18.5.3.5 Eis a letrec-expression
Finally, we consider the rule for

CI letrec D in Eb Tp d

where is a set of definitions and E, is an expression. Recall that a letrec ina

supercombinator body is just a description of a cyclic graph. The way to
construct such a graphis:

(i) First allocate some emptycells, one for each definition, putting pointers
to them on the stack. These empty cells are called holes.

(ii) Now augmentthe context p and d to say that the values of the variables
boundin the letrec can be foundin the stack locations just allocated.

(iii) Then for each definition body:

(a) construct an instance ofit, leaving a pointer to the instance on top of
the stack, and

(b) then update its corresponding hole with the instance (using the
UPDATE instruction; this also removes the pointer on top of the

stack).

During the instantiation process, occurrences of names boundin the

letrec will be replaced by pointers to the corresponding hole, becausewe
have augmentedthe contextin stage (ii).
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(iv) Nowinstantiate Ep, leaving a pointerto it on the stack.
(v) Lastly, squeeze out the pointers to the definition bodies. This is why the

SLIDE instruction has an argument, telling it how many elements to
squeeze out.

penn O —|——9")
i@ : /

After(iiia After(iii)b

WM—f) iy A
After(iv) /a\ After (v) A

Figure 18.9 Execution of letrec x = f x In E,

 

  

  

 

 

     
     

Figure 18.9 showsvarious stages in the execution of

Cf letrec x =f xin Ep J pd

In symbols, we write:

CI[ letrec D in Eb J pd
= Cletec[ D 9] p’ d': CE Ep 9] p’ d’; SLIDE (d’-d)
where

(o’, d') = XT D Tpd

This uses two new auxiliary functions Cletrec and Xr, which are defined as
follows.

Cletrec x1 = E:|| po d = ALLOC n;
X2 = Eo C  E: J ep d:; UPDATE n;

Xn

C J Es I) p d; UPDATE n-1;

it m 3

C IL EnBp Gd; UPDATE1;

CLetrec performsthe first two steps of the process. The ‘ALLOC n’ instruction
allocates n holes in the heap and pushespointers to them onto the stack. Then
the instances of the definition bodies are constructed and the UPDATE
instruction overwrites a hole with the root of the corresponding instance.

Mr] x1 = Er |} pd = (p| x=d+1 , dt+n )
Xo = Eo Xe=d+2

Xn En Xn=d+n
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Xr just computes the augmented p andthe new valueof d, returning them as a
pair (p’, d’). The [] bracket updates p to includeall the new information.

The final ‘SLIDE (d’—d)’ slides down the top element of the stack,

squeezing out the pointers to the E,
Warning: there will be a problem if a definition body consists of a single

variable name boundin the sameletrec; for example

letrec x =y

y CONS ty
in E

This gives a problem because UPDATE will try to update one hole with
another. However,the definition ofx will be removed atan earlier stage in the
compiler, by the optimization of Section 14.7.3, which replaces occurrences
of x by yin E.
 

CLE lpd

Constructs the graphfor an instance of E in a context given by p and d.
It leaves a pointerto the graph ontopofthe stack.

CLilipd = PUSHINT |
CL flpd = PUSHGLOBAL f

Cl x Jpd = PUSH (d — p x)
CEE: E2 ded = Cll Eo Jip d; CE E: 2p (d+1); MKAP
Ch let x-Ex nEJ pd =CEEx.]p¢

CE E 9) efx=d+1] (d+1); SLIDE 1
CI letrec D in E J pd = CLetrec[ D jj p’ d’; Cf E ]j p’ d’; SLIDE (d’—d)

where

(o’, d) = XE Died  
Figure 18.10 The Ccompilation scheme
 

CLetrec[ D i pd

Takes a mutually recursive set of definitions D, constructs an instance of
each body, andleaves the pointers to the instances on top of the stack.

CLetrec]] x1 = E; o d = ALLOC n;
%2 = Eo : Cf E: 3 p d; UPDATE n;
wee Cll Eo J p d UPDATE n-1;
Xn = En eee

CE En ] p & UPDATE 1;

Xf Dipd

Returns a pair (p’, d’) which gives the context augmented by the
definitions D.

Xela = Es p d = ( pp xi=d+174, d+n )

Xo = Eo |oe]

Xn = Eq Xn=d+n    
Figure 18.11 Auxiliary compilation schemes CLetrec and Xr
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18.5.3.6 Summary
Weare done! The C compilation scheme has been described in considerable
detail because the sameideas will be used again and again in what follows.It is
worth some study to ensure that you understand what is going on. Figures

18.10 and 18.11 summarize the Cscheme.

18.6 Supercombinators with Zero Arguments

The lambda-lifting algorithm given in earlier chapters may produce some
supercombinators with no arguments. The mostobvious exampleofthisis the
$Prog supercombinator.
Such supercombinators are simply constant expressions (sometimescalled

constantapplicativeforms or CAFs), since they have no parameters atall. The
presence of CAFs raises two issues, compilation and garbage collection,
which we nowdiscuss.

18.6.1 CompilingCAFs
How should we compile CAFs? There are two alternatives:

(i) Do not compile them at all. Instead keep them as pieces of graph. Since
they are not functions they will never be copied, so they can be shared

without further ado. This is a perfectly acceptable solution, but it does
mean that the compiled program is a mixture of target machine code and
graph.

(ii) Treat them as supercombinators with zero arguments and compile them
to G-code which will, when executed, construct an instance of their
graph. Since we wantto share this graph (and not make repeated copies
of it) the instance should overwrite the compiled code in some way.

This is easily achieved. Weallocate a single graph node, tagged as a
function, which holds a pointer to the compiled code. This node is shared
by anyone who uses the supercombinator. When the compiled code
executes, the current contextwill contain a pointer to that nodeas its only
element(since there are no arguments), so the nodewill be updated with
the result, and this update will be seen by anyoneelse sharing the node.
The F schemeis therefore quite adequate to compile the code for the
body.
The advantage of this is that the compiled program consists almost

entirely of target machine code, plus someindividual graph nodes, one
per supercombinator. In the Chalmers G-machine these nodes are
allocated space physically adjacent to the target machine code of the
supercombinator, outside the main heap. Such CAFnodes should not be
in read-only memory, however, since they must be updated after their
codeis executed.
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18.6.2 Garbage Collection of CAFs

Supercombinators which have one or more arguments need not be garbage-
collected atall, since they cannot grow in size. CAFs, on the other hand, can

growin size without bound. For example, consider the program:
 

 

$from n = CONS n ($from (+ n 1))
$ints = $from 1
$F x y = ...$ints...
$Prog = .. .$F...

$Prog   
$ints is the infinite list of integers, and we wouldlike to recover the spacethis
list occupies whenit is no longer needed. Unfortunately, we will be unable to
reclaim this space ifwe decide that all supercombinators should not be subject
to garbagecollection.

$ints can be recovered when there are no references to it, directly or
indirectly, from $Prog. However, $Prog mayrefer to $ints indirectly, by using
$F which uses $ints, so we cannotrecover $ints just because $Prog does not
referto it directly.
The only clean way aroundthis is to associate with each supercombinator

(of any numberofarguments,including zero) a list ofCAFs to whichit refers
directly or indirectly. Then, for mark-scan garbage collection, to mark a
supercombinatorofoneor more argumentswe simply markall the CAFsin its
associated CAF list. To mark an unreducedCAFwe markitsCAF list, whilea

reduced CAFis indistinguishable from any other heap structure and is
marked as usual.
Another way to understand this is to see that in a template-instantiating

implementation, the template for $F wouldrefer to that for $ints. Hence, $ints

would be reached by the mark phase of garbagecollection during the normal
marking traversal of $F. In a compiled implementation, however, the
reference to $ints is buried in the code for $F, and the CAF list for $F makes

this dependencysufficiently explicit for the garbage collector to understandit.
This technique, or something similar, is essential to prevent ever-

expanding CAFsfromfilling up the machine.

18.7 Getting It all Together

Wecan nowputall the pieces together to describe how to compile a complete
program. Consider the program:
 

$F x = NEG x

$Prog = $F 3
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(Note: such a program will never be generated by the lambda-lifter due to
7-Optimization, but it serves here as the smallest feasible example program.)
This will compile to the following G-code:

 

BEGIN; Beginning of program
PUSHGLOBAL$Prog; Load $Prog
EVAL; PRINT; Evaluate andprintit

END;

GLOBSTART $F, 1; Beginning of $F (one argument)
PUSH 0; Push x

PUSHGLOBAL $NEG; Push $NEG
MKAP; Construct (6NEG x)

UPDATE 2; Update the root of the redex

POP 1; Pop the parameter
UNWIND; Continue evaluation

GLOBSTART $Prog, 0; Beginning of $Prog (no arguments)
PUSHINT 3; Push 3
PUSHGLOBAL $F; Push $F
MKAP; Construct ($F 3)

UPDATE 1; Update the $Prog
UNWIND; Continue evaluation   

Wehave now described a complete compilation scheme for compiling a
program into G-code.Itis far from optimal, aswe will soon see, but evenin its
present form it should work faster than a_template-instantiation
implementation.

The only mysterious feature of the above codeis the function $NEG.It is
one of the built-in functionsin the run-time system, and we now describe the
G-codeforthese functions.

18.8 The Built-in Functions

The namesof built-in functions will appear in our implementation in three
distinct ways. For example, CONScan appearin the following ways:

(i) As a (built-in) function in the supercombinator program. For example

$S x y = CONS y x

(ii) As a G-code instruction, which takes the top two elements onthestack,
forms a CONScell from them,andputs a pointerto the result on top of
the stack (see Section 18.2).
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(iii) As a built-in run-time function. For example, at run-time the machine
may haveto evaluate a graphlike this

@

af S
/N\

SCONS x

Thespine will be unwoundandthe function $CONSwill be found at the
tip. Just as in the $from example (Section 18.2) the code for $CONSwillbe
entered to perform the reduction. This means that there should be a
G-code sequence for the $CONS function, and for all other built-in

functions.
It is for this reason that we prefix this form of CONS with a $. At

run-timeit appearsjust like any user-defined supercombinator,thatis as
a (boxed) G-code sequence. In the next few chapters, therefore, we will
not make any distinction between built-in functions and super-
combinators. Sometimeswewill call them globals; this is the origin ofthe
PUSHGLOBALinstruction.

No confusion between thefirst two cases should arise, because the meaning
should be clear from its context. Oneslight annoyanceis that now we have

Off CONS ]] p d = PUSHGLOBAL $CONS

which makes it look as ifO ‘sticks the $ on a global’, but this is contradicted by
the case of a supercombinator:

Ol $X 9 p d = PUSHGLOBAL $X

Wecontent ourselves with the general rule as given in theO scheme, namely

Of f HB ep d = PUSHGLOBALf

and rememberthat a $ is added to built-in functions. (This is, of course, a

purely notational point.)
Thethird case above raises the question of what the G-code sequences for

CONSandthe otherbuilt-in functions are, and we will develop them in this
section. The built-in functionswewill consider are those givenin the left-hand
columnofFigure 18.4; those in the right-hand column are analogous.Indoing
this we will also develop some new G-codeinstructions.

18.8.1 $NEG, $+, and the EVALInstruction

NEGateis an exampleofa function which has to evaluate its argument. Aswe
have seen before (Sections 11.4 and 12.2) this always seemsto require a new
mechanism for recursive argument evaluation, and the G-machineis no
exception. The new mechanism weintroduce is the G-codeinstruction EVAL,
whichevaluates the top item on the stack, leaving the evaluated object on the
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stack. With the aid of this instruction we can give the following sequence for

$NEG:

EVAL; Evaluate the argument
NEG; Negateit
UPDATE 1; Update the root of the redex
UNWIND: Continue

The codefor $+ is similar, complicated only by having to get the appropriate
parameteron top of the stack before calling EVAL:

PUSH 1; Get second argument

EVAL; Evaluateit
PUSH 1; Getfirst argument

EVAL; Evaluateit
' ADD; Add them
UPDATE 3; Update root of redex
POP 2; Pop parameters

UNWIND; Evaluation is complete

The EVALinstruction doesthe following:

(i) Examines the object on top of the stack. If it is a CONScell, an integer
(boolean, character), a supercombinator or a built-in function, EVAL
does nothing.

(ii) If it is an application cell, EVALcreates a new stack, pushesthetop item of
the old stack, saves the current program counter (which now points to the
instruction after the EVAL), and then executes the UNWINDinstruction.

After each reduction an UNWIND instruction is executed. If this UNWIND

discovers that the expression is in WHNF,it restores the old stack and jumps
to the saved return address.

As wesawin Section 11.6, we can build the new stack directly on top of the

old stack. Indeed they can overlap by one item,since the top elementof the
old stack is the same as the bottom elementofthe new stack. We need to save

two items on anotherstack, called the dump:

(i) the old stack depth, or (equivalently) the old stack pointer;
(ii) the old program counter.

The UNWINDinstructionat the end of the code for $NEG or $+ will always
discover that evaluation is complete, because we know that the result of a
negation or additionis an integer. It is wasteful, therefore, for UNWINDto test
the result for being in WHNF. Wecan encodethis information by using a new
instruction, RETURN, instead of UNWIND. RETURN assumes that the
expression being evaluated is now in WHNF,but otherwise behavesjustlike
UNWIND;thatis, it restores the old stack and jumps to the saved program
counter.
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The new code for $NEG would therefore be:

EVAL; Evaluate the argument

NEG; Negateit
UPDATE 1; Updatethe rootof the redex
RETURN; Evaluation is complete

18.8.2 $CONS

Whenthe code for $CONSis entered, the two objects to be CONSedare on top
of the stack, and below themis a pointer to the root of the redex. We can
therefore produce the following code sequence for $CONS:

CONS; Form the CONScell

UPDATE 1; Update the root of the redex
RETURN; Result guaranteed to be in WHNF

CONSis a G-codeinstruction which CONSes together the top two items on the
stack, pops them and pushesapointer to the CONS cell. The CONScell is then
copied over the root of the redex by UPDATE. The CONScell cannot be
applied to anything (or the type-checker would have complained), so the
expression being evaluated must now be in WHINF; we can thus use RETURN
instead of UNWIND.
The treatment of $PACK-SUM-d-r is similar, except that we need a new

G-code instruction PACKSUM d,r which constructs a structured data object

with structure tag d and r fields, whose values are found on the stack. CONS is
then equivalent to PACKSUM 2,2. $PACK-PRODUCT-r can be treated
similarly, using a new G-code instruction PACKPRODUCT r. If sum types and
product types are represented in the same way, then a single G-code

instruction would suffice.

18.8.3 $HEAD

$HEADis a function which evaluates its argument (to WHNF);it expects the
result to be a CONScell, from whichit can extract the head (thatis, the first

field). Then, for the reasons we discussed in Section 12.4, it must evaluate the

headofthe cell before overwriting the root of the redex with it. Failing to do
this final evaluation would result in the duplication of work.

Thecode for $HEADis:

EVAL; Evaluate to WHNF

HEAD; Take its head

EVAL; Evaluate the head
UPDATE 1; Update root of redex

UNWIND; Continue

Notice that we cannot use RETURNatthe end, even though the result of the
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HEAD must be in WHINF(since it has been EVALuated). Consider, for

example, the expression

(SHEAD E) 3

where E is some expression. Here, $HEAD evaluates E, takes its head,

evaluates it, updates the (SHEAD E) redex and then applies the result to 3.
Evaluation of the whole expression is not complete merely because the result
of the (SHEAD E) reduction is in WHNF.

$TAIL and $SEL-SUM-r-i are precisely analogous to $HEAD, except that we
need a new G-codeinstruction SELSUM r,i which selects the ith component of

a structured data object of sum type andofsize r. Similarly, $SEL-r-i (the
selector functions for product types) requires the introduction of a new
G-code instruction SELPRODUCT ,i. If sum and product types use the same

representation, then only one new G-codeinstruction is required.

18.8.4 $IF, and the JUMPInstruction

In order to generate code for $IF we need to introduce two jumpinstructions
(JUMPand JFALSE), and a label pseudo-instruction (LABEL).
The codefor$IFis:

PUSH0; Getfirst argument
EVAL; Evaluateit

JFALSE L1; JumptoL1if false
PUSH 1; Get second argument
JUMP L2;

LABEL L1; Pseudo-instruction; a label

PUSH2; Getthird argument

LABEL L2;

EVAL; Evaluate before overwriting
UPDATE 4; Overwrite root

POP 3; Pop arguments

UNWIND; Continue

(L1 and L2 are uniquelabels.)

The reason for the last EVAL instruction was mentioned in the previous
section, as was the reason for using UNWIND rather than RETURN.

. In order to implement $CASE-n we need an n-way jumpinstruction,

CASEJUMP L1,L2,...,Ln

which examinesthe structure tag of the object on top of the stack, and jumps
to one of n labels depending on its value. Apart from this, its treatment is
identical to $IF, so we will not mentionit any further.
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18.9 Summary

This chapter has presented the payoff for the hard workearlier in the book.
Wehave developed:

(i) a compilation algorithm which takes a supercombinator program and
compiles it into G-code;

(ii) G-code sequencesfor a representative range of built-in functions.

The next chapter completes the picture by giving a precise description of
G-code andadiscussion on how to implementit.
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Nineteen

G-CODE
Definition and Implementation

So far we have described a basic compilation algorithm from super-
combinators into G-code. The next step, code generation, is to compile the
G-code program into target machine code.
The basic ideais that to each G-codeinstruction there correspondsa simple

sequenceof target machine instructions, so that we can generate target code

for a G-code program simply by generating these sequences for each
instruction:

G-code Target machine code

PUSH 3 <Target code for PUSH 3>
UPDATE 4 <Target code for UPDATE 4>

Typically the output of the code generator would be a program in the
assembly code of the target machine, which would then be assembled,linked
with any run-time libraries, and run.

In order to perform code generation in this way we need to know:

(i) exactly what each G-codeinstruction is supposed to do;
(ii) how the various bits of the abstract G-machine are mapped onto the

target machine.

Wewill address these twoissues in order.

19.1 What the G-codeinstructions Do

The G-machineis a finite-state machine, with the following components:

(i) S, the stack.
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(ii) G, the graph.
(iii) C, the G-code sequence remaining to be executed.
(iv) D, the dump.This consists ofa stack ofpairs (S, C), where S is astack and

C is a code sequence.

Thusthe entire state of the G-machineis a 4-tuple <S, G, C, D>. Wewill
describe the operation of the G-machine by means ofstate transitions. First,
however, we need somenotation for each componentofthestate.

19.1.1 Notation

A stack whosetopitem is nis written n:S, where S is astack. An empty stackis
written[].

A code sequence whosefirst instructionis ! is written !:C, where C is a code

sequence. An empty code sequence is written[].
A dump whosetoppair is (S,C) is written (S,C):D, where D is a dump. An

empty dumpis written [].
Thepossible types of nodes in the graphare written like this:

INT i an integer.

CONS ni n2 aCONS node. °
AP nine an application node.

FUN k C a function (supercombinatoror built-in) of k arguments, with
code sequence C.

HOLE a node whichisto befilled in later. This is used for constructing
cyclic graphs.

The notation G[n=AP ni ne] stands for a graph in which node n is an

application of ni to n2 (nis just a namefor this node). The notation G[n=G n’‘]
stands for a graph in which node n has the same contents as node n’ (wewill
need this only to describe the UPDATE instruction).
The graphis a logical concept, implemented by the heap. A node in the

logical graph need not necessarily occupya cell in the physical heap. In the
case of CONS, AP, FUN and HOLEa logical nodewill indeed occupy a physical

cell, but an INT node(i.e. an integer) will occupya cell in a boxed implemen-
tation butwill not in an unboxed implementation (see Section 10.6).

19.1.2 State Transitions for the G-machine

Toillustrate theway in which wecanusestate transitions to describe theeffect

of instructions, consider the instruction PUSHINT i. We can write the
following transition:

<S, G, PUSHINT i:C, D> = <n:S, G[n=INT i], C, D>
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This saysthat when PUSHINTiis the first instruction, the G-machine makes a
transition (denoted by =>) to a new state in which

(i) a new node nis pushed ontothestack,
(ii) the graph is updated with the information that noden is INT i,
(iii) the code to be executedis everything after the PUSHINTi,
(iv) and the dumpis unchanged.

Notice that the namen, whichis introduced on the right-handside,is intended

to be a new and unique node name.
More complicated instructions can be described using pattern-matching.

EVALis an exampleofthis:

<n:S, G[n=AP ni naj, EVAL:C, D>
=> <n:[{], G[n=AP n; ne}, UNWIND:[]}, (S,C):D>

<n:S, G[n=FUN 0 C’], EVAL:C, D>

=> <n:[{j, Gin=FUN 0 C’}, C’:(], (S,C):D>

<n:S, G{n=INT fj, EVAL:C, D>
=> <n:S, G[n=INT fj, C, D>

and similarly for CONS and non-CAF FUNnodes.

The appropriate state transition for EVAL is selected depending on what
kind of nodeis found ontop ofthe stack (the node n):

(i) The first equation describes what EVAL does if the node on top of the
stack is an application. The currentstack and code are pushed onto the
dump, a new stack is formed with the top of the old stack as its only
element, and UNWINDis executed.

(il) The second equation describes what EVAL does if the node on topofthe
stack is a compiled supercombinatorofarity zero (that is, a CAF; see
Section 18.6). In this case the machinesaves its state on the dump,forms
a new stack with the CAF asits only element, and executes the code
associated with the CAF (which will subsequently update the FUN node
with its reduced value).

(iii) The third equation describes what EVAL does if the node on top of the
stackis an integer: it does nothing! The sameappliesifthe node on top of
the stack is a CONS or non-CAF function node.

An omitted transition indicates a run-time machineerror(e.g. n is a HOLE).
Notice that in the first rule for EVAL we have(strictly speaking) to repeat

the ‘G[n=AP n; n2]’ on the right-handside of the rule, since G alone would

imply that node n was no longerin the graph. This is clumsy and hard to read,
since the reader has to check that noden is the same on bothsidesof the rule.
Accordingly we abbreviate the rule to

<n:S, G[n=AP n; naj, EVAL:C, D>

=> <n:[{j, G, UNWIND:[], (S,C):D>
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and imply that nodes not explicitly mentionedin the G field on the right-hand
side are unchanged from the left-handside.

Using this notation we can now give a complete description of the G-code
instructions (Figures 19.1 and 19.2). The transitions for UNWINDare little
complicated, so wewill explain them briefly. There are four cases:

(i) The item ontop of the stack is an integer or a CONS node.In this caseit
must be the only element of the stack, and the expression being
evaluated is in WHNF. UNWIND therefore completes evaluation by
restoring the saved stack and code from the dump,and putting the result
of the evaluation on the top of the restored stack.

(ii) The item ontopof the stack is (a pointer to) an application node. In this
case we just push the head ofthe application on the stack and repeatthe
UNWINDinstruction.

(iii) The item on top of the stack is a function, and there are enough

arguments onthestack. In this case we rearrange the stack as described

in Section 18.5.1, and begin executing the code for the function. The v;

are the vertebrae on the spine, while the nj are the arguments to the

function.
(iv) The item on top of the stack is a function, but there are too few

arguments forit to execute (this is described by the {a<k} condition). In
this case the expression being evaluated is in WHNF, so UNWIND
completes evaluation by restoring the saved stack and code from the
dump,andputting the result of the evaluation on the top of the restored

stack.

19.1.3 The Printing Mechanism

The G-code instructions developed so far are intended to reduce an
expression to WHNF.As wesaw in Section 11.2, though, we also need a
printing mechanism which repeatedly invokes the evaluator to reduce

expressions to WHNFandprints them.It would be nice if we could describe
the printing mechanism within the same framework, and we now do so.

Weintroduce one new instruction, PRINT, which prints the top elementon

the stack. In orderto describe its action we need to add one new componentin
the G-machine state: O, the output produced by the machine. The empty
outputis denoted by [ ], and O;x denotes the outputOfollowed by the outputx.

Now wecan define PRINT:

<O, n:S, G[n=INT ij, PRINT:C, D> = <O,i, S, G, C, D>

<O, n:S, G[n=CONS ni ne], PRINT:C, D>
=> <O, ni:n2:S, G, EVAL:PRINT:EVAL:PRINT:C, D>

All the otherinstructions leave O unchanged.



 

 

 

 

EVAL <v:S, G[v=AP v' nj, EVAL:C, D>
= <v:[], G, UNWIND:[], (S,C):D>

<n:S, G[n=FUN 0 C’], EVAL:C, D>

=> <n:[], G, C’:[], (S,C):D>

<n:S, G[n=INT i], EVAL:C, D> = <n:S, G, C, D>

and similarly for CONS and non-CAF FUN nodes.

UNWIND <n:[], G[n=INT i], UNWIND:[], (S,C):D>
=> <n:S, G, C, D>
and similarly for CONS nodes.

<v:S, G[v=AP v’ nj, UNWIND:[], D>
=> <v':v:S, G, UNWIND:[], D>

<Vo:V1:...:¥k:S, Givo=FUN k C UNWIND:[], D>
Vi=AP vi-1 ni, (isisk

=> <Niine:...:nk:¥K:S, G, C, D>

<Vo:vi:...:Va:[], G[Vo=FUN k C’], UNWIND:[], (S,C):D>
{a<k} = <va:S, G, C, D>

RETURN <Vo:v1:...:Vk:[], G, RETURN:[], (S,C):D> = <v;:S, G, C, D>

JUMP <S, G, JUMP L:...:LABEL L:C, D> => <S, G, C, D>

JFALSE <n:S, G[n=BOOL true], JFALSE L:C, D> = <S, G, C, D>
<n:S, G[n=BOOL false], JFALSE L:...:LABEL L:C, D>
= <S, G, C, D>

Figure 19.1 G-machinestate transitions (control)

PUSH <no:n1:...:nk:S, G, PUSH k:C, D>
=> <nkiNo:n:...:nk:S, G, C, D>

PUSHINT <S, G, PUSHINT i:C, D> = <n:S, G[n=INT i], C, D>
PUSHGLOBAL similarly

POP <nyi:ne:...:mk:S, G, POP k:C, D> = <S, G, C, D>

SLIDE <no:ni:...:0k:S, G, SLIDE k:C, D> = <ng:S, G, C, D>

UPDATE <no:n1:...:nk:S, G, UPDATE k:C, D>
= <ni:...:nk:S, G[nk=G no], C, D>

ALLOC <S, G, ALLOC k:C, D>
=> <ni:nea:...:nk:S, Gini=HOLE,..., nk=HOLE], C, D>

HEAD <n:S, G[n=CONS ni ne], HEAD:C, D>

=> <n1:S, G,C, D>

NEG <n:S, G[n=INT fj, NEG:C, D>
= <n’':S, G[n’=INT (-i)], C, D>

ADD <ni:n2:S, Gini=INT iy, n2=INT ie], ADD:C, D>
=> <n:S, G[n=INT (i1+1/2)], C, D>

‘MKAP <ni:n2:S, G, MKAP:C, D> = <n:S, G[n=AP nj, ne], C, D>
CONS similarly

 

Figure 19.2 G-machine state transitions (stack and data)
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Finally, we say what the BEGIN instruction does, which initializes the
nachine:

<O, S, G, BEGIN:C, D> = <O, {], 0, C.U>

BEGINsimply initializes the stack, graph and dumpto be empty, and then runs
the rest of the code C.

19.1.4 Remarks about G-code

This way of defining the meaning of G-code is very similar to that used by
Landin [1964] to describe the SECD machine; indeed, the G-machine could
almostbe called the SGCD machine.Thisis ourfirst hint that the execution of
functional programsbygraph reduction (as in the G-machine) and by delayed
substitution (as in the SECD machine)is notas different as at first appears; a
topic wewill return tolater.

19.2 Implementation

Wenowbegin a discussion of how to implement the abstract machine defined
by G-code on aconcrete machine(the target machine). To start with, we have
to provide concrete representations for each of the four components of the
G-machinestate <S, G, C, D>, which we doin this section.

For the sake of definiteness we will study the Chalmers G-machine
implementation, which generates machine code (the target code) fora VAX.
Somefamiliarity with VAX machine code is useful in what follows, so we

digress briefly to summarize the knowledge required.

19.2.1 VAX Unix Assembler Syntax

Hereis an example ofa typical instruction we may generate:

movil 12(%EP),—(%EP)

The movi is the VAX instruction to move a four-byte word. The sourceis
12(%EP), and uses indexed addressing, so that the address of the operandis
the contents ofregister EP plus 12. The destination is —(%EP) and uses indirect

addressing with pre-decrement.
The notation %EP stands for a register, and the symbol EP should be

previously defined by an assemblerdirective:

.set EP,10

Registers can also be referred to by the notation 10 forregister0, r1 for register
1 and so on.
The moval instruction (Move Address) moves the address of the source

operandinto the destination, rather than moving the source operanditselfas
movi does. For example,

moval 4(%EP),rO
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adds 4 to register EP and puts the result in register 0. It can also be used to
moveliteral constants:

moval 4,r0

loads 4 into 10.

The subroutinecall and return instructions are jsb and rsb.

19.2.2 The Stack Representation

The G-machinestack is represented by a data area to hold the stack, together
with a stack pointer held in a register, called EP. The stack grows downwards,

and each elementof the stack is a 32-bit VAX word. EP points to the top
element of the stack, so elements can be pushed onto the stack using pre-
decrementof EP, and poppedoff with post-increment. For example,

movi r0,—(%EP) Pushregister 0
movil (%EP)+,r0 Popregister 0

As with any stack we must be careful to check for stack overflow.Atfirstit
looks as if we must perform this check(if the target machine’s hardware does
not) on every push. A much cheapersolution is available, however, because
the amountof stack used by a functionis totally predictable at compile-time
(apart from EVAL and UNWINDinstructions). All we need do is compute the
amountofstack neededbya function (excluding any EVALs or UNWINDs), and
check at the beginning of the function that sufficient stack space is available.
An UNWIND at the end of the function can consume an unpredictable

amountof stack, so it must check for overflow on each push. An EVAL causes
an UNWIND followed by a function call, both of which are now dealt with, so

EVAL need only check for dumpoverflow.

19.2.3 The Graph Representation

The graph is represented by a large heap area of storage. Each node of the
graphis represented bya cell in the heap. Eachcell consists of a ag and one or
more fields. The tag and each field occupy one VAX machine word (four
bytes), and the wordsconstituting a cell are arranged contiguously. A two-
field cell would look like this:

 

 

 

Byte offset

0 Tag

4 Field 1

8 Field 2   
It may seem rather wasteful to use four bytes to store a tag, butit gives
considerable uniformity to heap allocation, and offers the opportunity for an
ingenious optimization (see Section 19.4).



326 Chapter 19 G-code — Definition and Implementation
 

 

 

 

 

  
 

 

      

AP nm AP n m

CONS nm CONS n m

INT i INT i

HOLE HOLE

FUN k C See Section 19.4.3   
Figure 19.3 Node representations in the G-machine

Boxedrepresentationsof basic values are used. The various types of node
are represented as shownin Figure 19.3.

A copying garbagecollector is used, so only half the heap area is in use at
any time. Cells are allocated contiguously in the current heap area, and a
register called HP points to the next free word. Cells can then be allocated
simply by incrementing HP; indeed this can be doneat the sametimeas the
contentsofthe cell are filled in by using the VAXauto-incrementinstruction.

It appearsatfirst that HP should be checkedafter each incrementto seeif
the heap is exhausted (which initiates garbage collection), which would
require an extra instruction for each allocation. Instead, however, the

compiler computes how much heap will be allocated by each super-
combinator, and inserts code at the beginning of the supercombinator to
check that enough heapis available. If not enough is available, garbage
collection is invoked. Hence, during execution of a supercombinatorthereis
no danger of heap exhaustion,so cells can be allocated with a simple auto-
increment on HP.

19.2.4 The Code Representation

The codeis the VAX machinecode, together with the program counter.

19.2.5 The Dump Representation

The dumpis the VAX system stack, together with its stack pointer held in the
(special) SP register. This stack is addressed in the same way as the other
stack.

19.3 Target Code Generation

Having established concrete representations for the four components ofthe
G-machine state, we now turn ourattention to the task of generating target
code from the G-codeinstruction sequence. We begin with a simple method,
and then demonstrate a simple but effective optimization technique.
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19.3.1 Generating Target Code from G-codeInstructions

In this section we will show how to perform simple code generation from
G-code into VAX assembler code.
To each G-codeinstruction there should correspond a short sequence of

VAX machineinstructions. For example, using the representations described
in Section 19.2 for the VAX, we could generate code for the PUSH instruction
like this:

PUSH n movi 4#n(%EP),—(%EP)

The source is 4*n(%EP), and uses indexed addressing to fetch the word 4*n

bytes from the top of the stack, which is pointed to by register EP. We must
multiply n by 4 to get a byte offset (rather than aword offset). The destination
is the top ofthe stack, andwe pre-decrementthe stack pointer to push the new
word ontothe stack.

As a longerillustration, we will generate code for the function

g f = NEG (f 5)

With our present compilation algorithm this compiles to

PUSHINT 5; PUSH 1; MKAP; PUSHGLOBAL $NEG; MKAP;
UPDATE 2; POP 1; UNWIND

Asimple code generation would golike this:

 

 

G-code HP VAX assembler code Comments

PUSHINT 5 0 moval 1_5,—(%EP) Push 5
PUSH 1 movi 4(%EP),—(%EP) Push f
MKAP 4 moval APPLY,(%HP)+ Tag of apply node to heap

8 movi (%EP)+,(%HP)+ Function of apply node (f)
12 movi (%EP)+,(%HP)+ Argument of apply node (5)

moval —12(%HP),—(%EP) Result on stack (f 5)
PUSHGLOBAL $NEG moval C_NEG,—(%EP) Push NEG
MIKAP 16 moval APPLY,(%HP)+ Tag of apply node to heap

20 movi (%EP)+,(%HP)+ Function of apply ($NEG)
24 movi (%EP)+,(%HP)+ Argumentofapply (f 5)

moval —12(%HP),—(%EP) ‘Result on stack
UPDATE 2 movi (%EP)+,r1 Result in register r1

movi 4(%EP),r2 Rootofredex in r2

movi (r1)+,(r2)+ Copytag
Movi (r1)+,(r2)-+ Copyfirst field
Movi (r1)-+,(r2)+ Copysecondfield

POP 1 moval 4(%EP),%EP Decrement stack pointer

APPLYis the tag word for an apply node.
L5is the address of a boxed integer5.
C_NEG is the address of the NEG functioncell.
 

- Wewillsee later how to implement the UNWINDinstruction.
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Notice the way in whichcell allocation in the heap takes place by loading
data into the heap at the point pointed to by the HP register using auto-

increment addressing. This neatly combines the operationsofallocating cell
and loading dataintoit.
The second column showsthatit is possible to keep track of the value of HP

at code generation time. This will prove useful in performing optimizations.
This code is adequate, but not especially intelligent, because it has many

redundantpushes and pops. For example,the last instruction of the second
MKAP sequence could be merged with the first instruction of the UPDATE
sequence to give

moval —12(%HP),r1

This kind of optimization has been well studied elsewhere [Wulf et al., 1975;

Bauerand Eickel, 1976; Aho and Uliman, 1977}, but one ofthe basic ideas is

so simple and gives such good results that we describe it in the next section.

19.3.2 Optimization Using a Stack Model

The idea of this optimization is that during code generation we should
maintain a model of whatis on the stack at any given time. Wecall this the
simulated stack. The simulated stack is a compile-time stack, which holds the
specification of values that would have been in the run-time stack if we had
used a straightforward code generation scheme(as in the previous section).

For example, possible entries in the simulated stack, together with the values

they specify, are:

(i) 5, the literal value 5;
(ii) NEG,the addressof the $NEG functioncell;
(iii) heap 20, the addressofthe cell at offset 20 from the HP pointervalue at

the start of execution of the supercombinator;

(iv) stack 2, the valueatoffset 2 from the EP stack pointer valueatthe start of
execution of the supercombinator.

Figure 19.4 illustrates by redoing our example, which shows a considerable
reduction in the number of VAX machineinstructions generated. Notice
how important it is that garbage collection does not take place during a
supercombinatorexecution.If it did so, all the heap offsets might be rendered
erroneous.
The simulated stack will be empty at the end of the execution of a

supercombinator. The EVAL instruction needs special treatment, which we
discuss in the next section.
As a by-productof this code generation we get the amountofheap used by

the supercombinator, so the compiler can generate the code to check for heap
exhaustion at the beginning of the supercombinator (but see EVAL, below).
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G-code HP VAX assembler code Simulated stack Comments

0 {] Begin
PUSHINT 5 5:[] Push 5
PUSH 1 stack0:5:[] Pushf
MKAP 4 moval APPLY,(%HP)+ Tag to heap

8 movi O(%EP)(%HP)+ 5:[] Fun to heap
12 moval |5,(%HP)+ {] Arg to heap

heap 0:[] Result on stack
PUSHGLOBAL $NEG NEG:heap 0:[] Push NEG
MKAP 16 moval APPLY,(%HP)+ Tag to heap

20 moval C_NEG,(%HP)+ heap 0:{] Fun to heap

24 moval —20(%HP),(%HP)+ [] Arg to heap

heap 12:{] Result on stack
UPDATE 2 moval —12(%HP),r1 {] Result in r;

movi 4(%EP),r2 Rootin r2
movi (r1)+,(r2)+ Copytag
movi (r1)+,(r2)+ Copyfirst
movi (r1)+,(r2)+ Copy second

POP 1 moval 4(%EP),%EP Pop arguments    
Figure 19.4 Code generation using a simulated stack

19.3.3 Handling EVALs and JUMPs

EVAL is a considerable nuisance because it may cause an arbitrary amount of
computation to occur. This means that the amount of heap consumed has no
simple bound, and garbagecollection may occur during such evaluation, thus
completely disrupting the simulated stack and HP.

Wecan deal with this by treating the segments of code between EVALs
separately, each with its own code to check for heap exhaustion. All stack and
heapoffsets in the simulated stack are calculated relative to the values of EP
and HP at the beginning of the segment (not the supercombinator, as stated
above). Furthermore, before EVAL is called, the simulated stack must be

flushed out onto the real stack.
Similar remarks apply to sections ofcode broken with JUMPinstructions.If

there are two different routes leading to a given place in the code then
different amounts of heap may have beenallocated along the two routes, and
the contents of the simulated stack may be different. Accordingly, the
simulated stack must be flushed before JUMPs also. ©

Whatall this amountsto is that we can generate good codeforstraight-line
segments of code (‘basic blocks’ in conventional compiler terminology), but
have to take more care whenthe fiow of control can be broken.
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19.4 More on the Graph Representation

We maythink of the G-machinein the following way:

 

G-code execution mechanism

|—-—————————Graphinterface--—---—--—-

The graph    
The G-code execution mechanism manipulates nodes in the graph, using a
certain limited set of operations which wecall the graph interface. Once we
have specified the graph interface we are at liberty to alter the concrete
implementation of the graph so long as the implementation supportsall the
operationsin the graphinterface.

In practice, such a clean separation of concernsis hard to achieve without
suffering a considerable performance penalty. We maydistinguish, however,
between two kindsofgraph operation:

(i) Node-specific operations are only used on a specific type of node. For
example, the G-code instruction HEAD is only executed when the nodeon
top of the stack is known to be a CONS node. Node-specific operations
can normally compile to a single target machineinstruction.
Other examples of node-specific operations are ADD and JFALSE.

(ii) Generic operations are used on a variety of types of node. For example,
when the UNWIND instruction is executed, nothing is known about the
node on top ofthe stack. The first thing UNWINDhas to dois to perform
case analysis on the node type. Generic operations are considerably more

expensive than node-specific operations because ofthis case analysis.
Other examples of genericoperations are EVAL, PRINT, CASEJUMP

and somegarbagecollection operations.

The Chalmers G-machinehas a ratherfast and elegant implementation ofthe
generic operations, which contributes significantly to its performance and
extensibility. We will discuss this technique in the succeeding sections.

19.4.1 Implementing Tag Case Analysis

Asnoted earlier, in the Chalmers G-machinethetag ofa cell is a word, and it
points to a smalltable of code entry points, one entry point for each generic
operation.



Section 19.4 Moreon the graph representation 331
 

 

Anapplication node
 

AP Field 1 |Field 2
     

Entry table for AP nodes
  ——» Entry point for APLEVAL ——;-——>
 

Entry point for AP_LUNWIND—j——»-
 

Entry point for AP_LPRINT —_;——»
   etc.   

The AP_EVAL code, for example, performs the appropriate operations to
evaluate an application node. Each distinct node type has a different entry
table, so that case analysis ona cell can now be performed simply by jumping
to the appropriate entry of the table pointed to from the tag of the cell.

Naturally, the EVAL entry must occupy the sameposition in the entry table
for each nodetype.

19.4.2 Implementing EVAL

In this section we will consider the implementation of the EVAL instruction.
This comesin two parts:

(i) the code thatis generated in-line for an EVAL G-codeinstruction;
(ii) the code for the EVAL entry of each tag’s entry table.

First of all, here is the VAX target code which might be generatedin-line for
an EVAL G-codeinstruction:

movi (%EP),r0 Topofstack to r0

movi (r0),r1 Tag tori

jsb +O_Eval(r1) Call Eval code

The elementon topofthe stack is fetched into r0 (without poppingthe stack),
its tag is fetched into r1, and thefinal instruction is an indexed subroutinecall,

where O_Eval is the offset of the Eval entry in the entry table. Notice that by
using a jsb instruction we push the return address (the code pointer C) onto
the system stack (the dump D), so that we can return to the instruction
following EVALwhen evaluation is complete.
We now consider the Eval code thus entered. Suppose that the cell in
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question is an integer cell (we assume a boxed implementation for the
moment). Then no evaluation need take place,and the codeis rather simple:

INT_EVAL: The Eval code for an integercell.
rsb Return from Eval

The sameapplies to function cells and CONScells. Application nodes are a
different story, however. In this case we need to push the current stack S

(implemented by EP) onto the dump D (implemented by the system stack),
and then UNWINDthe application.

AP_EVAL The Eval code for an application cell.
<Test for SP stack overflow>

movl %EP,-(SP) Push current stack onto dump
AP_UNWIND: Fall through te APLUNWIND

10 is a copy of top stack element
r1 is its tag

First we save the current stack on the dump,checking first for dump overflow,
and then behave like UNWIND (see next section). Notice that to save the
current stack on the dump weneedonlysave the current stack pointer on the
system stack. Logically, the new stack only containsa single element, whichis
the top elementof the old stack, so we do not needto alter the stack pointer
itself. The depth ofthe current stack can be found by comparingtheold stack
pointer (found on top of the system stack) with the current stack pointer(in
EP).

19.4.3 Implementing UNWIND

Here is the VAX machine code sequence that might be generated for an
UNWIND G-codeinstruction:

movi (%EP),r0 Topofstack to r0

movi (r0),r1 Tag tort

jmp *0_Unwind(r1) Jump to Unwind code

The elementontopofthe stack is fetchedinto r0 (without poppingthe stack),
its tag is fetched into r1, and an indexed jumpto the Unwind codeis made (not
a jsb).

Nowsupposethat the cell in question is an application cell. What should the
AP_UNWIND code do?It should simply push the head of the cell on the stack
and UNWINDit again. Rememberingthat r0 points to the cell in question, we
get:

AP_UNWIND: The Unwind codefor an application cell
<Check for EP stack overflow>

movi Head(r0),r0 Get head

movi r0,—(%EP) Pushit
movi (r0),r1 Gettag in ri

jmp *0_Unwind(r1) Unwindit
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Asnotedin Section 19.2.2, we shouldfirst check for stack overflow, unless the

machine’s hardwareis capable of doing so automatically.
Suppose,instead, that the cell is an integer cell. Then the specification for

UNWINDsaysthatthe integer cell must be the only thing on the stack, and we
should return to thecaller, restoring the old stack but putting the top element
of the current stack on top ofit. Fortunately, it is already in the right place!
Hence,all that is required is the following:

INT_UNWIND: The Unwind codefor an integercell
movi (SP)+,%EP Restore stack pointer
rsb Returnto caller

Suppose now that we are unwinding a global function cell. Then the
specification for UNWIND (see Figure 19.1) requires a test to check whether
there are enough arguments on the stack for the function to execute. The
Chalmers G-machineactually uses a separate tag for each function, complete
with a separate entry table (rememberthat a tag takes a whole word, so there
are plenty of tags available). This means that instead of having code for
FUN_UNWINDwe have a piece of code F_UNWINDfor each global function F
(supercombinatoror built-in function). Suppose that F takes two arguments.
Then the code for FLUNWIND mightlooklikethis:

F_Retum: Weget here if there are too
few args. Return to caller.

movi (SP)+,%EP Restore stack pointer

rsb Return to caller

F_UNWIND: Unwind codefor function F
NB:pointer to FUN nodeisstill on stack

moval 8(%EP),rO r0 points to base of context
cmp! (SP),r0 Is this below stack base?
jiss F_Retum Return if too few args

Nowrearrange the stack
movi 4(%EP),r0 Top vertebra in r0
movi Tail(r0),(%EP) Push its tail (overwrites FUN pointer)

movi 8(%EP),r0 Next vertebra in 10
movi Tail(r0),4(%EP) Tail into stack

F_EXEC: Now comesthe code for F

The code immediately after FLUNWINDfirst makes a test to see whether there
are enough arguments.It does so by computing the addressof the base of the
context in the stack, assuming that enough arguments are present. In this
case, two arguments and four bytes per stack elementgive an offset of eight
from the top of the current stack. It then compares this context base address
with the saved stack pointer, found on the dump, which points to the base of
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the current stack. If the formeris less than the latter, there are too few
arguments, so it jumps to F_Retum where the old stack is restored and the
current evaluation completes with a return to the caller (just as for
INT_UNWIND).

If there are enough arguments, the next four instructions rearrange the
current context ready for the main body of code for F, which begins at
F_EXEC.This entry pointwill be used in Chapter21.
A ‘FUN k C’nodeis therefore represented as a cell with a tag butnofields.

Thetag gives access to the entry points which knowabout k and C.

19.4.4 Indirection Nodes

A major advantageofthis method of implementing generic operationsis that
new nodetypes can be added without changing anything exceptto provide an
entry table for the new node type. As an exampleofthis, we will now describe
how to introduce indirection nodesinto the implementation.
Thus far we have described an implementation of the G-machine which

performsthe update at the end ofa reduction by copyingtherootofthe result
of the reduction over the root of the redex. As we described at length in
Section 12.4, we could instead overwrite the root of the redex with an

indirectionto the result. The section also discussed the trade-offs between the
two approaches, but we will now show how some minorandlocal changesto
our implementation can change the G-machine from using copying to using
indirection nodes.

Weneedto perform only two changes:

(i) We must introduce a newcell type, an indirection cell, complete with its
entry table. It will only have one field, which contains the indirection
pointer.

(ii) We must change the implementation of the UPDATE instruction.

The only work associated with the first change is to provide target code
sequencesfor each generic operation. Theyare all rather easy. For example,
IND-UNWIND — the Unwind codefor an indirection cell — lookslike this:

movi 4(r0),rO Getthe indirection pointer

movi r0,(%EP) Overwrite top stack element
movi (r0),r1 Gettag
jmp *0_Unwind(r1) Jump to Unwind code

The overwriting of the stack element‘shorts out’ the indirection, so thatit
does not appearas a vertebra in the stack. The Eval code for an indirection
cell, IND-EVAL,is similarly simple:

movi 4(r0),r0 Getthe indirection pointer

movi 1r0,(%EP) Overwrite top stack element
movi (r0),r1 Gettag

jmp +0_Eval(r1) Continue Eval
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The second thingwe must dois alter the implementation ofUPDATE.Recall
that ‘UPDATE k’ updatesthe root of the redex, which is pointed to by the kth
element of the stack, with the result, which is on top of the stack. The new

implementation of ‘UPDATE k’ must therefore do three things:

(i) Overwrite the vertebra pointed to from the kth elementofthe stack with
an indirection node, whose indirection pointer points to the result.

(ii) Overwrite the kth elementofthe stack to pointdirectly to the result (not
to the indirection node). This is really just an optimization, but ensures
that the result of EVALis never an indirection cell. This is helpful when,
for example, the result of an EVALis known to beaninteger;in this case it

is a nuisance to have to check for an indirectionalso.
(iii) Pop the result from the stack.

This gives the following code sequence for the ‘UPDATE d’ G-code
instruction:

movl 4*d(%EP),r2 r2 points to root of redex

moval IND,(r2)+ IND tag

movi (%EP),(r2) Putresult into indirection cell

movl (%EP)+,4*d(%EP) Overwrite vertebra and popresult

That's all! In addition, the garbage collection entry point(s) in the indirection
cell entry table can perform the ‘shorting out’ ofindirection nodes discussed in
Chapter17.

19.4.5 Boxed versus Unboxed Representations

The Chalmers G-machine uses boxed representations for all basic values.
There are two reasons forthis:

(i) A boxed representation of a basic value hasa tag in just the sameplace as
any other value, so that generic operations can be implemented
uniformly. With unboxed representations generic operations would have
to perform aninitial test to separate pointers from non-pointers before
doing case analysis as before.

(ii) Anunboxed representation would need to carry around a pointerbitwith
each field. This is rather tiresome. On the VAX the pointer bit could
either be packed into the same 32-bit word as the value, or kept in a
separate byte (or word) which was moved aroundwith the value. In the
former case there has to be muchstripping off and tacking on of pointer
bits, and integers are restricted to only 31 bits. In the latter case there
have to be two target code ‘move’instructions instead of one whenever a
value is moved around.
Of course, this problem would go awayin a target architecture more

specifically suited to graph reduction.
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19.4.6 Summary

Wehaveseenthat the technique of implementing generic operationsby using
cell tags as pointers to entry tables gives two main advantages:

(i) it is easy to add new nodetypes(indirection nodes, for example);
(ii) it is fast, because generic operations are implemented uniformly using an

indexed jump.

19.5 Gettingit all Together

How doesall the code we generate hold together? Fora start, the G-code for
each supercombinatorbegins with a GLOBSTAAT instruction. This instruction
must generate the following segments of target code:

(i) UNWIND code, which checks the number of arguments and rearranges
the stack;

(ii) GC code, which will depend on the garbage collector;
(iii) the entry table for the supercombinator (the EVAL, PRINT,etc. entries

are the samefor all supercombinators);
(iv) the function node itself, which can be allocated at the beginning of the

function code, outside the main heap;
(v) overflow-checking code, which immediately precedesthe target code for

the function body, and checks for overflow of stack and heap.

Thus the target code for each function is preceded by some code fragments,
’ the entry table and the function node. This completes the code generation for
each function.

Finally we must consider what the BEGIN and END G-codeinstructionsdo.
The BEGINinstruction is responsible for initializing the whole system. In
particular it must generate target code to

(i) initialize the stack pointer EP;
(ii) initialize the heap (in particular, the heap pointer HP).

In any particular system there will certainly be otherinitialization tasks to
perform, and the BEGIN instruction is the opportunity to perform them.
The ENDinstruction simply terminates execution of the entire program.

19.6 Summary

In this chapter we have seen how an abstract machine modelcan provide a
precise description for G-code and a secure basis for code generation.

Wehavealso examined some techniques for generating good code. The
details ofgood code generation are, however, beyond the scope ofthis book.
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Twenty
 

OPTIMIZATIONS TO THE
G-MACHINE

We nowgive a long sequence of optimizations to the G-code compilation
schemes.In the main they are independentofeach other and any combination
of them could be implemented.All ofthem are based on the idea ofcompiling
special code to avoid building graphs.

Oneparticular optimization, concerning spine allocation,iis SO important

that we devote the next chaptertoit.

20.1 On Not Building Graphs

The principal reason why implementationsof functional languages have the
reputation for being very slow is that they spenda lot of time allocating and
garbage-collecting cells from the heap. A heap provides a very general
storage allocation mechanism, but it is also very expensive. Each cell used

costs us in four ways:

(i) it must be allocated;
(ii) it must befilled with data;

(iii) the data in it will normally subsequently be read;
(iv) the cell must be recovered when it becomes unreferenced.

In contrast, a stack is a muchlessflexible allocation mechanism,but the store

it allocates is recovered immediately when it becomes unused, and this

recovery is very cheap (decrementing the stack pointer). In addition, because
stacks seldom grow large,it is often possible to implement the stack with

faster technology, so that accessing stack elementsis faster than going to the

heap.
A primary objective of our optimizations, then, will be to use the stack
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rather than the heap whereverpossible. In particular, the compilation scheme
C (Section 18.5.3) builds graph structures in the heap, and many of our
optimizations will be directly aimed at replacing uses of the C compilation
scheme with alternative (and cheaper) schemesin particular cases.

20.2 Preserving Laziness

This optimization should be regarded asessential, since without it laziness
may belost.
As we mentioned when we introduced the first version of the R scheme

(Section 18.5.2), it gives poor performance when the body of the super-
combinatoris a single variable. This problem wasdiscussed at some length in
Section 12.4, and we discovered that the solution was to evaluate the variable

before updating the root of the redex with its value.
The same problem arises with a supercombinatordefinition such as

$G x = letrec v1 = ...v2...x...

v2 = ...vl...

in v2

where the body of the supercombinatoris a letrec, whose body is a single
variable.
What we mustdois to redefine R to have a separate case for each kind of

expression, just as we did for C. Figure 20.1 gives such an R scheme. The code
for a body whichis just a single variable loads the value onto the stack, uses
EVAL to evaluate it, and only then updates the root of the redex with the
result. Notice the way let and letrecare handled rather elegantly by recursively
applying the R scheme, having first compiled the definitions.

Atfirst it may seem that the EVALin the rule for a global, f, is redundant,

 

REE lpd

generates code to apply a supefcombinator to its afguments.
Note: there afe d afguments.

REi gpd = PUSHINT I; UPDATE (d+1); POP d; RETURN

RE fipd = PUSHGLOBAL f; EVAL;

UPDATE (d+1); POP d; UNWIND
REx J pd = PUSH (d — p x); EVAL

UPDATE (d+1); POP d; UNWIND

REE; Eodpd = CEE, Ezy pd;
UPDATE (d+1); POP d; UNWIND

RI let x=E, nE pd =CE Ex Jp d; RE E J plx=d+1] (d+ 1)
RI lerec Din E pd = CLetrec[ D ] p’ d’; RE E Jp’ a’

where

(’, d’)= xT DI pd   
Figure 20.1 Modifications to the Rscheme to preserve laziness
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since most globals (such as built-in functions, and supercombinators) plainly
do not need to be evaluated.. However, the global might be a CAF (a
zero-argument supercombinator), in which case it may be reducible, so the
EVALis mandatory. There is scope for a simple optimization here, by omitting
the EVAL in non-CAFcases, andit will have a large performance benefit. The
optimization can, however, be carried out by a peephole optimizer (see
Section 20.10), so we do not perform it here.
The otherpointof interest is that we have used RETURN instead ofUNWIND

for the integer case, because we know that the integer cannot be applied to
anything (assuming that the program was type-checked), and hence the
expression being evaluated must now be in WHNF.

20.3 Direct Execution of Bulit-in Functions

This is probably the next most important optimization we will study, andit
concerns the compilation of expressions such as (P x1 x2) when

(i) P is a built-in function;

(ii) all its arguments are present.

In many such cases we will be able to compile far superior code by directly
executing P.

20.3.1 Optimizations to the R Scheme

As ourfirst example, consider compiling (CONS E1 E2) with the R scheme:

RIT CONS E:; E2 pd
= Cl CONS E: E2 Jj p d; UPDATE (d+1); POP d; UNWIND

With the present scheme we construct the graph of ($CONS E: E2), and then
promptly unwind it. When the unwind completes wewill find $CONSatthetip
of the spine, we will discover that it does indeed have enough arguments, and
so we will enter the code for $CONS.This will form a CONS nodefrom its two
arguments and RETURN.
Wecan short-circuit this completely predictable process by executing the

CONSdirectly, like this:

RIT CONS Ei Eo I pd

= Ci E2 I] p d; Ci E: Ii p (d+1); CONS;
UPDATE (d+1); POP d; RETURN

Weconstruct the graphs for E2 and E;, execute the CONS G-codeinstruction
to form a CONScell, update the root of the redex and RETURN.Thisallocates
fewer nodesin the heap, uses fewer G-codeinstructions, and avoids executing
the code for the $CONS function we developed in Chapter 18. So we win all
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round. We can achieve this optimization simply by adding the above R rule to
the R scheme.
As a second example, consider compiling the expression (IF E, E;, E;) with

the R scheme:

RE FE. E&: E: Bpd
= Cf[ IF E, Et Et 9} p d; UPDATE (d+1); POP d; UNWIND

This code will construct the graph of (SIF E. E; E,), unwindit, find $IF at the
tip of the spine, discover that it does indeed have enough arguments, and
enter the code for $IF. The code for $iF will evaluateits first argument,test it

and conditionally jump on the result. We can again short-circuit this process
by generating the following code:

RE FEE, EB pd
= Cll Ec 9 p d; EVAL; JFALSE L;

REE E: I p dG;
LABELL;

REE: pd

First of all we evaluate the condition, and conditionally jump based onits
value. Then we can complete the code in each branch using a recursive
application of the R scheme.Notice how this neatly allowsall the optimiza-
tions we are developing to be applied in each branch. Notice also that, since
the code generated by R ends byreturning to the caller, no jump is necessary
to ‘join up the branchesoftheif’. The CASE-n function can be compiled in an
analogous manner, except using a multi-way jump (CASEJUMP)instead of a
two-way jump (JFALSE).

Precisely analogous remarks apply to expressions such as (+ E; E2) and
(HEAD E). Rather than construct their graph and then immediately unwind
into them, we execute them directly:

RE +E: E29 pd
= Cll E2 I] p d; EVAL; Cif E; 9) p (+1); EVAL; ADD;
UPDATE (d+1); POP d; RETURN

RE HEAD E pd
= Ci[ E 9] p d; EVAL; HEAD; EVAL;
UPDATE (d+1); POP d; RETURN

These optimizations can be achieved by simply adding the above R rules
into the R scheme. They constitute an extremely worthwhile improvementto
our compilation algorithm, but there is more to come!

20.3.2 The E Scheme

A cursory inspection of the extra R rules reveals the frequent occurrence of
the sequence

Cil E i p d; EVAL
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Now suppose(as at the beginning of the last section) that E was of the form
(CONS E; Ez). Then we would compile code to construct the graph of
(SCONS E; Es) and promptly EVALuate it. But this is precisely the kind of
situation that the optimizations of the previous section succeeded in spotting.
How can we perform the same optimization for the C-EVAL sequence?
The reason that the C-EVAL sequence performsbadly is that the C scheme

proceedsin ignoranceofthe fact that the result is going to be evaluated. What
weneed is a new scheme,E, whichis a version ofC that delivers an evaluated

result. To be specific:

ET Ellpd

produces G-code which evaluates E to WHNFandleavesthe result on top of
the stack.

This is, ofcourse, precisely what theC-EVALsequence did. Figure 20.2 gives
the E compilation scheme. In exactly the same way as the R scheme, E looks
for a numberofspecial cases, and produces good codefor these cases. Notice

howoftenit is possible to apply E recursively to compile subexpressions. For
example, whenthe result of (+ E, E2) is needed then weare surethe results

of E; and Ee will be needed,so they can be compiled with E. This achieves the
desirable effect ofpropagating demandinto the expression. In the same way
as R, E propagates down insidelets and letrecs. If, however, noneofthe special
cases applies, E takes the easy way out and uses C followed by EVAL.

 

ER Eqpd

Evaluates E, leaving the result on top ofthe stack.

ELidpd = PUSHINT i
EL fipd = PUSHGLOBAL f; EVAL
El x }pd = PUSH (d — p x); EVAL
E[ NEG E 9 pd « Ef E 3 p d; NEG

Ef + GE; Eo dpd = Ef Eo Ip d; Ef E: 3p (d+1); ADD
Ef. CONS E; Eo J pd = Cf Eo i p d; Cl E1 9] p (d+1); CONS
Ef HEAD E J pd Ef E 9} p d; HEAD; EVAL

Ef IF EE; E; J pd = Ef Ec Jl p d; JFALSE L1;
EI E: 9 p d; JUMP L2;

LABEL L1;

Ef Er I pd;
LABEL L2

Ef letx=ExnE9 pd =CLE, I pda,
EE E 3 plx=d+1] (d+1); SUIDE 1

Ef lerec Din E J pd = CLetrec[ D Jj p’ d’; El E 9 p’ d’; SLIDE (d’-d)

where

(o', d) = XE Dy pd
Ef E: Eo ppd = Cl Ei Eo 9 p d; EVAL   

Figure 20.2 The E compilation scheme



Section 20.3 Direct executionofbuilt-in functions 343
 

We can now useE byreplacingall uses of the C-EVAL sequence in the R
schemewitha call to E (see Figure 20.3). The RIT E; E2 JJrule is used if none

of the special cases is applicable; it has not changed since Figure 20.1, andis
only put in here as a reminder.

Aswell as allocating less store and using fewer G-code instructions, these
optimizations have the effect of reducing the numberofcalls to EVAL. This
meansthat there will be longer code sequences with no uses of EVAL, which
may meanthat an implementationis able to keep thingsin registers rather
more effectively.

 

RI NEG E Jpd EI E J] p d; NEG;
UPDATE (d+1); POP d; RETURN

Ef E2 Tp d; Ell E: Ip (d+1); ADD;
UPDATE (d+1); POP d; RETURN

Cl E2 Bp d: Cl E1 pp (d+1); CONS;
UPDATE (d+1); POP d; RETURN

El E Jp d; HEAD:
UPDATE (d+1); POP d; RETURN

ALIFE EE: dpd = El Ec Ip dG; JFALSEL;
REE: Dp a;

LABEL L;

REE: Ip d
Cf E: E2 Te d:
UPDATE (d+1); POP d; UNWIND

RE + &: E2 ded

Ri[ CONS E; E2 Ip d

RI| HEAD E pd

RE E; Eo ted

Thecasesfori, f, x, fet and letrec are unchanged.  
 

Figure 20.3 Modifications to the R schemeto optimize knownfunctions

20.3.3 The RS and ES Schemes

Thereis still one important hole in the new optimizations we have developed
in this section. Consider the expression ,

(HEAD E; E2)

We expect E; to evaluate to a CONScell, whose headwill be a function which
is applied to E2. Let us compile it with the R scheme:

RIT HEAD E; E2 J pd
= C[[ HEAD E; E2 9] p d; UPDATE (d+1); POP d; UNWIND

We have been unable to take advantageof the optimization of HEAD given

in the preceding sections, because of the second argument E. This problem
can occur with any built-in function which can deliver a functionasits result;
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in particular HEAD andIF, together with their analogs SEL-k-iand CASE. What
we wouldlike to generate for the above exampleisthis:

RAT HEAD E; Eo J pd

= Ci[ Ez 9 p d; Eff E; 9 p (d+1); HEAD; MKAP;
UPDATE (d+1); POP d; UNWIND

Achieving this optimization requires us somehow to apply an Frlike
compilation scheme recursively to the (HEAD E;) subexpression, rather than

just giving up and using C. Wecall this new compilation scheme RS, and we
wantRS to have a rule somethinglike

ASE E: Ee J op d = Cl E2 I] p d; RSE E: 9 p (+1)

Wecould then use RS by replacing the AI. E:1 E2 Jj rule with

RIE E:1 Eo Ip d = RSL EE: E2 pd
7

(Warning: these rules are not yet correct as they stand here.) With these
sKodifications, the compilation of (HEAD E, E2) would begin thus:

All HEAD E1 Es I pd

= RSI[ HEAD E: E2 pd
= CI Ee 7] p d; RSL HEAD E; JJ p (d+1)

Now the (HEAD E;) expression can be picked up with a special case in the RS
scheme.

The RS rule given above causes RS to descendthe spine of the expression,
constructing its ribs using C, and putting them on the stack. The question
arises, however, of what RS should do when it reaches the bottom. At this

point,all the ribs of the expression are on the stack, so whatRS should dois to
generate an appropriate number of MKAPs to construct the spine of the

expression, update the root of the redex, pop the arguments and UNWIND.
This means that RS must know how manyribs are on the stack, so it needs an

extra parameter, n. The real rule for RS now becomes

RSI E1 Eo I} p d n = Cl Eo 9] p d; RSE E:1 I} p (d+1) (n+1)

It is invoked from the R schemelike this:

AE E: G2} pd =ASE E: G2 Jodo

Whenit reaches the bottom, RS simply constructs the spine with n MKAPs,

updatesthe root of the redex, pops the arguments and UNWINDs:

RSI f Ppdn
= PUSHGLOBALf; MKAP n; UPDATE (d—n+1); POP (d—n); UNWIND

RSI x Ppdn
= PUSH (d — p x); MKAP n; UPDATE (d—n+1); POP (d—n); UNWIND

‘MKAP n’ is an extended version of MKAP, equivalent to n repetitions of
MKAP.Theoffsets in the UPDATE and POPinstructions take into accountthe
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RSE ED pdn

completes a supercombinator reduction, in which the top n ribs of the
body have already been put onthe stack.
RS constructs instances of the ribs of E, putting them on the stack, and

then completes the reduction in the same wayas R.

RSE fJpdn = PUSHGLOBAL f; MKAP n;
UPDATE (d—n+1); POP (d—n); UNWIND

RSE x] pdn = PUSH (d — p x); MKAP n;
UPDATE (d—n+1); POP (d—n); UNWIND

RS— HEAD E J pdn = Eg E J] p d; HEAD; MKAP n;

UPDATE (d—n+1); POP (d—n); UNWIND

RSf IF Eo EE; Jpdn = E§ Eo I] p d; JFALSE LI:
RS[ E: J p dn;

LABEL L1;

RST E:Todn

RSE E: Eo pdn = Cf Eo J p Gd;
RSE E1 Dp (d+1) (n+1)

Note: RS cannot encountera letorletrec.  
 

Figure 20.4 The RS compilation scheme

fact that the stack has gained one elementasa result of the initial PUSH and

lost n elementsasa result of the ‘MKAP n’. No case is needed for an integer,
since the appearanceofan integerat this point would meanthatit was being
used as a function.

Now we have donethe hard work, and Figure 20.4 summarizes the RS
scheme. The occurrenceofa let or letrec would cause RS problems,sinceit

assumes that the n ribs constructed so far occupy successive stack locations.

Fortunately it is easy to ensure that RS can never encountera let orletrec, by

transforming any expression of the form

(letrec <definitions> in E1) Ee

into

letrec <definitions> in (Ei Ea)

This is precisely achieved by the algorithm described in Section 15.5.4.
Notice that we do not need special cases for functions such as NEG, + and

CONS,becausetheir result must be a data object, and hencewill be caught by
the R scheme.

It may seem thatall this is a lot of work to cope with a few unusualcases.

However,it has one other majorbenefit:it is readily generalized to optimize

supercombinatorsas wellas built-in functions, a subject we tackle in Chapter
21.
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Just as optimizing the R scheme provoked us into developing the E scheme,
so the RS scheme has a counterpart, the ES scheme,given in Figure 20.5.

Noticethat the structure ofthe ESschemeis exactly the sameas that oftheRS
scheme;they differ only in the ES[[ f J] and ES{[ x ]] cases. Figure 20.6
summarizes the modifications to the R and E schemes to use the new
optimizations.

 

EST EJipdn

completes the evaluation of an expression, the top n ribs of which have
already beenput onthe stack.
ES constructs instances of the ribs of E, putting them on the stack, and

then completes the evaluation in thesamewayas E.

ES] flpdn ‘= PUSHGLOBAL f; MKAP n; EVAL

ESI x Jp dn = PUSH (d — p x); MKAP n; EVAL

ESJ HEAD E Jpdn EJ E 9] p d; HEAD; MKAP n; EVAL

EST IFE-E:E; Jp dn = Ef E-. J pd; JFALSE L1;
ES[Z E: J p dn; JUMP L2;

LABEL L1;

EST Er pdn
LABEL L2

ESJ E:1 E2pdn = CI Es pd;

ES[ E: 9 p (d+1) (n+1)

Note: ES cannot encounter letorletrec.  
 

Figure 20.5 The ES compilation scheme

 

REE; Eo Ip d = RSE E; E2 Pp do

Ef E: Es Ip d = ESE: E2 Jp do
  
 

Figure 20.6 Modificationsto R and Eto use RS and ES

20.3.4 7»-reduction and Lambda-lifting

In Section 13.3.1 we showed how redundant supercombinator parameters
could be eliminated by n-reduction. For a G-machine implementation,this is
actually undesirable, unless it eliminates a supercombinatordefinition, which

is always a good thing.
To see whyit is undesirable, consider the definition

$F x y = IF E; Eoy

where E, and E2 do notusey. Nov,it is true that

$F x = IF E; Eo
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is an equivalent definition for $F, but it will generate much less efficient
G-code. The reasonis that the IF no longer has enough parameters, so R
cannot use the efficient test-and-jump sequence it would have generated for
the previous definition of $F.

This applies quite generally, and means that y-reduction should only be
performedif it eliminates a whole definition. In fact, the opposite process,
n-abstraction, may be desirable! However, y-abstraction risks losing full
laziness, and we will not studyit further.

A closely related point concerns the lambda-lifting algorithm. The
optimizations described in this section apply to expressions such as
(f Ey Eo ...), where we know what t is. If we do not know whatf is, it will
generate less good code. The wayin which this tends to occuris:

fxgy=g (+ xy)

that is, when a function is passed in as an argument and then applied.
Unfortunately, fully lazy lambda-lifting results in many such expressions, and
this is the main motivation for eliminating redundantfull laziness (see Section
15.6).

20.4 Compiling FATBAR and FAIL

So far we have not made any mention ofthe built-in function FATBAR,andits

companion value FAIL. In this section we will show a rather subtle
optimization due to Augustsson [1985], which implements them extremely
efficiently.
Suppose we have to compile

Ril FATBAR E, Es I pd

First, recall the semantic equations for FATBAR:

FATBAR a b=a if a # | and a # FAIL

FATBAR FAIL b = b
FATBAR 1 b=1

One wayto proceed would be to compile E, with the E scheme,test the result
for FAIL and return E2or E, accordingly:

R&T FATBAR E; Eo pd
= Ef €; 7] p d; JFAIL L; UPDATE (d+1); POP d; UNWIND:

LABEL L; AL Eo I] p d;

‘JFAIL L’ tests whether the value on top of the stack is FAIL; if so, it pops the
stack and jumpsto L; otherwise it does not pop the stack and does not jump.
A better way is to evaluate E, with the R scheme, but to jump to the

evaluation ofEzifFAIL is encountered. This entails adding two new parameters
to the R scheme,j and s, wherejis the label to jump to, and sis the depth ofthe
current context expected by the codeatj.
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Now wecan proceed as follows:

RIE FATBAR E; E2 Tpdjs
=RAPEE: Ip dld

LABEL L; RI Ec Pp djs

together with the rule

RII FAIL Pp djs
= POP (d-s); JUMP j

Theeffect is the sameas before. The ‘POP (d—s)’ instruction sets the stack to
the level expected by the code at j, while the ‘JUMP j’ instruction sets the
program counter; together they put the G-machineinto the samestateasit

would have had when executing the codeatj in thefirst version.
The codeis considerably moreefficient, because the FAIL data value can no

longer be generated, and hence it need neverbe tested for, nor do we need to

provide a representation forit.
All other R schemecases pass on j and s unchanged. Similar optimizations

apply to the E, RS and ES schemes. To avoid complicatingall the compilation
schemes with the extra parameters j and s, we will not incorporate the
modifications in subsequent figures. However, Figure 20.7 summarizes the
modifications required.
The optimization is rather subtle, and its formal justification would be

relatively more difficult than the others we are studying. At the very leastit
relies on the observation, made in Section 5.4.2, that FAIL can only be
returnedif it appears explicitly in the expression.

 

Ril FATBAR E; Es dp djs = REE: Ip dtd;
LABEL L; RE Es Tp djs

RI FAIL ipdjs = POP (d—s); JUMP j

RS[I| FATBAR E; Es ip dnjs = RSE E;, Jo dnl d

LABEL L; RSJ. Esp dnijs

RSJ FAIL Jp dnjs = POP (d-s); JUMP j

EJ FATBAR E; E2 ip djs = Ef E; 3 p d L d; JUMP L1;
LABEL L; ET E2lip djs
LABEL L1

E[ FAIL ipdjs = POP (d-s); JUMP |

ES] FATBAR E; E2ipdnjs = ESE; Jp dnl d; JUMP L1;
LABEL L; ES[ E2 Tp dnjs;
LABEL L1

ES[ FAIL Jp dnjs = POP (d—s); JUMP j  
 

Figure 20.7 Modifications to R, RS, E and ESschemes for FATBAR
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20.5 Evaluating Arguments

Suppose a supercombinator body consists of an expression of the form
(f E: E2), where we cannot execute f directly as described in the preceding
section. Then wewill compile the following code:

Ril f E: Es pd
= Cf[ Eo 9 p d; Ci[ E: 9] p (d+1); PUSHGLOBALf;

MKAP 2; UPDATE (d+1); POP d; UNWIND

Notice that we have to construct the graph of E; and E2. Suppose, however,
that we knewthat f would evaluateits first argument. Then we would be safe
to compile E; with the E scheme (which will evaluate it), thus avoiding
constructing the graph of E; before subsequently evaluatingit.

If we know that f evaluatesits first argument we say thatf is strict in its first
argument (see Section 2.5.4). The optimizations of this section try to avoid
using C to compile E, and E2 by using information aboutthe strictness of
functions.

20.5.1 Optimizing Partial Applications

Suppose weare compiling the supercombinator

fx = + (NEG x)

Herethe result returnedbyfis a function which adds (NEG x) to its argument.
With our present compilation schemes wewill get

Ril + (NEG x) Jpd (where p=[x=1], d=1)
= PUSH 0; PUSHGLOBAL $NEG; MKAP; PUSHGLOBAL $+; MKAP;

UPDATE 2; POP 1; UNWIND

We cannot apply the R[[ + E1 Ez Jj optimization of the last section, because
the + is only given one argument.
However, the reason we are evaluating (f x) must be to apply it to

something, and whenit is applied to somethingthefirst argumentofthe + will
be evaluated. Hence we could evaluate the first argument straight away,

giving:
Ril + (NEG x) J pd (where p=[x=1], d=1)
= PUSH 0; NEG; PUSHGLOBAL $+; MKAP;
UPDATE 2; POP 1; UNWIND

This is better because it does not construct the graph for (GSNEG x). The
general rule is

RE +E pd
= Eff E ]] p d; PUSHGLOBAL $+; MKAP:
UPDATE (d+1); POP d; UNWIND
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This optimization applies to all built-in functions with more than one
argument which evaluatetheir first argument. In particular, this tmeans +,IF

and their analogs —, *, etc., and CASE.

In fact, we can do rather better for IF. Consider the function (IF TRUE). It
behavesasfollows:

(IF TRUE) E; Eo — E;

that is, it behaves exactly like the K combinator. What does(IF FALSE)

behave like? Suppose we generalize the K combinator to a family of
combinators K-n-i (where i=n), which have the semantic rule

K-n-i E; ... Ey... En = Ej

Then is the same as K-2-1, and (IF FALSE) behaveslike K-2-2. Now we can
use the followingrule for IF:

RE FENpd
= Ef[ E J] p d; JFALSEL;

PUSHGLOBAL $K-2-1; UPDATE( d+1); POP d; UNWIND
LABEL L;

PUSHGLOBAL $K-2-2; UPDATE( d+1); POP d; UNWIND

This is better than the previous rule, both because it does not construct the

graph of(IF E), and because it does not subsequently need to inspect the
graphof(IF E). A precisely similar optimization applies to CASE.
The only exception to the statementthat the (f x) will eventually be applied

to something is when the result of the whole program is the function (f x),

which we ignore because most implementations insist that the result of the

program is a data object.
The modifications required to the A, RS, E and ES schemes to achieve

these optimizations are given in the next section. The rule for + is omitted,
since it is subsumedby the optimization describedin the next section. The rule
for IF is put in the RS and schemes to maximizeits effectiveness.

20.5.2 Using GlobalStrictness Information

The optimizations of the previous section rely on special information
concerning the built-in functions. Consider, however, the supercombinators

$Fxy=+yx

$G x = $F (* x x) (+ X x)

Wecan seeat a glance that $F will certainly evaluate both its arguments (i.e.

$F is strict in both arguments), so when compiling $G we could use E to
compile the (* x x) andthe (+ x x). Unfortunately, this informationis not so

obviousto the compiler.
Similar remarks applyto let-expressions; for example, when evaluating the

expression

let x = E in (+ x 1)
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it is clear that x will be evaluated, so we could compile E with the E scheme.
Letrecs are more problematic, since there is a danger that we might try to
evaluate a HOLE,so wewill not attempt to optimize them.
We would therefore like to do two things:

(i) We would like to work out which functions are sure to need the values of
their arguments. This process of inferring which functions arestrict is
called strictness analysis and is treated in detail in Chapter 22. We can
then use such strictness information to annotate applications of strict
functions. For example, we could annotate the body of$G thus:

$G x = $F! (* x x) 1 (+ x x)

where we use aninfix ‘!’ to indicate strict application. We can annotate
let-expressions in a similar way. For example, we could use a ! after the
variable name:

let x! = E in (+ x 1)

(ii) Secondly, we need to modify our compilation schemes to take advantage
of this new information.

Thelatter task is rather easy. We need only to add a clause to the ES scheme to

Say

RSE E:! Ee Jp dn = Eff Ee J p d; RSE E: Jf p (d+1) (n+1)

and makea similar modification to the scheme. This gives the effect of
call-by-value, in which the argument E2is evaluated before the function E; is
applied to it. A similar modification applies to the handling oflet-expressions
in R and E. All of these modifications are given in Figure 20.8, together with

 

RALitx=E,mE pd =EE Ex dpd; ALE J dx=d+1) (+1)
Eflettxi=ExmEDpd -ERER dpa

EE E Jj plx=d+1] (d+1); SLIDE 1
RSE FE Jpdn = E— E J pd; JFALSE L;

RSE $K-2-1 Jp dn;
LABELL;

RSI $K-2-2 Jpdn
ASE E:1 | Eo pdn = EE Eo J pd; RSE E1 J p (d+1) (n+1)
ESE IFE pd = EE E J op d; JFALSE L1;

ESE $K-2-1 J p dn; JUMP L2
LABEL L1;

ESE $K-2-2 J p dn;
LABEL L2

ESE E1!E2dpdn = Eff E2 J] p d; ESE E: J] p (d+1) (n+1)   
Figure 20.8 Modificationsto R, RS, E and ESto evaluate arguments
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those from the previous section. Notice that partial applications of + (andits

analogs) will be annotated with ! by the strictness analyzer, so this subsumes
the explicit treatment of such partial applications given in the previous
section.

20.6 Avoiding EVALs

EVALis perhaps the mostcostly instruction in the G-machineinstructionset,
and optimizations that eliminate uses of EVAL are extremely worthwhile. We
will discuss two ways of avoiding EVALin this section.

20.6.1 Avoiding Re-evaluation in a Function Body

Consider compiling an expression such as (+ x x) with the Escheme. Wewill
get

Eff +xx pd
= PUSH (d — p x); EVAL; PUSH (d + 1 — p x); EVAL; ADD

This is wasteful, because the second EVALis not necessary—x has already been

evaluated once, soit will now be in WHNF. We would prefer to generate

PUSH (d — p x); EVAL; PUSH (d + 1 — p x); ADD

This can be achieved by keeping track of which variables have been
evaluated, and checking for this when performing the Eff x ]] case. Froma
conceptual point of view this is very simple, but to write it into our com-
pilation schemes rather destroys their simple structure, so we will content
ourselves with a description of how to doit!

It turns out that it is convenient to keep track of which stack locations are
evaluated, rather than which variables are evaluated. As far as this section

goesthereis no benefit from this generalization, but wewill need it in the next
section. All that is required is to add an extra parameter, o, to each

compilation scheme, which gives context informationin a similar mannertop.
o is a function which, given an offset from the base of the current context,

returnsa flag indicating whetheror not that stack location is evaluated.
Furthermore, each compilation scheme must now return two pieces of

information, the code it generates (as before) and a new o. The new o
returned by a schemeis the same as the o which waspassedto it, except that
the flags on someofthe stack locations have beenset to indicate that they have
been evaluated.

20.6.2 Using GlobalStrictness Information

Consider the supercombinatordefinition
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$F x = IF (= x 0) O (SF (-— x 1))

$F is clearly strict in x, and the strictness analyzer can spot this. So the
definition as annotated by the strictness analyzer would looklikethis:

$F x = IF 1 (=!x!0)0 GFI(-1 x! 1)

Hence, when$Fis called recursively, its argument is known to be already

evaluated. However, $F does not know thatthis is always true, so it will go

ahead and call EVAL on its parameter during the calculation of (= x 0).
What we would like is another supercombinator $F_NOEVAL which

behaves just like $F except that it assumes that its argument is evaluated
already. Then we could use $F_NOEVALfor the recursive call, and avoid the
redundantevaluationofx.
$F_NOEVALis so like $F thatit can share muchofits code. All that is needed

is to move the EVAL of x to the beginning of the code for $F, and then
$F_NOEVAL can be implemented as an entry point to $F just after this
EvALuation. This suggests that

the code for a supercombinator should begin with EVALs for each argument
in which the supercombinatorisstrict.

This requires that:

(i) The strictness analyzer annotates supercombinatordefinitions as well as
application nodes with strictness information. For example, $F might be
annotated:

$Fix=...

to indicate that $F wasstrict in x.
(ii) The information that certain argumentshad been evaluated is keptin the

context (a0) using the mechanism outlined in the previous section.
Having evaluatedx at the beginning, we do not wantto re-evaluateit!

(iii) The NOEVALentry of a function is used when we knowthatall its strict
arguments are evaluated. The appropriate version of the function can be
selected by RS or ES (in the general case), depending on whetherits
arguments are known to be evaluated. On entry to the function, the
argumentsare held in the (anonymous) top few stack locations, whichis
why o describes which stack locations are evaluated (rather than which
variables are evaluated). Note: this optimization applies to built-in
functionsas well.

Experience with the Ponder compiler suggests that this optimization turns out
to be extremely worthwhile in practice.
A further nice benefitis that, since many EVALs are movedto the beginning

ofthe code for a function, the main body of codeis less broken up with EVALs
(which, remember,are tiresome — see Section 19.3.3).
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20.7 Avoiding Repeated Unwinding

Sometimesan application node is known not to be the root of a redex, but
because this informationis not recorded wewill unwindit every time we EVAL
it, only to find that it is already in WHNF.If this information were presentin
the application node, EVAL would see this and return immediately (as it does
for integers, for example) rather than beginning an unwind.

This optimization only becomes important whenstrictness analysis is being
used, because then functions may be EVALuated whentheyare passedas strict
arguments. Withoutstrictness analysis, functions are only evaluated when

they are applied.

Wecan incorporate the information that an application nodeis in WHNF
rathereasily. All that is required is an extra tag AP-WHNF, which replaces the
APtag on application nodes which are knownto be in WHNF(i.e. irreducible
at the top level). If case analysis is implemented as outlined in Section 19.4,
then the EVAL entry of AP-WHNF’s entry table will be the sameasthat for
integers; that is, an immediate return to the caller. This is much faster than
UNWINDing and then returning when the function at the tip of the spineis
found to have too few arguments.
There are two waysin which an application node can be given an AP-WHNF

tag:

(i) At compile-time, when the C schemeis compiling the application of a
known function to too few arguments. The required modification is
shown in Figure 20.9. The condition in curly braces meansthat the top
application node of the graph is known to be in WHNF. The lower
vertebraewill also be so identified by the recursivecall to C.
 

Ch fE,...En Bed {where fisa global of arity > n}
= Cl En 3 pd; Cl f Ei ... En-1 9 p (d+1); MKAP-WHNE

   
Figure 20.9 Modifications to the Cscheme to use AP-WHNF

Similar optimizations apply to RS and ES, but wewill see a more
elegant way of describing them (and the C modification too)in the next
chapter.

(ii) At run-time, when rearranging the stack before entering a function.
Referring back to Section 18.5.1, all the vertebrae that are below the root

of the redex at the completion ofthe UNWINDinstruction are known to be
in WHNF,since each represents the application of a function to too few
arguments. For example, consider the graph

$@

“d
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UNWINDwill identify the node labelled $ as the root of the redex, andit

follows that the node labelled # is in WHNF,because it represents the

application of + to one argumentonly.
The tag on these vertebrae could therefore be changed to AP-WHNFas

they are removed from the stack. We can formally describe this by
modifying one of the clauses describing the UNWINDinstruction:

<Vo:V3:...:ViK:S, Gilvo=FUN k C , UNWIND:[], D>

Vi=AP vi-1 nm, (1Sisk)
=> <yiNa:.. 22kVK:S, G[vi=AP-WHNF vi-+ m, (1sisk)], C, D>

For a sequential implementation this modification would makethe stack
rearrangement take longer, since the tags ofall the vertebrae have to be

changed. Whetherit is worth the extra effort depends on the balance
betweenthis cost and the benefits arising from faster EVALs.

20.8 Performing Some EagerEvaluation

Undercertain circumstanceswe maywish to perform a reduction even though
a completely lazy implementation would postponeit. Consider compiling the
expression (CONS E; E2) with theC scheme:

Cf[ CONS E: Ez] pd ;
= Cf Eo 9 pd; Cf[ E; 9] p (d+1); PUSHGLOBAL $SCONS; MKAP; MKAP

Butit is clear that when (and if) evaluated, the expression (CONS E; Ez)
will simply return a CONScell, with Cf[[ E; JJ in one branch andCf[ E2 Jin

the other. So it would be muchbetterto constructit directly, with the code:

Cl[ CONS E; Es pd
= Cl Eo Bp d; Ch Es 9 p (d+1); CONS

The codeis shorter and fewercells are allocated, so we winall round (despite
being less lazy). We can achieve this optimization simply by adding the above
tule to the C compilation scheme.

If we have the information described in the previous section,telling which
variables have been evaluated, we can perform somefurther optimizations to
C. C is used when weare not sure if an expression will be evaluated or not.
However, consider compiling (+ x 3) with the C schemein a context wherex

has already been evaluated. Our present schemewill produce

Cf+x3Ipd
= PUSHINT 3; PUSH (d — p x); PUSHGLOBAL $+; MKAP; MKAP

It would be considerably cheaper to generate

Cl +x3] pd {x evaluated}
= PUSHINT 3; PUSH (d — p x); ADD

This risks performing an addition which turns out not to be necessary
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(because the graph constructed by C may be discarded), but on almost any
conceivable machine it would be cheaper to perform the addition than to
construct the graph. The reason we cannotdo this in any old contextis that the

evaluation of x might not terminate; but we can safely perform this
optimization in any context where weare sure thatx is evaluated. Exactly the

sameoptimization can be used for any otherbuilt-in function. For example,

CII HEAD y J pd {y evaluated}
= PUSH (d — p y); HEAD

We wouldalso like to propagate this information upwards. For example,
we wouldlike to arrange that

Cl + (+ x5)y]Ipd {x and y evaluated }
= PUSH (d — p y); PUSHINT 5; PUSH (d — p x); ADD; ADD

To achieve this, we would simply need C to return an extra piece of
information to say when its result was knownto be evaluated. Butthis is

already available to us in the form of o, which records which stack locations

are evaluated, so the optimizationis easily incorporated.
Theoptimizationsin this section dependon the relative costs ofperforming

certain built-in operations (for example, addition versus heapcell allocation).
Assuch,they need to be considered carefully with a particular machine in
mind. However, the examples presented here would be worth doing on most
machines. They would not be nearly so attractive if, for example, the +

operator wasan arbitrary precision addition function.

20.9 Manipulating Basic Values

Considerthe following function definition

fx y = +x (+ y 1)

This will compile to

PUSHINT 1; PUSH 2; ADD; PUSH 1; ADD;

UPDATE 3; POP 2; RETURN

In an implementation which uses a boxed representation of integers (see
Section 10.6)the first ADD will

(i) take two integers (y and 1) outof their boxes,
(ii) add them,

(iii) allocate a new box,
(iv) and putthe result in the new box.

The second ADDwill promptly take the result out of the box in orderto add it
to x. Hence,the allocation of the box and the act of putting the intermediate
result in it were wasted.
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Even in an implementation which uses an unboxed representation of
integers some work may haveto be donetostrip off the pointer bits before

adding, and to add the pointerbit afterwards. This is muchless serious than in
the boxed case, but we would like to avoid it even so. For the rest of this

section we will assume a boxed implementation, but everything applies
(though with less weight) to an unboxed implementation.

Theinefficiency outlined above arises when we are manipulating basic
values such asintegers, characters, booleans and so on.A basic value with no

boxis called naked; those enclosedin a box are clothed. Forefficiency reasons

we would like to work with naked basic values wherever possible, only
clothing them when unavoidable.

Webegin by defining explicit instructions to get naked basic values out of

their boxes and to clothe them again. Thusthe instruction GET takes the top
item onthe stack outofits box, leaving theresult on top ofthe stack as anaked
basic value. The instruction MKINT wraps an integer box aroundthe top item
on the stack. (In an unboxed implementation, these instructions would strip
off and stick on the pointerbit. A trick that may help is to use a zero pointerbit
for atoms, so that often nothing need be doneto stick on the pointerbit.)

Wethen redefine the instructions which operate on basic values, such as

ADD,so that they operate on naked bit patterns. ADD will now take the top
two wordsonthestack, treat them as 32-bit integers (or whatever), add them
and put the result back on the stack. Clearly this is outside the hygienic world
of graph reduction, but by the time such integers get back into the heap they
will have been nicely boxed.
How,then, canwecompile our programsto use suchinstructions? We begin

- by defining a new compilation schemeB, which is just like E except that it
leaves the result as a naked basic value on the stack. It therefore assumesthat
the result is indeed a basic value (and not a function, or a CONS cell, for

example). We can obtain the B schemebya direct transliteration of the E
scheme (see Figure 20.10, which was prepared by performing minoredits on
Figure 20.2). This assumesthat certain G-code instructions, such as JFALSE,

are altered to expect their arguments as naked basic values onthe stack;this is

discussed in detail below.
The ‘PUSHBASIC ?’ instruction pushes a naked basic value onto the stack,

so oneinstruction suffices for basic valuesof all types. If B does not recognize
the expressionit is compiling, it evaluates it with E and then GETs the basic
value outof its box.

All that remainsis to modify E and R to use B. Theywill use B in all contexts
wherethe result is knownto be a basic value. Figures 20.11 and 20.12 show the
modifications required to the R and E schemes. Notice the way both R and E
use B to compute the conditionof an IF. E uses B to computetheresultsofall
arithmetic operations, followingit with a MKINT to clotheit. Finally, R has an
optimization when the result of the whole supercombinator reduction is
knownto beaninteger. In this case R uses Bto compute the naked integer, and
then uses ‘UPDINT d’ to update the root of the redex with the clothed value.
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BLE pd

Evaluates E, leaving the result on top of the stack as a naked basic value.

BLillpd PUSHBASIC i
BI NEG E Jod
BE + E: Eelipd

BI IF Eo EG: Ee dod

BI E ii p d; NEG

BI Ee J p d; BEE: Ip (d+1); ADD
BIE. Ii p d; JFALSE Lt;

BI E: Jp d; JUMP L2;
LABEL L1;

BE Er Ip d;
LABEL L2

BI let x=E, in E J pd = CE Ex Je dq;
BILE Wj pix=d+1] (d+1); SLIDE 1

BI lerec Din EJ pd = CLetrec[| D jj p’ d’; BE E jp’ d’; SLIDE (d’—d)
where

(o’, d’) = MED Hed
BLE Jpd =EQ E pd, GET (otherwise)  
 

Figure 20.10 The B compilation scheme

 

RALilpd = BI i J p d; UPDINT (d+1); POP d; RETURN
RA NEG E Jpd = BINeG Ede aUPDINT (d+1); POP d; RETURN
Al + FE: Eo pd = BE + E: Eo p

UPDINT (d+1); POPP d: RETURN
RE IF E.E: Epp d = BE Ec J p d; JFALSE L;

REE: Ip d;
LABEL L; RI. Er Ppd

Similar modifications apply to the RS scheme.  
 

Figure 20.11 Modifications to the R schemeto use B

 

E NEG Efipd
EI. + E;, Eoipd

Ef IF &. E: Ee Pod

BIL NEG E jj p d; MKINT

BE + E;: Eo 9 p d; MKINT

BI E.  p Gd; JFALSE L1;
EX E: J p d; JUMP L2;

LABEL L1;

EL E:yoed
LABEL L2

Similar modifications apply to the ES scheme.  
 

Figure 20.12 Modifications to the E scheme to use B

Theextra instructions required are given in Figure 20.13.
The only remaining problem with this optimization concerns garbage

collection. When garbagecollectionis initiated, the garbage collector has to
traverseall the accessible graph, including that only accessible from the stack.
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Note: Redefined instructions are marked with *

GET <n:S, G[n=INT i], GET:C, D> = <i:S, G, C, D>

MKINT <i:S, G, MKINT:C, D> = <n:S, G[n=INT i], C, D>

NEG* <i:S, G, NEG:C, D> = <-i:S, G, C, D>

ADD* <ij:l2:S, G, ADD:C, D> => <i1+i2:S, G, C, D>

JFALSE*  <false:S, G, JFALSE L:...:LABEL L:C, D> = <S, G, C, D>

<true:S, G, JFALSE L:C, D> = <S, G, C, D>

UPDINT <i:nq:...:nk:S, G, UPDINT k:C, D>
=> <ny:...:nk:S, G[nk=INT ij], C, D>  
 

Figure 20.13 G-codeinstructions for basic values

This meansthat the garbage collector needs to know whetheran item in the

stack is a pointer or not. Unfortunately, the stack now contains both naked
and clothed values, and a naked value may be indistinguishable from a

pointer.
Thereare four possible solutions:

(i) Somehow mark naked valueson the stack. This is tantamountto clothing
them.

(ii) Let the garbage collector treat naked basic values as pointers and treat
any structure accidentally accessible from them as in use. This risks the
garbagecollector not recovering somestore. All ‘pointers’ should also be
checkedto see that they point into the heap, in order to avoid memory
protection faults and reducefruitless ‘pointer’ chasing. This method is
successfully used in the SASL system.

(iii) Use two stacks instead of one, a stack V for naked values and the spine

stack S for clothed values.It is easy to decide, for each instruction, which

stack is referred to. The instructions GET and MKINT transfer values
between stacks in either direction. The trouble with this is that we need
yet anotherstack.

(iv) Stack naked values on the dump! This is a clever trick, used by the
Chalmers G-machine.It is based on two premises:

(a) The garbage collector does not need to follow pointers from the
dump,since all accessible store can be marked from the spine stack
(or ratherall the spine stacks which are sitting on top of each other).
Hence nakedvalues on the dump pose no problem.

(b) At the moments when we wantto restore the old stack and code
pointers from the dump,orrefer to the old stack pointer to check
whether the present supercombinator has enough arguments,there
are no nakedbasic values on the dump,
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It turns out, therefore, that we can safely combine the Vand D stacks, and

this seemsaltogether the nicest choice. If it is used then the let andletrec
cases of the B scheme should conclude with POP instead of SLIDE,

because the naked valueis on the dump,notthe § stack.

20.10 Peephole Optimizations to G-code

We now come to someoptimizations which can most easily be regarded as
peephole optimizations to the G-code. A peephole optimizerfits between the
G-code compiler and the code generator. It looks at short consecutive
sequencesof G-codeinstructions, and replaces them by someshorter or more
optimal sequence.

20.10.1 Combining Multiple SLIDEs and MKAPs

Imagine compiling this expression with the C scheme:

let x = E,

in letrec y = Ey
x = E,

in E

The end of the code will be the sequence:

.. SLIDE 2; SLIDE 1

Clearly these can be combinedto thesingle instruction

.. SLIDE 3

This sort of optimizationis exactly what peephole optimizers are for. We may
describe the optimizationlike this:

SLIDE ki; SLIDE ko => (SLIDE ki+ke)

using => to denote the optimization. In a similar way, the C scheme
generates multiple MKAP instructions:

Cl EF: E2Es Hpd
= Cf[ Es ]] p d; Ci E2 Bp (d+1); Cif E: 9] p (d+2); MKAP; MKAP

These MKAP sequences can be combined into an ‘MKAP n’instruction by the
optimization i

MKAP ki; MKAP ke == MKAP (ky-+ka) ‘

where we regard MKAPas equivalent to ‘MKAP 1’.

fa
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tn

C
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le
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20.10.2 Avoiding Redundant EVALs

As remarkedin Section 20.2, we frequently generate redundant EVALs,in the
sequence

PUSHGLOBAL f; EVAL

The EVAL is redundantif f is a built-in function, or a supercombinator of one
or more arguments, butit is necessary if f is a CAF. The peephole optimizer
can easily eliminate the EVAL if it is redundant:

PUSHGLOBAL f; EVAL => PUSHGLOBAL f (if fis nota CAF)

20.10.3 Avoiding Allocating the Rootof the Result

Consider the supercombinator

SF xf=fx

At present wewill generate the following G-codeforit:

PUSH 0; Push x
PUSH 2; ~—s— Pushf
MKAP; Makean application node
UPDATE 3; Updatethe root of the redex
POP 2; Pop parameters
UNWIND; Continue

In an implementation which uses copying for UPDATE this code is rather
wasteful, since it allocates an application cell with MKAP and then
immediately copies it over the root of the redex, thus discarding the
application cell just allocated. It would be better to construct the root ofthe
result directly on top of the root of the redex, thus:

PUSH 0; Push x
PUSH 2; Push f
UPDAP 4; Build application over root
POP 2; Pop parameters
UNWIND; Continue

The ‘UPDAP 4’ instruction takes the top two items on the stack and, using
them, builds an application node on top of the root of the redex, whose
position in the stack is four from the top. We could modify the RS scheme to
incorporate this optimization by using the followingrule:

RSI f J] p d n = PUSHGLOBAL f; MKAP (n—1);
UPDAP (d—n+2); POP (d—n); UNWIND

and a similar one for RS[[ x J]. Just the same optimization can be made when

the result of the function is a CONS cell (using yet another instruction



362 Chapter20 Optimizations to the G-machine
 

UPDCONS). Furthermore the optimization can also be applied to the updates
performed by CLetrec.
We could describe the optimization by modifying the RS and ClLewec

compilation schemes,in the mannerindicated above, to generate UPDAP and
UPDCONSinstructions. This description has two disadvantages:

(i) It complicates the compilation schemes. In particular, we will have to
introduce a brand new schemeto handle the top level ofCLetrec (try it!).

(ii) It is quite a low-level optimization to be allowed to clutter up the
compilation schemes.

Fortunately, we can describe it in quite a different way. Allwe are really doing
is performing the optimization

MKAP n; UPDATE d => MKAP (n-1); UPDAP (d+1)

which is precisely the sort of thing that a peephole optimizer could spot.
Accordingly, we choose to implementthe optimization in the code generator.
Thereis also the related optimization

CONS n; UPDATE d => CONS (n—1); UPDCONS (d+1)

Notice that this description automatically catches cases generated by
Cletrec as well as R, and will also optimize the definition of the $CONSbuilt-in
function (Section 18.8.2).

20.10.4 Unpacking Structured Objects

The compilation of case-expressions, using the optimization described in
Section 6.3.3, resulted in the frequent occurrence of expressions such as

let V1 = SEL-SUM-k-1 v

Ve= SEL-SUM-k-k v
in E

where v, vi, ..., Vk are variables. If this is compiled by the R schemein a
context in whichv is evaluated, normally by an enclosing CASE function, we
will get the following G-code:

PUSH (d — p v); SELSUM k,1;

PUSH (d+k-1 — p v); SELSUM kk;RIE E Tp’ (+k)
where p’ = p[vi=d+1,...,va=d+k]. (We are assuming here that the
optimization which avoids repeated EVALs described in Section 20.6 is
implemented,so that no EVALs precede the SELSUMinstructions; andthat the
optimization which performs eager evaluation of applications of SEL-SUM-«-i
described in Section 20.8 is also implemented.)
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This sequence of PUSH/SELSUM instructions simply unpacks v onto the
stack, and hence is readily optimized to:

PUSH (d ~— p v); UNPACKSUM k;

where ‘UNPACKSUM k’ is a new G-codeinstruction, which unpacks the top
elementon the stack into its k components, placing them on top of the stack.
As before, the optimization can be performed by a peephole optimizer.
Everything in this section applies analogously to product types, reading

SEL-k-i and SELPRODUCT k,i instead of SEL-SUM-k-i and SELSUM k,i.

20.11 Pattern-matching Revisited

The UNPACKpeephole optimization presented aboveputs the finishing touch
to our strategy for compiling pattern-matching. A function which uses
pattern-matching is now compiled to

(1) acode sequence to evaluate the argument;
(ii) a multi-way jump (CASEJUMP), based on the structure tag of the

argument(see Section 18.8.4);.
(iii) an unpack instruction, which takes the structure apart, and puts its

components on the stack,
(iv) a code sequence to evaluate the appropriate right-hand side of the

function, in the correct context (namely, free variables accessible in the
stack, and the components of the structure ontop of the stack).

It is hard to see how pattern-matching can be compiled moreefficiently!
Notice how important the optimization of case-expressions presented in

Section 6.3.3 has proved. There we showed how to transform a case-
expression into a let-expression, without using a lambda abstraction. If the
lambda abstraction had been present, it would have been lambda-lifted, and
we would have generated a separate supercombinator for each right-hand
side of a pattern-matching definition. As it is, we generate a single
supercombinatorwith far more efficient code.

20.12 Summary

In this chapter we have developed a long sequence of optimizations to the
basic G-machine.Itis the possibility ofmaking such optimizations that makes
the G-machine strategy so attractive. What started as an optimization to
improve the efficiency of template instantiation has turned out to offer many
avenues for improved performance. Figures 20.14 and 20.15 give the final
versions of the R and RS schemes, combining all our modifications, while

. Figures 20.16 and 20.17 give the final versions of the E and ES schemes.



 

REE Ipd

generates code to apply a supercombinatortoits d arguments.

RLidpd = BIL i Ip d; UPDINT (d+1); POP d; RETURN
AL flpd = Ef f ]] p d; UPDATE (d+1); POP d; UNWIND
REx Ipd = Ell x ]] p d; UPDATE (d+1); POP d; UNWIND
AL NEG E J pd BI NEG E Jj p d; UPDINT (d+1); POP d; RETURN|
AL + E: Eolpd BE + E; Eo Ip d;

UPDINT (d+1); POP d; RETURN

RE CONS E; Eo pd = Ef CONS &; Eolpd;
UPDATE(d+1); POP d; RETURN

AE HEAD E pd = Ef HEAD E J] p d;
UPDATE (d+1); POP d; RETURN

AE IF Eo Ey: Er J pd = BIL Ec J] p d; JFALSE L;

RAE E: J p d;
LABEL L;

ALE: pd

ASE E1 E2 Ip d 0;

Ch Ex J p d; AL E J] p{x=d+1] (d+1)
Eq Ex J ep d; A E 9) p{x=d+1] (d+1)
CLetrec[ D J] p’ 0’; RAE E Up’ a’
where
(o’, d’) = XP DI pad

REE: Eelpdad

A let x=E, in E Jp d
Al let xl=E, in E J pd
A letrec D in E J pa

 

Figure 20.14 Thefinal R scheme
 

 
ASE EE] pdn

completes a supercombinator reduction, in which the top n ribs of the
body havealready been puton thestack.
RS constructs instances of the ribs of E, putting them on the stack, and

then completes the reduction in the same wayas R.

ASE fpdn = PUSHGLOBAL f; MKAP n;

UPDATE (d—n+1); POP (d—n); UNWIND

ASE x Jp dn = PUSH (d — p x); MIKAP n;
UPDATE (d—n+1); POP (d—n); UNWIND

ASE HEAD E J pdn = Ef E J p d; HEAD; MKAP n;

UPDATE (d—n+1); POP (d—n); UNWIND

ASE IFE- EE; Jpdn = BE Ee  p d; JFALSE L;
RSE E: J p dn;

LABEL L;
RSE Er Tp dn

BEE Ip G; JFALSE L;
ASI $K-2-1 J] p do;

RSE IF EY] pdn

LABEL L;

RSE $K-2-2 J p dn

ASE E; Eo pdn = Cf Ee I p d; ASE E1 I p (d+1) (n+)

ASE Ei | Eo dpdn = Ef Eo I] p d; ASE E; I p (d+1) (+t)

Note: RS cannot encountera let orletrec.   
Figure 20.15 The final RS scheme



 

ET Ellpd

evaluates E, leaving the result on top ofthe stack.

E[idpd = PUSHINT |
EI fl pd = PUSHGLOBALf; EVAL
E[ x pd = PUSH (d — p x); EVAL

E[ NEG E]ipd = BIl NEG E 9] p d; MKINT
Ef + E: Eoipd BE + E: E2 Wi p d; MKINT

Ell CONS E; E2 I pd = Cll Eo I p d; Cl E: J] p (d+1); CONS
Ef HEAD E I pd = Ef[ E J] p d; HEAD; EVAL

Ef IF Eo &: Ei J pd BIL Ec J p d; JFALSE L1;
Ef] E1 9 p d; JUMP L2;

LABEL L1;
Ef Ei dp d;

LABEL L2

Ef E: E2ipd = ESE E: Eo dp do

Ef[ let x=Ex in E J pd = Cf Ex ] pd;
El E 9 p{x=d+1] (d+1); SLIDE 1

Ef let d=E,inE pd = EL Ex dpa;
El E Wf p{x-d+1] (d+1); SLIDE 1

Ef[ letrec Din E J pd = CLetrecf{ D 9 p' d’; Ell E i p' d’; SLIDE (d’—d)
where

(o’, d’) = Xf Di pd
 

Figure 20.16 The final E compilation scheme
 

 
ESf E]ipdn

completes the evaluation of an expression, the top n ribs of which have
already been put on the stack.
ES constructs instances ofthe ribs of E, putting them on the stack, and

then completes the evaluation in the same wayas E.

ESiflpdn = PUSHGLOBAL f, MKAP n; EVAL

ES[ x Hedn = PUSH. d — p x); MKAP n; EVAL

ES HEAD E Tpdn = Ef] E 9] p d; HEAD; MKAP n; EVAL

ESf IF EG: Er pdn = BI Ec  p d; JFALSE L1;
ES E: 7 ep d n; JUMP L2,;

LABEL L1;

ESf Er dp do;
LABEL L2

ESf IF EJpd = BIL E lp d; JFALSELI;
ES $K-2-1 9} p dn; JUMP L2

LABEL L1;

ES[[ $K-2-2 ] p dn;
LABEL L2

ES[ E: E2pdn = Cf Ee ] p d; ES E; 9 p (d+1) (n+1)

ESf E: !|E2qpdn = Ef Eo 9 p d; ES— E: Wj p (d+1) (n+1)

Note: ES cannot encountera let or letrec.

 

Figure 20.17 The final ES scheme
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OPTIMIZING GENERALIZED
TAIL CALLS
Simon L. Peyton Jones and Thomas Johnsson

Suppose we are compiling the body of a supercombinator such as

$F x y = W E; Eo Es

whereWis either a supercombinator, ora built-in function,or a variable (only
x or y would be possible in this case). We will produce G-code to build an
instance of the body of $F. However, at the end of this code is an UNWIND
instruction which will unwind the spine of the instance onto the stack. When
we then perform the W-reduction,all the newly allocated vertebrae below the
root of the W-redex will immediately become garbage(note:this is actually a
slight overgeneralization).
This chapter is devoted to techniques designed to avoid allocating

vertebrae that are going to become garbagestraight away. During the chapter

wewill use the $F supercombinator aboveas a running example.
Suppose that W was a supercombinatororbuilt-in function. Then the code

for $F would begin as follows:

CI Es ] p d;

Cll E2 I p (d+);
Ci[ E; I] p (d+2);
PUSHGLOBAL W;

(IfW wasa variable, the only differenceis that the last instruction would be a
PUSHinstead of a PUSHGLOBAL.) This puts all the ribs on the stack, but does
not construct any vertebrae (which is done subsequently with an ‘MKAP 3’
instruction). After this sequence has executed, the current context lookslike
Figure 21.1 (rememberthatin all our pictures the stack grows downwards).In

367
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this figure, all the graph of the $F-redex has been omitted except the root,
whichis always an application node.

Atthis point there are now a numberofcases to consider, dependingon the
nature of W. Before we follow the main thread of this section we will treat an
importantspecial case, that ofa tail call. This special case will be subsumed by
the subsequent more generaltreatment,butit is an easier introduction.

21.1 Tail Calls

A tail call is the case when the result of one function is given by a call to
another function with exactly the right numberofarguments supplied. In our
example, the call to W is a tail call if W is a supercombinator which takes
exactly three arguments.

Underthese circumstances $F’s body (W E; E2 Es)is itself a redex— in fact

it will be the next redex to be reduced. Furthermore, the node that will be
updatedbythe result of the ensuing W-reductionis the same nodethatwill be
updated by the result of the $F-reduction. On entry to the code for the
supercombinator W the current context will look like Figure 21.2, where the

‘Root of $F-redex’ is the same as in Figure 21.1 (it is now the root of the
W-redex).
One way to move from Figure 21.1 to Figure 21.2 would be to complete

construction of the graph of (W E, Ez Es) in the heap, update the root ofthe
redex with the result, pop the parameters of $F and execute UNWIND. This
would unwind thespine ontothe stack, findW at the tip, rearrange the stack to
look like Figure 21.2 andfinally enter the code for W. This is just what the
compilation algorithm we have developed in Chapters 18~20 will do, butit is
plain thatthis is a very stupid way to proceed.

 

Rootof$F-redex ———_» @

2nd arg of$F (y) / \

Ist arg of $F (x)

Es

=

Ey

Ww

 
  
 

' Figure 21.1 Current context of $F after ribs have been built
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Rootof$F-redex ————» @.

Es /\
Eo

E;

 

  
 

Figure 21.2 Current context on entry to three-argument supercombinatorW

A much moreefficient way to get from Figure 21.1 to Figure 21.2 is simply
to slide the top four elements of the stack down, squeezing out the two
arguments to $F. Wewritethis instruction

SQUEEZE 4 2

meaning ‘slide down the top four elements of the stack, squeezing out the two
elements below them’. The rule for SQUEEZE is

<n4:.. .2Nk:Ma:...:ma:S, G, SQUEEZE k d:C, D>

=> <ny:...:nk:S, G, C, D>

After doing this we wantto enter the code for W,so we invent another new
instruction

JFUN

which expects to find a function on top ofthe stack, pops it and enters its code
(we omit a formal definition of JFUN as it will be subsumed by the next
section). The complete code for $F would now read:

CI Es Ii p d;
Ci[ E2 Il p (d+1);
CL E; Il p (d+2);
PUSHGLOBAL W;

SQUEEZE 4 2; JFUN

JFUN should, of course, enter the code after the arity check and stack
rearrangement;thatis, it should enter at the EXECentry (see Section 19.4.3).
This code makes a numberofsavings over our previous attempts:

(i) the vertebrae of the result of the $F-reduction are neverallocatedatall;
(ii) no update needtake placeat the end ofthe $F code because the code for
Wwill update the same node;
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(iii) the SQUEEZE takes the place of POPin getting rid of the parameters to

$F;

(iv) no UNWIND need take place because it is already done;
(v) no check need be madethatW has enough parameters, since we know at

compile-time that it does.

These benefits only obtain, however,if

(i) we know whatW is;
(ii) it takes just the right numberof arguments.

In the ensuing section wewilllift these restrictions.
Tail calls have been well studied in other contexts, and we now discuss

briefly how our new implementation compares with others.
The optimizingoftail calls has been astandard feature in Lisp compilersfor

a long time (see Steele [1977], for example). Such compilers exploit the fact
that a tail call to a functionW can be replaced byajump to W,thus saving the
allocation of a new stack frame. A particular effect of this optimization is that
tail recursion (which normally consumes a stack frame for each call) is
transformedinto iteration (which operates in constant space).

It is, however, a property of graph reduction that this optimization is
performed automatically [Turner, 1979]! Even the first implementation of
Chapter 18 performstail recursion in constant stack space, and all our
optimizations preserve this property. The reasonforthis is that at the end ofa
code sequence generated by the R scheme we used UNWIND to continue
evaluation on the samestack, rather than using EVAL which creates a new
stack. (Note: we differ here from the G-machine papers, which use EVALat
the end of R,at least to begin with.)

While even simple graph reduction implementations can dotail recursionin
constant stack space, theystill consume heap. Very manyofthe heapcells
thus consumedare discarded very soon after they are allocated, anditis the
purposeof the optimization we have described to avoid this turnover of heap
cells.
We make onefinal observation before proceeding to a more general

treatmentof the spine. Consider the function

$H x = IF (= x 0) ($G 3 x) (+ 1 ($H (— x 1)))

where$Gis a supercombinator which takes two arguments. Thecall to $G can
properly be considered tail call, since once the decision has been taken to
take the ‘then’ branchoftheIF, the result of the $H reductionis just ($G 3 x).

Hence wewouldlikeourtail call optimizations to propagate into the branches
ofan IF.
Complete compilation schemes fortail calls are not given since they are an

easy consequence of the next section.



Section 21.2 Generalizing tail calls 371
 

21.2 Generalizing Tail Calls

The optimization of the previous section only applied when W was knownat
compile-time to be a supercombinatorofthree arguments. We generalizethis
idea for any W by simply replacing the JFUNinstructionat the end of the code
for $F given in the previous section with a new instruction

DISPATCH 3

The argument3 to DISPATCHgives the numberofribs currently on the stack.
The code for $F would then be

CI Es ]] p d;
Ci[ E2 Il p (d+1);
CH Es Il p (d+2);
PUSHGLOBAL W;

SQUEEZE 4 2; DISPATCH 3

regardless of what W is (except that the PUSHGLOBAL would be a PUSH ifW
was a variable). For the present wewill not perform any compile-time analysis
ofW; instead, wewill simply generate the above code for $F and leaveit to the

DISPATCHinstruction to sort things out at run-time.

 

Root of $F-redex ———> r:@

n3:E3 / \

No:Eo

ny:E,

f:W

 

   
Figure 21.3 Currentcontexton entry to the DISPATCH instruction

Figure 21.3 shows the current context at the moment the DISPATCH
instruction is executed. We annotate the nodes with names using a colon to
makeit easier to follow the rules for DISPATCH. For example,the root of the

$F-redex will be r in the rules for DISPATCH.
When the DISPATCH 3 instruction is executed it has to perform case

analysis on the function which is on top of the stack. There are several
possibilities:

(i) Wis an application node;
(ii) W is a supercombinator of zero arguments;
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(iii) W is a function (supercombinator or built-in) of exactly three
arguments(this is the tail call case);

(iv) W is a function (supercombinator or built-in) of less than three
arguments;

(v) W is a function (supercombinator or built-in) of more than three
arguments.

Wehandlethese cases separately im the succeeding sections. Since the built-in
functions have G-code sequences just like supercombinators, we will not
distinguish supercombinators from built-in functions in the following.

In discussing the execution of the DISPATCH instruction, the ground rules

are:

(i) The current context looks like Figure 21.3 on entry to the DISPATCH
instruction.

(ii) The execution of the DISPATCHinstruction mustbe precisely equivalent
to (though perhaps moreefficient than) the following steps:

(a) construct the spine in the heap from theribs on the stack;
(b) update the root of the redex (at the bottom of the current context)

with the spine thus constructed;
(c) UNWIND

21.2.1 Wis an Application Node

If W is an application node, then (unless DISPATCH looks inside it, which
seems rather complicated) we know nothing about how many arguments W
takes. Therefore we take the easy wayout:

(i) construct the spine of the body of $F;
(ii) update the root of the $F-redex;
(iti) UNWIND.

We can, however, make one optimization. Instead ofconstructing the spine
in the heap and then unwindingit back onto the stack, we can perform thefirst
part of the UNWINDas weconstruct the spine. When DISPATCHhas donethis,
the context lookslike:

 

 

Root of $F-redex ———»- r: @ 

 

y V2;@ N3:E3 

 

> vi:@ Nn2:E2 

 

ym £:W  n1:E;       
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Now DISPATCH behavesjust like UNWIND. Wecan formalize this transition
with the rule

<f:niina:...:mcr:S, G[f=AP m1 mz], DISPATCH k:[], D>

=> <f:vyive:...tve-ir:S, Gfvi=AP f ni , UNWIND:[], D>
Vi=AP vi-1 mi, (1<i<k)
r=AP vi-1 Mk

Noder is the root of the current redex in this rule and the other DISPATCH
rules, and nodesv; are vertebrae nodes. This seemslike quite a lot for one
instruction to do, but the actual operations involved are quite simple.

Notice particularly that this would be a safe implementation of DISPATCH
regardless of what W is, because it makes no assumptions about W. An
implementation could therefore use this rule at first for all Ws and later be
refined for efficiency. We have expressed the ule as specific to application
nodes because we want to give other more efficient implementations of
DISPATCHfor specialcases.

21.2.2 Wis a Supercombinator of Zero Arguments
If W is a supercombinator of zero arguments We cannot improve on the
previous case, so DISPATCH should behave in exactly the same wayas ifWwas
an application node.

21.2.3 Wis a Function of Three Arguments

If W is a function of three arguments then we havethetail call case, and

DISPATCH can simply enter the code for W. We can express this with the
followingrule:

<f:S, G[f=FUN k C], DISPATCH k:[}, D>
=> <S, G, C, D>

The justification for this was given in the section on tail calls. The code for the
function should be entered after the arity check, since we know that it has
enough arguments. This is the EXEC entry of the function (see Section
19.4.3).

21.2.4 Wis a Function of Less Than Three Arguments

If W is a function of less than three arguments thenpart of the bodyof$F will
be the next redex to be reduced.
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Suppose W takes two arguments. Then we wantto create a new current
context in whichWwill execute, with its two arguments on top ofthe stack and

a pointer to the root of the W-redex below them. We can achieve this by
constructing only the top part of the spine of the body of $F. Here is what the
stack looks like just before DISPATCHenters the code for W:

 

    

 

Root of $F-redex. ———> "e
\

Root of W-redex —»v2:HOLE ng:E3

ne:Eo

ny:E,y   
 

The context for the W-reduction consists of the top three elements on the
stack. The HOLE mustbe allocated to receive the result of the W-reduction.
Hereisthe formalrule:

<f:ngin2:.. .:nkr:S, G[f=FUN a C], DISPATCH k:[], D>

{a<k} = <a!...cMaiVal.. .cVk-a0:S, “eae f Cc, D>

VEAP vi-a m, (a<i<k)
r=AP Ve-1 Nk

21.2.5 Wis a Function of More Than Three Arguments

IfW is a function of more than three arguments, the body of $F is in WHNF,

and we must updatethe rootofthe $F-redexto reflect this fact, since it maybe
shared. This involves constructing the spine in the heap as we did forthe case
when W was an application node.
However, the next thing that will happen is an attempt to reduce the

application of W. Only if there are enough arguments in the stack will the
reduction take place. This gives us the clue to what DISPATCH should do.
Having constructed the spine and updated the root of the $F-redex
DISPATCH should test the depth of the stack. If there will not be enough
arguments for W to reduce then evaluation is complete and DISPATCH can
initiate a RETURN. If there are enough arguments then DISPATCH can.
rearrange the stack ready for W and enter W.
Suppose that W takes four arguments, and that at the beginning of the:

DISPATCHthestack lookslikethis: 7
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Root of W-redex ———> V4:@

Root of $F-redex> r:@  n4:E4

n3:E3

N2:Eo

ny:E;

f:W   
 

This is just an augmented version of Figure 21.3 showing a stack element
below the context in which $F executes. In this case we want DISPATCH to
rearrange the stack to:

 

Root of W-redex ——-——3> v4:

n4:E4 r: n4:E4

ng:E3 v2:@ 1n3:E3

Nna:Ee vi:@ \etEe

ny:E; f:W ony:E;

 

  
 

Now the root of the $F-redex has been correctly updated, and a new context

has been set up ready to enter W. The occurrences of E;-E, are shared, of
course. Notice that E;, E2 and E3 have remained unchanged in the same
positions in the stack (which conveniently savessliding them around).

Here,then, are the two rules for DISPATCH which coverthis case. Thefirst
covers the case when there are not enough arguments for the function to
reduce, so evaluation is complete and a return is madeto thecaller.

<fing:na:.. metVkes:.. cva:[], G{f=FUN a C], DISPATCH k:(], (S,C'):D>

{k<d<a} = <va:S, G[vi=AP-WHNFf nz , ©’, D>
Vi=AP-WHNF vi-1 ni, (1<i<k)
r =AP-WHNF vVe-3 nk

in this rule, k is the argument to DISPATCH,a is the arity ofthe function on top
of the stack, and d is the number of arguments available. Notice that the
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vertebrae v;, ..., Vk-1are known to be in WHNF, so we can construct them as

AP-WHNFnodes.
The secondrule covers the case when there are enough arguments, and the

rearrangement depicted in the previous diagram takes place, followed by a
jumpto the codeofthe function.

<P:gmat. . MEV. . VaS,

Gj] f=FUN a C »DISPATCH k:[], D>

Ve+1=AP 6 kes
Vi=AP vi-1 ni, (Kt+1<isa)

{k<a} => <MyiMoa:.. .:MMea. . 2aVai,
G [v,=AP-WHNEFf n, ,C, D>

Vi=AP-WHNF vi-i mi, (1<i<k)

r=AP-WHNF vy-1 Nx

21.3 Compilation Using DISPATCH

In this section we discuss the compilation schemes and code generation
necessary to use the DISPATCH instruction.

21.3.1 Compilation Schemes for DISPATCH

It is rather simple to compile code to use the DISPATCH instruction, by
replacing two rules in the RS scheme(Figure 21.4). This is the reason why we
wentto the trouble of developing the RS scheme.

 

ASI x 9 p dn = PUSH (d—p x); SQUEEZE (n+1) (d—n); DISPATCH n
AST f 9 p d n = PUSHGLOBALf, SQUEEZE (n+1) (d—n); DISPATCH n   

Figure 21.4 Modifications to the RS scheme to use DISPATCH

21.3.2 Compile-time Optimization of DISPATCH

So far we have assumed that DISPATCHwill do all its work at run-time. This is
potentially slow, and sometimes we know what W is at compile-time. We can
easily makeuseof this information to improve the code we generate.

All that is needed is for the code generator to watch for the sequence

PUSHGLOBAL $H; SQUEEZE p q; DISPATCH k

Nowthe code generator can do muchofthe case analysis on $H that would be
done at run-time. For example, it may observe that $H takes exactly k

arguments, in which case we havea tail call and can generate code to jump
directly to the code of $H. This would achieve precisely the effect we obtained
in the section ontail calls. Such ajump should, ofcourse, be to the EXECentry
of the function, after the arity check and stack rearrangement.

In particular cases we can do even better. For example,

PUSHGLOBAL $CONS; SQUEEZE 3 q; DISPATCH 2
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can be optimized to

CONS; UPDATE (q+1); POP gq; RETURN

This corresponds precisely to the CONS optimization in the R scheme,, but
moved to a peephole optimization in the code generator. All the special cases
in R can be moved to the code generator in this way, but this loses
opportunities to use B, so in practice we might wish to use both methods.

Thedifficult case is when we are confronted with

PUSH n; SQUEEZE p q; DISPATCH k

(that is, a PUSH of a variable). In this case the code generator can do no

compile-time case analysis, so the case analysis must be done at run-time.
Using the case analysis technique outlined in Chapter 19, we would then add a
DISPATCH entry to each tag’s entry table. The VAX target code for

‘DISPATCH 3’ mightthen be:

moval 3,r2 kis passed to DISPATCH codein r2

movi (%EP)+,r0 Popfunction into r0
movi (r0),r1 Taginto r1

jmp *O_Dispatch(r1) Case analysis jump

21.4 Optimizing the E Scheme

The optimizations we have applied to theRS scheme can equally be applied to
the ES scheme.Like the RS scheme,the ES scheme constructs the spine ofthe

expression and then unwinds into it, so we might hope to use the same
technology to improveit.

Figure 21.5 gives the required modification. First we ALLOCate a HOLE to
contain the result; for the RS schemethis is already presentin the form of the
root of the redex. Next we build the ribs using ES, pushing them onthestack.
Finally we use a new G-code instruction, CALL,to finish the job. This CALL at
the end, instead of the SQUEEZE-DISPATCH sequence,is the only difference
between RS and ES.

CALL is very like DISPATCH, exceptthatit first saves the stack and code
pointers in the dump(just as EVALis very like UNWIND exceptthatit saves the

 

Modification to the Escheme

EJ E1 Es J p d = ALLOC 1; ESJ E1 Eo Dp do;

Modifications to the ES scheme

ES[| x ] p dn = PUSH (d — p x); CALL n
ES[ f op dn = PUSHGLOBAL f, CALL n   

Figure 21.5 Modifications to the E and schemesto use CALL
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stack and codepointers first). The rule for CALL is therefore rather straight-

forward:

<f:ni:no:...:nkr:S, G, CALL k:C, D>
=> <f:ni:ne:...:nk:r:[], G, DISPATCH k:[], (S,C):D>

Uses of CALL can be optimized by a peephole optimizer in much the same

way as DISPATCH,except that even more opportunities for optimization are

available. For example, the sequence

PUSHGLOBAL $H; CALL k

where $H takes morethan k arguments, can be optimized to

PUSHGLOBAL $H; MKAP k; SLIDE 1

Previously, an EVAL would have taken place at the end of the code sequence

Ef $HE:... Ex pd

(see Figure 20.17). Now, however, the peephole optimizer can spot that no

EVALis needed, which gives an important improvement to the optimizations

of Section 20.6.

21.5 Comparison with Environment-based impiementations

Wehave concentrated in this chapter on avoiding allocating nodes on the

spine wherever possible. To the extent to which we have been successful,

the G-machine now shows a remarkable similarity to environment-based

implementations.
In this section we will make a brief comparisonofour final G-machine with

Cardelli’s Functional Abstract Machine (FAM)(Cardelli, 1983 and 1984].

The FAMis based on delayed substitution in which function application is

carried out not by constructing an instance of the bodyof the function, but

rather by evaluating the body of the function in an environmentin which the

formal parameters are boundto their actual values. The environmentis a data

structure which holdsthe values ofall the variables currently in scope.If the

result of evaluating the functionisitself a function, then a closureis returned,

whichis a pair consisting of

(i) the code of the function;
(ii) the environmentin which it should subsequently be executed.

This is the approach oftheSECD machine,and theFAMcan beconsideredas °

an optimized SECD machine:

(i) The SECD machinecodeis often implemented by direct interpretation.

of the abstract machine code. The FAM has a more powerful abstract .
machine code,and is compiled to a target machine code (VAX).
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(ii) The SECD machine environmentis often implementedas a linked list,
and closures as a pairofpointers to the code and to the environment. The
FAM constructs closures as an (N+1)-tuple, in which the first element
points to the code of the function, and the other N elements are the
values of only those variables that occur free in the function definition.

(iti) The SECD machine stack and dumpare often implemented as a linked
list. The FAM uses the target machine stacks, called AS (argument
stack) and RS (return stack) respectively in Cardelli [1984].

Having said this, there is a close correspondence between the FAM andthe
G-machine:

(i) The G-machine equivalent to a FAM closure is a piece of graph
consisting of a supercombinator applied to too few arguments. The
arguments give the values of the variables used in the supercombinator
body. It is an easy consequence of the lambda-lifting algorithm thatall
the extra arguments to a function produced by lambda-lifting are used
somewhere in the supercombinator body. This corresponds to the fact
that FAM closures only contain variables which may be required in the
function.

(ii) Execution is stack-based for much of the time. Arguments to the current
function are found onthe stack. The difference hereis that the FAMmay
also accessfree variables in the environment, whereas supercombinators
have nofree variables.

(iii) Arguments to be passed to a function are placed in the stack before
calling the function. This is always the case in the FAM andthe optimiza-
tions of this chaptermean thatit will often be the case in the G-machine.

There are two major differences between the FAM and the G-machine:

(i) The FAM is notlazy. It is to preserve laziness that the G-machineoften
has to write the spine out into the heap,rather than always keepingit in
the stack as the FAM does. .

(ii) The G-machineis simplyan efficient implementationofgraph reduction.
As we will see, graph reduction is a much more natural modelto support
parallel execution, so a parallel G-machine is probably much easier to
build than a parallel FAM.
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Twenty-two

STRICTNESS ANALYSIS

 

In Chapter 20 we saw the usefulness of being able to determine in advance
whethera function would eventually evaluate its argument(s). As we will see
later, in Chapter 24, this information is also useful to determine points at
which parallel evaluation of the program can be begun.In this chapter wewill
discuss a methodof compile-timeanalysis, calledstrictness analysis, which can
determine which arguments a function is sure to evaluate.
The chapteris based on Clack and Peyton Jones [1985].

22.1 Abstract Interpretation

Strictness analysis is one of several compile-time optimizations that can be
achieved through abstract interpretation of the program text.

Webegin by giving an informalintroduction to abstract interpretation, to
set the framework for the rest of the chapter. In doing so, we try to give an
intuitive grasp of the technique, and inevitably we gloss over several
importanttheoretical issues. Fortunately, the intuitive approachleadsus toa
correct implementation. Unlike therest of the book, this chapter makes use

of some basic domain theory, including fixed points [Stoy, 1981].

22.1.1 An Archetypical Example: The Rule of Signs -

Abstract interpretation is a technique for deducing information about a
program fromits text, by executing an abstract version of the program. An
appropriate abstraction is chosen according to whatinformation is wanted.

Asan example, suppose we wanted to knowthesign of

34 * (—5) * (-3993)
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The hard way to find the sign of this number is to perform the two
multiplications in full and look at the sign of the result, like this:
 

   

  

34*(—5)*(—3993)

evaluate ,
take

evesio "8" PLus
      

A simpler method is to perform a more abstractcalculation:

PLUS *% MINUS *% MINUS = PLUS

We replace each number with an abstract representation (its sign), and
replace the multiplication operator with an abstract operator *%, which
implementsthe familiar ‘rule of signs’.

PLUS *% PLUS PLUS
MINUS *% PLUS MINUS
PLUS *% MINUS = MINUS
MINUS *% MINUS = PLUS

Nowit is easy to compute the answer ‘PLUS’, which tells us that the result of
the original calculation would have been positive. We can think of this
‘short-cut’ in the following way:
 

   

  

34*(—5)*(—3993)

evaluate rule ofsigns

take
sign

  
678810 y» PLUS

    

The rule of signs gives a short-cut from arithmetic expressions to the sign of
their value, without goingvia a full evaluation. This is precisely what abstract
interpretationis all about.
Let us now generalize the diagram, to show more clearly whatis going on:

 

   

  

     

 

Arithmetic
expressions

standard abstract interpretation
ordeay (evaluation using
ordinary I i
evaluation) rule of signs)

abstraction
Numbers

|

————————->

|

Signs {PLUS,MINUS}
(take

sign)
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Beginning with an arithmetic expression (at the top), we may evaluate in the
ordinary way, using Eval (see Section 2.5); we call this the standard inter-
pretation.

Evalll. 34*(—5)*(—3993) J = 678810

Thenwe maytakethesign ofthe result, using a function sgn::Number —> Sign,

like this:

sgn 678810 = PLUS

The function sgn maps a number onto a two-point domain {PLUS,MINUS}.
Wecall this operation abstraction, since it preserves certain information
aboutits argument(in this case,its sign), while losing other information (for
example, whetheror not the argumentis even).

Alternatively, we may evaluate the original expression using the rule of
signs; we call this the abstractinterpretation, and writeit like this:

Eval%if 34*(—5)*(-3993) J = PLUS *% MINUS #% MINUS
= PLUS

The crucial fact is that the short-cut gives the same answer as the long way
round. Using the new notation, we can express this condition formally as
follows:

sgn Evall[ E 3 = Eval%l € 3

for any expression E. Wecall this the safety condition, since it expresses the
fact that the abstract interpretation gives correct (safe) answers.

Notice that the abstraction function is chosen to preserve exactly (and only)
the information we need to answerthe original question, which asked for the
sign ofthe result. The abstract interpretation is then chosentogive a short-cut
for that particular abstraction function. A different question, such as ‘is the
result even or odd?’, would suggest a different abstraction function and a
different abstract interpretation.

Usually the abstract interpretation cannot give completely accurate
answers. For example, consider the abstract interpretation of an expression
involving addition:

Eval%{[ 23 + (-—45) 9 = PLUS +% MINUS

where +% is the abstract version of the addition operator. There is no
convenient rule of signs for addition, and the best that the abstract inter-
pretation can do is to give the result ‘PLUS or MINUS’. The abstract interpre-
tation is then ‘safe’ in the sense that it never gives ‘wrong’ answers, though it
may give ‘uninformative’ answers.
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22.1.2 History and References

The pioneers in the field of abstract interpretation were Cousot and Cousot
[1977]. Since then the theory has been extended by Mycroft [1981], whose
doctoral thesis explained how the Cousots’ theory could be applied to
functional languages. In particular, he presented a formal explanation of
strictness analysis, albeit limited to first-order functions and a poor treatment
of data structures. His presentation is primarily theoretical, so we give a
practical exposition of the approachin the following sections.

Since then substantial advances have been made, and the formal basis for

abstract interpretation greatly clarified. Burn, Hankin and Abramskygive an
excellent treatment of the topic, and their paper is strongly recommended
(Burn et al., 1985]. It addresses all the issues that are glossed over in this
chapter.

22.2 Using Abstract Interpretation to do Strictness Analysis

Abstract interpretation is a general tool, and we choose the abstraction
function and abstract mterpretation to be appropriate for the questions we

wish to answer. In this section we will develop an abstract domain and
abstraction mapping which are suitable for strictness analysis.

22.2.1 Formulating the Question

First of all, we must pose the question we wish to answerin a formal way.
Informally, the question is: ‘does this function always need the value ofits
argument?’ If we were given the answer to this question for all super-
combinators, we could compile better code for the supercombinators
(Chapter20), or evaluate the argumentin parallel (Chapter24).

Recall from Section 2.5.4 that a function is strict if and only if it always
needs the valueof its argument. The formaldefinition was:

a functionf is strict if and only if .

fl=1 (22.1)

Thatis, given a non-terminating argument,f will not terminate. Of course,f
could be failing to terminate for reasons other than trying to evaluateits
argument, but the netresult is the same. Certainly if (22.1) holds thenit is safe
to evaluate the argumentbefore thecall of f (or in parallelwithit).
The notion extends naturally to functions of several arguments. For

instance,ifg is a function ofthree arguments (x, y and z) wesay thatit is strict
iny if

gxilz=1  forany xandz
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We now have a formal way of posing the question, namely, ‘given a
function f, does (f 1) = 1?’ We can depict the question using the now-familiar
diagram:
 

   

 
 

fl

standard abstract interpretation
interpretation (evaluation using
(ordinary rule ofsigns)
evaluation)

Value of abstraction
(ff 1) —_—_—— {0, 1}

abs      
 

Whatshould the abstraction map, and abstract domain,be?It is clear that
we want the abstraction function abs to distinguish between | andall other
elements, so that

abs | 0

abs x= 1 ifx#Ll

The abstract domain needs only two elements, which wearbitrarily call 0
and 1. Using the notation established earlier, is strict if and onlyif

Evalf fig=1

whichistrue if and onlyif

abs Evaif[ f 1 9 = 0

All that remains is to pick a suitable abstract interpretation, which wecall

Eval#, to distinguish it from the abstract interpretation Eval% usedfor the rule
of signs.

22.2.2 Choosing an Appropriate Abstractinterpretation

Theabstract interpretation should have the following two properties:

(i) It must be ‘safe’. By this we mean that it should never suggestthat a
function is strict, whenin reality it is not.

(ii) It should be as ‘informative’ as possible, subject to (i). That is, the
abstract interpretation should detect strict functions in as many cases as
possible.

Asin the case of the rule of signs, we can give formal expression to the safety
requirement:

abs Evaif[ E 9 < Evei#f[ E J

for any expression E.
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This equation says that, if Eval¥ errs from the ‘right answer’
(abs Evai[[ E J), thenit must alwayserr on the high side. If the right answer
is 1, then Eval¥ must produce the result 1, since the only alternative is 0,

which is unsafe (this is property (i)). If the right answeris 0, then Eval¥ can
produce 0 or 1 but we hope thatit will produce 0 most of the time, because
that is more informative (this is property (ii)).
To putit another way,it must not be possible to use the short-cut abstract

interpretation to conclude that a function is strict, when in reality it is not.
Hence, the abstract interpretation must only produce the result 0 when the
standardinterpretation is guaranteed to produce |.

It follows that there is a range of possible abstract interpretations,all of
which are safe, but which vary in their informativeness. In the rest of this
section we will use informal arguments to develop a reasonably informative
abstract interpretation Eval#.

Fora start, the safety condition means that Eval# should havethe following
property:

Eval¥([ E J = 0

only if the (ordinary) evaluation of E definitely fails to terminate.
Conversely,

Eval#[ E J = 1

if the (ordinary) evaluation ofE may terminate.
Next, we recall, from the rule of signs example, that

Eval%[[ 34*(—5)*(—3993) J] = PLUS *% MINUS *% MINUS

Generalizing from this example, we might suggest the following rules for
Eval% :

Eval%[[ E, Eo ] = Eva®[[ E; 9] Eval%[[ Eo JJ
Eval%[[ + 1] = *%
Eva%[. —n ]} = MINUS
Eva%f[ nf} = PLUS

where E; and E2 are expressions, *% is the abstract version of multiplication,
and n is a number. Thefirst two of these rules are quite general, while the last
two are clearly specific to the rule ofsigns.

In the case of strictness analysis, we wantto evaluate

Evail#[[ f i

Using a similar rule to the first of those given for Eval%, we might proceed as
follows:

Evai#([ fi 3 = Gveaie[[ fy] Eva1 2
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Now,certainly Eval#[[ | JJ = 0 (since | certainly fails to terminate). Using
this fact, together with a rule similar to the second Eval% rule, gives

Eval. ft J = Eva#[[ tf J Galt F130
= f¥ 0

Rememberthat weare free to invent whateverrules welike for Eval#, so long

as we can prove that the safety condition holds. We will not do so here, but
Burn et al. [1985] give the formalproofs.
To summarize ourprogress, for each function fwe mustfirst find its abstract

version f#. Having done so, we compute (f# 0), andif the result is 0 thenf is
certainly strict. The hope is that computing (f# 0) is very much cheaper than
computing (f 1). It would be hard to do worse, since the latter mayfail to
terminate!

22.2.3 Developing f# from f

Wewill now show how to produce the definition off¥ from the definitionoff,
using the following example:

fpqer= IF (= p 0) (+ q 5) (+ q p)

All we have to do is to take the abstract interpretation of the right-handside:

f¥ p qr = Eval¥[[ IF (= p 0) (+ qn) (+ q p) O

Using the rules of the previous section repeatedly gives

f¥ p qr = IF# (=# p OF) (+# qr) (+# q p)

Wehaveactually used one extra rule, namely

Eval#[[ v J] = v

where is a variable. Now,

constant# = 1

(since the evaluation of constants always terminates) and hence

f¥ p qr = IFK(=# p 1) (+¥ q nr) (+# gq p)

Theneteffect is that, to obtain f¥ from f, we simply replace all constants and
built-in functions in the body of f with their abstract (#) versions. To put this

another way, Eval¥ gives a denotational semantics for the language, which
differs from the standard semantics only in the interpretation ofconstants and
built-in functions.

Finally, we must decide whatthe abstract versions of the built-in functions
actually are. Beginning with the equality function =, we know that

(= E1 Ee) may terminate if (E, may terminate)
and (E2 may terminate)
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and hence

=#xy = &xy

where we define & as the boolean AND operator (in the abstract domain).
Similarly we define | as OR. The definition of +# is identical to that of =#.
However, IF# is more interesting. We know that

(IF E; Eo Es) may terminate if (E1 may terminate)
and ((E2 may terminate)

or (E3 may terminate))

Thus

IF4# xyz= &x (ly 2)

(All of these rules are proved in Burn et al.) We can now complete the
definition of f#, thus:

f4 pqr IF# (=# p 1) (+# q 1) (+# q p)
& (& p 1) (I (& 4) (& q p))
& p (& q (I p 4)

Atlast, we are in a position to discover the strictness of f. For example, to
find whetherf is strict in its first parameter, p, we compute

f#011=&0(& 1 (I 0 14))
0

This tells us that f fails to terminateif p fails to terminate, evenif all the other

arguments terminate; so f is strict in p. To discoverstrictness in q and r, we

compute

f# 10
f# 11

1=0 (sofisstrict in q)
0 1 (sofis notstrict in r)

22.2.4 Fitting Strictness Analysis Into the Compiler

Everything we havesaidso far assumes that the functions being analyzed have
no free variables, and indeed it seems rather hard to analyze functions which
do have free variables. Rather than address this problem directly, we can
simply perform strictness analysis after lambda-lifting.
This makessense in any case, because it is the supercombinatordefinitions

that we want to annotate for subsequent passes of the compiler, not the
original lambda abstractions.

22.3 Coping with Recursion

Thereis onefly in the ointment, which is that a user-defined function may be
recursive. To see that we cannotsimply execute the # version of the function
normally, consider

fx y = IF (= x 0) y (@f (— x 1) y)
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Theabstractversionoff is therefore given by

f¥ xy=&x (ly (f# x y))

Tofind out whetherf is strict in y we evaluate (f# 1 0), but unfortunately this
evaluation will not terminate. This wouldbe disaster, because this evaluation
occurs at compile-time, so the compiler would loop. However,itis intuitively
clearthatf is strict in y, and we would like the compiler to be able to deduce
this fact.

Wewill now examinealgorithms for dealing with recursion, beginning with
two attempts that turn out to be inadequate.

22.3.1 The First Wrong Way

Atfirst it looks as if we could just assumethat recursivecalls to f# were strict
in everything. Thus

f#¥ 10 1 (1 0 (f# 1 0))
1 (100)

&
&
0

whichis the correct answer. This simple method is, however,easily defeated.
Consider the function

fx y z= if (= y 0) (f 0 1 x) x

The simple method says this function is strict in x and y, whereasitis, of
course, onlystrict in y. In retrospect this seems obvious, but this mistake was
actually madein two published implementations of Mycroft’s work.

22.3.2 The Second Wrong Way

The reasonthefirst method fails is that it uses a bad approximation to f#. To
see this, observe that the definition off# is a perfectly good recursive function
definition. Domaintheory tells us that the function thus definedis given by the
least upper bound of an ascending sequence of approximations to f# — the

ascending Kleene chain (AKC). For example,

if f¥ xyz=...f¥... (arecursive definition)

then f¥oxyz=0 (zeroth approximation)
f¥1 xX y Z=...f#o... (first approximation)
f¥2 x y Zz = ...f#1... (Second approximation)

and so on.

Since we are in the abstract two-element domain, there are onlya finite
numberoffunctionsof three arguments. This sequence must therefore reach
a limit in a finite numberofsteps. The first method failed because we used the
first approximation only, which maynotbe the limit. So we must examine
successive approximationsuntil we reach a fixed point, and our problem boils
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down to deciding when this fixed point has been reached. Notice that the
application of any f#, to any arguments will always terminate.
The second bad methodsays ‘we have reacheda fixed point whentheset of

variables in which the approximations are strict remains unchanged from one
approximation to the next’. This copes with the previous counterexample,
because

f#o is Strict in (x, y, Z}
f#, is strict in {x, y}

f#2 is strict in {y}
f#g is Strict in {y}

and we conclude that f# itself is strict in y alone. This methodis attractive
becauseit is quite easy to compute the set of strict variables for a function
from its boolean expression. Unfortunately, this is not a genuine check for a

fixed point, as the following counterexample shows:

fxyzp = if (= p 0) (+ xz) (+ (fy 00 (- p 1) (220 (— Pp 1)

Thetest is better, so the counterexample is more contorted! Working out the
details of this exampleis left as an exercise. The results are

f#o is strict in{x, y, Zz, Pp}

f#, is strict in{x, z, p}

fo is strict in{z, p}

f#g is Strict in{z, p}
f#« is Strict in {p}

The second and third approximations are the same, so we might conclude that
the AKC has converged. However,the fourth approximation showsthat this
is false. We call such false convergence aplateau, andit is these plateaus that

defeat the second bad method.

22.3.3 The Right Way

The only correct wayto find a fixed point is to assure ourselves that

f¥nX y Z= fn XYZ forany XY, Z

This looks like an expensive test to perform, since there are 2° possible
combinationsofx, y and z, evenin the first-order case. [t turns outthat in the

worst case the cost of the test must be exponential in the numberofarguments
[Hudak and Young, 1986], but in practice it requires considerable contortion
to invent examples with plateaus, so we expect rapid convergence in typical
cases. A promising approach is therefore to develop representations and
heuristics which will perform well in the commoncases, and willstill give
correct answers (albeit more slowly) in the difficult cases.
This questionis discussed at some length in Clack and Peyton Jones [1985].
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22.3.4 Order of Analysis and Mutual Recursion

Wehave described how to find the fixed points of self-recursive definitions,
and we now extendthis to cover mutual recursion. Consider the definitions

fx =...g...f...
gQy=...f...g...

Here we cannot fully analyze either function before the other; instead we
must perform the fixed pointiterations simultaneously, thus

f¥o x = 0 g%0 y = 0
41x = ...g#o...f#o... g#1y = ...f¥o...g#o...

f#o X = ...941...f#1... G#2 y = ...f#1...9#1...

It is slightly more efficient (and gives the sameresult) to use f# 1 in g# 1, since

f#1 is now available (assuming we perform eachstep of thef iteration before
the correspondingg step).
Suppose the definition of a function f involves a function g but not vice

versa, thus

m
n

Then wecan safely first analyze g, find the fixed point of g#, and use this
information in the subsequent analysis of f. This can prove very important
whenanalyzing large systems ofequations since finding the fixed point off and
g Simultaneously is much more costly than analyzing g first, and using this
information to analyze f. Unfortunately, functional programmers often write
large collections of equations in a single tetrec, so all the equations may
potentially be mutually recursive. This is another reason for performing the
dependency analysis described in Chapter 6, to separate definitions into
minimal mutually recursivesets.

22.4 Extensions to Mycroft’s Work, and OtherWork

Mycroft’s original work was restricted to first-order functions and flat
domains (that is, domains without structured data types). Since higher-order
functions and non-fiat domains (providing structured data types, which may
require lazy evaluation) are both important features of functional languages
these restrictions were severe. Fortunately, recent work has extended the

original ideas to cover these areas.

22.4.1 Higher-order Functions

Burn, Hankin and Abramsky [1985] have shown that the techniques
developed to handlefirst-order functions have a natural extension to the

higher-ordercase.
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For example, consider

hof g x y = (g (hof (K 0) x (— y 1)+
(if (= y 0) x (hof 1.3 (— y 1)

where Kxy =x

and 1x =x

Performingabstractionin a straightforward way, we get

hot# g x y = & (g (hof# (K# 1) x y)) (& y (I x (hof# t# 1 y)))

Weneed to take some care when looking for a fixed point to ensure that
successive approximations deliver the sameresultforall values ofg. Since g is
a function,it can take a wholelattice ofvalues (three values in this case: (K 0),

land (K 1)), and this makes the finding of fixed points even more computa-
tionally expensive. This exampleis a particularly interesting one,since it turns
out that we haveto go to the fourth approximationtofind a fixed point.

22.4.2 Non-flat Domains

Strictness analysis of non-fiat domains tells us, for example, when a particular
application of CONSis strict. Knowing this may enable us to generate better
code.
Recent work by Hughes [1985] and Wadler [1985a] offers extensions of

strictness analysis to coverthis area.

22.4.3 Other Related Work

Wray [1986] describes a strictness analysis algorithm which, unusually, seems
not to be based on abstractinterpretation.
Another compile-time technique, designed to transform list-processing

programsinto a highly efficient form, is Wadler’slistless transformer[Wadler,
1984 and 1985b]. Thelistless transformeris able to compile certain kinds of
list-processing functions into a finite state machine, which runs without
consuming any heap.

22.5 Annotating the Program

The purpose ofstrictness analysis is to annotate the program for the benefit of
subsequent phases of the compiler. Sofar in this chapter we have shown how
to derive the abstractversion ofeach supercombinatorfrom its definition. We
now show howto usethis information to add annotations to the program.
Suppose that we have produced the abstract versions of each of our

supercombinators. There are two distinct ways in which we can use these
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abstract functions to annotate the original (lambda-lifted) program:

(i) We can annotate each supercombinatordefinition to indicate in which
argumentsit is strict. For example, the definition

$F [x y!z=...bodyof$F...

might indicate that $F is strict in x and z, but not in y. (The exclamation
markis, of course, just an arbitrary symbol chosento allow usto write a
concrete representation of an annotated definition.)

This kind ofannotation wasused in the optimizationsofSection 20.6.2.
(ii) We can annotate individual application nodes in supercombinator bodies

to indicate strict applications. For example,in the definition

$G pq=...($F |! p3iq)...

the application of $F to p is annotated with an infix exclamation mark to
indicate a strict application. The application of ($F p 3) to q is similarly
annotated.

This kind ofannotation wasused in the optimizations ofSection 20.5.2.

Atfirst it appears that the two sorts of annotation give duplicate information,
and indeed they often do so. However, there are situations in which each is

uniquely appropriate.

22.5.1 Annotating Function Definitions

Given a definition for the supercombinator $F, we want to annotate the

definition to indicate the parameters in which itis strict. Using its abstract
interpretation $F#, we can discover this information using the method

described at the end of Section 22.2.3.
Suppose $F takes two arguments. Then in order to find whether$Fis strict

in its first argument we simply evaluate

$F# 0 1

If the answer is 0, $F is certainly strict in its first argument. Oneslight

complicationis that the result of$F maybe a function, so thatthe result ofour
abstract evaluation will also be a function. In this case we are interested in
whetherthe result is the bottom elementof the function domain, so we simply
‘feed it 1s’ until it returns either 0 (in which case $Fis strict) or 1 (in which case
it is not). (The bottom element of a function domainis that function which
returns the bottom elementofits result domain regardless ofits argument.)
For example, suppose $F was defined as

$F xy = + (+ x y)

Then $Fwill be

$F# xy = & (& x y)
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Weevaluate

$F# 01 —> & (& 0 1)
> &0

giving a function. To find out whether this function is bottom, we apply it to 1,

giving

&01-> 0

so the functionis indeed bottom (since it returns 0 no matter how well defined
the argumentis). Hence $Fis strict in its first argument.
The other complication occurs if an argument to $F is a function. Then,

instead of0and 1, we mustuse the bottom and top ofthe appropriate function
domain. All of this entails knowing the type of $F, which is perhaps another
motivation for using a typed language.

22.5.2 Annotating Application Nodes

The reason for annotating application nodes is not as clear-cut as the reason
for annotating supercombinatordefinitions. Consider the definition:

$Gxy=y3x

and supposethatin the body of another supercombinatorthere occurred the
expression

...($G E +)...

where E is some complicated expression. Clearly $G is notstrict in x, because
the function argumenty maynotbestrictin its second parameter. However,
in thisparticular application of$G the second argumentis +, so E will certainly
be evaluated subsequently. Hence E could be evaluated beforethe call of $G,
and we could annotatethecall thus:

..GGLE! +)...
Doing this is extremely worthwhile, because the optimizations of Section
20.5.2 will then apply, so that we can evaluate E rather than construct a graph
forit.

Fortunately,it is also relatively simple to deduce this annotation. Given an
expression ($G P Q), we can discover whether it is strict in P by evaluating

$G¥ 0 Q#

and in Q by evaluating

$G¥# P#¥ 0

(To see that this is formally valid, consider the strictness of the functions
$Dummy1 and $Dummy2, where

$Dummy1 e = $4 e Q
$Dummy2 e = $G P e
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$Dummy1is strict in e if and only if the expression ($G P Q)is strict in P, and

similarly for $Dummy2.)
Oneotherpoint of interest occurs when analyzing a definition such as

$F xy =...(9G Ey)...

where the formal parameters of the definition occur in the subexpression
being analyzed. In order to computestrictness in E we evaluate ($6G¥ 0 y#);
but whatvalue should we use for y#? The analysis we are performing should
hold for any application of $F, so we should use 1 for y#, which reflects our

lack of information aboutits value. If the type of the parameteris a function,
then wereplace occurrences ofit with the top of the corresponding abstract
function space.

22.5.3 Why Both Annotations Are Needed

It may now seem that the information provided by annotating application
nodesis always superior to that provided by annotating function definitions,

since the former is able to take advantage of contextual information.
However, there are two reasons whyit is important to annotate the function
definition also.

Thefirst is that the optimization ofSection 20.6 requires annotationson the
function definition, so that it can compile the best possible code for the
function, which is nevertheless applicable in all possible contexts.
The second reason concerns parallel evaluation, and is explained in Section

24.4.1.

22.5.4 Summary

In summary, we should annotate both the formal parameters of a super-
combinator definition and each application node of a supercombinator body.
These two forms of annotation are complementary, and neither can be
omitted withoutloss.

Annotation is carried out by performing evaluations in the abstract

domain,using the abstract versions of the supercombinators.
It turns out that precisely the same annotations are needed for parallel

machines (see Chapter 24).
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Twenty-three
 

THE PRAGMATICS OF GRAPH
REDUCTION

The goal of a programmeris to write programsthat are

(i) (absolutely) correct, i.e. they should meettheir specification;
(ii) (reasonably)efficient,i.e. they should consumeas few machine resources

as possible.

In orderto achieve these goals the programmerhas to reason about

(i) the meaning of his program, to assure himself that it has the same
meaningas the specification;

(ii) the resource consumption of his program, to assure himself that it will
consume only reasonable resources.

In conventional imperative languagesit is relatively hard to reason aboutthe
meaningofa program,because the semantics ofthe programming languageis
generally rather complex. On the other hand,it is normally fairly straight-
forward to reason about the memory space and CPU cycles consumed by a
program, because the programmerhas an accurate mental model of how
execution takesplace.
A majorstrength of functional languagesis their semantic simplicity, which

makesit mucheasier to reason about the meaningofa program. This topic has
been well discussed elsewhere (for example Backus [1978], Turner [1981])
andis outside the scope of this book. Onthe other hand, a major weakness of
functional languages is the difficulty of reasoning abouttheir space and time
behavior, especially the former. In particular, a functional program may have
much worse space-time behavior than the programmer might expect.
This chapter is mainly concerned with a discussion of the various formsin

which this problem occurs, as a warning to the unwary implementor. No good
solutions are yet known to most of these problems; they are very much

3%
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research issues. Meira [1985] takes the efficiency of functional programs as
the main subject of his thesis, and chapter 6 of Stoye’s thesis [Stoye, 1985]
gives a good summary of the area. Both served as major sources for this
chapter.

23.1 The Time Behaviorof Functional Programs

Normally we are only concerned with the result of a functional program,
rather than the exact time at which the parts of the result are produced. In the
case of an interactive program, however, we need morecontrol over the order
of evaluation.

Wemaywrite interactive functionalprogramsbyspecifyingthe programasa
function from a (finite or infinite) list of input characters to a (finite orinfinite)
list of output characters. Such finite orinfinite lists of data items are often
called streams. We may draw such system like this:
 

Keyboard ——»| Functional |——» Screen
program   

Suppose we wanted to write a program which repeatedly prompted the user
with

Enter number:

then read a number(17, say) from the input stream, and then output

Result is: 34

where the result is double the input number. We could write the program
using a function double, which takes the input stream as its argument and
producesthe output stream as its result:

double inputStream
= “Enter number: ” ++

“Result is: ” ++
numToChars (2*n) ++

double restinput
where
(n, restinput) = charsToNum inputStream

numToChars is a function which takes a number and convertsit to a list of
characters. charsToNum takes a list of characters and converts an initial
segmentofthe list to a number, returning the numberandthe rest ofthelist.
The ++ operatoris Miranda’sinfix list concatenator.

Unfortunately, when we run the program wewill get the prompt

Enter number: Result is:

The system outputs the result message before reading the number,It doesthis
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because the result message does not depend on the value of the number;lazy
evaluation has postponedthe evaluation of (charsToNum inputStream) until
after the result message has been output.
This is an example ofa case whenwe want somecontrol overthe evaluation

orderin order to make the program behavecorrectlyin time.In this case there
is a straightforward solution. Whatis needed is a built-in function seq, with
the behavior

seq lily=L

seq xy=y

Pragmatically,

seq evaluates its first argument, discards it,

and then returnsits second argument.

We can nowrewrite double, thus:

double inputStream
= “Enter number: " ++

seq n “Result is: ” ++
numToChars (2#n) ++
double restinput
where

(n, restinput) = charToNum inputSteam

Now the ‘Result is:’ message is made to depend on the value of n, so the
message will not be output until n has been evaluated (and hence input).

This is the first example ofa situation in which lazy evaluationgivesslightly
unexpected results. In this case, however, it is possible to reason about the

order in which results appear in the output stream, so the problem is not
nearly so serious as those which follow.

23.2 The Delicacy of Full Laziness

Wehave described whatit means for an implementation to be lazy orfully
lazy only in very operational terms, and they are difficult concepts to reason
about. Programs that look lazy sometimes turn out not to be for subtle
reasons, and wewill see some examples in the following sections.

23.2.1 Ordering of Parameters

Werecall the Miranda program from Chapter 15 which we used to develop

the conceptoffull laziness:

f

gxy

 

g 4

y + sqrt x
 

(f 1) + (f 2)    
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Nowconsider a rather similar program in which g takes its parameters in a
different order:

 

fy
gy x
 

  (f 1) + (f 2)
 

We might hope that the (sqrt 4) would only be computed once,as before,
but it will in fact be computed twice. This is because (sqrt x) is no longer an

MFEofany lambda expression(try it!). This, in turn,is a consequence of the
ordering of the parameters of g.
We mighttake this as a clue to the compiler to put g’s parameters in the

other order and changeall the calls of g appropriately. But suppose the
definition of g was

g xX y = sqrt x + sqrt y
Now noorderis ‘right’, and its laziness depends on the wayitis used.If g is
used many times withits first parameter fixed then all is well, butif it is used
many times with its second parameterfixed we will recompute (sqrt y) each
time.
There is an asymmetry in the laziness of g with respect to different

parameters. The onusis on the programmer to put the parameters to his
functions in the ‘best’ order to maximizelaziness.

23.2.2 Full Laziness and Recursion

Considerthe following Miranda program (dueto William Stoye):

 

 

fxO0=0
f x n = sqrt x + f x (n—1)

f 4 1000   
How many times does the (sqrt 4) get evaluated, once or 1000 times? The

answer is 1000 times. Now consider another program, which is plainly
equivalent:

 

0
sqrt x + g (n—1)

f x = g where g 0

gn
 

 f 4 1000
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Now how manytimes does the (sqrt 4) get evaluated? The answeris once.
These are not obvious answers, and it takes little while with the lambda-

lifter to discover how lazy they are, yet a program transformation system

might easily transform one into the other without expecting the serious
degradation in performance that wouldresult.

23.2.3 Summary

We concludethatit is by no meansobvioushowlazy a functionis, and thatwe
do notat present have anytools for reasoning aboutthis. Laziness is a delicate
property of a function, and seemingly innocuous program transformations
maylose laziness.

23.3 The Space Behaviorof Lazy Functional Programs

So farin this book we havelargely taken for granted that lazy evaluationis a
GoodThing,since it postpones evaluation until it is certain that the result of
the evaluationis required. ,
However, this view is rather naive since it takes into account only the

number of reductions performed, while discounting the memory consump-

tion of the evaluation.It is actually rather difficult to work out what the space
consumption of a lazy program will be, and we will examine a numberof
examplesin this section.

23.3.1 Space Leaks

Consider the following Miranda program:

 

f = drop 1000
drop n xs = Xs, n=0

drop (n—1) (a xs)
 

  (...f.. fof)
 

(drop n xs) returns the list xs with the first n elements knocked off it. The
function f is drop applied to one argument, 1000, andis used at various points
in the program. ,

Now,the lambdaexpression for drop is

drop = An.Axs.IF (= n 0) xs (drop (— n 1) (TAIL xs))

Whenfully lazy lambda-lifting is performed, the expressions (= n 0) and
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(drop (— n 1)) will be lifted out of the Axs abstraction, giving two super-

combinators:

$drop n = $L (= n 0) ($drop (— n 1))
$L NO DN1 xs = IF NO xs (DN1 (TAIL xs))

Consider nowthe valueoff:

f = $drop 1000
—> $L (= 1000 0) (Sdrop (— 1000 1))
— $L FALSE ($L (= 999 0) ($drop (— 999 1)))
— $L FALSE ($L FALSE ($L (= 998 0) ($drop (— 998 1))))

etc.

The second argument to $L can be reduced again and again. Of course,f
alone will never be expanded with successive reductions like this. However,
on thefirst occasion whenf is applied to a list, the ($drop (— 1000 1)) expres-

sion will be reduced, and the result will overwrite the ($drop (— 1000 1))
redex. Also the (= 1000 0) redex will be evaluated, and the result will
overwrite the (= 1000 0) redex. Therefore the graph representingf will grow

in the mannerindicated above,until it is 1000 levels deep.

Nothing has gone wrong. The system is simply preserving full laziness. The
next time f is applied to a list, many fewer reductions will have to be done,
becausethe recursion has been unrolled in advance.This is closely analogous
to the optimization sometimes performed by conventional compilers of loop
unrolling, in which the body of a loop is duplicated as many times as the loop
wasto iterate in order to avoid performing a test on each iteration. Sensible
compilers only do this when the numberof iterations is small, but our
preoccupationwith full laziness has led us to an implementation which unrolls
loops regardless of the extra storage cost incurred.
Our campaignto save reduction steps by full laziness has succeeded,butat

a substantialcost in terms ofmemory usage. Worse still,it is not at all obvious
from the program thatthis will happen, noris there any easy way to reason
about the storage use of such functions.

This unpleasant phenomenoniscalled a space leak (because memory space
leaks away invisibly) or dragging (because f drags around an unexpectedly
large graph). This memory cost caused by space leaks meansthat the program
may run out of memory andfail to complete evaluation, but, more insid-

iously, it will also mean that less memory is available for the rest of the
computation, so garbagecollection will be more frequent. Thusthere is a time
cost associated with memory usage which should ideally be set against the
time saving from saving reduction steps.
No good automatic solutions are knownto this problem. Onetrick that the

programmercan useto avoid it is to define two new functions:

newDrop n xs = newDrop! xs n
newDrop1 xs n = drop n xs
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newDrophasjust the same meaningas drop,butit turns outnot to be as lazy, so
that it does not have a space leak. This trick is based on the asymmetry in
laziness caused by the order of arguments referred to above, but is hardly
crystal clear! Furthermore, a clever compiler might ‘optimize’ newDrop to
drop, which is certainly a correct transformation (and one that improves

laziness), but will reintroduce the space leak.

23.3.2 Unevaluated Components of Data Structures

Consider the function addHead, where

addHead b (a:xs) = (add b a):xs
add b a = atb

It just adds somethingto the first elementofa list. Now suppose that addHead
is applied to a list many times, thus:

demo = addHead 1 (addHead 2 (addHead 3 (10,11)))

If evaluated to WHNF, demo will reduce to

[add 1 (add 2 (add 3 10)), 11]

but it will not reduce to

(16, 11]

until the first element of the list is evaluated. Meanwhile the graph
representing

add 1 (add 2 (add 3 10))

is taking up space in the heap. Laziness prohibits the evaluation of this graph
until the value ofthe first element ofthelist is needed.

This is a specific instance of a general phenomenon. A less contrived
instance is that of a dictionary or symbol] table represented by a tree, whichis
updated as data are entered into the dictionary. These updates do not
propagate immediately to the leaves of the tree. Instead an update will be
performed onelevel at a time, probably in response to the need for a lookup
function to search the tree. Parts of the tree which are not visited by the
lookup function will not have the updates fully performed (quite rightly
according to laziness, since they may neverbe visited). However, the half-
performed updates take up space in the form of pieces of graph just as the
half-performed addHead did above.

Onewaytofix this is to have a function which crawls overthe tree visiting
every node. In our addHead example we could use seq to give

demo = seq (hd xs) xs
where xs = addHead 1 (addHead 2 (addHead 3 [10,11]))

The seq forces evaluation of the headof thelist, before returning thelist as
before.
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The same problemsapply to this fix as to the others we have discussed.It is
far from obvious when it is good to apply it, it is an extra onus on the
programmer,andit contributes nothing to the meaning of the program.

It would be better if we could perform some kind of automatic analysis
which would discover which components of the data structure will eventually
be needed, and hence which could be evaluated straight away. This is just
strictness analysis in another guise, except that it is a version of strictness
analysis which can ‘look inside lists’. It is very much a research issue at the
moment. Furthermore, in the case of a dictionary, the parts of the tree that
are visited are data-dependent, so even a clever strictness analyzer would not
help.

23.3.3 Summary

This section has shown two contrasting ways in which a functional program
may use morestore than expected:

(i) By performing reductions and holding on to the result, which is bigger
than the redex.

(ii) By not performing reduction but holding on to the unevaluated graph,
whichis bigger than the result.

Notice that one problem is caused by reducing too much and the otheris
caused by reducingtoolittle.

23.4 Transient Store Usage

Some functions have a small amount of input data and a small amount of
result data, but nevertheless consume a large amount of store while they
computetheir results. The residency of a program at a particular momentis
the size of the graph at that moment, and this section is concerned with
programswhich have high transient residency.

Somefunctions allocate and discard transient store quite rapidly, but if the
function was stopped at any momentthere would not be a large amountof
accessible store. Other functions allocate store and do not discardit until the
very end. This behavior is even more undesirable, because just before the

function completes it may be holding large fraction ofthe heap. Wewill look
at some examples ofthis latter behavior.

23.4.1 Recursion

Considera function to add up the elementsofa list:

sum [] 0
sum (x:xs) x + sum xs
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This is a nice simple definition, butlet us see it in practice:

sum [1,2,3]

+ sum [2,3]
+ (2 + (sum [3))
+ (2 + (3 + sum []))

+ (2 + (3 + 0))

+ (2 + 3)

+5o
u

wa
h

wa
h

oa
k

an
h

an
h

b
b
y

a
o

The evaluation consumes transient space linearin the length of thelist. (Note:
using an unboxed G-machine implementation this transient space would
actually be on the stack; this is less bad than transient heap space, butstill
undesirable.)
This phenomenon is well known to the Lisp community, and any red-

blooded Lisp programmer would never have written the above definition.
Instead he would have used an accumulating parameter:

sum list = sum0 list

where

sumt n [J =n
sum n (x:xs) = sum? (n+x) xs

Thedefinition of sum1is tail recursive (cf. Chapter 21), and on a Lisp system
will execute in constant space. Unfortunately, many graph reduction imple-
mentations will not execute this in constant space:

sum [1,2,3]
sum1 0 [1,2,3]
sum1 (0+1) [2,3]
sum1 ((0+1)+2) [3]
sum1 (((0+1)+2)+3) []
((0+1)+2)+3
(1+2)+3
3+3
6

Herethe first parameter to sum1 grows in size linearly with the length of the
list. Stack usageis also linear in the length of thelist.

In this case strictness analysis comesto the rescue, becauseit can infer that
sum1 will eventually evaluate its first argument, so thatits first argument can
safely be evaluated before sum1 is applied. This will produce:

sum [1,2,3]

sumt1 0 [1,2,3]
sum1 (0+1) [2,3]
sum1 1 [2,3]
sum1 (1+2) [3]
sum1 3 [3]

e
e

b
o
i
u
d
s

& s
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Nowthetransient store is discarded as evaluation proceeds rather than
being held until the end, and stack usage is constant too. In addition, the

G-machine optimizations will work better, given the knowledgethatthe first
parameter of sum1 will be evaluated. An unboxed G-machine implemen-
tation will compute sum1 withoutusing any transientstoreatall.

23.4.2 Excessive Sharing

The goaloflaziness is to avoid recomputing values by sharing them. Some-
times, however, the evaluation of an expression can causeit to grow in size so
muchthat it would be cheaper to recompute it later than to hold onto its
evaluated form untillater.

Meira [1985] gives a nice example of this. Consider a function powerList,
whichtakesa list as its argumentand returnsa list of all possible sublists of the
originallist (obtaining a sublist by omitting elements from the originallist).
Hereis a possible definition of powerList:

powerlist(] =[[]]
powerList (x:xs) = pxs ++ map (cons x) pxs

where
pxs = powerList xs

The second equation simply says that to get all possible sublists of (x:xs),
return all sublists of xs together with x stuck onthe frontofall sublists of xs.
Thisis fine, but suppose we wantedto count the numberofsublists ofa list of

length 20:

length (powerList [1..20])

Wemight hope thatlength would eat up thelist produced by powerList as it was
produced. Unfortunately, after powerList has producedall the sublists of the

list [2. .20], and they have been consumedbylength, powerList is still hanging

onto all those sublists for use in the part after the ++. Hence all 2" of these
sublists will exist in store at one time, and the machine will run outofstore.
The program hasappalling 0(2")transientresidency. This residency happens
because wesharethe use of pxs in powerList, rather than recomputingit.

A simple rephrasing of the program thus:

Ct]
powerList xs ++ map (cons x) (powerList xs)

powerList []
powerList (x:xs)

will cause those sublists to be recomputed, and the function will now have
constant residency. A very minor change to the program has produced a
dramatic change in run-time behavior. Notice that a clever compiler might
‘optimize’ the second program into the first, by performing common sub-
expression analysis.
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23.4.3 Transient Lists

Oneofthe advantagesoflazy evaluationis that data are only computed when
needed. For example, in the Miranda program

 

square n = n*n
 

  sum (map square [1..1000])
 

the list of integers between 1 and 1000 is squared and added up as it is
generated. The system will not first produce thelist of the first 1000 integers,
then square them and then add them up. We maythinkofit like this:

   

    
[1. .1000] ———» square |——r| sum

   
  

In a non-lazy system we would be temptedto write a special version ofsum

which squared the elements of the list before adding them, to avoid
generating the intermediatelist.

Unfortunately, this nice behavior does not always occur, as Hughes [1984]
points out. Consider the program

 

average xs = (sum xs) / (length xs)
 

  average (map square [1..1000])
 

If we wrote in Pascal, we could write a program which uses bounded space to
compute the averageofalistofintegers, simply by maintaining acount ofhow
many integers had been encountered so far and a running total of their
values.

Unfortunately, a conventional functional language implementation will
first evaluate one argumentof the division operator and then evaluate the
other. This meansthat theentirelist of integers will reside in memory at once.
It is clear that we would like to evaluate the arguments in parallel and in a
synchronizedfashion (notice that the former does not imply thelatter).

In the particular example given, it is possible to write a more efficient
version without resorting to parallelism, but the program is rather more
obscure. More seriously, though, Hughes shows that there are simple and
common programs which cannot run in bounded space on any sequential
evaluator.
Another example ofthe seriousness of this problem is the space complexity

of a straightforward coding of the quicksort algorithm. It turns out that this
has a linear transient space usage on average, but a quadratic transient space
usage in the worst case (the imperative algorithm useslinear space).

Hughestherefore suggests that even on a single processor implementation,
some form ofparallelism is desirable if functional programs are to run
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efficiently. His proposed solution is to introduce two new built-in functions,
‘par and synch. The expression

par f x

is semantically equivalent to

fx

but evaluates x in parallel with applying f to x (note: thisis slightly different
from Hughes’sdefinition, for uniformity with the rest of the book). The value

of the expression

synch e

is

e:e

exceptthat e will not be evaluated until both the head and thetail of (synch e)

are required. If, for example, the head is required before the tail, then the
(parallel) process trying to evaluate the head will be suspended until another
processtries to evaluate the tail, at which point both processes continue in
parallel again. In the example given above, two parallel processes to compute
(sum xs) and (length xs) may be resynchronized whenever they consume a

new elementofxs.
The wayin which these constructs can be used to alleviate the space usage

problem is too complex to describe here, but suffice it to say that the
technique does notalter the program’s structure. Even so, putting in the par
and synch constructs in the right place is a subtle business, and if done
incorrectly can cause the program to workless efficiently or even to fail to
terminate.

23.4.4 Summary

In this section, as in the preceding sections, we have seen examples of
programs which are semantically identical, but which have very different
pragmatic behavior.

Thesedifferences are notat all obvious to the programmer,and require him
to make subtle changes to the way he writes his program to achieve a good
performance. In addition, a proposed solution to the last problem involves
majoralterations to the implementation (synch and par).

23.5 Conclusions

The problems we havediscussed in this chapter have a number of common
features:

(i) Seemingly innocuous (and meaning-preserving) changesto a functional
program mayhave dramatic effects onits run-time behavior.
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(ii) We have no good meansof reasoning about run-time behaviorso as to
understand how goodor bad our programs are.

(iii) In order to reassure himself that his program does not have undesirable

run-time behavior the programmer mayhave to know lot about the
particular implementation.

(iv) Even a clever programmer cannot solve all the problems without
extensions to the implementation. Examplesarestrictness analysis (or
the facility for the programmerto add annotations to indicate strictness)
andparallel execution.

(v) There are as yet no automatic systemsfor alleviating these effects.
(vi) Itis very difficult to tell when undesirable behavioris taking place, except

that the program runs slower than expected. Even this relies on correct
expectations, and gives no help in finding which part of the program is
behaving badly. Whatis needed hereis a good set of debugging tools
which would assist the programmerin finding the ‘hot spots’ in the
program. An example of such a tool in an imperative language is a

profiling tool, which gives a breakdown ofhow muchtimeisspentin each
subroutine.

Weshould notget too downhearted!Thefactis that mostfunctional programs
run quite satisfactorily. What this chapterhas establishedisan urgent need for
tools to help reason about the space and time behavior of functional
programs. This seems a rather hard problem, and Stoye suggests that efforts

might more profitably be directed to providing better debugging tools with
whichto identify the offending part of the program, leaving the programmer

to fix the problem thus identified.
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PARALLEL GRAPH REDUCTION

The possibility of parallel execution is often stated as an advantage of

functional languages.In this chapter wewill explore this exciting possibility in

greaterdetail, and attemptto justify it.
Warning: this chapter describes current research work rather than a settled

consensusofopinion.It therefore represents the author’s personalview ofthe

presentstate ofaffairs, and is not a definitive statement.

24.1 The Challenge of Parallelism

Cooperationisexpensive,yetit is the onlywayto get large tasks done quickly.

This lesson is well illustrated by human organizations. Undoubtedly the

mostefficient way to get a task doneis to assign a single individualto the task.

There comes a time, however, when the sheer volume ofwork is more than a

single individual can carry out in the required period of time, so he employs

assistants to help him. Inevitably the assistants must be told what to do and

how to do it, and a proportion of the time of all concerned is spent in

communication rather than in doing profitable work.
As the companygrows, the overheads of communication can become very

burdensome. The amountofinternally generated information grows with the
company, but each individual’s capacity to digest this information remains
fixed. The solutionis to partition the work of the companyin such a way as to

reduce the amountofinteraction required between workers,so that they can

spend more oftheir time on profitable work and less on communication. This
maybe easyifthe companyisengaged in a numberofessentially independent

activities, but it can be very difficult if the company’s activities are highly

interrelated.
A primary challenge facing computerarchitects is the effective exploitation



410 Chapter24 Parallel Graph Reduction
 

of parallelism. Raw processing power is now cheap, throughreplication of
silicon, but mechanisms for connecting processors together so that they
cooperateto achieve acommongoalarehard to build. Inextricably connected
with this challengeis the challenge of programminga parallel machine, and
partitioning the program in a way that minimizes communication.

In specific application areas it may befairly easy to partition the problem so
as to minimize communication. For example, in a multi-user Unix machineit
is easy to assign a processorto each process awaiting execution. Less trivially,
vector processors such as the Cray-1, or array processors such as the ICL
DAP, have an arrangementof processing elements specifically adapted for
the efficient execution ofvector- or array-structured problems.
Programming vector or array processors is, however, a highly skilled and

somewhat arcaneart. In orderto exploit the parallelism of the machinefully,
the programmerneedsan intimate understanding ofits workings andof the
workings of the compiler. The investment required to produce such programs
is very large — an investment of 10 man-years’ work or more in a single
programis not unusual—and small program modificationsrisk destroying the
program’s finely balanced optimizations. Furthermore, such programs are
often extremely complex, not because the task is complex, but in order to
exploit the architecture mosteffectively.
An alternative approach is to have a number of processing elements

connected togetherwith somekind ofnetwork, each independently executing
its own program (an MIMD machine). Such a machineis relatively easy to
build, but gives no clues about how best to program it. The problem of
dividing the task up into concurrent subtasks, programmingthese subtasksin
a sequential language and arranging the intertask communication is left
entirely to the programmer. Even when the programis writtenit is hard to be
sure that it is correct, and concurrency gives much scopefor transient and
irreproducible bugs which only occur‘underparticular circumstances.
The challenge, then, is to produce a parallel programming system,

including both architecture and a programming methodology, which

(i) is feasible to program (this is the overriding consideration);
(ii) is highly concurrent(this allows us to buy speed with raw processing

power);
(iii) minimizes communication.

24.2 Parallel Functional Programming

24.2.1 The Opportunity for Parallelism

Oneof the mostattractive features of functional programming languagesis
that theyare notinherently sequential, as conventional imperative languages
are. At any momentthere are a numberofredexes in the program graph, and
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in principle they couldail be reduced simultaneously. Thus the hope offered
by functional languages is that

parallel execution of functional programs, through concurrent graph
reduction, may be possible without adding any new language constructs or
detailed program tuning.

If taken without qualification this statement is rather misleading, since it
seems to promise ‘parallelism without tears’, and as we remarked above,
cooperation is always expensive. We can, however, take the statement as

highlighting an opportunity, namely that functional programming offers a
fruitful line of approach to the challengeofparallelism.

Theidea ofconcurrent execution ofprograms without adding new language
constructs is not new. The Fortran compiler for the Cray-1 vector processor

is designed to spot vectorizable sections of programs written in (almost)
ordinary Fortran. However, as we have remarked already, the effective

use of the Cray relies on the programmer writing his program in such a-

waythat

(i) it is vectorizable;
(ii) the compiler can spotthatit is vectorizable.

Wehopethat in the case of functional languages the parallelism is more
general, so that the programmer’s task is madeeasier. First, therefore, we will
discuss the task of writing parallel functional programs.

24.2.2 Writing Parallel Functional Programs

It is tempting to believe that an arbitrary functional program would run much
faster on a parallel graph reduction machine. This comforting belief is quite
erroneous [Clack and Peyton Jones, 1985]. Many functional programs are
essentially sequential (that is, at any moment there are few redexes in the
graph). For example, an insertion sort program cannot insert the next
elementinto the result until the previous insertion has completed(orat least
partly completed). It is simply unreasonable to expect any old functional
program to runfast on parallel machine.

In order to achieve good parallel performance the program must contain
algorithmic parallelism. That is, the algorithm must contain gross inherent
parallelism. The most obvious sort of algorithmic parallelism is given by
divide and conqueralgorithms, which divide the task at hand into two ormore
independent subtasks, solve these independently, and then combine the
results to solve theoriginal task. A standard example of such an algorithm is
quicksort, which splits the set to be sorted into two subsets which can be
sorted independently. Other examples include any kind of search algorithm
(which covers manyartificial intelligence applications) and large numerical
computations. Experiments confirm that substantial parallelism is obtainable
[Tighe, 1985; Clack and Peyton Jones, 1985].
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It is thereforestill the programmer’s responsibility to create an algorithm
which will partition the task at hand into reasonably independentsubtasks.It
is unreasonable to expect the machine to do this automatically, since it may
involve major algorithmic changes (such as changing insertion sort to
quicksort).

24.2.3 Writing Parallel Programsis Easier in a Functional Language

Whynot program in a conventional language which supports multiple tasks,
such as Ada? There are a numberofways in which writing a parallel program
in a functional languageis superiorto this:

(i) In conventional languages the partition of the problem into separate
tasksis static and fixed. A task is conceived as a relatively large unit, and
tasks generally cannot be created and deleted dynamically. There will be
relatively few tasks, and the programmermustclearly identify all ofthem
in his design.

In a functional language the parallelism can be dynamic, and there is
no static division of the problem into tasks. Instead, the programmer

designs an algorithm whose inherent parallelism will enable concurrent
reduction to take place at different places in the graph. The ‘grain’ of

parallelism is therefore smaller and more dynamically adaptable as the
computation proceeds.

(ii) In conventional languages the tasks communicate with each other by
sending messages or making specially protected subroutine calls to each
other. The programmerhas to design synchronization and communi-

cation protocols between tasks so that they cooperate correctly and

achieve mutual exclusion where necessary. It is up to the programmerto

ensure that these communication protocols are correct, and failure to do

so can result in a transient malfunction of the program.
In a functional program the synchronization between different

reductions is mediated entirely by the shared graph. A reduction is made

knownto the graph bythe indivisible operation ofoverwriting the root of
the redex with the result of the reduction, and no other synchronization
is necessary (though see the next section for efficiency considerations).

(iii) The tasking structure of conventional languages adds a layer of
considerable complexity to the programmer’s model of whatis going on.

It is difficult to reason about a multitasking program, because the
programmerhasto bearin mindall the possible time orderings in which
execution might take place. The behavior of the program should be
independent of the scheduling of the tasks, but the programmer must
ensure that this is the case.
There are no extra language constructs required to write parallel

functional programs. The result of the program is guaranteed to be
independentof the way in which reductions are scheduled, though this
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scheduling may have a strong impact onefficiency. Thusit is no harder to
reason abouta parallel functional program than a sequential one.

To summarize, when using a functional language, the programmerdoes not
have to design a static task partition, guarantee mutual exclusion and
synchronization, or establish communication protocols between tasks. This
allows the programmerto concentrate on the creative activity of designing a
parallel algorithm.

24.3 Parallel Graph Reduction

We have seen that functional languages can form a basis for parallel
programming. The benefits outlined above would in fact accrue to any
parallel implementation of a functional language, but graph reduction is a
particularly attractive execution model for a parallel implementation, for the
following reasons:

(i) Graph reduction is an inherently parallel activity. At any moment the
graph may contain a numberof redexes andit is very natural to reduce
them simultaneously.

(ii) Graph reduction is an inherently distributed activity. A reduction is a
(topologically) local transformation of the graph, and no shared bottle-
neck(suchas an environment) need be consulted to perform a reduction.

(iii) All communication is mediated through the graph. This gives a very
simple modelof the way in which concurrentactivities cooperate, andit
is a model in which we have considerable confidence (becauseitis the
sameas our sequential implementations!)

(iv) The entire state of the computation at any momentis well defined — it is
the currentstate of the graph.

Graphreduction givesus a rock-solidmodelofparallelcomputation which can
underpin the complexities of a parallel machine. As with the G-machine, we
can think of ways to optimize the actual execution of graph reduction to get
good performance,butas long as these are just short-cuts to achieve the same

effect we can have confidence in the correctness of our implementation.
Wenow begin to consider how to perform parallel graph reduction.

24.3.1 AModelfor Parallel Reduction

In a sequential implementation evaluation is performed by calling an
evaluator, passing it (a pointer to) the root of the graph to be evaluated. The
evaluator performs a sequence of reductionsuntil the graph is in WHNFand
then terminates.
Our modelfor parallel reduction is a simple generalization of this. We

imagine a numberof evaluator tasks simultaneously at work on the graph.



414 Chapter24 Parallel Graph Reduction
 

Eachevaluatortask is busy reducing someparticular subgraph to WHNF;the
task terminates whenits subgraph reaches WHNF.
During its execution, a task mayanticipate thatit will require the value of a

certain subgraph at some future time. In this case it may generate a new task
to evaluate the subgraphin parallel bysparkingthe root node ofthe subgraph.
(The term ‘sparking’ is intended to convey the idea of ‘setting a match’ to a
subgraph, which ignites a processor evaluation which spreads through the
subgraph autonomously. ) The new (child)task will evaluate the graph rooted
at the sparked node to WHNF,concurrently with the continued execution of
the (parent) task that sparked it.

If the parent needs the valueofthe subgraph before the child has completed
its evaluation, the parent becomes blocked until the child terminates. A task
may also become blocked because sibling task is evaluating a subgraph
which the two tasks share. Mechanisms for implementing blocking are
discussed below.

Synchronization between tasks is mediated entirely through the graph, so
that the tasks do not communicate directly with each other at all. When
performing a reduction a task overwrites the root of the redex with the result
in a single indivisible operation, so that the reduction appears toall the other
tasks to take place instantaneously. Thus the graph never appears in an
intermediatestate.
A taskis executed by an agent. Typically an agentwill be implemented by a

physical processor. Agents are concrete pieces of hardware (we can pointto
one!), whereasa taskis a virtual object (a piece ofwork to be done). An agent
is employedifit is executing a task. An unemployed agentwill look for a task
to execute in the task pool which contains all the tasks awaiting execution.

Logically, the machine lookslike Figure 24.1. This model raises a number
of issues:

(i) Logical issues, concerning the management of parallelism. The
particular issues we discuss are °

(a) Whenare nodessparked to create new tasks?
(b) What happensif two tasks start evaluating the same piece of graph?

 

   

Agent Agent wae Agent
        

    

Communications medium
   

    

Graph Task pool
         

Figure 24.1 Logical structure of a parallel graph reduction machine
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(ii) Representational issues, concerning how tasks can be represented inside
the machine.

(iii) Locality issues, concerning how to deploy the resources of the machine
to execute the concurrent tasks, while simultaneously minimizing
communication.

(iv) Architectural issues, concerning the physical architecture of a machine
for performing parallel graph reduction.

Wewill address these issues in decreasing levels of detail.

24.4 Sparking Tasks

Whenshould a new task be sparked? There are two broad approaches:

(i) Spark a new task to evaluate a subgraph whenit is certain that the
subgraph will eventually be evaluated (conservative parallelism). This
ensuresthatall tasks are doing useful work.

(ii) Spark a new task to evaluate a subgraph whenit is possible that the
subgraph will eventually be evaluated (speculative parallelism). This
offers maximum opportunities for parallelism.

Wewill discuss these alternatives in turn.

24.4.1 Conservative Parallelism

Ifwe insist that we will only spark a task whenit is certain thatits result will be
needed, then we can initially start only one task, at the root of the whole
graph. This is not very parallel! When can we spark new tasks?
The most obvious place to spark new tasks is to evaluate the arguments ofa

strict built-in function. For example, when evaluating

(+ E; E2)

we could spark tasks to evaluate E, and Ez. It is certain that the values of E,
and Ez will be needed, so we can safely spark tasks to evaluate them. (Note:
we might choose to spark only one new task, to evaluate E; say, and allow the
task which is evaluating the whole (+ E1 E2) expression to evaluate Eg, since

it has nothing better to do. This is a relatively minor technical consideration,

however.)
Unfortunately, except for numerical analysis programs, this approach is so

conservative that we will obtain little parallelism. Some programscontain no
arithmetic! The idea is, however, easily generalized. Given the application of

a function f to an argument, thus

fE

we are safe to begin parallel evaluation of E if we know thatf will need the
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value of its argument,thatis if f is strict. So here is another application of
strictness analysis (Chapter 22), to identify points at which parallel evaluation
can be started. We can perform strictness analysis, annotate the graph with
information derived thereby, and use these annotations to control the
sparking of new tasks.

24.4.1.1 Strictness annotations
In fact, two forms of annotation are desirable. Consider an application of a
strict supercombinator $F to an argument E, which has a graph lookinglike

this:

|

$F ‘

Atfirst sight it looks as ifwe could annotate in one of two ways:

(i) Annotate the application node to indicate that the argument would be
needed:

@!

of \e
(ii) Annotate $F to indicate that it will need its argument:

@

 \:
Actually we should do both, because either one on its own sometimesfails to

initiate parallelism. Suppose we decided to annotate application nodesonly.

Considerthe expression

(IF E. $F $G) E

where $F is strict but $G is not. Parallel evaluation of E cannotbe started in
case the result ofthe IF expression is $G, so the applicationofthe IF expression
to E cannot be annotatedas strict. Hence E will not be evaluatedin parallel.If,
however, $F was annotated as strict, then after the IF had completed, $F
would be applied to E, and parallel evaluation of E would begin as $F is
applied to E.

Onthe other hand, suppose that we annotate supercombinators only, not

application nodes, and supposealso that $G in the above example was strict.
Then it would be safe to evaluate E in parallel with evaluating the IF
expression, and it might be highly advantageous to do so (if E, took a long
time to evaluate, for example). But because we are only annotating super-
combinators, the parallel evaluation of E will not be started until the IF has
completed and either $F or $G is applied to E. A further example of the
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necessity of annotating application nodesis given by the following example.
Supposethe supercombinator$T is defined thus:

$Txf=fx

Nowconsider the expression

$T E $F

where$Fis strict. $T is not in generalstrict in its first argument, but in this
context we would be safe to evaluate E in parallel, and we can achieve this by
annotating the ($T E) application node.

Weconclude that to maximize opportunities for parallelism we should
annotate both functions and application nodes with strictness information.
These issues are discussed by Hankinetal. [1986].

24.4.2 Speculative Parallelism

In this section we consider relaxing our constraint that a task should only be
sparkedif it is certain thatits result will be needed, and consider what might
happen if we are more speculative about sparking tasks. This has the
advantagethatit increases the opportunities for parallelism.

An extreme example of speculative parallelism is to spark a task for every
nodein the graph or, in other words, to regard any redex in the graph as a

candidate for reduction. More conservative regimes are also possible, in
which the arguments to some functions are sparked even though it is not
certain that their result will be required.

24.4.2.1 The dangers of speculation
The dangerof such speculative parallelism is that machine resources may be
consumed,evaluating pieces of graph that will eventually be discarded. For
example, consider the expression

IF E, Er Ee

Only oneofthe ‘then’ (E;) and ‘else’ (Ee) branchesoftheIF will be used, and
the speculative evaluation of the other will consume machine resources
uselessly. On the other hand,if the resources are available, we could begin
evaluation of E,, Erand E. simultaneously, and when the evaluation of E, was

completed we would havea headstart on evaluating the selected branch.
Thesituation is not unlike a governmentjob creation scheme.Ifagents are

unemployed then we may as well find some work for them, but there is a
danger that in our eagerness to find them jobs, the work they do may
ultimately prove notto be useful.
This approach has hidden dangers. Suppose the evaluation ofE,would give

the result TRUE after a few reductions, but the evaluation of E. failed to
terminate. Then after we begin concurrent evaluation of E,, E,and E. thereis
a risk that the machinewill squanderall its resources evaluating E, and never
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get aroundto evaluating E,! In otherwords, we mustalso be careful thatwe do

not employ so many agents on ourjob creation schemethat other workthatis
required is not done. The machine would notdeliver incorrect answers, butit
might take muchlongerto deliver the correct result.

This suggests that we would need to divide tasks into two classes, vital tasks

and speculative tasks. Theresults ofvital tasks are known to be needed,while
the results of speculative tasks may or may not be needed. Vital tasks should
have a higherpriority than speculative tasks, so that only if the machine has
spare resources will speculative tasks be executed. Seen in this light, con-

servative parallelism is simply a regime in which there are no speculative
tasks.

24.4.2.2 Managing speculative tasks
Atfirst, introducing a two-tier priority system seems quite innocuous,butin
fact it poses somesignificant challenges:

(i) A speculative task may become vital whenit is subsequently discovered
that its result is needed. Thusits priority must be upgraded. This is easy
enough, but in addition some (but notall) of the tasks which it has
already sparked must also becomevital. Identifying exactly which of
these subtasks must becomevital is not easy, especially as they are being
created dynamically.

(ii) A speculative task may be discarded whenit is subsequently discovered
that its result is not needed after all. In this case the task mustbekilled,
since it will otherwise continue to consume machine resources per-
forming useless work. Furthermore,all the tasks it has sparked must also

be killed, unless they are evaluating a piece of graph that is shared, and’
whose valueis still required. Identifying this collection of subtasksis not
easy either, especially as they might conceivably breed faster than they
can bekilled.

Speculative tasks therefore add a considerable resource-management
problem. Nevertheless, some parallel machines are taking this approach
[Hudak, 1984].

24.4.3 Too Little Parallelism

The potential problem with conservative parallelism is the danger that too

little parallelism will be generated to use effectively the parallelism provided
by the implementation.

However, as we remarked earlier, the major source of parallelism in any

program is the algorithmic parallelism introduced by the programmer. This
parallelism is normally of a conservative nature, in the sense that the results

will be required ofall the parallel computations which the programmerhas in
mind. Hence,sufficient conservative parallelism should be available.

In many functional programs, much of this parallelism is obtained by
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concurrent evaluation of components of data structures, so some sort of

Strictness analysis on non-flat domains is probably essential (see Section
22.4.2).

It is, of course, crucial that algorithmic parallelism is exploited by the

system but, however clever the strictness analyzer is, the programmerwill
always fear that it may fail to spot the carefully introduced parallelism in
particular cases. It seems desirable, therefore, that the programmershould be
allowed to annotate the program with strictness information. As a safety
feature the strictness analyzer could issue a warning message if the
programmerannotates a function as strict when the analyzerfails to discover
this.

24.4.4 Too Much Parallelism

The other side of the coin is that, even in a conservative regime, too much
parallelism may be generated. This can raise serious resource-management

problems, since during evaluation a graph often expands before it shrinks.

Thereis a dangerthat the entire memory of the machine might becomefilled
with half-finished computations, none of which could proceed for lack of
space.
For example, consider a program in which a function f returns a list whichis

consumedby a function g, which examines the whole list. A clever strictness
analyzer would spot that g used the wholelist and, using this information, the

implementation might set off a task to evaluate the wholelist concurrently
with its examination by g. Unfortunately, if f runs much faster than g, the

memory of the machine might becomefilled with the intermediatelist.
It seemslikely that some kind of control over runawayparallelism ofthis

kind will be necessary. This is very much a researcharea,andlittle experience
has been accumulatedso far.

24.4.5 Granularity, and the Problem of Tiny Tasks

In any parallel machine there is some administrative overhead associated with
sparking, executing and completingatask. It is importantthat this overheadis

small compared with the amount of work that the task does, otherwise the
machine is in danger of spending a large fraction of its resources in task
administration. Hence we must ensure that the tasks we spark are not too
small, ;

The tasks generated by a divide and conquer program can be thoughtofas a
tree, in which each node is a task and the descendants of a node are the

subtasks whichit sparks.

In a binary tree about half the nodesare leaves, so in a binary divide and
conqueralgorithm abouthalf the tasks generated will be ‘leaf tasks’; thatis,
tasks which the algorithm does notsplit into subtasks. For example, in the
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case of quicksort the ‘leaf tasks’ might be those which sort a set with only one
element. Thereis a serious dangerthat

(i) these ‘leaf tasks’ will be uneconomically small;

(ii) there will be very manyofthem (e.g. half, or more,of the total).

If nothing is done about this problem the machine could well become
swamped in a surfeit of tiny tasks. The solution must be to stop sparking
subtasks whenthe ‘size’ of the problem is small enough. For example, when
quicksort has to sort a set of 10 elements orless, it could avoid sparking
subtasks and do the wholesort in a single task.

This is clearly not an easy decision to make, and is an importantissue in

designing parallel machines. At present there seemsto be no alternative but
to dumpthe problem backin the programmer’slap, but automatic techniques
need to be developed to predict the approximate cost of execution of
subtasks.

Theissue of principle is one ofgranularity. The overheads of tasking begin
to dominate when the ‘grain’ of parallelism has become too fine, which
suggests that we should aim for coarse-grain parallelism even at the expense
of some concurrency. On the other hand,if the grain becomes too coarse
there will be too little concurrency and unemployed agents will be hanging

around with nothing to do. This suggests that somesort of run-time adaptive
system might be effective, in which a task is sparked only if there are
fewer than a given numberof tasks in the pool at that time. Ultimately, a
combinationofcompile-time and run-time techniques will doubtless be used.
Goldberg and Hudak [1985] describe serial combinators, which give the

coarsest grain of parallelism that does not lose concurrency, though, as we

havesaid, a coarsergrain still may be desirable.

24.4.6 Scheduling
In the lightofthe above discussion, the question ofwhich task an unemployed
agent should execute is rendered rather straightforward. It should execute a
vital task if there is one, or a speculative task otherwise.

Any agent executing a speculative task should, however, keep an eye out
for vital tasks joining the task pool. If this occurs the agent should return the
speculative task to the task pool and begin executing the vital task instead.

In a conservative parallelism regimeall tasks are vital, so an unemployed
agent can execute any task in the pool. Furthermore,it can execute the task

until it is complete or blocked, and there is no need to keep an eye on the task
pool. This is another benefit of conservative parallelism.
The choice of exactly which task to execute next may, however, have a

significant impact on the problemsofcontrolling parallelism (Sections 24.4.3-
24.4.5) and of locality (Section 24.7).
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24.5 Blocking Tasks

What happens if two tasks start evaluating the same piece of graph? They
might do this because the same node was sparked twice, or (more commonly)
because the graphs being evaluated by the two tasks share a common
subgraph.
As we will see in this section, for efficiency reasons we will need to

introduce a mechanism wherebytasks can be blocked from evaluating a piece
of graph which anothertask is already evaluating.

24.5.1 The Need for Blocking

Theindivisibility of each reduction step assures us that nothing incorrectwill
happeniftwo tasks were to evaluate the same graph,but it would certainly be

inefficient. They would execute in rough synchronization, and would either
execute the samereduction at the same time or would ‘leapfrog’ each other.
Their exact behavior would depend on the implementation but whatis clearis
that the same result would be obtained by either ofthem alone. For example,
consider the program

letx=* 45

in+xx

We might spark two parallel tasks to evaluate the arguments to the +, both of
whichwill try to evaluate the (* 4 5). They will both get the sameresult,so it
is probably better to allow one to proceed and make the other wait for the
result. Otherwise werisk tying up two agents to do the workofone.

Forefficiency reasons, therefore, we would like it to be possible for one

task to be blocked by another. Let us consider the blocking mechanism in
more detail.

24.5.2 The Blocking Mechanism

A task proceeds by unwinding the spine until it finds a function at thetip,
whenit performs the appropriate reduction(if there are enough arguments).
Asthe task unwinds the spine, it could mark the vertebrae nodes(by altering
the tag), so that a marked nodeis a signal saying ‘DANGER — task at work
inside here’. (Note that this mark is, of course, entirely different from the

mark used by a mark-scan garbage collector. It may be implemented by
altering the tag on the node.)
Now,when anothertask comesacross the marked nodeduring its unwind,

it would be blocked. As the first task rewinds the spine (i.e. pops vertebrae
from its stack when a reduction is completed), it removes the mark from the
vertebrae. Ofcourse, the vertebra whichis actually updated by the reduction

must be overwritten before its mark is removed. Any tasks blocked by the
marked nodesare now free to proceed.
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Consider, for example, the following program:

let f
g x

+ (f 3) (f 1)

g 6

+ (- *)
in

We might spark two tasks to evaluate the (f 3) and (f 1) subgraphs, which
share a commonsubgraph f:

/

@ \

f Ne @

/
a

 

   
The + might spark the nodes marked #, thus creating two new tasks to
evaluate the arguments to the +. Thefirst of these tasks to unwind into the

node labelled f will mark it (let us suppose it is the left-hand task in the
picture). When the second task tries to unwind into this node it will be
blocked. Meanwhilethe first task will reduce the f node to WHNFbyapplying
g to 6, and overwriting the node with the result (+ (—6)). Then, having

evaluated the arguments (—6 and3)it will add them, remove the mark from
the f nodeas it pops the node from its stack, and overwrite the node marked ¥
with the result (—3). Now the second task can proceed,so it will unwind into
the f node, where it will see the (+ (-—6)). It will never know that there was

once a (g 6) redex there.

24.5.3 Reducing Mutual Exclusion

A disadvantage of the blocking scheme outlined above is that it risks
unnecessary serialization. To take a common example, many books on
functional programmingpointout the usefulness ofhigher-order functions. A
typical example of this is the definition of sum, which sums the elements of a
list, in termsoffoldr, a higher-order function which combinesthe elements ofa

list using a given dyadic function:

foldr f b [] = b
foldr f b (x:xs) = f x (foldr b xs)

sum = foldr (+) 0
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sum is thus defined asa partial application of foldr, and is represented by the
graph

\
sum: @

@ 0

woud
Now suppose we were evaluating an expression which used sum in many
places. As a task unwinds into the sum graph it marks the top node, thus
blocking any other tasks from unwinding into it. But the sum graphis already
in WHNF,so there is no point in making other tasks block. It is perfectly safe

to allow any numberof tasks simultaneousaccess to the sum graph,andit is
quite peculiar to insist on serial access to a commonly used function!

This is a specific instance of a generalrule:

Once a subgraphis in WHNFit will never bealtered,so it is quite safe for
many tasks to have (read only) access toit.

This suggests that we need another kind of application node, a WHNF
application. A graph rooted at a WHNF application node is knownalready to
be in WHNF,so the node is not marked when a task unwinds into it.

Supercombinators, numbers, CONS cells and so on are, of course, already

knownto be in WHNF.This schemewill ensure that:

(i) if a graph maycontain redexes, and hence maybe altered, then only one
task is allowed init;

(ii) if a graph is known to be in WHNF,and hence cannotalter, then any
numberof tasks can have simultaneous accesstoit.

We must now consider when we can mark an application node as being
in WHNF. Sometimes this will be possible at compile-time. Consider the
supercombinator

$F x =IF (> x 0) x

The two application nodesin the body are known to be WHNFapplications,
since IF requires three arguments. Compile-time WHNF marking is not
always possible, so that further improvements accrue from performing some
run-time WHNF marking as well. Consider the expression ($G E; E2 Es),
where $G is a supercombinatorrequiring three arguments. It has a graphlike
this:
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Whenit is reduced, the top nodewill be overwritten with the result. However,

the lower two nodes are now known to be in WHNF,and can be marked as

such before they are popped from the stack.

The observationsare closely related to those ofSection 20.7, but seen from
a different perspective.

24.6 Whatis a Task?

Whena taskis not being executed by an agentit must be represented in some
wayin store. There are, of course,all sorts ofways of representing a task, but
in this section we will explore some of them to reassure ourselves of the
feasibility of our ideas so far.
The representation of a task must contain all the information required to

continue executing the task from the point at whichit was last suspended.In
conventional multitasking operating systems this representation is often
called a Task Control Block, and contains information such as

(i) the task’s stack pointer;
(ii) the task’s program counter;
(iii) the state of the task’s registers.

By contrast, in our parallel reduction model a task can, in principle, be
represented completely by a single pointer to the root of the graph it is
evaluating. The complete state of a partially completed task is held in the
graph,so that a pointer to the rootof its graph suffices to represent a task at
any stage in its life (not only whenit is newly sparked). At any stage an agent
can stop performing reductions on a task, put its root pointer back into the
task pool, and begin executing anothertask.

24.6.1 Pointer-Reversal

The only trouble with the very simple representation of a task that we have
describedis that if a task is blocked and subsequently resumed, the agent has

to unwind down thespineofthe graph from the root. One wayto avoid this is
to use pointer-reversal.

In Chapter 11 we described how an evaluator could unwind the spine of an
expression without using a stack by reversing pointers in the spine as it went.
Atfirst it appearsthatthis is totally out ofcourt in a parallel machine,since the
pointer-reversed graphis in a ‘peculiar state’ which will be incomprehensible
to othertasks.
However, pointer-reversal only reverses pointers in the vertebrae, and the

vertebrae are exactly the markednodes. Hence,no othertask will look inside a

pointer-reversed node,andit is quite safe to use this technique! The complete
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state of a task would now be represented by two pointers, the forward and
backward pointers. Then when a suspendedtask is resumed,the forward and
backward pointers are already pointing to the area of the graph whichis of
interest.
We have previously understood that pointer-reversal has a hidden cost,

because the pointers have to be re-reversed when rewinding the spine(i.e.
popping nodesfrom the stack). But even this is no longer necessarily true,
since we have to mark vertebrae as being in WHNFaswe pop them,and ina
parallel machine there will probably be little extra cost to re-reverse the
pointers as well. So pointer-reversal may save repeatedly unwindingthe spine
each timea task is blocked, and costs very little.

24.6.2 Using a Stack

During the development ofthe G-machine it becameclearthat the careful use
of the stack wascrucial to a fast implementation ofgraph reduction. Does the
stack not then form part of the task state? Is it indeed possible to use a
stack-based implementation like the G-machinefor a parallel machine?

Werecall that the entire G-machine developmentwas simply a sequence of
optimizations to ordinary graph reduction. In effect, part of the state of the
computationis held in the stack for efficiency reasons, but we should be able
to stop execution at any point, and (using information in the stack) fix up the
graphto representthe currentstate ofaffairs. If this sounds like a lot ofwork,
rememberthat straightforward graph reductioneffectively involves flushing
the current state out into the graph at every reduction step, while a parallel
G-machine would, in effect, keep part of the state of the graph in the stack
over a sequence of reduction steps.

There is no reason why this approach should not be combined with the
pointer-reversing idea. They can be usedeither individually or together.

24.6.3 Reawakening Blocked Tasks

So far we have not discussed what happensto a task whenit is blocked. There
are two main alternatives:

(i) We could simply return it to the pool of tasks awaiting execution. In due
course an unemployed agent looking for work will resume execution of
the task. It will very soon encounterthe node that blocked it before.If
this nodeis still marked, the task is blocked again, and is returned to the
pool oftasks, otherwise it can continue to execute normally.

(ii) We could somehowsuspend the task, so that it is not considered for
execution by unemployed agents, and reawaken it when the node which
blocked has its mark removed. Reawakening it would consist of putting
it in thepool of tasks awaiting execution.
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Thefirst method has the advantage of simplicity, but it is rather inefficient,
since repeated attempts are made to execute a task whichis still blocked for
the same reason. Some care would have to be taken to ensure that the
machinedid not spendallits time trying to resume blocked tasks, while never
getting around to executing the tasks which would remove the blockage.

In order to implement the second method we would somehow have to

attach the blocked task to the marked node. Then when the markis taken off
the node,the blocked task can be put backin the task pool. We could achieve
this by adding an extra field to every application node, which pointedto list
of tasks which should be reawakened when the mark on the nodeis removed.
This is the approach taken by the ALICE machine(see below).

Attaching an extra field to every application node seems rather wasteful,
since most ofthem will not have any tasks blocked on them,andan alternative

would beto overwrite the head of the application node with a pointerto list
of blocked tasks, and to rememberthe old head in thetail of the list. Some

mechanism would then be required to indicate that there were blocked tasks
queuedup on a marked node.

24.7 Locality

All the issues we have discussed so far have beenlogical issues, concerning the
abstract model of agents reducing a graph. Having fixed the details of the

model we then need to take decisions concerning its physical embodiment.

For the most part we regard a discussion of these physical issues as beyond the
scope of this book, since they are largely technological.
There is, however, one question which straddles the boundary between

these two areas, and which has a pervasive effect on the architecture of the
machine, namely the questionoflocality.

24.7.1 What is Locality?

Consider the communication within a commercial company. The
organization of the companyis intended to enable workers to perform their
tasks by communicating mainly with fellow workers in the same office.

Somewhat less often a worker may need to communicate with someone

further away but in the same building, andless often still he may need to
communicate with a colleague further away. Longer-distance communication
costs more, however, both in time and money, and an excessive proportion
of non-local communication generally indicates an inefficiently organized
company. It is therefore important to achieve predominantly local
communication, a property wecalllocality ofreference.
The idea of locality is well established in conventional computer

architecture. It is an observed property of most programs that they tend to

reference data which haveeither been referenced in the recentpast (temporal
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locality), or which are physically adjacent to recently referenced data
(spatial locality) [Denning, 1972]. A conventional cache exploits locality of
reference (both temporal and spatial) to hold actively used data in fast
memory close to the processor [Smith, 1982].

Functional programsare not so well behaved, since the physical adjacency
oftwo cells in the heap bears norelation to their logical adjacency,resulting in
a loss of spatial locality. This is, as we now discuss, particularly serious for
parallel machines.

Localityis a statistical property ofprograms, and the bestwe can hope to do
is to develop effective heuristics for achievingpredominantly local references.
This is at present an area moreofspeculation than experiment, though some
simulations have been performed [Keller and Lin, 1984; Hudak and

Goldberg, 1985a].

24.7.2 Shared Memory and Distributed Memory

Broadly speaking, a parallel graph reduction machinecan beorganized in one
of two ways:

(i) In ashared memory machinethe graphresides in a large shared memory
system, probably consisting of a numberof distinct memory units. The
processors are connected to the memory system by some kind of
communications system and, as the numberof processors increases, so
does the transit time of processor-memory transactions through the
communications system.

Hence, adding more processors causes the existing processors to run
moreslowly.

(ii) In a distributed memory machineeach processorhas a local memory unit
attached to it, forming a composite processor/memory unit. The graphis
distributed among these local memory units. Processors access graph
nodes in remote memory units using a communications system which
interconnects all the processor/memory units.

Accessing a local graph nodeis therefore very much cheaper than
accessing a remote one. If local accesses predominate, then more
processors can be added without slowing down existing processors, a
very desirable property.

There is no reason in principle why accessing a remote graph nodein a
distributed memory machine should take any longer than in a shared memory
machine (the communication system needs to be usedin either case), and this
is one of the insights of the Rediflow architecture (see below).

Wesee, therefore, that to be able to add more processors to a machine
without slowing downthe existing processors we must

(i) use a distributed memory scheme,
(ii) achievelocality.
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It is for this reason that locality plays such a keyrole in parallel reduction
machinearchitecture.

24.7.3 Locality versus Concurrency

There is one easy wayto achieve perfect locality: executeall tasks and allocate
all cells on a single processor/memory unit! This shows up the tension
betweenlocality and concurrency. Whenis it best to export a task to another
processor (to maximize concurrency), and whenis it best to perform it locally
(to maximize locality)?

We cannot expect any general answers to this question. For particular
programs a goodtask distribution may suggest itself, and one approachis to
allow the programmerto annotate his program to indicate this [Hudak and
Smith, 1985]. Thealternative is to develop effective heuristics for distributing
the tasks through the machine. It seemsintuitively plausible that a heavily
loaded processor should export tasks to a lightly loaded neighbor, andthis
leadsto the idea ofload balancing [Keller and Lin, 1984] (also called diffusion
scheduling [Hudak and Goldberg, 1985a]). Theideais that tasks are ‘pushed
away’ from busy processors;in addition it would improvelocality if tasks were
‘drawn towards’ memory units to which they have global references.
The granularity of the task is also important, since it is more worthwhile to

export a large computation than a small one.
Much more experience will need to be gained before we can make any

confidentassertions about achievinglocality in a parallel machine.

24.8 Parallel Reduction Machine Projects

A number of research teamsare in the process of building parallel graph
reduction machines. Thedetails of their architecture are beyond the scope of
this book, but we mention somecurrent projects here to serve as a starting-

point for further reading.
The Rediflow project at the University of Utah is a substantial

research program aimed at unifying the ideas of reduction and dataflow in a
single parallel architecture (hence the name)[Keller, 1985]. Rediflow is the

successor to the AMPS(Applicative Multiprocessor System) project [Keller
etal., 1979]. The reduction modelis considerably more general (and complex)
than that described in this chapter. The architecture consists ofa collection of
processor/memory/switch units, called Xputers, where the switching portion
of the Xputers collectively forms a multistage communications network, over
which the processors communicate using message-passing. Each Xputeris
directly connected to a fixed numberof neighboring Xputers, regardless of
the total number of Xputers in the network, so the machine is readily
extensible. The graph is distributed over the memories of the Xputers, so
locality and granularity are majorissues.
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ALICE (Applicative Language Idealized Computing Engine)is a parallel
reduction machine based at Imperial College, London [Darlington and
Reeve, 1981]. The reduction modelis a slight variant of supercombinator
reduction, but the architecture permits generalizations of the model
to be explored. It is constructed using Inmos Transputers which access

grobally addressable memory using a multistage network switch [Cripps
and Field, 1983]. Locality is not a major issue, since the graph is held
in globally addressable memory. ALICE became operational in February
1986.

Aspart of the DAPSproject (Distributed Applicative Parallel Systems), a
group at Yale University is implementing a parallel graph reduction engine
called Alfalfa [Hudak, 1985]. The parallel reduction model is based on serial

combinators [Hudak and Goldberg, 1985b], a variant of fully lazy super-
combinators. The hardwarebase is a 128-node Intel Hypercube[Intel, 1985],
a distributed multiprocessor without shared memory, in which processors ~
communicate using messages. From an abstract point of view, this is riot
unlike the Redifiow architecture, but the research is more closely focused on

purely functional languages. As with Rediflow, the absence of shared
memory meansthatlocality and granularity are major issues.
GRIP (Graph Reduction In Parallel) is a parallel supercombinator graph

reduction machine underconstruction at University CollegeLondon [Peyton
Joneset al., 1985; Clack and Peyton Jones, 1986], funded by the UK Alvey
Directorate. In contrast with the other projects described, GRIP is based on a
busarchitecture, which places an inherentlimit on the achievable parallelism
[Peyton Jones, 1986]. The intention is to deliver significantly better
performancefor a given cost than more ambitiousdesigns.

24.9 Summary

Wehaveseenthat functional languages are a good medium in whichto write
parallel programs, and that graph reduction provides a secure basis for
exploiting the concurrency of a multiprocessor to execute them.

Parallel implementations of functional languages are now beginning to
appear, and the next few years should see the testing in practice ofsomeofthe
assertions madein this chapter.It is an excitingfield.
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Appendix

AN INTRODUCTION TO MIRANDA
David Turner

Mirandais a strongly typed functional language based on higher-order recursion
equations. The basic ideas of Miranda are taken from the earlier languages SASL
[Turner, 1976; Richards, 1984] and KRC [Turner, 1982], with the addition of a type
discipline essentially the sameas that ofML[Gordonetal., 1979]. The Miranda system
is a product of Research Software Limited, and is implemented on a variety of
computers, running under the Unix operating system.f A full description of the
language andits programming environmentis in preparation. Wegive here a very brief
introduction to the language, concentrating on those features which are needed to
follow the use of Miranda notation in this book. We omit discussion of a numberof
features of the language which are not relevant to the material covered in the book.

Basic ideas

The Miranda programming languageis purely functional — there are noside-effects or
imperative features of any kind. Aprogram (actually we don’t call it a program,wecall
it a ‘script’) is a collection of equations defining various functions and data structures
which weare interested in computing. Here is a very simple example of a Miranda
script:
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The Miranda system is interactive, and its basic action is to evaluate expressions in
the environmentof the currentscript. So typing z to the system after the abovescript
had been entered would produce the response 9.
Notice that Miranda scripts have very little by way of excess syntactic baggage —

Unix is a trademark ofAT&TBell Laboratories; Miranda is a trademark ofResearch Software
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Miranda is, by design, rather terse. There are no mandatory type declarations,
although(seelater) the languageis strongly typed. There are no semicolons at the end
of definitions — the parsing algorithm makes intelligent use of layout. Note that the
notation for function application is simply juxtaposition, as in sq x. In the definition of
the sq function,nis a formal parameter— its scope is limited to the equation in whichit
occurs (whereas the other names introduced above have the whole script for their
scope).

Certain basic data types are built into the language; these are numbers, characters
andtruth values. There are two kinds ofbuilt-in data structure,called lists and tuples.
The most commonly used data structure is the list, which in Mirandais written with

square brackets and commas,e.g.:

week_days = [“Mon”,‘Tue”,“Wed”,“Thur”,“Fri”]
days = weekdays ++ [“Sat”,“Sun”]

In fact a string is just a list of characters, so writing e.g. “Mon”is equivalentto writing
thelist ['M’,’o','n’]. Lists may be appended by the ++ operator.

Otheruseful operationson lists include infix : which prefixes an elementto the front
of a list, # which takes the length ofa list, and infix ! which does subscripting. So, for
example, 0:[1,2,3] has the value [0,1,2,3], #days is 7, and daysi0 is “Mon”.
There is also an operator —~ which does list subtraction. For example

[1,2,3,4,5] — [2,4]is [1,3,5].
There is a shorthand notation using . for lists whose elements form an arithmetic

series. Here, for example, are definitions of the factorial function, and of a number

result which is the sum of the squares of the odd numbers between 1 and 100 (sum and
product are library functions, which add together and multiply, respectively, the
elements ofa list):

fac n = product [1. .n]
result = sum [1,3..100]

The elements ofa list must all be of the same type. A sequence of elements of mixed
type is called a tuple, and is written using parentheses instead of square brackets. For
example:

employee = (“Jones”,True,False, 39)

Tuples are analogous to records in Pascal (whereas lists are analogous to arrays).
Tuples cannot be subscripted — their elements are extracted by pattern-matching (see
below).

Guarded Equations and Block Structure

Anequation can have severalalternative right-hand sides distinguished by ‘guards’ (a
guard is a boolean expression written following a comma). So, for example, the
greatest commondivisor function can be written:

gcd a b ged (a—b) b, a>b
gcd a (b—a), a<b
a, a=b

Thesemanticsspecifies that theguardsare tested in order,from top tobottom,butitis
probably badstyle to write code which takes advantage ofthis. It is best to have a setof
guards which are mutually exclusive, as above, so that the order in which the cases are
written is not relevant. The keyword otherwise may be used as thelast guard,indicating
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that this is the case which applies if all the other tests fail. Thus,

f args = rhsi, testi
= rhs2, tesi2

= rhsN, otherwise

(N.B.Earlier versions of the Miranda compiler permitted the guard to be left offin the
last case — the programs in the main part of this book are written in this older form.)

It is also permitted to introduce local definitions on the right-hand side of a
definition, by means ofa where clause. Consider for example the following definition of
a function for solving quadratic equations(it either fails or returns a list of one or two
realroots):

quadsolve a 6 c error “complex roots”, delta<0
[—b/(2*a)], delta=0
[-b/(2*a) + radix/(2*a),—b/(2*a) — radix/(2*a)], delta>0
where
delta = b*b — 4*a*c
radix = sqrt delta

Notethat the scope of the where clause,if present,is all the right-hand sides associated
with a given left-hand side. Where clauses may occur nested, to arbitrary depth,
allowing Miranda programsto be organized with a nested block structure. Indentation

‘of inner blocks is compulsory, as layout information is required by the compiler to
determinethe correct parse. This is done using Landin’s ‘offside rule’ [Landin, 1966].

Pattern-matching
It is permitted to define a function by giving several alternative equations, dis-
tinguished by the use of different patterns in the formal parameters. This provides
another method of case analysis which is often more elegant than the use of guards.
Here are somesimple examples of pattern-matchingonlists:

sum [] = 0
sum (a:x) = a + sum x

reverse [] = [] -
reverse (a:x) = reverse x ++ [a]

Therangeofpossibilities permitted by Miranda in pattern-matchingisquite rich —for
example, patternscan be nested, and repeated identifiers can be used to imply equality
of subcomponents. Pattern matching can also be combinedwith the use of guards. As
an example which shows this, here is a definition of a function for removing adjacent
duplicate elements from list

no_dups x = x, #x<2
no_dups (a:a:x) = no_dups (a:x)
no_dups (a:b:x) = a : no_dups (b:x), a ~=b

Notice the way in which guards are here used to fully separate the cases, so that the
meaningofthescriptis notsensitive to the order in which the equations are written. In
fact the semantics of the language specifies that cases are tested in the order written,
butas a generalruleit is better to avoid writing code which depends onthis (although
this is not always possible without clumsiness).
Accessing the elements ofa tuple is also done by pattern-matching. Forexample, the

selection functions on 2-tuples can be defined thus

fst (a,b) = a
snd (a,b) = b
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Currying and Higher-order Functions

Mirandais a higher-order language — functionsare first class citizens and can be both
passed as parameters andreturned as results. Function applicationis left-associative, so
when wewrite f x y it is parsed as (f x) y, meaning that the result of applying fto xis a
function, whichis then applied to y. So for example ifwe define the function plus by:

plusxy=xty

then plus 3 is a functionin its own right — it is the function that adds 3 to its argument.
This device, whereby any function of two or more arguments is treated as a higher-
order function, is known as ‘currying’ (after the logician H.B. Curry).
The use of higher-order functions is an important feature of the programming style

made possible by functional languages, and often lends itself to very concise forms of
expression. As a simple example of higher-order programming consider the function
foldr, defined by:

foldr op k [] = k
foldr op k (a:x) = op a (foldr op k x)

All the standard list processing functions can be obtained Py partially parameterizing
foldr. Examples:

sum = foldr (+) 0
product = foldr (+) 1
reverse = foldr postfix []

where postfix a x = x ++ [a]

Note that in Miranda an operator can be passed as a parameter, by enclosing it in
parentheses.

Lazy Evaluation

Miranda’s evaluation mechanism is ‘lazy’, in the sense that no subexpression is
evaluated until its value is known to be required. One consequence ofthis is thatit is
possible to define functions which are non-strict (meaning that they are capable of
returning an answerevenifone oftheir arguments is undefined). For example, we can
define a conditional function as follows:

if Tue x y = x
‘if False x y=y

and then useit in such situations as if (x=0) 0 (4/x).
The other main consequence oflazy evaluationis that it makes it possible to write

down definitions of infinite data structures. Here are some examples of Miranda
definitions of infinite lists (note that there is a modified form of the .. notation for
endless arithmetic progressions)

ones = ones
nats = [0..]
odds: = [1,3..]
fibs = 1f

where fab = a: fb (atb)

The last example is the list of all Fibonacci numbers — 0,1,1,2,3,5,8,13 . . . (each
numberfrom the third onwards is the sum ofits two predecessors).
The presence ofinfinite data structures in a programminglanguageis far from being

a mere curiosity— as with higher-order functions it has a strong effect on programming
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style and gives the functional programmer access to a range of programming
possibilities not available to his imperative counterpart.

Infinite lists also provide the means for handling problemsof interactive input/
output and communicating processes within a functional framework.

ZF Expressions

ZF expressions (also called list comprehensions) give a concise syntax for a rather
generalclass of iterations overlists. The notation is adapted from Zermelo Frankelset
theory (whence the name ZF). A simple example of a ZF expressionis:

[ nen i n <— [1..100] ]

This is a list containing (in order) the squares of all the numbers from 1 to 100. The
above expression would be read aloud as ‘list of all nen such that n drawn from
{1..100]. Note thatnis a local variable of the above expression. The variable-binding
constructto the right of the baris called a ‘generator’ — the ‘<—’ sign denotes that the
variable introduced onits left ranges overall the elements ofthe list on its right. The
general form of a ZF expression in Mirandais:

[ body | qualifiers ]

where each qualifieris either a generator, ofthe form var<—exp, orelse filter, whichis
a boolean expression used to restrict the ranges of the variables introduced by the
generators. When two or more qualifiers are present they are separated by semicolons.
An exampleofa ZF expression with two generators is given by the following definition
of a function for returning list of all the permutations ofa givenlist:

perms [] = [[]]
perms x = [ a:y | a <— x; y <— perms (x—T[a}) ]

The use of a filter is shown by the following definition of a function which takes a
numberandreturnsa list ofall its factors,

factors n = [11 i <— [1..n div 2], n mod i=0 ]

ZF notation often allows remarkable conciseness of expression. We give two
examples. Here is a Miranda statement of Hoare’s ‘Quicksort’ algorithm, as a method
of sorting list:

sort [] = []
sort (a:x) = sort[ b | b <— x b<=a ] ++ [a] ++ sort[ b1 b <-— x% b>a]

Hereis a Miranda solution to the eight queens problem. We haveto place eight
queens on chess boards so that no queen gives check to any other. Since any solution
must have exactly one queenin each column,a suitable representation for a board is a
list of integers giving the row numberof the queen in each successive column. in the
following script the function queens n returns all safe ways to place queensonthefirst n
columns.A list of all solutions to the eight queens problem is therefore obtained by
printing the value of (queens 8). This example is taken from Turner[1982].

queens 0 = [ [c] ]

queens n = [ q:b | q <— [0..7];b <— queens(n—1); safe q b J, n>0
safe q b = and [ “checks q bi | i <— [0..#b—1]]
checks q b i = q=bli \/ abs(q — bli)=i+1

It is interesting to note that this is a problem whose solution would have involved
backtrackingif it had been programmed in an imperative language. Lazy evaluation
enables us to avoid backtracking, by programming explicitly in termsof list ofall
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solutions, without necessarily incurring the penalty of actually constructing all the
solutions. In fact if we only want the first solution we can print hd (queens 8) and the
remainderofthe solutionlist will not be instantiated. (Note:in the definition of checks,
the infix operator VV meanslogical ‘or’.)

Polymorphic Strong Typing

Mirandais strongly typed. That is, every expression and every subexpression has a
type, which can be deduced at compile-time, and any inconsistency in the type structure
of a script results in a compile-time error message. We here briefly summarize
Miranda’s notationforits types.
The three primitive types are called num, bool and char. The type num comprises

integer andfloating point numbers (the distinction betweenintegers and floating point
numbers is handied at run-time — this is not regarded as being a typedistinction).

If T is type, then [T] is the typeoflists whose elements are of type T. For example,
([1,2].[2,3],[4,5]] is of type [[num]),thatis it is a list of lists of numbers.

If T1 to Tn are types, then (T1,. . .,Tn) is the type of tuples with objects of these types
as components. For example,(True,‘hello’,36) is of type (bool,[char],num).

If T1 and T2aretypes, then T1—>T2isthe type ofa function with arguments in T1 and
results in T2. For example the function sum is of type [numj—>num. Thefunction
quadsolve, given earlier, is of type num—>num—>num—>[num]. Note that —> is right-
associative.

Mirandascripts can include type declarations. These are written using :: to mean ‘is
of type’. For example:

sq :: num —> num
sqn=ne#n

Thetype declarationis not necessary, however. The compileris able to deduce the type
of sq from its defining equation. Mirandascripts often contain type declarations even
though they are not really necessary, since these are useful for documentation (and
they provide an extra check, since the type-checkerwill complainifthe declared type is
inconsistent with the inferred one).
Types can be polymorphic,in the sense of Milner [1978]. This is indicated by using

the symbols * ** *** etc, as an alphabetof generic type variables. For example, the
identity function, defined in the Mirandalibrary as

idx =x

has the following type

id 3 * —> *

This meansthat the identity function has many types, namely all those which can be
obtained by substituting an arbitrary type for the generic type variable, e.g.
num—>num, bool—>bool, (*->**) —> (*—>**) and so on.

Weillustrate the Miranda type system by giving types for someofthe functions so far
definedin this appendix

fac :: num —> num
sum :: [num] —> num
reverse :: [*] —> [*]
fst °: (*,**) -> *

snd :: (*#,#*) —> **
foldr :: (*->#*->*4#) —> #* —> [*] —> #2

perms :: [+] —> [[*]]
queens :: num —> [[num]]
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User-defined Types

The usermay introduce new types. This is done by anequation using ::=. Forexample a
type of labelled binary trees (with numeric labels) would be introduced as follows,

tree ::= Niit | Node num tree tree

This introduces three new identifiers — tree which is the nameof the type, and Nilt and
Nodewhich are the constructors for trees. Nitis an atomic constructor, while Node takes
three arguments, of the types shown. Here is an example ofa tree built using these
constructors:

t1 = Node 7 (Node 3 Nilt Nilt) (Node 4 Nilt Nilt)

Notice that constructors always begin with an upper-case letter (and any identilier
beginning with an upper-case letter is assumed by the compiler to be a constructor).
To analyze an object of user-defined type, we use pattern-matching. For example

here is a definition of a function for taking the mirror imageofa tree:

mirror Nilt = Nilt
mitror (Node a x y) = Node a (mirror y) (mirror x)

User-defined types can be polymorphic — this is shown by introducing one or more
generic type variables as parameters of the ::= equation. For example, we can
generalize the definitionoftree to allow arbitrary labels, thus:

tree * ::= Niit | Node * (tree *) (tree *)

this introduces a family of tree types, including tree num, tree bool, tree(char—>char)
etc.
The types introduced by ::= definitions are called ‘algebraic types’. Algebraic types

are a very general idea. They include scalar enumerationtypes,e.g.

color ::= Red | Orange | Yellow | Green | Blue | Indigo | Violet

and also give us a way to do union types, for example:

booLor.num ::= Left bool | Right num

It is interesting to note that all the basic data types of Miranda could be defined from
first principles, using ::= equations. For example here are type definitions for bool,
(natural) numbers andlists,

bool ::= True | False
nat ::= Zero | Suc nat
list * ::= Nil | Cons * (list *)

Having types such as num built in is done for reasons ofconvenience andefficiency — it
isn’t logically necessary.

It is also possible to associate ‘laws’ with the constructors ofan algebraic type, which
are applied wheneveran object of the type is built. For example we can associate laws
with the Node constructorofthe tree type above,so that trees are always balanced. We
omit discussion of this feature of Miranda here — interested readers will find more
details in the references [Thompson, 1986; Turner, 1985].

In addition to algebraic types as sketched above, there are two other ways in which
the Miranda programmercanintroduce new types(these are not discussed in the main
part of this book, but we mention them for completeness). These are:

(i) Type synonyms
The Miranda programmercan introduce a new namefor an already existing type, We



 

438 Appendix

use == for these definitions, to distinguish them from ordinary value definitions. For
example:

string == [char]
matrix == [[num]]

Type synonymsare entirely transparent to the type-checker— it is best to think ofthem
as macros.It is also possible to introduce synonyms for families oftypes. This is done by
using generic type symbols as formal parameters,as in

aray * — [[*]]
SO NOW,€.g., array numis the same type as matrix.

(ii) Abstract data types
In addition to concrete types, introduced by ::= or == equations, Mirandapermits the
definition of abstract types, whose implementation details are ‘hidden’ from the rest of
the program. Abstract data types (and the related ideaoffree types) become important
in constructing larger pieces of software, which may evolve over time. The way in
which abstract data types are declared in Mirandais oneof the innovatory features of
the language — for a partial discussion of this see Turner[1985].

(Note: further information about the Miranda system andits availability for various
computers may be obtained from Research Software Limited, 23 St Augustines Road,
Canterbury, Kent CT1 1XP, UK, or from the following electronic mail address:
mira-request @ uk.ac.ukc.)
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PUSHINT,306, 320, 323

qualifier, 128, 128, 435

R compilation scheme(see compilation
scheme, R)

reattanging top ofstack (see stack,
rearranging top of)

AS compilation scheme (see compilation
scheme, RS)

reawakening a task, 425
recursion, 42, 43, 66, 150, 162, 238, 263,387 ~

effect on full laziness, 399
effect on residency, 403

recursive functions, 25
redex, 10

supercombinator, 223
top-level, 198

reduction, 4
compile-time, 240

reduction order, 4, 23, 193, 397
optimal, 25

reduction rnle, 129
redundantlet-expression, 241
reference count

onebit, 286
shared, 285

reference counting, 219, 282, 285
refutable pattern (see patterns, refutable)
region, 287

repeated variables, 65
residency, 403, 405
RETURN,315, 323, 340
rewrite mies, 225
rib, 202
rnie ofsigns, 380, 385
mn-time checks, 139
mn-timelibrary, 301, 319
run-time type-checking (see type-checking,

rnn-time)

S combinator, 260
8’ combinator, 270
$-transformation, 261
safety condition, 382, 386
SASL,2, 56, 102, 127, 194, 197, 265, 358
scheduling, 420
schematic generality, 144
schematic variable (see type variable,

schematic)
Scheme, 295
script, 431
SECDmachine, 221, 324, 378
SELPRODUCT, 317

SEL-r-i, 108, 300, 317, 344
SELSUM,317

SEL-SUM-r-l, 125, 300, 317, 362
SEL-SUM-s-i, 124, 125

SEL-t, 71, 76, 108
semi-decidable, 158
sequential evaluation, 406
serial combinator, 420, 429
serialization, 422
set abstraction, 127
set comprehension, 128
shared memory, 427
sharing, 187, 208, 233

excessive, 405
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shorting out indirections, 287, 334 synchronizationoftasks, 414, 421
simulated stack, 328 syntax tree, 185, 275
SK combinators, 5, 260 system tag, 189
SK compilation algorithm, 263
SKIM,191, 265, 278, 286, 295
SLIDE, 308, 323, 360 T, 295
space leak, 400 TD translation scheme(see translation
sparking a task, 414 scheme, TD)
spine, 202 TE translation scheme(see translation
spine stack, 202 scheme, TE)
SQUEEZE, 369 tag, 185, 187, 325
stack, 194, 205, 302, 319, 325, 338 TAIL, 12, 17, 300, 317

G-machine, 319 tail call, 368, 373
G-machine representation, 325 generalized, 367, 371
in parallel machine, 424 tail recursion, 370, 404
rearranging top of, 296, 302, 322, 334,355, target machine, 324

368, 374 task, 413
simulated, 328 speculative, 418, 420
spine, 202 tiny, 419

stack frame, 203, 221, 370 vital, 418, 420
standard interpretation, 382 task control block, 424
state transition, 320 task pool, 414
state of task, 424 template, 210
storage allocation, 192, 338 template instantiation, 231, 256, 363
storage fragmentation, 281 term rewrite system, 225
storage management(see also garbage tip of spine, 202

collection), 192, 281 to-space, 282
stream, 194, 397 topological sort, 120
strict, 33, 200, 383 TQ translation scheme(see translation
strict product-matching, 71 scheme, TQ)
strictness analysis, 5, 74, 351, 353, 380, 403, TR translation scheme(see translation

404, 416, 419 scheme,TR)
strictness annotation, 391, 416 transformation, 39, 56
string, 432 translation, 38
string reduction, 208 translation scheme, 45
strongly connected component, 120, 285 TD,45, 68, 81, 82
structural induction, 56 . TE,44, 68, 81, 132
structure tag, 107, 187, 189 TQ,134
structured data, 362 TR, 64, 66
structured type (see type, structured) tree, 185, 186
subscripting, oflists, 432 TRUE, 12
substitution, 17, 41, 130, 166 truth value, 432
substitution instance, 144 tuple, 54, 140, 432
substitution type

delta, 167 algebraic, 437
extending, 169 boolean, 55
fixed point, 167 enumeration, 55, 437
idempotent, 167 ground, 140
identity, 167 of function, 142
notation, 22 product, 56, 122

substitutions, composition of, 166 structured, 51, 141
sum type (see type, sum) sum, 56, 122
sum-of-products, 56 union, 437
supercombinator, 5, 150, 220, 223 user-defined, 437

recursive, 238 type checker, 176, 202
supercombinator graph reduction (see graph type checking, 3, 50, 163, 109, 110, 139

reduction, supercombinator) polymorphic,28, 436
supercombinator redex, 223 run-time, 109
supercombinators,fixed set of, 260 type declaration,52, 436
synch, 407 type environment, 173
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type expressions, 164
type-formmgoperator, 53, 54, 142, 164
type inference, 149
type labels, 151
type scheme, 171
type synonym,437
type template, 171
type variable, 53

constrained, 160, 171

generic, 53, 144, 172
non-generic, 172
schematic, 53, 144, 171
unknown, 172

types,infinite, 155
typing, compile-time, 190
typing, run-time, 190, 191

unboxed representation, 190, 214, 335, 404
unification, 168
unification algorithm, 170
unifier, 168
uniform definitions, 98, 100
union type, 437
unknowns(see type variable)
unmoved variable, 167
UNPACK-PRODUCT-r, 168

UNPACK-PRODUCT-t, 106, 122, 125

UNPACK-SUM-¢-r, 107

UNPACK-SUM-s, 106, 123, 125
unwind, 202
UNWIND,298, 305, 315, 322, 323, 332, 370, 377
UPDAP, 361

UPDATE, 298, 305, 323

updating root of redex, 203, 208, 209, 214,
217, 298, 339, 414

UPDCONS,362

user-defined type, 437

variable pattern (see pattern, variable)
variable rule, 83
variable

bound,14, 154, 159
free, 14, 171, 222, 226

variable-sized cells (see cell, variable-size)
VAX,324
VAX assembler, 324
vector processor, 410
vertebra, of spine, 202
virtual memory, 283, 284

weak head normal form, 198, 422
well-typed, 151
where clause, 66, 118, 433
WHNF (see weak head normal form)

Xr compilation scheme (see compilation
scheme,Xr)

Ycombinator, 27, 42, 43, 114, 126, 150, 155,
218, 232, 263

ZFexpression, 3, 50, 127, 435


