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Abstract

The code compiled from a non-strict functional program usually manipulates heap-

allocated boxed numbers. Compilers for such languages often go to considerable trouble

to optimise operations on boxed numbers into simpler operations on their unboxed forms.

These optimisations are usually handled in an ad hoc manner in the code generator,

because earlier phases of the compiler have no way to talk about unboxed values.

We present a new approach, which makes unboxed values into (nearly) �rst-class

citizens. The language, including its type system, is extended to handle unboxed values.

The optimisation of boxing and unboxing operations can now be reinterpreted as a set of

correctness-preserving program transformations. Indeed the particular transformations

required are ones which a compiler would want to implement anyway. The compiler

becomes both simpler and more modular.

Two other bene�ts accrue. Firstly, the results of strictness analysis can be exploited

within the same uniform transformational framework. Secondly, new algebraic data types

with unboxed components can be declared. Values of these types can be manipulated

much more e�ciently than the corresponding boxed versions.

Both a static and a dynamic semantics are given for the augmented language. The

denotational dynamic semantics is notable for its use of unpointed domains.

1 Introduction

Most compilers have a phase during which they attempt to optimise the program by applying

correctness-preserving transformations to it. Constant folding is a particular example of this

sort of transformation; procedure inlining is another.

Functional languages are especially amenable to such transformation because of their simple

semantics. Non-strict functional languages are nicest of all, because �-reduction (sometimes

called unfolding in a transformational context) is always valid; in a strict language it is only

valid if the body of the function being unfolded is guaranteed to evaluate the argument.

�

This paper appears in the Proceedings of the 1991 Conference on Functional Programming Languages and

Computer Architecture, Cambridge, Sept 1991.
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Several researchers have begun to express more and more of the work of the compiler in

the form of correctness-preserving transformations (see Section 11). Such an approach has

obvious advantages. Firstly, each transformation can be proved to be correct independent of

the others. When more of the compiler takes the form of such transformations, it is easier

to prove the compiler correct. Secondly, each transformation exposes opportunities for other

transformations. The more that is done within a transformation phase, the more chance there

is for such bene�cial interactions.

There is an important class of optimisations for non-strict languages which has so far been

beyond the scope of program transformation. These all relate to the treatment of so-called

unboxed values, which we introduce in the next section. Instead, this family of optimisations

is generally implemented in an ad hoc manner in the code generator.

Following some preliminaries (Sections 2 and 3), this paper makes four main contributions:

� Most important, we show how the class of unboxed-value optimisations can formulated

as correctness-preserving transformations (Section 4). Unboxed values are made �rst-

class citizens, distinguished from their boxed counterparts by the type system. These

transformations do not generate much better code than current compilers do; our in-

tention is only to present the optimisations in a new and elegant way.

� We show how to apply the same idea to express and exploit the results of strictness

analysis in a uniform way (Section 5).

� We show how the approach can be generalised to other algebraic data types (Section 6).

Declaring and using such unboxed data types gives a substantial performance improve-

ment.

� We provide a formal underpinning for the approach, by giving both a static semantics

and a denotational dynamic semantics for the language extended with unboxed values

(Sections 7, 8, and 9). The dynamic semantics has the desirable property that the

semantic equations are unchanged from those for the language without unboxed values,

despite the extra strictness of the extended language. This e�ect is achieved by using

unpointed domains.

We conclude by discussing some language-design issues, reviewing related work, and mention-

ing some areas for further work.

2 The problem

Consider the following function de�nition:

double x = x + x

In a non-strict language, x may be unevaluated when double is called, in which case a pointer

to a heap-allocated closure (or suspension) for x is passed to double. When double needs

x's value (in this case right away), it evaluates the closure. As a side e�ect of this evaluation,
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the closure of x is overwritten with its value. Any further attempts to evaluate x will succeed

immediately, returning its value. This way of ensuring that unevaluated closures are evaluated

at most once is called lazy evaluation.

Unfortunately, lazy evaluation tends to make arithmetic horribly ine�cient if some care is not

taken. In particular, in a na��ve implementation numbers are always represented by a pointer

to a heap-allocated object which is either an unevaluated closure, or is a \box" containing

the number's actual value, which has now overwritten the closure. This means that a simple

arithmetic operation, which would take a single machine instruction in a strict language,

requires quite a long sequence of instructions: the two operands are fetched from their boxes,

the operation performed, a new box allocated to contain the result, and the result placed in

it.

The bit-pattern representing the value itself, on which the built-in machine instructions oper-

ate, is called an unboxed value. Unboxed values come in a variety of shapes and sizes: 32-bit

integers, 64-bit integers, single and double-precision 
oating point numbers, and so on, are

all unboxed values. A pointer to a heap-allocated box containing an unboxed value is called

a boxed value. Clearly it is vastly more e�cient to manipulate unboxed values than boxed

ones.

Quite a lot can be done. For example, consider again the de�nition of double given above.

A na��ve compiler would compile code for double which would evaluate x, extract its unboxed

value, then evaluate x again and extract the value again, then add the two, and box the result.

A slightly cleverer compiler would realise that it already had x's value in hand, and refrain

from the second evaluation. As another example, consider the following de�nition:

f x y z = x + (y * z)

A na��ve compiler might generate code to box the value of y*z, only to unbox it again right

away. A cleverer compiler can elide these unnecessary operations.

As a �nal example, consider the following call to double:

double (p+q)

The straightforward approach is to build a closure for p+q and pass it to double which will

evaluate it. But double is clearly going to evaluate its argument so it is a waste to allocate

the closure, only for double to evaluate it, and discard it for the garbage collector to recover

later. It would be much better for the caller to evaluate p and q, add their values, and pass

p+q to double in unboxed form.

3 The Core language

We begin with a few preliminaries, to set the scene for our new proposals.

Our compilation route involves the following steps:
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1. The source language is Haskell (Hudak et al. [1990]), a strongly-typed, non-strict,

purely-functional language. Haskell's main innovative feature is its support for sys-

tematic overloading, but we do not discuss this aspect at all here.

2. Haskell is compiled to the Core language. All Haskell's syntactic sugar has been

compiled out, type checking performed, and overloading resolved. Pattern-matching

has been compiled into case expressions, each of which performs only a single level of

matching. Boxing and unboxing are explicit, as described below.

3. Program analyses and transformations are applied to the Core language. In particular,

the boxing/unboxing optimisations are carried out here.

4. The Core language is translated to the STG language, the abstract machine code for the

Spineless Tagless G-machine, our evaluation model. The Spineless Tagless G-machine

was initially presented in Peyton Jones & Salkild [1989], but the latter has been com-

pletely rewritten as a companion to this paper (Peyton Jones [1991]).

5. The STG language is translated to \Abstract C". This is just an internal data type

which can be simply printed out as C code and thence compiled to native code with

standard C compilers. Abstract C can also serve serve as an input to a code generator,

thereby generating native code directly, but we have not yet implemented this route.

In this paper we only concern ourselves with the Core language, which is introduced in the next

section. However, since the Core language does not have explicit algebraic type declarations,

we borrow Haskell's syntax for this purpose when required.

3.1 The syntax of the Core language

The abstract syntax of the Core language is given in Figure 1. The binds constituting a prog

should de�ne main, which is taken to be the value of the program.

The concrete syntax we use is conventional: parentheses are used to disambiguate; application

associates to the left and binds more tightly than any other operator; the body of a lambda

abstraction extends as far to the right as possible; the usual in�x arithmetic operators are

permitted; the usual syntax for lists is allowed, with in�x constructor \:" and empty list

[]; and, where the layout makes the meaning clear, we allow ourselves to omit semicolons

between bindings and case alternatives.

Notice that the bindings in let(rec) expressions are all simple; that is, the left hand side of

the binding is always just a variable. Function bindings are expressed by binding a variable to

a lambda abstraction. However, we permit ourselves the small liberty in the concrete syntax

of writing the arguments of function bindings to the left of the = sign.

Similarly, the patterns in case expressions are all simple; nested pattern matching has been

compiled to nested case expressions.
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Program prog ! binds

Bindings binds ! bind

1

; : : :; bind

n

n � 1

bind ! var = expr

Expression expr ! expr

1

expr

2

Application

j \ var -> expr Lambda abstraction

j case expr of alts Case expression

j let bind in expr Local de�nition

j letrec binds in expr Local recursion

j con Constructor

j var Variable

j literal

Literal values literal ! integer

j 
oat

Alternatives alts ! calt

1

; : : :; calt

n

; default -> expr n � 0

j lalt

1

; : : :; lalt

n

; var -> expr n � 0

Constructor alt calt ! con var

1

: : :var

n

-> expr n � 0

Literal alt lalt ! literal -> expr n � 0

Figure 1: Syntax of the Core language

Here is an example program to illustrate these points:

fac n = case n of

0 -> 1

n' -> n * factorial (n-1)

main = fac 100

3.2 A semantics for the Core language

In this section we present a denotational semantics for well-typed Core language programs.

We do so with a little more care than usual, because we want it to form a basis for the

denotational semantics of unboxed types later. We need to do two things:

� Give a model, which de�nes a domain D[[� ]] for each type � in the language.

� Give a valuation function E [[e]] which, for every expression e of type � , gives its value

in the domain D[[� ]] .
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3.3 The model

Beginning with the model, we give the syntax of types � :

� ::= �

j Int

j Float

j �

1

! �

2

j �

n

�

1

: : : �

n

(n � 0 )

Here, � is a type variable, and �

n

ranges over type constructors of arity n. These type con-

structors arise from algebraic data type declarations made by the programmer. For example,

the declaration

data Tree a = Leaf a | Branch (Tree a) (Tree a)

introduces a type constructor Tree with arity 1. Lists, booleans, pairs, and other types which

usually come \built in" are all regarded as examples of such algebraic data types.

We de�ne the domain corresponding to each type � inductively, thus:

D[[]] : Monotype ! (Typevar ! Dom)! Dom

D[[�]] � = � �

D[[Int]] � = fThe set of �xed-precision integersg

?

D[[Float]] � = fThe set of �xed-precision 
oating-point numbersg

?

D[[�

1

! �

2

]] � = (D[[�

1

]] �)! (D[[�

2

]] �)

D[[�

n

�

1

: : : �

n

]] � = �

n

(D[[�

1

]] �) : : :(D[[�

n

]] �)

The environment � maps type variables to domains; where the type � has no free variables

we write simply D[[� ]] . Notice that the arrow on the left hand side of the fourth equation is

part of the syntax of types, whereas on the right hand side it stands for the function space

constructor (or functor) for domains. In just the same way, the �

n

stands for a domain

constructor; so we must obviously say just how �

n

is de�ned for any given algebraic data

type declaration. The general form of an algebraic data type declaration is as follows:

data � �

1

: : :�

t

= c

1

�

11

: : : �

1a

1

j : : : j c

n

�

n1

: : : �

na

n

where t � 0 , n > 0 and a

i

� 0 . Corresponding to this declaration we give the following

functor de�nition:

� d

1

: : :d

t

= (s

1

+ : : :+ s

n

)

?

where � = [�

1

7! d

1

; : : : ; �

n

7! d

n

]

s

i

= D[[�

i1

]] �� : : :�D[[�

ia

i

]] � (1 � i � n)

The domain constructions are categorical product (�) and sum (+), and lifting (�

?

); they

are de�ned in Figure 2. This equation is more usually given using separated sum instead of

categorical sum, and omitting the lifting, but the result is the same in either case, as is easily

veri�ed. The reason we choose this formulation is that it extends smoothly when we add

unboxed types.
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Lifting A

?

= f?g [ flift a j a 2 Ag

Categorical sum A+ B = fh0 ; ai j a 2 Ag [ fh1 ; bi j b 2 Bg

Categorical product A� B = fha; bi j a 2 A; b 2 Bg

Figure 2: De�nitions of domain constructions

This construction gives rise to a mutually recursive set of functor de�nitions. These can

be solved in the usual way to de�ne a domain D[[� ]] for each type � with no free vari-

ables. (See Smyth & Plotkin [1982] for a categorical account, or Schmidt [1986] for a more

element-orientated treatment. The latter is particularly useful as it discusses unpointed (i.e.

bottomless) domains, an aspect important later on.)

3.4 The semantic equations

That completes the description of the domains involved, so it remains only to give the de�ni-

tions of the valuation functions. Figure 3, which gives these de�nitions, contains no surprises.

The valuation function P [[]] gives the meaning of programs, E [[]] give the meaning of expres-

sions, B[[]] gives the meaning of groups of de�nitions, and K[[]] (which is not further de�ned)

give the meaning of literal constants.

The valuation function E [[]] takes an expression and an environment and returns a value. We

use Env for the domain of environments, and Val for the domain of values, de�ning them

like this:

Env =

S

�

(var

�

! D[[� ]] )

Val =

S

�

D[[� ]]

The environment maps a variable of type � to a value in the domain D[[� ]] , and the domain

of values is the union of all the D[[� ]] . In these two equations � ranges only over types with

no free type variables.

We need a notation for writing values in the domains corresponding to algebraic data types.

Since only binary sum and product were de�ned, such values should formally consist of nested

pairs, but these are rather tiresome to write. Instead we will permit ourselves the liberty of

writing such values in the 
attened form:

hc; �

1

; : : : ; �

n

i

where c is a constructor of arity n, and �

i

are values from the appropriate argument domains.

The initial environment �

init

contains bindings for all the built-in functions. For example, it
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P [[program]] :Val

P [[prog ]] = E [[letrec prog in main]] �

init

E [[expr ]] : Env! Val

E [[k ]] � = K[[k ]]

E [[x ]] � = � x

E [[e

1

e

2

]] = (E [[e

1

]] �) (E [[e

2

]] �)

E [[\x->e]] � = ��:(E [[e]] (�� fx 7! �g))

E [[let x = e in b]] � = E [[b]] (�� fx 7! E [[e]] �g)

E [[letrec binds in e]] � = E [[e]] (�� �x (��

0

:B[[binds ]] (�� �

0

)))

E [[c]] � = ��

1

: : : :��

a

:hc; �

1

; : : : ; �

a

i

E [[case e of c

1

x

11

: : :x

1a

1

-> e

1

; : : :; c

n

x

n1

: : :x

na

n

-> e

n

; default -> e

d

]] �

= case E [[e]] � of

? ! ?

hc

1

; �

11

; : : : ; �

1a

1

i ! E [[e

1

]] (�� fx

11

7! �

11

; : : : ; x

1a

1

7! �

1a

1

g)

: : :

hc

n

; �

n1

; : : : ; �

na

n

i ! E [[e

n

]] (�� fx

n1

7! �

n1

; : : : ; x

na

n

7! �

na

n

g)

else ! E [[e

d

]] �

end

E [[case e of k

1

-> e

1

; : : :; k

n

-> e

n

; x -> e

d

]] �

= case E [[e]] � of

? ! ?

lift k

1

! E [[e

1

]] �

: : :

lift k

n

! E [[e

n

]] �

lift � ! E [[e

d

]] (�� fx 7! �g)

end

B[[binds ]] : Env! Env

B[[x

1

=e

1

; : : :; x

n

=e

n

]] � = fx

1

7! E [[e

1

]] �; : : : ; x

n

7! E [[e

n

]] �g

Figure 3: Denotational semantics of the Core language
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contains the following binding for the addition function:

+ 7! �x :�y :case x of

? ! ?

lift x

0

! case y of

? ! ?

lift y

0

! lift(x

0

+ y

0

)

end

end

This de�nition also illustrates the semantic case construct which we use to discriminate

among elements of a domain.

4 The main idea: exposing unboxed types to transformation

We are now ready to present the key idea of the paper. The big problem with earlier ap-

proaches to the boxing issue is this: there is no way to talk about unboxed values in the Core

language. An immediate consequence is that evaluation of numbers is implicit. For example,

in the de�nition:

f x y = y - x

x and y must be evaluated before they can be subtracted, but this fact is implicit, as is the

order in which x and y are evaluated.

This implicit evaluation is in contrast with the situation for algebraic data types. For example,

the length function might be de�ned like this:

length xs = case xs of

x : xs -> 1 + length xs

[] -> 0

Here, the evaluation of xs is completely explicit. In general, it is precisely case expressions

(and nothing else) which perform evaluation of data structures.

This suggests an obvious improvement: perhaps the evaluation of numbers can be done by

case expressions as well. Suppose we wrote the de�nition of f like this:

f x y = case y of

Int y# -> case x of

Int x# -> case (y# -# x#) of

t# -> Int t#

The idea is that the data type Int, of �xed-precision integers, is no longer primitive. Instead,

we can imagine Int being declared in Haskell like this:

data Int = Int Int#
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That is, the Int type is an algebraic data type like any other, with a single constructor

Int. (Here and elsewhere we will use the same name for the type and its constructor.) The

Int constructor has one component, of type Int#, which is the primitive type of unboxed

�xed-precision integers. A new primitive operator, -#, subtracts values of type Int#.

The outermost case expression in our new formulation of f serves to evaluate y and extract

its unboxed component y#. The next case expression performs a similar function for x, giving

x#. Next, the di�erence between y# and x# is computed and bound to t#, and �nally, the

function returns a value of type Int, obtained by applying the Int constructor to t#.

At �rst sight, the innermost case expression is rather curious. Why not just write the

following instead?

Int (y# -# x#)

The reason we chose to use case for this purpose is to make explicit that the subtraction is

performed before the result of the function is returned.

In general we will use a # sign to identify unboxed types, and to identify variables whose type

is unboxed. This only serves to make the presentation clearer; the # characters are treated

by the compiler in the same way as any other alphabetic character, as part of a name.

We note in passing that the transformation from the �rst form of f to the second can be

carried out in a systematic way, merely by giving the following de�nition to the subtraction

operator -, which was previously considered primitive:

(-) p q = case p of

Int p# -> case q of

Int q# -> case (p# -# q#) of

t# -> Int t#

Now the passage from one version of f to the other is just a matter of �-reduction, unfolding

the application of - to its two arguments.

Now that Int has been expressed in terms of a more primitive type, its constructors, the

integers 0, 1, and so on, must be regarded as short for Int 0#, Int 1#, and so on, where

0# and 1# are the unboxed constants for zero and one. Similarly, pattern matching against

integers becomes a two-stage process. The function

f 1 = e1

f 2 = e2

f n = en

is shorthand for

f (Int 1#) = e1

f (Int 2#) = e2

f n = en
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The latter will get translated by the pattern-matching compiler to

f n = case n of Int n# -> case n# of

1# -> e1

2# -> e2

default -> en

This has a straightforward operational interpretation. The outer case evaluates n and ex-

tracts its unboxed contents, n#. The inner case scrutinises n# and selects the appropriate

alternative.

Now that we can express programs involving unboxed values, we can demonstrate how the

optimisations mentioned in Section 2 can be re-interpreted as program transformations.

4.1 Avoiding repeated evaluation

Consider the expression:

x+x

A na��ve implementation would evaluate and unbox x twice. Let us see what the expression

looks like when we unfold the application of +, just as we unfolded - in the previous section.

It becomes this:

case x of

Int x1# -> case x of

Int x2# -> case (x1# +# x2#) of

t# -> Int t#

Now, it is a simple observation that the inner case is scrutinising the same value as the outer

case. In general, the following transformation holds:

case e of : : :; c x

1

: : :x

n

-> : : :case e of : : :c y

1

: : :y

n

-> body : : :; : : :

=)

case e of : : :; c x

1

: : :x

n

-> : : :body [x

1

=y

1

: : :x

n

=y

n

] : : :; : : :

(There is a side condition: we assume that every binding site binds a distinct variable, so

that the two occurrences of the expression e denote the same value, and so that body does

not re-bind the x

i

.) Applying this transformation to the expression we are studying, we get:

case x of

Int x1# -> case (x1# +# x1#) of

t# -> Int t#

which expresses precisely the optimisation we were seeking.
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4.2 Eliding redundant boxing operations

As a second example, consider the expression

x + (y * z)

As mentioned earlier, we want to avoid wrapping a box around the value of y*z, because

it will immediately be unwrapped by the enclosing addition. As before, let us see what the

expression looks like when the applications of + and * are unfolded. It becomes this:

case x of

Int x# -> case ( case y of

Int y# -> case z of

Int z# -> case (y# *# z#) of

t1# -> Int t1#

) of

Int w# -> case (x# +# w#) of t2# -> Int t2#

This expression does not look very promising, but it yields to the following well-known trans-

formation:

case (case e of p

1

->e

1

; : : :; p

n

->e

n

) of alts

=)

case e of p

1

-> (case e

1

of alts); : : :; p

n

-> (case e

n

of alts)

(The same unique-binding side condition is necessary here too, to ensure that the meaning of

alts is not changed by being moved into the scope of the patterns p

i

.) Where the expression

scrutinised by a case is itself a case expression, the cases can be interchanged, as shown.

We call this the case-of-case transformation, for obvious reasons.

In general, there is a danger of duplicating code, because if the inner case has multiple

alternatives, alts will be duplicated. Happily, in the expression we are transforming, the

inner case has just one alternative. We can apply the transformation three times to give:

case x of

Int x# -> case y of

Int y# -> case z of

Int z# -> case (y# *# z#) of

t1# -> case (Int t1#) of

Int w# -> case (x# +# w#) of

t2# -> Int t2#

Now another generally-useful transformation applies:

case (c x

1

: : :x

n

) of : : :; c y

1

: : :y

n

-> e ; : : :

=)

e[x

1

=y

1

: : :x

n

=y

n

]
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That is, a case expression which scrutinises a constructor applied to some variables, can be

replaced by the appropriate alternative after suitable renaming. (In general, a constructor

which is applied to arbitrary expressions can be transformed to one applied to variables by

introducing some let-bindings.) Using this transformation on the inner case expression

gives:

case x of

Int x# -> case y of

Int y# -> case z of

Int z# -> case (y# *# z#) of

t1# -> case (x# +# t1#) of

t2# -> Int t2#

This �nal form refrains from boxing t1# and then taking it apart, just as we hoped. Instead,

the result of the multiplication is used directly in the addition.

5 Strictness analysis and unboxed calls

Much e�ort has been devoted in the literature to strictness analysis, which detects whether

or not a function is strict (Hankin & Abramsky [1986]). For a sequential implementation the

signi�cance is that strict arguments can be evaluated before the call. In particular, strict

numeric arguments can be passed unboxed. In the following section we show how the results

of strictness analysis can be exploited within our transformational framework.

5.1 Exploiting the results of strictness analysis

As with other aspects of boxing and unboxing, the exploitation of strictness analysis is usually

left to the hapless code generator. Let us see how it can be expressed in our extended language.

Consider the factorial function with an accumulating parameter, which in Haskell might

look like this:

afac a 0 = a

afac a n = afac (n*a) (n-1)

Translated into the Core language, it would take the following form:

afac a n = case n of

Int n# -> case n# of

0# -> a

n#' -> afac (n*a) (n-(Int 1#))

Integer constants have been replaced by the Int constructor applied to the corresponding

unboxed constant, and pattern-matching have been translated into case expressions.
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Suppose that a strictness analyser informs us that afac is strict in both its arguments. Then

without (as yet) doing anything further to its body, we can transform it into the following

pair of de�nitions:

afac a n = case a of Int a# -> case n of Int n# -> afac# a# n#

afac# a# n# = let n = Int n#

a = Int a#

in

case n of

Int n# -> case n# of

0# -> a

n#' -> afac (n*a) (n-(Int 1#))

The \wrapper", afac, evaluates the arguments and passes them unboxed to the \worker",

afac#. (Recall that the # annotations are merely present as cues to the human reader;

the compiler treats # as part of a name, like any other letter.) The latter consists of a

let-expression, whose bindings reconstruct the original arguments, and whose body is the

unmodi�ed body of the original afac.

Now we can go to work on the body of afac#. We unfold the de�nitions of *, -, and afac

itself; and apply the transformations described earlier. One further related transformation is

needed:

let x = c x

1

: : :x

n

in : : : (case x of : : :; c y

1

: : :y

n

-> body; : : :) : : :

=)

let x = c x

1

: : :x

n

in : : : (body [x

1

=y

1

: : :x

n

=y

n

]) : : :

This transformation is applied to the auxiliary let bindings for a and n, after which no uses

of a and n remain, so the let bindings for them can be dropped. A few moments work should

convince you that the result is this:

afac# a# n# = case n# of

0# -> Int a#

n'# -> case (n# *# a#) of

a1# -> case (n# -# 1#) of

n1# -> afac# a1# n1#

Bingo! afac# is just what we hoped for: a strict, constant-space, e�cient factorial function.

Even the recursive call is made directly to afac#, rather than going via afac. Meanwhile,

afac acts as an \impedance-matcher" to provide a boxed interface to afac#.

Now, much of the bene�t of strictness comes from the fact that often the arguments are

already partly or completely evaluated before the call. For example, consider the following

call to afac:

if (x>10) then (afac 1 x) else 0

14



Here, x is already evaluated before we reach the call to afac. All we need to do to take

advantage of this is to always unfold calls to afac (though not afac#!). This unfolding

exposes the two evaluations which afac does. The transformations already discussed can

then eliminate both of them, leaving a direct call to afac#.

To summarise, the results of strictness analysis can be uniformly incorporated into the trans-

formation process by applying the following procedure to each strict function:

� Split the function into two: a wrapper function which evaluates the strict arguments and

passes them to the work function. The work function uses let-bindings to reconstitute

the original arguments, but is otherwise identical to the original function.

� Unfold all applications of the wrapper function wherever possible.

� Optimise using the transformations described earlier.

5.2 Strictness over non-numeric types

In fact, this is not quite the whole story. Firstly, a function can be strict in an argument

whose type is a list. It is far from clear what the wrapper function should do in this case.

Nor is it clear what the wrapper should do in the case of a function strict in a functional

argument.

The most obvious cases where something useful can be done are these: when the strict ar-

gument is of a data type which has just one constructor. Then the wrapper can evaluate

the object, extract its components, and pass them to the work function. (Actually, it is

only necessary to pass the free variables of the work function's body to the work function.

Components which are not used can be discarded by the wrapper.)

To take an example where the constructor has more than one component, consider the function

f t = case t of (x,y) -> (...)

It is clearly strict in its argument, which is a pair. Therefore we split it into two, thus:

f t = case t of (x,y) -> f# x y

f# x y = let t = (x,y) in (...)

Now a call to f in which an explicit pair is given, thus

f (e1,e2)

will bene�t from unfolding the wrapper for f and simplifying, giving

f# e1 e2

The example stands revealed as the standard currying transformation, another example of an

ad hoc transformation appearing as a special case.
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5.3 Unboxing results

The second addition to the strictness story can be seen by attempting the same transformation

on the non-accumulating factorial function. Here is the original de�nition:

fac n = case n of

Int n# -> case n# of

0# -> Int 1#

n#' -> n * fac (n-(Int 1#))

Again, because fac is strict, we may split it into a wrapper and a worker, thus:

fac n = case n of Int n# -> fac# n#

fac# n# = case n# of

0# -> Int 1#

n#' -> case (n# -# 1#) of

n1# -> case (fac# n1#) of

Int m# -> case (n# *# m#) of

r# -> Int r#

The point is that fac# has type Int#! Int, not Int#! Int#. Hence fac# contains code for

taking apart the boxed integer returned by the recursive call to fac# (the next to innermost

case does this).

It looks as if a new boxed Int is constructed in the heap for each recursive call, and this will

indeed be the case for many implementations

1

.

Can we avoid this problem? Observing that the result of a function call is always required (or

else the call would not have been made), we can modify the way in which the split into wrapper

and work functions is made. If the result of the original function is a single-constructor type

(as in this case), we can split like this:

fac n = case n of Int n# -> case (fac1# n#) of t# -> Int t#

fac1# n# = let n = Int n#

in

case (...original body of fac...) of

Int r# -> r#

Now fac1# has type Int#! Int#, and transformation turns it into

fac1# n# = case n# of

1

It happens not to be the case for the Spineless Tagless G-machine, which returns even apparently boxed

integers (among other things) in a register. The reason for this is that the only reason a boxed integer is ever

evaluated is to unbox it. Even so, returning an unboxed value is still slightly more e�cient than returning a

boxed one.
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0# -> 1#

n#' -> case (n# -# 1#) of

n1# -> case (fac1# n1#) of m# -> n# *# m#

To conclude, the point of all this is not so much that any one alternative is obviously much

better than any other, but that rather the new expressiveness o�ered by a language featuring

unboxed types allows us to discuss and explore a wide range of options within a single uniform

framework.

6 Generalising unboxed types

The presentation of Section 4 gave a de�nition for the Int type as an algebraic data type

based on a primitive unboxed type, Int#. This is rather suggestive: can we generalise the

idea to all algebraic data types, so that Int is not special, but rather a particular case of a

general feature?

It turns out that we can indeed do so in two distinct ways:

� We can allow any constructor (and not just Int) to take arguments of unboxed type.

� We can allow any algebraic data type (and not just Int#) to be unboxed.

6.1 Constructors with unboxed components

Consider the following (conventional) de�nition of a data type for complex numbers and a

corresponding addition function:

data Cpx = Cpx Int Int -- Real and imaginary parts

addCpx (Cpx r1 i1) (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

But, since all constructors are non-strict, what addCpx will do is to build a Cpx box containing

pointers to an unevaluated closure for r1+r2 and another for i1+i2. Now this may be exactly

what the programmer wanted | it allows values such as Cpx ? ?, for example | but the

implementation cost is heavy compared with a strict language which would simply build a

Cpx box containing the values of r1+r2 and i1+i2.

The discussion of Section 4 suggests the following alternative:

data UCpx = UCpx Int# Int#

addUCpx (UCpx i1 r1) (UCpx i2 r2)

= case (i1 +# i2) of

t1# -> case (r1 +# r2) of

t2# -> UCpx t1# t2#
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Now the components of the UCpx constructor are unboxed integers, and are therefore computed

before the constructor is built.

6.2 Arbitrary unboxed algebraic data types

An enumeration type is an algebraic data type whose constructors all have zero arity. For

example

data Boolean = False | True

data Colour = Red | Green | White | Blue

Objects of type Boolean and Colour are boxed; yet it makes sense to think of an unboxed

boolean or colour, represented as one of a suitable set of bit-patterns. This observation

provokes the question: can we allow the programmer to declare new unboxed enumeration

types, perhaps like this:

data unboxed Colour# = Red# | Green# | White# | Blue#

data unboxed Boolean# = False# | True#

It would certainly be more e�cient to represent a value of type Colour# or Boolean# than

to represent one of type Boolean or Colour. As usual the # annotations are present only

to clarify the presentation; it is the unboxed keyword which indicates that the enumeration

should be unboxed.

The idea can be generalised further, by allowing any algebraic data type to be declared

unboxed. For example:

data unboxed UPair# a b = UPair# a b

data unboxed UCpx# = UCpx# Int# Int#

data unboxed Maybe# a = Just# a | Nothing#

Each of these declarations has a natural operational reading. The type of unboxed pairs,

UPair, is represented by a pair of pointers. These pointers are actually carried around to-

gether, rather then placing them in a heap-allocated box and carrying around a pointer to

this box. Similarly the UCpx# type is represented by a pair of unboxed integers.

The Maybe# type is a little di�erent, because it has more than one constructor. It can be

represented by a bit to distinguish one constructor from the other, together with enough words

to contain the components of any of the constructors (one, in this case). The implementation

would be trickier here, and the e�ciency gains might be less clear cut. Since the sole purpose

of these unboxed types is to improve e�ciency, it is not clear whether it is worth implementing

them in full generality.

Recursive unboxed types are even less plausible. For example:

data unboxed UTree a = ULeaf a | UBranch (UTree a) (UTree a)
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Here, the size of an unboxed tree would be variable, and it is hard to imagine how it could

ever be implemented e�ciently. Accordingly, we impose the rule that there must be at least

one boxed type involved in any recursive loop of types (see Section 7.3).

7 The semantics of unboxed types

So far we have motivated the introduction of unboxed types by showing a number of ways in

which they can be useful. It is now time to give the idea some formal foundation.

We do so in two steps:

� We discuss the modi�cations necessary to the type system; that is, the static semantics

(Section 8).

� We modify the dynamic semantics of the Core language to take account of unboxed

values, and discuss the safety of program transformations in the presence of unboxed

values (Section 9).

Before we begin this sequence, we discuss an important caveat. We are trying to make

unboxed values into �rst-class citizens, but it turns out that we must make three signi�cant

restrictions on their use.

The �rst two of these restrictions certainly make writing programs involving unboxed types

less convenient. But remember that we are talking here about the Core language, rather

than about the source language in which the programmer writes. There are several steps we

can take to reduce the impact of these restrictions on the programmer, by inserting implicit

evaluations and coercions, but it is better to deal with one issue at a time. We therefore

concentrate now on giving a semantics for the restricted language, while in Section 10, we

discuss the language-design question.

7.1 Restriction 1: loss of polymorphism

Unboxed objects are dangerous beasts: if the garbage collector should ever treat one as a

pointer to a heap object, the entire system might crash. Furthermore, the size of an unboxed

object may vary with its type. An Int# object may be the same size as a pointer, but a

LongInt# object would be larger, as would a 64-bit 
oating point number and an unboxed

pair.

One approach would be to add tag bits to distinguish boxed and unboxed objects, and give

size and layout information for unboxed objects. This would be intolerably slow. For example

the simple function

head (x:xs) = x

would have to test the tag on the value x to �nd out how many bytes to move into the result

location(s). This approach would largely obviate one of the major bene�ts of strong typing,

namely the performance advantage of working with untagged data (Appel [1988]).
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Accordingly, we assume that no tag bits distinguish boxed from unboxed objects, relying

solely on the type system to keep them apart. It follows immediately that:

Restriction 1. Polymorphic functions cannot manipulate unboxed values.

7.2 Restriction 2: explicit evaluation

Whenever an unboxed value is stored in a data structure or passed to a function, it must

�rst be evaluated. Whilst this could be left implicit, we prefer to make it explicit. The main

reason for doing so is that it allows the dynamic semantics to be much more straightforward,

and ensures that most existing program transformations remain valid (Section 9).

There is a simple syntactic criterion which tells if an expression of unboxed type is in head

normal form (HNF) or not: an expression of unboxed type is in HNF if it is:

� a literal constant,

� an application of an unboxed constructor, or

� a variable.

(An unboxed constructor is a constructor of an unboxed algebraic data type | see Sec-

tion 6.2.) The only surprise here is that a variable is an HNF; this follows from the fact that

unboxed variables are bound to the bit-pattern corresponding to the value, so then cannot

be bottom. Since functions are all boxed, no partial application is an HNF of unboxed type.

Now we can formalise our restriction:

Restriction 2. An expression of unboxed type which appears as the argument

of an application, or as the right-hand side of a binding, must be in HNF.

As an example of this restriction, the expression

f (x +# y)

is illegal because (x +# y) is not an HNF. It must instead be written

case (x +# y) of t# -> f t#

The evaluation has thereby been made explicit.

Restriction 2 permits recursive de�nitions of unboxed values, which at �rst look unreasonable.

They do not seem to be very useful, however, so we ignore them until Section 12.4.

7.3 Restriction 3: no recursive unboxed data types

For the reasons discussed above in Section 6.2, and to ensure the domain equations of Section 9

have a least solution, we prohibit recursive de�nitions of unboxed data types:
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Polytype � ::= 8�: � j �

Monotype � ::= � j �

Boxed type � ::= � Type variable

j �

1

! �

2

Function type

j � �

1

: : :�

n

Parameterised boxed data type

Unboxed type � ::= Int#

j Float#

j �# �

1

: : : �

n

Parameterised unboxed data type

Figure 4: Syntax of types

Restriction 3. There must be at least one boxed type involved in any recursive

loop of types.

This is rather similar to the usual rule that type synonyms must not be recursive.

8 The static semantics of unboxed types

Since all three restrictions are expressed in terms of types, it follows that the type system

must be modi�ed to embody them. Restriction 3 is a simple syntactic check, but Restrictions

1 and 2 are more interesting.

8.1 Types

The syntax for types is given in Figure 4. A monotype, � , can be boxed or unboxed.

A boxed type, �, is a type variable, a function type, or a type constructor � parameterised

only over further boxed types. Each type constructor � corresponds to a (boxed) algebraic

data type declaration.

Functions are interesting. The argument and result of a function type can be any type, boxed

or otherwise; but the function itself is regarded as boxed because it is represented by a pointer

to a closure.

An unboxed type, �, is either one of the built-in unboxed types such as Int# or Float#, or an

unboxed type constructor �# parameterised over boxed types. Each such type constructor

corresponds to an unboxed algebraic data type declaration.

The only surprise here is that data types cannot be parameterised over unboxed types. For

example, does not the type List Int# (which would be written [Int#] in Haskell) make
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perfect sense? The di�culty is that the garbage collector cannot tell that this particular list

contains unboxed objects, which should not be treated as pointers; and furthermore, standard

list cells might well be unable to accomodate, say, a double-precision 
oating pointer number.

Another way to think of it is this: the list constructor \:" is polymorphic, and hence should

not be applied to unboxed values (Restriction 1).

The only constructors which can have unboxed components are those which have been explic-

itly declared as such (such as UCpx). Notice that the type UCpx is a boxed type, despite having

unboxed components. The restriction is that a polymorphic type cannot be parameterised

with unboxed components.

8.2 Typing

We move on to consider how the type rules can be adjusted to accomodate the new con-

straints. Fortunately it is rather easy. Most type systems have a rule looking like this (for

typical examples of complete typing rules see Damas & Milner [1982] or Hancock's chapter

in Peyton Jones [1987]):

A ` e : 8�: �

SPEC

A ` e : �[�=�]

This rule is used to instantiate polymorphic types, by substituting an arbitrary monotype �

for the type variable � in �. All that we need to do to implement Restriction 1 is to ensure

that polymorphic types are never instantiated with unboxed types, thus:

A ` e : 8�: �

SPEC'

A ` e : �[�=�]

That is, only boxed types � should be substituted for �. Restriction 2 is also easy to embody.

We need two rules for application instead of one:

A ` e

1

: � ! �

A ` e

2

: �

AP

A ` e

1

e

2

: �

A ` e

1

: � ! �

A ` h : �

AP#

A ` e

1

h : �

The AP rule applies to functions taking boxed arguments, while the AP# rule insists that

an unboxed argument must be an HNF, h. The rule for let and letrec need to altered in a

similar way.

And that is all! No further changes are required to the type system.

8.3 Type inference

Next, we consider what changes need to be made to a type inference system to accomodate

the new rules and the accompanying two kinds of types.
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SPEC is usually implemented in a type inference engine by substituting a fresh type variable

for the universally quanti�ed variable �. This is subsequently specialised as much as necessary

by uni�cation. To implement the new SPEC rule we therefore need to modify the uni�cation

process: the uni�er should fail to unify an unboxed type with a polymorphic type variable. For

example, consider the expression

id 4#

where id is the polymorphic identity function with type 8�: � ! �, and 4# is an unboxed

integer of type Int#. The type of id is instantiated to � ! �, where � is a fresh type variable.

Then an attempt will be made to unify � with Int#, and at this point a type error will be

reported.

This is not quite all we have to do. Consider the function de�nition

uInc x = x +# 1#

Function de�nitions are usually typed by adding the assumption x : � to the type environment,

where � is a fresh type variable, and then typing the body. This yields a substitution which

can be applied to � to give the argument type for f. In this case we do not want the type

checker to complain at the uni�cation of � with Int#; rather we want type inference to succeed

in attributing to uInc the type Int#! Int#.

What is required is two forms of type variables: uncommitted ones, which can unify with

anything; and boxed ones, which cannot unify with unboxed types. Function arguments

are given uncommitted type variables, while boxed type variables are used to instantiate

polymorphic types.

The same trick can be used to implement the two forms of AP rule. If the argument of the

function is not simple variable, we unify the type of the argument with a boxed type variable.

In e�ect, this tags the argument type (which might at this stage be only an uncommitted

type variable), so that it can only subsequently unify with a boxed type, as required.

This completes our sketch of the modest changes required to a type inference system to

accomodate unboxed types. It is a little surprising that the type system does not need two

kinds of type variables; only the type inferencer does. It would be possible to introduce two

kinds of type variables into the type system as well, and it might make it easier to prove

soundness and completeness results if this were done.

9 The dynamic semantics of unboxed types

Next we consider what changes need to be made to the dynamic semantics of the Core

language to accomodate unboxed types. As before, we need to give a domain model for each

type, and we need to give the semantic equations.
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9.1 The model

The �rst question is: what is the domain D[[Int#]] , corresponding to the type of unboxed

integers? Our �rst attempts to answer this question suggested that it should be the usual

domain of integers, including ?; but that meant that D[[Int]] , the domain of boxed integers,

had to have an extra bottom. This double lifting gives rise to all sorts of complications, over

which we draw a kindly veil.

A much better solution is to use unpointed domains, that is domains which lack a bottom

element. (A good introduction is given by Schmidt [1986].) So the domain of unboxed integers

is de�ned thus:

D[[Int#]] = fThe �xed-precision integersg

The domain has no bottom element, and the ordering relation is just the identity. The lack

of a bottom element for unboxed domains corresponds nicely to our intuition: a variable of

unboxed type can never be bound to bottom, because the whole computation will diverge

before the binding takes place.

The di�erence between the domains corresponding to Int and Int# is that the latter is not

lifted. Now it is possible to see why we made the outermost lifting explicit in our model

for algebraic data types in Section 3.3: it makes it easy to generalise the model to unboxed

data types, merely by omitting the lifting. Speci�cally, for an unboxed algebraic data type

declaration, of form

data unboxed �# �

1

: : :�

t

= c

1

�

11

: : : �

1a

1

j : : : j c

n

�

n1

: : : �

na

n

we derive the following functor de�nition:

�# d

1

: : :d

t

= s

1

+ : : :+ s

n

where � = [�

1

7! d

1

; : : : ; �

t

7! d

t

]

s

i

= D[[�

i1

]] �� : : :� D[[�

ia

i

]] � (1 � i � n)

The only di�erence from the boxed case is the absence of the outermost lifting.

The inductive de�nition for D[[]] from Section 3.3 goes through largely unchanged:

D[[�]] � = � �

D[[Int#]] � = fThe set of �xed-precision integersg

D[[Float#]] � = fThe set of �xed-precision 
oating-point numbersg

D[[� ! �]] � = (D[[� ]] �)! (D[[�]] �)

D[[� ! �]] � = (D[[� ]] �)! (D[[�]] �)

?

D[[�

n

�

1

: : : �

n

]] � = �

n

(D[[�

1

]] �) : : :(D[[�

n

]] �)

D[[�#

n

�

1

: : : �

n

]] � = �#

n

(D[[�

1

]] �) : : :(D[[�

n

]] �)

The main di�erence comes in the function space construction. A function returning an un-

boxed value may fail to terminate, so its result type must be lifted

2

.

The resulting domain equations are well-founded provided Restriction 3 is observed, namely

that every recursive loop of type declarations includes at least one boxed type.

2

This decision is not as ad hoc as it may appear. The restricted form of function application permitted by

Restriction 2 directly implements Kleisli composition over the lifting monad, where an arrow from A to B is

a function from A to B

?

(Moggi [1989]).
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9.2 The semantic equations

The major di�erence in the semantics of programs involving unboxed values is that unboxed

arguments are evaluated before calling the function to which they are passed. At �rst it looks

as though this will require a signi�cant adjustment to the semantics, but this is the point at

which Restriction 2 comes into its own. Because Restriction 2 has already made all evaluation

explicit, no changes whatsoever are required to the semantic equations of Figure 3.

Whilst the equations themselves do not change, the de�nition of the domains Val and Env

need to be adjusted in a somewhat subtle way.

First, the valuation of an expression of unboxed type may fail to terminate, and hence, as

with function types, we need to lift the result domain:

Val =

 

[

�

D[[�]]

!

[

 

[

�

D[[�]]

?

!

Does the same need to be done for Env? No it does not, because we claim that a variable

of unboxed type can never be bound to bottom. To justify this claim, consider all the places

where a variable of unboxed type can be bound:

� The application of a lambda abstraction. Here the argument can only be a variable

(Restriction 2), so if the claim is true of the argument it will also be true of the variable

bound by the abstraction.

� The evaluation of a case alternative. Here variables are bound to the components of a

constructor. But if any of these components is of unboxed type, then the corresponding

argument at the call of the constructor will be a variable, and hence cannot be bottom.

� The evaluation of a case alternative. Here a variable is bound to the value which the

case evaluates. But if this value is bottom then the case diverges, and so the binding

never takes place.

This all corresponds directly to our intuition. The run-time environment will contain pointers

to (perhaps as yet unevaluated) boxed values, and some unboxed values. The latter cannot

be bottom! So we retain the same de�nition for Env:

Env =

[

�

(var

�

! D[[� ]] )

9.3 Transforming programs involving unboxed types

The whole thrust of this paper has been to expose programs involving unboxed values to opti-

mising transformations (cf Section 4). It is legitimate to ask whether all the transformations

we know so well still apply in the new setting. This is not a trivial question. For example,

suppose that we did not impose Restriction 2, so that unboxed arguments could be non-trivial

expressions. Then �-reduction is no longer valid! For example, consider the expression:

(\x.3) (f 3)
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where f has type Int -> Int#, and f happens to diverge on argument 3. Then, because

unboxed arguments must be evaluated before a call, this expression has value ?. But a

simple � reduction transforms this expression to 3, and hence changes the meaning.

The most important reason for Restriction 2 is to prevent this sort of problem. All the

usual program transformations remain valid in the new setting. We can justify this claim by

observing that all the existing semantic equations remain unchanged, so if a transformation

previously preserved correctness then it will do so in the extended language as well. This

sounds obvious, but many of our earlier attempts at a dynamic semantics required di�erent

semantic rules, and so the correctness of transformations was a matter for speculation.

There is a small caveat. We need to check that the result of a program transformation still

obeys Restrictions 1 and 2; that is, they are still well-typed in the sense of Section 8.

10 Language design issues

The sole reason for introducing unboxed values in the �rst place is to improve e�ciency. There

are no programs which one can write using unboxed values which cannot be written equally

easily without. It is therefore far from obvious whether unboxed values should be exposed

to the programmer at all; it would be quite possible to use them solely as a convenient

notation inside the compiler, helping to support the compilation-by-transformation paradigm

as discussed in Sections 4 and 5.

Even so, there is a strong case for making unboxed values directly available to the programmer,

including the generalisations proposed in Section 6, as we now discuss. (A possible compromise

would be to make such language extensions available only to the systems programmer; for

example, the person who writes the complex-number arithmetic package.)

Consider the UCpx data type introduced in Section 6.1. In principle, it is possible that a

very clever program analyser could look at a program written in terms of Cpx and addCpx

and �gure out that it would not change the meaning of the program to rewrite it in terms

of UCpx and addUCpx. In practice, this is far beyond what current compiler technology can

do, because data can be placed in a data structure in one part of the program, and used

somewhere else entirely. In any case, such an analysis would be impossible in the presence of

separate compilation.

In short, the e�ciency improvements arising from generalised unboxed algebraic data types

cannot realistically be obtained without involving the programmer; yet these performance

improvements can be substantial.

The other trouble with making unboxed values part of the source language is that Restrictions

1 and 2 are very tiresome. The remaining parts of this section consider how they may be

alleviated.
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10.1 Automatic evaluation

It is a simple matter to lift Restriction 2 in the source language, by transforming the program

to obey the restriction after type inference is complete. For example, whenever a function

is applied to a non-HNF argument of unboxed type, the application is enclosed in a case

expression which evaluates the argument and binds it to a variable, which is then passed to

the function.

Similarly, whenever a let-expression binds a non-HNF value of unboxed type, it is replaced

with the corresponding case expression.

This transformation cannot be applied to letrec expressions, because there is no correspond-

ing case expression. For the same reason, it cannot be applied to the top-level bindings of a

program.

10.2 Automatic coercion

It is also possible to lift Restriction 1, which prohibits unboxed values from being passed

to polymorphic functions, at least where there is a boxed form of the same data type, by

coercing to and from the boxed form.

For example, a value of type Int# may be passed to a polymorphic function, by �rst being

coerced type Int by applying the Int constructor to it. Similarly, a value of type Int can be

coerced into one of type Int# by evaluating it and extracting its value. This is exactly the

approach taken by Leroy [1991].

For example, the expression:

foldr (+#) 0# [4#, 5#]

would, after the coercions have been introduced, look like this:

case (foldr (\x. \y. case x of Int x# ->

case y of Int y# ->

case (+# x# y#) of t# -> Int t#)

(Int 0#)

[Int 4#, Int 5#])

of

Int t1# -> t1#

The unboxed constants have been boxed to make them compatible with the polymorphic

functions foldr and the list constructor; the corresponding coercions have been done to the

function passed to foldr; and the result of the foldr is then coerced back to Int#.

It is debatable whether all of this extra stu� should get introduced by the compiler, perhaps

without the programmer realising that it is taking place. After all, the whole purpose of the

exercise is to improve performance, so hidden performance losses are bad news.
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The other problem is that, in general, it is possible to insert coercions in more than one place,

and still obtain a correct program. Satish Thatte gives a good presentation of the issues

(Thatte [1990]).

11 Related work

There is a long tradition of compilation by transformation, starting with Steele's Rabbit

compiler (Steele [1978]), which pioneered continuation-passing style (CPS). CPS allows many

representation decisions to be exposed, and expressed in the language being transformed,

rather than being hidden in a black-box code generator. The Orbit compiler (Kranz [1988])

for Scheme is built on these ideas to make a production-quality optimising compiler.

Appel and MacQueen's Standard ML compiler is a further development in this line, with even

greater modularity especially near the back end (Appel & Jim [1989]). Kelsey's thesis, entitled

\Compilation by program transformation", is also CPS-based, but he handles imperative

languages as well (Kelsey [1989]).

Fradet and LeMetayer describe another transformation-based compiler based on CPS (Fradet

& Metayer [1990]; Fradet & Metayer [1988]). Their approach is unusual in that their target

code is a continuation-based combinator language which has a direct reading either as a

functional program or as a sequence of abstract machine instructions. The trouble is that they

are thereby forced to make an early commitment to some low-level representation decisions,

such as stack layout.

All of this work relates to compilation-by-transformation of languages with strict semantics.

CPS is wonderful for such languages, because it makes explicit the order of evaluation which

is implied by the semantics. For non-strict language, where the order of evaluation is demand-

driven, CPS is not nearly so useful. A case expression is the nearest we get to it (\evaluate

this expression and then continue in one of these ways, depending on the result you get").

The case-of-case transformation and its cousins (case-of-constructor, case-of-variable in a

scope where the variable is bound to a constructor) are not new. They were the key transfor-

mations in the deforestation algorithm given by Wadler [1990], whose purpose is to eliminate

intermediate data structures in functional programs. Indeed, the work described here could

be seen as an exploration of the e�ects of exposing unboxed types to deforestation, the inter-

mediate data structures in this case being the boxes around values.

None of these works directly addresses the main theme of this paper, namely the treatment

of unboxed values in a non-strict language. The Clean compiler from Nijmegen (Brus et al.

[1987]) does support unboxed values at the program level, but the details of what it does and

how it works are not published.

Peterson's paper, whose title \Untagged data in tagged environments" is super�cially similar

to this paper, addresses a di�erent, though related, problem (Peterson [1989]). Suppose that

one took the ideas of this paper but dropped Restriction 1 (which restricts polymorphism),

using tagging to identify unboxed data. Peterson then proposes an analysis to discover regions

of the program in which the tags need not be attached to the unboxed values, which is of

course much more e�cient than manipulating the tagged representation. It is not clear how
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well his analysis would work in a non-strict language where the order of evaluation is much

harder to predict.

Leroy's work has already been mentioned (Leroy [1991]). It deals with a strict language, and

concentrates mainly on the coercion issues discussed in Section 10. It nicely complements

this paper.

12 Further work

12.1 Overloading the built-in operators

In Section 6.1 we introduced the following example:

data Cpx = Cpx Int Int

addCpx (Cpx r1 i1) (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

Suppose that one had written the former de�nition of Cpx and addCpx, and then decided to

make the components of Cpx unboxed. It would be nice if one could just replace Int with

Int# in the de�nition of the Cpx data type, but make no change to the addCpx function, thus:

data Cpx = Cpx Int# Int#

addCpx (Cpx r1 i1) (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)

(We are assuming that Restriction 2 is lifted as discussed above.) As things stand, addCpx

and every other function which manipulates the components of a Cpx constructor, needs to

be changed to use use unboxed operations instead of boxed ones:

addCpx (Cpx r1 i1) (Cpx r2 i2) = Cpx (r1 +# r2) (i1 +# i2)

This is a nuisance, and it would be nice if the compiler could �gure such things out for itself.

At �rst it seems that Haskell's overloading mechanism might solve the problem, but this is

defeated by Restriction 1. Hence we cannot declare an instance of the class Num for unboxed

integers Int#.

12.2 Foreign-language interfacing

One of the reasons it is quite tricky to call subroutines written in another language (eg C)

from a non-strict functional program is because other language generally manipulate unboxed

values. Once we can manipulate unboxed values in the functional language, it is likely to be-

come easier to build a direct interface to other imperative languages. We have not investigated

this yet.
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12.3 Unboxed functions

Does it make any sense to talk of unboxed functions? For example, a C program can pass

code addresses around, and then call them.

In general, a function is represented by a code pointer and an environment. An unboxed

function could perhaps be a code pointer together with a pointer to an environment. But

then not much has been gained compared with making the code pointer just one more �eld

in the environment.

The time that there would be a substantial bene�t would be for functions which had no free

variables; that is, no environment. Such functions can indeed be represented by just a code

address, just like C.

12.4 Recursive de�nitions of unboxed values

Recursive de�nitions of unboxed values are permitted by Restriction 2, provided their right-

hand sides are HNFs, and they even make sense! For example, given the type de�nitions

data unboxed Two# = Two# One Int#

data One = One Two#

the following recursive de�nition makes sense, attributing to x the type Two#:

x = Two# (One x) 3#

The way to understand such a de�nition is by naming each subexpression, and then, in the

de�nition of each boxed variable, replacing each unboxed variable by its de�nition. This leaves

a set of recursive de�nitions of boxed values, and some non-recursive de�nitions of unboxed

values. In this example, the result is:

x = Two# y 3#

y = One (Two# y 3#)

Only the de�nition of y is recursive. We can always do this operation because of Restriction 3,

provided there is no loop of the form

p# = q#

q# = p#

This rather unsatisfactory caveat is one reason we left this section under \Further work". In

the light of the transformation given above, another approach would be to rule out recursive

de�nitions of unboxed values.
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