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our results for the DARPA benchmark evaluation forABSTRACT
robust speech recognition for the ATIS task, discussing the

This paper compares several different approaches to robust effectiveness of our methods of acoustical pre-
preprocessing in the context of this task.  Second, wespeech recognition.  We review CMU’s ongoing research in the
describe and compare the effectiveness of three com-use of acoustical pre-processing to achieve robust speech recog-
plementary methods of signal processing for robust speechnition, and we present the results of the first evaluation of pre-
recognition: acoustical pre-processing, microphone arrayprocessing in the context of the DARPA standard ATIS domain
processing, and the use of physiologically-motivatedfor spoken language systems. We also describe and compare the
models of peripheral signal processing.effectiveness of three complementary methods of signal process-

ing for robust speech recognition: acoustical pre-processing,
microphone array processing, and the use of physiologically- 2. ACOUSTICAL PRE-PROCESSING
motivated models of peripheral signal processing. Recognition
error rates are presented using these three approaches in isolation We have found that two major factors degrading the per-
and in combination with each other for the speaker-independent formance of speech recognition systems using desktop
continuous alphanumeric census speech recognition task. microphones in normal office environments are additive

noise and unknown linear filtering. We showed in [2] that
simultaneous joint compensation for the effects of additive

1. INTRODUCTION noise and linear filtering is needed to achieve maximal
robustness with respect to acoustical differences between

The need for speech recognition systems and spoken lan- the training and testing environments of a speech recog-
guage systems to be robust with respect to their acoustical nition system.  We described in [2] two algorithms that can
environment has become more widely appreciated in perform such joint compensation, based on additive correc-
recent years (e.g. [1]). tions to the cepstral coefficients of the speech waveform.

Results of several studies have demonstrated that even The first compensation algorithm, SNR-Dependent
automatic speech recognition systems that are designed to Cepstral Normalization (SDCN), applies an additive cor-
be speaker independent can perform very poorly when they rection in the cepstral domain that depends exclusively on
are tested using a different type of microphone or acous- the instantaneous SNR of the signal.  This correction vec-
tical environment from the one with which they were tor equals the average difference in cepstra between simul-
trained (e.g. [2, 3]), even in a relatively quiet office en- taneous "stereo" recordings of speech samples from both
vironment. Applications such as speech recognition over the training and testing environments at each SNR of
telephones, in automobiles, on a factory floor, or outdoors speech in the testing environment.  At high SNRs, this
demand an even greater degree of environmental robust- correction vector primarily compensates for differences in
ness. spectral tilt between the training and testing environments

(in a manner similar to the blind deconvolution procedureThe CMU speech group is committed to the development first proposed by Stockham et al. [6]), while at low SNRsof speech recognition systems that are robust with respect the vector provides a form of noise subtraction (in a man-to environmental variation, just as it has been an early ner similar to the spectral subtraction algorithm firstproponent of speaker-independent recognition. While most proposed by Boll [7]). The SDCN algorithm is simple andof our work presented to date has described new acoustical effective, but it requires environment-specific training.pre-processing algorithms (e.g. [2, 4, 5], we have always
regarded pre-processing as one of several approaches that The second compensation algorithm, Codeword-
must be developed in concert to achieve robust recog- Dependent Cepstral Normalization (CDCN), uses EM
nition. techniques to compute ML estimates of the parameters

characterizing the contributions of additive noise andThe purpose of this paper is twofold. First, we describe linear filtering that when applied in inverse fashion to the
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cepstra of an incoming utterance produce an ensemble of ALGO- ENVIRN. COM- ERR
cepstral coefficients that best match (in the ML sense) the RITHM SPEC? PLEXITY RATE
cepstral coefficients of the incoming speech in the testing
environment to the locations of VQ codewords in the train- NONE NO NONE 68.6%
ing environment. The CDCN algorithm has the advantage

SDCN YES MINIMAL 27.6%that it does not require a priori knowledge of the testing
environment (in the form of stereo training data in the CDCN NO GREATER 24.3%
training and testing environments), but it is much more

BSDCN NO MINIMAL 30.0%computationally demanding than the SDCN algorithm.
Compared to the SDCN algorithm, the CDCN algorithm
uses a greater amount of structural knowledge about the

Table 1: Comparison of recognition accuracy of SPHINXnature of the degradations to the speech signal in order to
achieve good recognition accuracy.  The SDCN algorithm, with no processing and the CDCN, SDCN, and BSDCN
on the other hand, derives its compensation vectors en- algorithms. The system was trained using the CLSTLK
tirely from empirical observations of differences between microphone and tested using the PZM6FS microphone.
data obtained from the training and testing environments. Training and testing on the CLSTLK produces a recog-

nition accuracy of 86.9%, while training and testing on the
PZM6FS produces 76.2%

SNRs in the training and testing environments by use of
traditional nonlinear warping techniques [8] on histograms
of SNRs from each of the two environments [5]. Table 1
compares the environmental specificity, computational
complexity, and recognition accuracy of these algorithms
when evaluated on the alphanumeric database described in
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[2]. Recognition accuracy is somewhat different from the

Figure 1: Comparison of error rates obtained on the cen- figures reported in Fig. 1 because the version of SPHINX
used to produce these data was different. All of these al-sus task with no processing, spectral subtraction, spectral
gorithms are similar in function to other currently-popularnormalization, and the CDCN algorithm. SPHINX was
compensation strategies (e.g. [3, 9]).trained on the  CLSTLK microphone and tested using ei-

ther the CLSTLK microphone (solid curve) or the The DARPA ATIS robust speech evaluation. The
PZM6FS microphone (broken curve). original CDCN algorithm described in [2] was used for the

February, 1992, ATIS-domain robust-speech evaluation.
For this evaluation, the SPHINX-II system was trained usingFigure 1 compares the error rate obtained when the SPHINX the CLSTLK microphone, and tested using both thesystem is trained using the DARPA standard HMD-414 CLSTLK microphone and the unidirectional Crownclosetalking microphone (CLSTLK), and tested using ei- PCC-160 microphone (PCC160).  All incoming speech inther the CLSTLK microphone or the omnidirectional this evaluation was processed by the CDCN algorithm,desktop Crown PZM-6FS microphone (PZM6FS).  The regardless of whether the testing environment was actuallycensus database was used, which contains simultaneous the CLSTLK or PCC160 microphone, and the CDCN algo-recoredings of speech from the CLSTLK and PZM6FS rithm was not provided with explicit knowledge of themicrophones in the context of a speaker-independent identity of the environment within which it is operating.continuous-speech alphanumeric task with perplexity 65

[2]. These results demonstrate the value of the joint com- As described elsewhere in these Proceedings [10] , the sys-
pensation provided by the CDCN algorithm in contrast to tem used for the official robust-speech evaluations was not
the independent compensation using either spectral sub- trained as thoroughly as the baseline system was trained.
traction or spectral normalization.  The horizontal dotted Specifically, the official evaluations were performed after
lines indicate the recognition accuracy obtained when the only a single iteration through training data that was
system is tested on the microphone with which it was processed with the CDCN algorithm, and without the
trained, with no processing. The intersection of the upper benefit of general English sentences in the training
curve with the upper horizontal line indicates that with database.
CDCN compensation, SPHINX can recognize speech using

In Fig. 2 we show the results of an unofficial evaluation ofthe PZM6FS microphone just as well when trained on the
the SPHINX-II system that was performed immediatelyCLSTLK microphone as when trained using the PZM6FS.
after the official evaluation was complete.  The purpose of

More recently we have been attempting to develop new this second evaluation was to evaluate the improvement
algorithms which combine the computational simplicity of provided by an additional round of training with speech
SDCN with the environmental independence of CDCN. processed by CDCN, in order to be able to directly com-
One such algorithm, Blind SNR-Dependent Cepstral pare error rates on the ATIS task with CDCN with those
Normalization (BSDCN) avoids the need for environment- produced by a comparably-trained system on the same
specific training by establishing a correspondence between data, but without CDCN. As Fig. 2 shows, using the



CDCN algorithm causes the error rate to increase from segments with weak phonetic events, (20 percent of the
15.1% to only 20.4% as the testing microphone is changed errors were caused by cross-talk from other noise sources
from the CLSTLK to the PCC160 microphone. In contrast, in the room, and the remaining errors could not be at-
the error rate increases from 12.2% to 38.8% when one tributed to a particular cause.)  Microphone arrays can, in
switches from the CLSTLK to the PCC160 microphone principle, produce directionally-sensitive gain patterns that
without CDCN. can be adjusted to produce maximal sensitivity in the

direction of the speaker and reduced sensitivity in the
direction of competing sound sources. To the extent that
such processing could improve the effective SNR at the
input to a speech recognition system, the error rate would
be likely to be substantially decreased, because the number
of confusions between weak phonetic events and noise
would be sharply reduced.

Several different types of array-processing strategies have
been applied to automatic speech recognition.  The
simplest approach is that of the delay-and-sum beam-
former, in which delays are inserted in each channel to
compensate for differences in travel time between the
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desired sound source and the various sensors (e.g.
Figure 2: Comparison of error rates obtained  on the [11, 12]). A second option is to use an adaptation algo-
DARPA ATIS task with no processing, spectral subtrac- rithm based on minimizing mean square energy such as the
tion, spectral normalization, and the CDCN algorithm. Frost or Griffiths-Jim algorithm [13]. These algorithms

provide the opportunity to develop nulls in the direction ofSPHINX-II was trained on the CLSTLK microphone in all
noise sources as well as more sharply focused beam pat-cases, and tested using either the CLSTLK microphone
terns, but they assume that the desired signal is statistically(solid curve) or the cardiod desktop Crown PCC160
independent of all sources of degradation. Consequently,microphone (broken curve).
these algorithms can provide good improvement in SNR
when signal degradations are caused by additive independ-
ent noise sources, but these algorithms do not perform wellOnly two sites submitted data for the present robust speech
in reverberant environments when the distortion is at leastevaluation. CMU’s percentage degradation in error rate in
in part a delayed version of the desired speech signalchanging from the CLSTLK to the PCC160 environment,
[14, 15]. (This problem can be avoided by only adaptingas well as the absolute error rate obtained using the
during non-speech segments [16]). A third type of ap-PCC160 microphone, were the better of the results from
proach to microphone array processing is to use a cross-these two sites.
correlation-based algorithm that isolates inter-sensor dif-
ferences in arrival time of the signals directly (e.g. [17]).
These algorithms are appealing because they are based on3. MICROPHONE ARRAYS AND
human binaural hearing, and cross-correlation is an ef-ACOUSTICAL PRE-PROCESSING ficient way to identify the direction of a strong signal
source. Nevertheless, the nonlinear nature of the cross-

Despite the encouraging results that we have achieved correlation operation renders it inappropriate as a means to
using acoustical pre-processing, we believe that further im- directly process waveforms. We believe that signal
provements in recognition accuracy can be obtained in dif- processing techniques based on human binaural perception
ficult environments by combining acoustical pre- are worth pursuing, but their effectiveness for automatic
processing with other complementary types of signal speech recognition remains to be conclusively
processing. The use of microphone arrays is motivated by demonstrated.
a desire to improve the effective SNR of speech as it is

Pilot evaluation of the Flanagan array. In order to ob-input to the recognition system.  For example, the headset-
tain a better understanding of the ability of array process-mounted CLSTLK microphone produces a higher SNR
ing to provide further improvements in recognition ac-than the PZM6FS microphone under normal circumstances
curacy we conducted a pilot evaluation of the 23-because it picks up a relatively small amount of additive
microphone array developed by Flanagan and his col-noise, and the incoming signal is not degraded by rever-
leagues at AT&T Bell Laboratories.  The Flanagan array,berated components of the original speech.
which is described in detail in [11, 12], is a one-

To estimate the potential significance of the reduced SNR dimensional delay-and-sum beamformer which uses 23
provided by the PZM6FS microphone in the office en- microphones that are unevenly spaced in order to provide a
vironment, we manually examined all utterances in the test beamwidth that is approximately constant over the range of
set of the census task that were recognized correctly when frequencies of interest.  The array uses first-order gradient
training and testing with the CLSTLK microphone but that microphones, which develop a null response in the vertical
were recognized incorrectly when training and testing plane. We wished to compare the recognition accuracy on
using the PZM6FS. We found that 54.7 percent of these the census task obtained using the Flanagan array with the
errors were caused by the confusion of silence or noise accuracy observed using the CLSTLK and PZM6FS



microphones. We were especially interested in determin- using the CLSTLK microphone. As expected, the worst
ing the extent to which array processing provides an im- results were obtained using the PZM6FS microphone,
provement in recognition accuracy that is complementary while the lowest error rate was obtained for speech
to the improvement in accuracy provided by acoustical recorded using the CLSTLK.  More interestingly, the
pre-processing algorithms such as the CDCN algorithm. results in Fig. 3 show that both the Flanagan array and the

CDCN algorithm are effective in reducing the error rate,
and that in fact the error rate at each distance obtained with
the combination of the two is very close to the error rate
obtained with the CLSTLK microphone and no acoustical
pre-processing. The complementary nature of the im-
provement of the Flanagan array and the CDCN algorithm
is indicated by the fact that adding CDCN to the array
improves the error rate (upper panel of Fig. 3), and that
converting to the array even when CDCN is already
employed also improves performance (lower panel).
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4. PHYSIOLOGICALLY-MOTIVATED
FRONT ENDS AND

ACOUSTICAL PRE-PROCESSING

In recent years there has also been an increased interest in
the use of peripheral signal processing schemes that are
motivated by human auditory physiology and perception,
and a number of such schemes have been proposed (e.g.
[18, 19, 20, 21]). Recent evaluations indicate that with
"clean" speech, such approaches tend to provide recog-
nition accuracy that is comparable to that obtained with
conventional LPC-based or DFT-based signal processingMicrophone Type
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schemes, but that these auditory models can provide
Figure 3: Comparison of recognition accuracy obtained greater robustness with respect to enviromental changes
on a portion of the census task using the omnidirectional when the quality of the incoming speech (or the extent to
Crown PZM-6FS, the 23-microphone array developed by which it resembles speech used in training the system)

decreases [22, 23]. Despite the apparent utility of suchFlanagan, and the Senneheiser microphone, each with
processing schemes, no one has a deep-level understandingand without CDCN.  Data were obtained from simul-
of why they work as well as they do, and in fact differenttaneous recordings using the three microphones at dis-
researchers choose to emphasize rather different aspects oftances of 1 and 3 meters (for the PZM-6FS and the array).
the peripheral auditory system’s response to sound in their
work. Most auditory models include a set of linear
bandpass filters with bandwidth that increases nonlinearly14 utterances from the census database were obtained from
with center frequency, a nonlinear rectification stage thateach of five male speakers in a sparsely-furnished
frequently includes short-term adaptation and lateral sup-laboratory at the Rutgers CAIP Center with hard walls and
pression, and, in some cases, a more central display basedfloors. The reverberation time of this room was informally
on short-term temporal information. We estimate that theestimated to be between 500 and 750 ms. Simultaneous
number of arithmetic operations of some of the currently-recordings were made of each utterance using three
popular auditory models ranges from 35 to 600 times themicrophones: the Sennheiser HMD-414 (CLSTLK)
number of operations required for the LPC-based process-microphone, the Crown PZM6FS, and the Flanagan array
ing used in SPHINX-II.with input lowpass-filtered at 8 kHz.  Recordings were

made with the speaker seated at distances of 1, 2, and 3 Pilot evalution of the Seneff auditory model. Wemeters from the PZM6FS and Flanagan array recently completed a series of pilot evaluations using anmicrophones, wearing the CLSTLK microphone in the implementation of the Seneff auditory model [21] on theusual fashion at all times. census databse.  Since almost all evaluations of
physiologically-motivated front ends to date have beenFigure 3 summarizes the error rates obtained from these
performed using artifically-added white Gaussian noise,speech samples at two distances, 1 and 3 meters, with and
we have been interested in the extent to which auditorywithout the CDCN algorithm applied to the output of the
models can provide useful improvements in recognitionmicrophone array. Error rates using the CLSTLK
accuracy for speech that has been degraded by reverbera-microphone differed somewhat for the two distances be-
tion or other types of linear filtering.  As in the case ofcause different speech samples were obtained at each dis-
microphone arrays, we are also especially interested intance and because the sample size is small. The SPHINX
determining the extent to which improvements in robust-system had been previously trained on speech obtained



ness provided by auditory modelling complement those previous studies.  The results in the lower panel of Fig. 4,
that we already enjoy by the use of acoustical pre- demonstrate that the mean rate and GSD outputs of the
processing algorithms such as CDCN. Seneff model provide lower error rates than conventional

LPC cepstra when the system is trained using the CLSTLK
We compared error rates obtained using the standard 12 microphone and tested using the PZM6FS.  Nevertheless,
LPC-based cepstral coefficents normally input to the the level of performance achieved by the present im-
SPHINX system, with those obtained using an implemen- plementation of the auditory model is not as good as that
tation of the 40-channel mean-rate output of the Seneff achieved by conventional LPC cepstra combined with the
model [21], and with the 40-channel outputs of Seneff’s CDCN algorithm on the same data (Fig. 1).  Furthermore,
Generalized Synchrony Detectors (GSDs).  The system the combination of conventional LPC-based processing
was evaluated using the original testing database from the and the CDCN algorithm produced performance that
census task with the CLSTLK and PZM6FS microphones, equaled or bettered the best performance obtained with the
and also with white Gaussian noise artificially added at auditory model for each test condition.  Because the
signal-to-noise ratios of +10, +20, and +30 dB, measured auditory model is nonlinear and not easy to port from one
using the global SNR method described in [19]. site to another, these comparisons should all be regarded as

preliminary. It is quite possible that performance using the
auditory model could further improve if greater attention
were paid to tuning it to more closely match the charac-
teristics of SPHINX.

We also attempted to determine the extent to which a com-
bination of auditory processing and the CDCN algorithm
could provide greater recognition accuracy than either
processing scheme used in isolation.  In these experiments
we combined the effects of CDCN and auditory processing

SNR
10 dB 20 dB 30 dB Clean

E
rr

o
r 

R
at

e

20

40

60

80

100

0

LPC
LPC + CDCN
Mean Rate
GSD

by resynthesizing the speech waveform from cepstral coef-
ficients that were produced by the original LPC front end
and then modified by the CDCN algorithm.  The resyn-
thesized speech, which was totally intelligible, was then
passed through the Seneff auditory model in the usual
fashion. Unfortunately, it was found that this particular
combination of CDCN and the auditory model did not im-
prove the recognition error rate beyond the level achieved
by CDCN alone.  A subsequent error analysis revealed that
this concatenation of cepstral processing and the CDCN
algorithm, followed by resynthesis and processing by the
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original SPHINX front end, degraded the error rates even in
the absence of the auditory processing, although analysisFigure 4: Pilot data comparing error rates obtained on the
and resynthesis without the CDCN algorithm did notcensus task using the conventional LPC-based processing
produce much degradation.  This indicates that useful in-of SPHINX with results obtained using the mean rate and
formation for speech recognition is lost when the resyn-synchrony outputs of the Seneff auditory model.  SPHINX
thesis process is performed after the CDCN algorithm iswas trained on the CLSTLK microphone in all cases, and
run. Hence we regard this experiment as inconclusive, andtested using either the CLSTLK microphone (upper panel) we intend to explore other types of combinations of acous-

or the Crown PZM6FS microphone (lower panel).  White tical pre-processing with auditory modelling in the future.
noise was artificially added to the speech signals and data
are plotted as a function of global SNR.

5. SUMMARY AND CONCLUSIONS
Figure 4 summarizes the results of these comparisons, with

In this paper we describe our current research in acousticalerror rate plotted as a function of SNR using each of the
pre-processing for robust speech recognition, as well asthree peripheral signal processing schemes.  The upper
our first attempts to integrate pre-processing with otherpanel describes recognition error rates obtained with the
approaches to robust speech recognition.  The CDCN algo-system both trained and tested using the CLSTLK
rithm was also applied to the ATIS task for the first time,microphone, and the lower panel describes error rates ob-
and provided the best recognition scores for speech col-tained with the system trained with the CLSTLK
lected using the unidirectional desktop PCC160microphone but tested with the PZM6FS microphone.
microphone. We demonstrated that the CDCN algorithmWhen the system is trained and tested using the CLSTLK
and the Flanagan delay-and-sum microphone array canmicrophone, best performance is obtained using conven-
provide complementary benefits to speech recognition intional LPC-based signal processing for "clean" speech.  As
reverberant environments.  We also found that the Seneffthe SNR is decreased, however, error rates obtained using
auditory model improves recognition accuracy of the CMUeither the mean rate or GSD outputs of the Seneff model
speech system in reverberant as well as noisy environ-degrade more gradually confirming similar findings from
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