
Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine

�

Version 2.5

Simon L Peyton Jones

Department of Computing Science, University of Glasgow G12 8QQ

simonpj@dcs.glasgow.ac.uk

July 9, 1992

Abstract

The Spineless Tagless G-machine is an abstract machine designed to support non-

strict higher-order functional languages. This presentation of the machine falls into three

parts. Firstly, we give a general discussion of the design issues involved in implementing

non-strict functional languages.

Next, we present the STG language, an austere but recognisably-functional language,

which as well as a denotational meaning has a well-de�ned operational semantics. The

STG language is the \abstract machine code" for the Spineless Tagless G-machine.

Lastly, we discuss the mapping of the STG language onto stock hardware. The success

of an abstract machine model depends largely on how e�cient this mapping can be made,

though this topic is often relegated to a short section. Instead, we give a detailed discussion

of the design issues and the choices we have made. Our principal target is the C language,

treating the C compiler as a portable assembler.

This paper is to appear in the Journal of Functional Programming.

Changes in Version 2.0: large new section on comparing the STG machine with other

designs (Section 3); pro�ling material (Section 11); index.

Changes in Version 2.1: proper statement of the initial state of the machine (Sec-

tion 5.1); reformulation of CAF updates (Section 10.8); new format for state transition

rules, separating the guards which govern the applicability of the rules (\such that") from

the auxiliary de�nitions (\where") | Section 5.

Changes in Version 2.2: introduction of the term \lambda-form"; new subsection on

lambda lifting (Section 4.5); discussion of copy-vs-share in Section 10.6; allow a variable-

binding form of default alternative in algebraic case expressions.

Changes in Version 2.3: more explicit discussion of the translation into the STG

language (Section 4.1); some re-ordering of sub-sections in Section 4; an overview of the

code generation process at the start of Section 9.

Changes in Version 2.4: new-format pro�ling in Section 11; new section on black

holes, saying how to avoid space leaks without black-holing (Section 9.3.3).

Changes in Version 2.5: appendix added giving gory details. Apart from the appendix,

this is essentially the version published in the Journal of Functional Programming. Very

minor changes to main paper: �xed bug in Fig 5, and other typos.

�

Previously entitled \The Spineless Tagless G-machine: a second attempt".

1

Contents

1 Introduction 5

2 Overview 6

2.1 Part I: the design space : 6

2.2 Part II: the abstract machine : 6

2.3 Part III: mapping the abstract machine onto real hardware : : : : : : : : : : 7

2.4 Source language and compilation route : 7

3 Exploring the design space 9

3.1 The representation of closures : 9

3.2 Function application and the evaluation stack : : : : : : : : : : : : : : : : : : 14

3.3 Data structures : 16

3.4 Summary : 17

4 The STG language 19

4.1 Translating into the STG language : 21

4.2 Closures and updates : 23

4.3 Generating fewer updatable lambda-forms : 25

4.4 Standard constructors : 26

4.5 Lambda lifting : 27

4.6 Full laziness : 27

4.7 Arithmetic and unboxed values : 28

4.8 Relationship to CPS conversion : 30

5 Operational semantics of the STG language 32

5.1 The initial state : 34

5.2 Applications : 34

5.3 let(rec) expressions : 35

5.4 Case expressions and data constructors : 36

5.5 Built in operations : 37

5.6 Updating : 38

2

6 Target language 41

6.1 Mapping the STG machine to C : 42

6.2 Compiling jumps : 42

6.3 Optimising the tiny interpreter : 44

6.4 Debugging : 45

7 The heap 45

7.1 How closures are represented : 45

7.2 Allocation : 47

7.3 Two-space garbage collection : 47

7.4 Other garbage collector variants : 49

7.5 Trading code size for speed : 49

7.6 The standard-entry code for a closure : 50

8 Stacks 50

8.1 One stack? : 50

8.2 Two stacks : 51

9 Compiling the STG language to C 52

9.1 The initial state : 53

9.2 Applications : 55

9.3 let(rec) expressions : 57

9.4 case expressions : 60

9.5 Arithmetic : 64

10 Adding updates 65

10.1 Representing update frames : 65

10.2 Partial applications : 66

10.3 Constructors : 68

10.4 Vectored returns : 68

10.5 Returning values in registers : 69

10.6 Update in place : 71

10.7 Update frames and garbage collection : 72

3

10.8 Global updatable closures : 73

11 Status and pro�ling results 74

A The gory details 81

A.1 Update ags : 81

A.2 Black holes : 81

A.3 Adding �llers : 81

A.4 Performing updates : 82

A.5 Lambda-form info : 83

B Stack stubbing 84

B.1 Implementation : 85

4

1 Introduction

The challenges of compiling non-strict functional languages have given rise to a whole stream

of research work. Generally the discussion of this work has been focussed around the design

of a so-called \abstract machine", which distils the key aspects of the compilation technique

without becoming swamped in the details of source language or code generation. Quite a few

such abstract-machine designs have been presented in recent years; examples include the G-

machine (Augustsson [1987]; Johnsson [1987]), TIM (Fairbairn & Wray [1987]), the Spineless

G-machine (Burn, Peyton Jones & Robson [1988]), the Oregon G-machine chip (Kieburtz

[1987]), the CASE machine (Davie & McNally [1989]), the HDG machine (Kingdon, Lester

& Burn [1991]), the h�;Gi machine (Augustsson & Johnsson [1989]), and the ABC machine

(Koopman [1990]).

Early implementations, especially those based on graph reduction, were radically di�erent

from conventional compiler technology: the di�erence between an SK combinator implemen-

tation (Turner [1979]) and (say) a Lisp compiler is substantial. So great was this divergence

that new hardware architectures were developed speci�cally to support the execution model

(Scheevel [1986]; Stoye, Clarke & Norman [1984]). As understanding has developed, though,

it has been possible to recognise features of more conventional systems emerging from the

mist, and to generate e�cient code for stock architectures.

In this paper we present a new abstract machine for non-strict functional languages, the

Spineless Tagless G-machine, set it in the context of conventional compiler technology, and

give a detailed discussion of its mapping onto stock hardware. Our design exhibits a number

of unusual features:

� In all other the abstract machines mentioned above, the abstract machine code for a

program consists of a sequence of abstract machine instructions. Each instruction is

given a precise operational semantics using a state transition system.

We take a di�erent approach: the abstract machine language is itself a very small func-

tional language, which has the usual denotational semantics. In addition, though, each

language construct has a direct operational interpretation, and we give an operational

semantics for the same language using a state transition system.

� Objects in the heap, both unevaluated suspensions and head normal forms, have a

uniform representation with a code pointer in their �rst �eld. Many implementations

examine tag �elds on heap objects to decide how to treat them. With our representation

we never do this; instead, a jump is made to the code pointed to by the object. This is

why we call the machine \tagless".

� A pervasive feature of functional programs is the construction of data structures, and

their traversal using pattern-matching. Many abstract machine designs say very little

about how to do this e�ciently, but we pay a lot of attention to it.

� The machine manipulates unboxed values directly, based on the ideas in a companion

paper (Peyton Jones & Launchbury [1991]). This is essential for an e�cient implemen-

tation of arithmetic, but it is usually hidden in the code generator.

5

� There is scope for exploiting the fruits of both strictness analysis and sharing analysis

to improve execution speed.

� Lambda lifting, a common feature of almost all functional-language implementations,

is not carried out. Instead, the free variables of lambda abstractions are identi�ed, but

the abstraction is left in place.

� The machine is particularly well-suited for parallel implementations, although space

prevents this aspect being discussed in this paper (Peyton Jones, Clack & Salkild [1989]).

Almost all the individual ideas we describe are present in other implementations, but their

combination produces a particularly fast implementation of lazy functional languages.

An earlier version of this paper (Peyton Jones & Salkild [1989]), had a similar title and

introduction to this one. The underlying machine being described is mostly unchanged, but

the presentation has been completely rewritten.

2 Overview

The paper divides into three parts. Part I explores the design space to show how the STG

machine �ts into a wider context. Part II introduces the abstract machine and gives its

operational semantics, and Part III discusses how the abstract machine is mapped onto stock

hardware.

2.1 Part I: the design space

The implementation of non-strict functional languages has tended to be done in a separate

world to that of \real compilers". One goal of this paper is to help bridge the gap between

these two cultures. To this end we identify several key aspects of a compiler (its representation

of data structures, its treatment of function application, and its compilation of case-analysis

on data structures), and compare the approach we take with that of others.

We hope that this exercise may be useful in its own right, as well as setting the context for

the rest of the paper.

2.2 Part II: the abstract machine

The usual way of presenting an evaluation model for a functional language is to de�ne an

abstract machine, which executes an instruction stream. The abstract machine is given an

operational semantics using a state transition system, and compilation rules are given for

converting a functional program into abstract machine code. The application of these compi-

lation rules is usually preceded by lambda lifting (Johnsson [1985]), which eliminates lambda

abstractions in favour of supercombinators, functions with no free variables. A good example

of this approach is the G-machine (Johnsson [1987]; Peyton Jones [1987]), whose abstract

machine code is called G-code.

6

This approach su�ers an annoying disadvantage: the abstract machine is generally not abstract

enough. For example, the abstract G-machine uses the stack to hold many intermediate

values. When G-code is to be compiled into native machine code, many stack operations

can be eliminated by holding the intermediate values in registers. The code generator has

to simulate the operation of the abstract stack, which is used, in e�ect, mainly to name

intermediate values. Not only does this process complicate the code generator, but it makes

G-code harder to manipulate and optimise.

To avoid this problem, one is driven to introduce explicitly-named values in the abstract

machine, which is how the T-code of our earlier paper was derived (Peyton Jones & Salkild

[1989]). Unfortunately, the simplicity of the abstract machine is now lost.

We take a slightly di�erent approach here. Instead of de�ning a new abstract machine, we use

a very small functional language, the STG language, as the abstract machine code. It has the

usual denotational semantics, so it is in principle possible to check the transformation of the

original program into the STG language is correct. But we also give it a direct operational

semantics using a state transition system, which explains how we intend it to be executed.

The problem of proving the entire system correct is thereby made easier than, for example,

the G-machine

1

, because only the equivalence of the denotational and operational semantics

of a single language is involved. Even so, it is a substantial task, and we do not attempt it

here.

2.3 Part III: mapping the abstract machine onto real hardware

Typically, much is written about the compilation of a functional program into abstract ma-

chine code, and rather little about how to map the abstract machine onto the underlying

hardware. Yet the abstract machine can only be considered a success if this mapping works

well; that is, the resulting code is e�cient.

We believe that the Spineless Tagless G-machine comes out well in this regard, and devote

considerable space to discussing the mapping process. One of the nice aspects is that a variety

of mappings are possible, of increasing complexity and e�ciency.

Our target machine code is the C language. This has become common of late, conferring, as

it does, wide portability. We may pay some performance penalty for not generating native

machine code, and plan to build other code generators which do so.

2.4 Source language and compilation route

We are interested in compiling strongly-typed, higher-order, non-strict, purely functional lan-

guages such as LML, or Haskell. We expect heavy use of both higher-order functions and the

non-strict semantics (Hughes [1989]).

This paper is only about the back end of a compiler. Our complete compilation route involves

the following steps:

1

The task of proving a simple G-machine correct is carried out by Lester in his thesis (Lester [1989]).

7

1. The primary source language is Haskell (Hudak et al. [1992]), a strongly-typed, non-

strict, purely-functional language. Haskell's main innovative feature is its support for

systematic overloading.

2. Haskell is compiled to a small Core language. All Haskell's syntactic sugar is trans-

lated out, type checking is performed, and overloading is resolved. Pattern-matching is

translated into simple case expressions, each of which performs only a single level of

matching.

3. Program analyses and a variety of transformations are applied to the Core language.

4. The Core language is translated to the STG language, which we introduce in Section 4.

This transformation is rather simple.

5. The code generator translates the STG language into Abstract C. The latter is just an

internal data type which can simply be printed out as C code, but which can also serve

as an input to a native-code generator.

Strictness analysis plays an important role in compilers for non-strict languages, enabling the

compiler to determine cases where function arguments can be passed in evaluated form, which

is often more e�cient. Using this technology compilers for lazy languages can generate code

which is sometimes as fast as or faster than C (Smetsers et al. [1991]).

Usually the results of strictness analysis are passed to the code generator, which is thereby

made signi�cantly more complicated. We take a di�erent approach. We extend the Core

and STG languages with full-edged unboxed values, which makes them expressive enough to

incorporate the results of strictness analysis by simple program transformations. We give a

brief introduction to unboxed values in Section 4.7, but the full details, including the trans-

formations required to exploit strictness analysis, are given in a separate paper (Peyton Jones

& Launchbury [1991]).

The code generator, which is the subject of this paper, is therefore not directly involved in

strictness analysis or its exploitation, so we do not discuss it further.

8

Part I: Exploring the design space

3 Exploring the design space

Before introducing the STG machine in detail we pause to explore the design space a little.

The STG machine has its roots in lazy graph reduction. It is now folk-lore that, while graph

reduction looks very di�erent to conventional compiler technology, the best compilers based

on graph reduction generate quite similar code to those for (say) Lisp. In this section we

attempt to compare some aspects of the STG machine with more conventional compilers.

Any implementation is the result of a raft of inter-related design decisions, each of which

is partly justi�ed by the presence of the others. That makes it hard to �nd a place to

start our description. We proceed by asking three key questions, which help to locate the

implementation techniques for any non-strict higher-order language:

� How are function values, data values and unevaluated expressions represented (Sec-

tion 3.1)?

� How is function application performed (Section 3.2)?

� How is case analysis performed on data structures (Section 3.3)?

This section gives the context and motivation for many of the implementation techniques

described in Parts II and III, and suitable forward references are given.

3.1 The representation of closures

The heap contains two kinds of objects: head normal forms (or values), and as-yet unevaluated

suspensions (or thunks). Head normal forms can be further classi�ed into two kinds: function

values and data values. A value may contain thunks inside it; for example, a list Cons cell

might have an unevaluated head and/or tail. A value which contains no thunks inside it is

called a normal form.

It is worth noting that, in a polymorphic language, it is not always possible to distinguish

thunks whose value will turn out to be a function from thunks whose value is a data value.

For example, consider the composition function:

compose f g x = f (g x)

Is (g x) a function or not? It depends, of course, on the type of g and, since compose is

polymorphic, this is not statically determined.

For reasons which will become apparent we use the term closure to refer to both values and

thunks. In the remainder of this section we consider various ways in which closures can be

represented, contrasting the STG machine with other designs.

9

3.1.1 Representing functions

Any implementation of a higher-order language must provide a way to represent a function

value. Such a value behaves like a suspended computation: when the value is applied to its

arguments, the computation is performed.

The most compact way to represent a function value is as a block of static code (shared by

all dynamic instances of the value), together with the values of its free variables. (Such a

value is commonly called a closure, though we use the term in a wider sense in this paper.)

The most direct physical representation of such a closure is a pointer to a contiguous block of

heap-allocated storage, consisting of a code pointer which points to the static code, followed

by (pointers to) the values of the free variables, thus:

-

? ?

Code

Free variables

This is the representation adopted by many compiled Lisp systems, by SML of New Jersey, and

by the Spineless Tagless G-machine. To perform the computation, a distinguished register,

the environment pointer, is made to point to the closure, and the code is executed. We call

this operation entering a closure. The code can access its free variables by o�sets from the

environment pointer, and its arguments by some standard argument-passing convention (eg

in registers, on the stack, or in an activation record).

Instead of storing the values of the free variables themselves in the closure, it is possible

to store a pointer to a block of free variables, or even to a chain of such blocks. These

representations attempt to save storage, at the cost of slowing down access. The Orbit

compiler, for example, works hard to choose the best representation for closures, including

allocating them on the stack rather than in the heap whenever possible, and sharing one block

of free variables between several closures (Kranz [1988]). Apart from the compiler complexity

involved, considerable extra care has to be taken in the garbage collector to avoid the space

leakage which can occur when a closure captures a larger set of free variables than the closure

itself requires. Indeed, Appel's measurements for SML of New Jersey suggest that clever

closure-representation techniques gain little, and potentially lose a lot (in space complexity),

so he recommends a simple at representation (Appel [1992, Chapter 12]).

The Three Instruction Machine (TIM) takes another interesting position. Instead of repre-

senting a closure by a single pointer, it represents a closure by a pair of a code pointer and

a pointer to a heap-allocated frame (Fairbairn & Wray [1987]). The frame, which is a vector

of code-pointer/frame-pointer pairs, gives the values of the free variables of the closure, and

may be shared between many closures. These code-pointer/frame-pointer pairs need to be

handled very carefully in a lazy system, because they cannot be duplicated without the risk of

duplicating work. Proper sharing can still be ensured, but it results in a system remarkably

similar to the more conventional one mentioned above (Peyton Jones & Lester [1992, Chapter

10

4]).

3.1.2 Representing thunks

In a non-strict language, values are passed to functions or stored in data structures in uneval-

uated form, and only evaluated when their value is actually required. Like function values,

these unevaluated forms capture a suspended computation, and can be represented by a clo-

sure in the same way as a function value. Following the terminology of Bloss, Hudak & Young

[1988], we call this particular sort of closure a thunk, a term which goes back to the early

Algol implementations of call-by-name (Ingerman [1961]). When the value of the thunk is

required, the thunk is forced.

A thunk can (in principle) be represented simply by a parameter-less function value, but it is

ine�cient to do so, because it might be evaluated repeatedly. This duplicated work is avoided

by so-called lazy implementations as follows: when a thunk is forced for the �rst time, it is

physically updated with its value.

There are three main strategies for dealing with updates in lazy implementations:

The na��ve reduction model updates the graph after each reduction (Peyton Jones [1987]).

(By \reduction" is meant the replacement of an instance of the left-hand side of a

function de�nition by the corresponding instance of its right-hand side.) Apart from a

few optimisations, this is the update strategy used by the G-machine (Johnsson [1984]).

Its main disadvantage is that a thunk may be updated with another thunk, so the same

object may be updated repeatedly, and we do not consider this model further.

The cell model. In the cell model, each closure is provided with a status ag to indicate

whether it is evaluated or not. The code to force (that is, get the value of) a closure

checks the status ag. If the closure is already evaluated, its value is extracted; otherwise

the suspended computation is performed (by entering the closure), the value is written

into the cell, and the status ag is ipped (Bloss, Hudak & Young [1988]).

The self-updating model, which is used by the STG machine. The cell model places the

responsibility for performing the update on the code which evaluates the thunk. The

self-updating model instead places this responsibility on the code inside the thunk itself.

The code to force a closure simply pushes a continuation on the stack and enters the

closure; if the closure is a thunk, it arranges for an update to be performed when

evaluation is complete, otherwise it just returns its value. No tests need be performed.

The update overwrites the thunk with a value, which therefore must also have a code

pointer, because subsequent forces will re-enter the thunk-turned-value. This represen-

tation is natural for function values, as we have already discussed, but is something of

a surprise for data values. A list cell, for example, is represented by a code pointer to-

gether with the two pointers comprising the head and tail of the list. The code pointed

to from the list cell simply returns immediately

2

. In e�ect, the code pointer plays the

role of the ag in cell model.

2

In Section 3.3 we explore variants of this scheme, in which the code for a list cell does rather more than

simply return.

11

Bloss, Hudak & Young [1988] call this model \closure mode", but the implementation

they suggest is very much less e�cient (in both time and space) than that outlined

above, because it is based on a translation into Lisp.

The latter two models each o�er scope for optimisation. Consider the cell model, for example.

Forcing can be optimised if the compiler can prove that the thunk is certainly already eval-

uated (or the reverse), because the test on the ag can be omitted (Bloss, Hudak & Young

[1988]). Furthermore, if the compiler can prove that there can be no subsequent code forces

on the thunk, then it can omit the code which performs the update.

A similar situation holds for the self-updating model. If the compiler can prove that a

particular thunk can only be evaluated at most once (which we expect to be quite common),

it can create code for the thunk which doesn't perform the update. Unlike the cell model,

the self-updating model cannot take advantage of order-of-evaluation analyses.

3.1.3 A uniform representation for closures

As indicated above, the self-updating model strongly suggests that every heap-allocated object

(whether a head normal form or a thunk) is represented uniformly, by a code pointer together

with zero or more �elds which give the values of the free variables of the code. The STG

machine adopts this uniform representation, as can be seen in the operational semantics

(Section 5), where all heap values are represented uniformly by some code together with a

sequence of values. Indeed this is why the machine is called \tagless": since all objects have

the same form there is no need for a tag to distinguish one kind of object from another

(contrast the presentation in Peyton Jones [1987, Chapter 10]). We use the term \closure"

to refer to both values and thunks because of their uniform representation.

The decision to use a uniform representation for all closures has other interesting rami�cations,

which we explore in this section.

Firstly, when a thunk is updated with its value, it is possible that the value will take more

space than the thunk. In this case, the thunk must be updated with an indirection to the

value (Figure 1). This causes no di�culty for the self-updating model, because indirections

can be represented by a closure whose code simply enters the target closure. Such indirections

can readily be removed during garbage collection (Section 7.3).

In the cell model, either a second test must be made to check for indirections, or alternatively

every updated thunk must be an indirection. (Figure 2 shows the latter case.) Both methods

impose extra overhead.

Secondly, the self-updating model also allows other exceptional cases to be taken care of

without extra tests. For example,

� When a thunk is entered, its code pointer can be overwritten with a \black-hole" code

pointer. If the thunk is ever re-entered before it is updated, then its value must depend

on itself. It follows that the program has entered an in�nite loop, and a suitable error

message can be displayed. Without this mechanism stack overow occurs, which is less

helpful to the programmer.

12

-

-

-

? ?

-

? ?

After updating (big value)

Indirection code

Value

Cons code

Head Tail

After updating (small value)

Code

Free vars

Before updating

Figure 1: Updating in the self-updating model

� In a system which supports concurrent threads of execution, exactly the same method

can be used to synchronise threads. When a thunk is entered, its code pointer is

overwritten with a \queue-me" code pointer. If another thread tries to evaluate the

thunk before the �rst thread has completed, the former is suspended and added to a

queue of threads attached to the thunk. When the thunk is updated, the queued threads

are re-enabled.

� In a system with distributed memory, pointers to remote memory units often have to

be treated di�erently to local pointers. However, it would be very expensive to test

for remote-ness whenever dereferencing a pointer! In the self-updating model, a remote

pointer can be represented as a special kind of indirection, and no tests for remote

pointers need be performed.

-

Value

1

After updating

-

? ?

Code

Free vars

0

Before updating

Figure 2: Updating in the cell model

13

3.2 Function application and the evaluation stack

Higher-order languages, which allow functions as \�rst-class citizens", present interesting

challenges for the compiler-writer. An illuminating way of comparing compilation strategies

is to ask how function application is performed.

3.2.1 Currying

The languages in which we are interested make heavy use of curried functions. For example,

consider the following Haskell function de�nition:

f x y = x

f is attributed the type a -> (b -> a). That is, f may be thought of as a function of one

argument, which returns a function which takes the second argument. An application of

f, say (f 1 2), is short for ((f 1) 2). An application of f to one argument is perfectly

acceptable; for example (map (f 1) xs).

In strict languages like Lisp, Hope and SML, the de�nition of f would usually be of the form

f (x,y) = x

where f is attributed the type (a,b) -> a. (We use (a,b) to denote the type of pairs of

elements of type a and b.) The function f can only be applied to a suitable pair, and cannot

be applied to just one argument.

In all of these languages it is possible (and, in SML, easy) to de�ne curried functions (otherwise

they would hardly deserve the title \higher-order"), but compilers usually implement the

uncurried form much more e�ciently, and programmers respond accordingly. There is the

inverse cultural tradition in non-strict functional languages, where the additional exibility

allowed by the curried form means that it is usually preferred by programmers, and compilers

typically treat curried application as fundamental.

3.2.2 Compiling function application

Compilers from the Lisp tradition usually compile function application as follows: evaluate

the function, evaluate the argument, and apply the function value to the argument. When a

known function is being applied (as is often the case, especially in Lisp), the \evaluate the

function" part becomes trivial. This model for function application, which we call the eval-

apply model, is invariably used by compilers for strict languages (eg Lisp, Hope, SML and the

SECD machine (Henderson [1980]; Landin [1965])). It is also used in some implementations of

non-strict languages, except that of course only the function is evaluated before the application

(eg the ABC machine (Koopman [1990]), and the h�;Gi-machine (Augustsson & Johnsson

[1989])).

In contrast, compilers based on lazy graph reduction treat function application as follows:

push the argument on an evaluation stack, and tail-call (or enter) the function. There is no

\return" when the evaluation of the function is complete. We call this the push-enter model;

it is used by the G-machine, TIM, and the STG machine.

14

The di�erence between the two models seems rather slight, but it has a pervasive e�ect. It is

di�cult to say in general which of the two is \better". In essentially �rst-order programs they

generate much the same code. For programs which make extensive use of curried functions

the push-enter model looks better. For example, consider the (curried) function de�nition

apply3 f x y z = f x y z

A Lisp-like compiler would be compelled to evaluate (f x), then evaluate that function

applied to y, and �nally apply the result to z. A graph-reduction compiler would just push

x, y and z onto the evaluation stack before jumping to the closure for f.

3.2.3 The evaluation stack

The main cost of the push-enter model of function application is that the link between a

function body and an activation frame is broken. For example, consider apply3 again. In the

eval-apply model the compiler can allocate an activation frame for apply3 which is deallocated

when the value of (f x y z) has been computed. In the push-enter model, all that happens

is that three more arguments are pushed on the evaluation stack before jumping to f. To put

it another way, there are no identi�able moments at which a new activation frame should be

allocated or reclaimed.

This pushes the push-enter evaluation model in the direction of having a contiguous evaluation

stack, rather than a linked list of heap-allocated activation frames, as exempli�ed by the New

Jersey SML compiler (Appel & Jim [1989]). The idea of heap-allocated activation frames is

very appealing, because it makes it easy to implement call/cc (Appel & Jim [1989]), parallel

threads (Cooper & Morrisett [1990]) and certain debugging mechanisms (Tolmach & Appel

[1990]). But all these things can be done by allocating a contiguous stack in medium-sized

chunks in the heap, at the price of a little extra complication (Hieb, Dybvig & Bruggeman

[1990]; Peyton Jones & Salkild [1989]).

Indeed, performance may well be better using a contiguous stack because of the improved

spatial locality, which reduces paging and cache misses. Contiguous allocation of fresh activa-

tion records is pessimal for caches, since they have to both fetch useless data (since they are

not clever enough to know that it is free space which is about to be allocated) and then write

back an activation frame to main memory which is quite likely to be garbage already. Unless

one uses generational garbage collection, and the youngest generation �ts entirely within the

cache, using a contiguous stack is likely to have far better cache performance (Appel [1992,

Chapter 15]; Wilson, Lam & Moher [1992]). Current cache sizes are still too small to contain

a complete generation, but that may change. It would be very interesting to quantify these

e�ects.

The h�;Gi-machine is another interesting design compromise (Augustsson & Johnsson [1989]).

Here again, there is no contiguous evaluation stack. Instead, working space is allocated in

every closure (which the h�;Gi-machine calls a frame), and the closures under evaluation are

linked together much as heap-allocated activation frames are. The penalties are: space usage

is worse, because all closures contain the extra space regardless of whether they are being

evaluated or not (and most are not); when a function is evaluated to a partial application,

the arguments must be copied from the function's frame to the application's frame; and it is

15

not always possible statically to bound the amount of working space required (unless separate

compilation is abandoned), so an exception-checking mechanism is required to deal with the

cases where too little has been allocated.

3.3 Data structures

Strongly-typed functional languages such as Haskell encourage the programmer to de�ne many

algebraic data types. Even the built-in data types of the language, such as lists, booleans,

tuples and (as we will see in Section 4.7) integers, may be regarded as algebraic data types.

Here, for example, are representative type declarations for some of them:

data Boolean = False | True

data List a = Nil | Cons a (List a)

data Tuple3 a b c = MkTuple3 a b c

data Int = MkInt Int#

data Tree a = Leaf a | Branch (Tree a) (Tree a)

(Special syntax for lists and tuples is provided by most high-level languages, but not by the

STG language.) Data values are built using constructors, such as False, Cons, MkTuple3,

Branch, and taken apart using case expressions. For example:

case t of

Leaf n -> e1

Branch t1 t2 -> e2

(In a high-level programming language, data values are usually taken apart using various

pattern-matching constructs, but its is well known how to translate such constructs into

case expressions with simple single-level patterns (Wadler [1987]). We here assume that this

translation has been performed.)

These operations of construction and pattern matching are so pervasive in functional programs

that they deserve particular attention. Compilers sometimes implement the built-in types

(list, tuples, numbers) in special \magic" ways, and the programmer pays a performance

penalty for user-de�ned types. We take the view that the general mechanisms used for user-

de�ned types should be made e�cient enough to use for built-in types too. (Lisp, of course,

has no user-de�ned types, so this question does not arise.)

We have already discussed the representation of data values, as a code pointer together with

zero or more contents �elds. We now turn our attention to the compilation of case expressions.

Notice that a case expression really does two things: it evaluates the expression whose value

it scrutinises, and then it selects the appropriate alternative.

If the cell model is used, the case expression must �rst force the value to be scrutinised.

Then it must inspect the value to discover which constructor it is built with, and hence which

alternative of the case expression should be executed. It follows that each data value must

contain a tag (usually a natural number) which distinguishes from each other the constructors

of the relevant data type. So the sequence of events is:

� Force the value.

16

� Extract its tag.

� Take a multi-way jump based on the tag

3

� Bind the names in the pattern of the alternative to the components of the data value.

� Execute the code for the alternative.

In the case of the self-updating model, though, there are more possibilities. Recall that in

this model a closure is forced by entering it, regardless of whether it has been forced before. So

far we have assumed that the code for a constructor always returns immediately. But other

variants are possible. It could, for example, load the tag into a register before returning,

so that the tag does not need to be represented explicitly at all (Section 9.4.3). Better still,

instead of returning to a multi-way jump, the constructor code could return to the appropriate

member of a vector of return addresses | we call this a vectored return (Section 9.4.3). These

return conventions can be chosen on independently for each data type.

In e�ect, the self-updating model used by the STG machine takes advantage of the fact that

a data value is only ever forced by a case expression. This property is unique to the STG

machine. Other lazy implementations treat numeric data types as a special case, which are

implicitly forced by the built-in arithmetic operations. In the STG machine, numeric data

types are implemented as algebraic data types, and only forced using case (Section 4.7).

The idea can be taken one step further. Consider the expression

case (f x) of

Nil -> e1

Cons a as -> e2

and suppose that (f x) evaluates to a Cons. The cell model would evaluate (f x), resulting

in a heap-allocated Cons cell, the components of which would be used in e2. But suppose

that we use the self-updating model, and that the code for Cons puts the head and tail of the

Cons cell in registers before returning (as well as loading the tag into a register, if the return

is not vectored). Then the Cons cell need never be allocated in the heap at all! Since many

functions return data values this optimisation seems quite valuable.

In summary, the cell model separates the forcing of a thunk from the case analysis and

unpacking performed by a case expression. The self-updating model allows these operations

to be woven together, which seems to o�er interesting opportunities for optimisations. To be

fair, these optimisations do complicate updating, as we will see when we roll up our sleeves

in Part III, so the bene�t is not entirely without cost (Section 10).

3.4 Summary

The single most pervasive design decision in the STG machine is that each closure (including

data values) is represented uniformly, and scrutinised only by entering it. The bene�ts include

3

Ireland [1992] cleverly avoids the forcing step when it is not necessary, by using the same �eld to encode

the evaluation status ag and constructor tag. The case expression's multi-way jump has an extra branch for

the case where an unevaluated thunk or indirection is encountered: it forces the thunk and then re-executes

the multi-way jump.

17

� Cheap indirections are available (and are useful when performing updates). They cost

nothing when they are not present, and can be eliminated easily during garbage collec-

tion.

� Other exceptional conditions (black holes, concurrency, etc) can be handled in the same

way.

� A variety of return conventions for constructors are possible, including vectored returns,

and returning the components of the constructor in registers. The latter means that

data values may not be allocated in the heap at all.

What are the costs? The main one seems to be this: in the common case when a possible

thunk turns out to be already evaluated, the self-updating model takes two jumps, one to

enter the closure and one to return, while the cell model takes only one (conditional) jump.

(As we have seen, though, a jump can often be saved again by using a vectored return.)

Worse, the �rst jump is to an unknown destination, which means that the code generator

cannot keep things in registers. The cell model only incurs these context-switching costs if

the thunk is unevaluated. Even so, the cell model may not always win. If there are two or

more forces in a row there is the nasty possibility of saving the context, evaluating one thunk,

restoring the context, discovering the second thunk is unevaluated, and saving the context

for a second time. In this sort of situation it may well be just as good to save the context

once and for all at the start of a string of forces, as the self-updating model must do.

There are also some underlying architectural issues. Firstly, indirect jumps are more likely

to cause cache misses than (not-taken) conditional jumps. Secondly, modern RISCs are

well optimised for taking conditional jumps (employed by the cell model), but not for taking

indirect jumps (which are needed by the self-updating model). In principle, if the jump target

address is fetched a few instructions before the jump itself, and the instruction fetch logic

interprets the indirect jump directly, no pipeline bubbles need be caused. Most RISCs are

not (yet) optimised for this sequence, but the Tera architecture is: it allows a branch target

to be prefetched into a register, and thereby supports zero-delay indirect branches (Alverson

et al. [1990]).

In short, by always entering a closure when we need its value, we pay a single, fairly modest,

up-front cost but get a wide variety of other bene�ts at no further cost. Whether the bene�ts

outweigh the costs is at present an open question.

18

Part II: The abstract machine

4 The STG language

The abstract machine code for the Spineless Tagless G-machine is a very austere purely-

functional language, called the STG language, whose syntax is given in Figure 3. Virtually

every functional-language compiler uses a small purely-functional language as an intermediate

code (eg the \enriched lambda calculus" (Peyton Jones [1987]), FLIC (Peyton Jones [1988]),

FC (Field & Harrison [1988]), Kid (Ariola & Arvind [1991])).

The distinguishing feature of the STG language is that it has a formal operational semantics,

expressed as a state transition system, as well as the usual denotational semantics. Indeed it

is exactly this property which justi�es the title \abstract machine code". In particular, the

following correspondence between the STG language and operational matters is maintained:

Construct Operational reading

Function application Tail call

Let expression Heap allocation

Case expression Evaluation

Constructor application Return to continuation

The salient characteristics of STG code are as follows:

� All function and constructor arguments are simple variables or constants. This con-

straint corresponds to the operational reality that function arguments are prepared

(either by constructing a closure or by evaluating them) prior to the call.

It is easy to satisfy this condition when translating into the STG language, simply by

adding new let bindings for non-trivial arguments.

� All constructors and built-in operations are saturated. This constraint simpli�es the

operational semantics of STG code. It is easily arranged by adding extra lambdas

around an un-saturated constructor or built-in application, thus performing the opposite

of �-reduction.

Notice that, in a higher-order language, we cannot ensure that every function application

is saturated (that is, gives to the function exactly the number of arguments it expects).

� Pattern matching is performed only by case expressions, and the patterns in case

expressions are simple one-level patterns. More complex forms of pattern-matching can

easily be translated into this form (Wadler [1987]).

The value scrutinised by a case expression can be an arbitrary expression, and is not

restricted to be a simple variable or constant. Nothing would be gained by such a

restriction, and some performance would be lost because a closure for the expression

would be unnecessarily built and then immediately evaluated.

� There is a special form of binding. The STG language has a special form of binding,

whose general form is

f = {v

1

; : : : ; v

n

} \� {x

1

; : : : ; x

m

} -> e

19

Program prog ! binds

Bindings binds ! var

1

= lf

1

; : : :; var

n

= lf

n

n � 1

Lambda-forms lf ! vars

f

\� vars

a

-> expr

Update ag � ! u Updatable

j n Not updatable

Expression expr ! let binds in expr Local de�nition

j letrec binds in expr Local recursion

j case expr of alts Case expression

j var atoms Application

j constr atoms Saturated constructor

j prim atoms Saturated built-in op

j literal

Alternatives alts ! aalt

1

; : : :; aalt

n

; default n � 0 (Algebraic)

j palt

1

; : : :; palt

n

; default n � 0 (Primitive)

Algebraic alt aalt ! constr vars -> expr

Primitive alt palt ! literal -> expr

Default alt default ! var -> expr

j default -> expr

Literals literal ! 0# j 1# j : : : Primitive integers

j : : :

Primitive ops prim ! +# j -# j *# j /# Primitive integer ops

j : : :

Variable lists vars ! {var

1

, : : :, var

n

} n � 0

Atom lists atoms ! {atom

1

, : : :, atom

n

} n � 0

atom ! var j literal

Figure 3: Syntax of the STG language

20

It has two readings. From a denotational point of view, the free variables v

1

; : : : ; v

n

and

update ag � are ignored, and the de�nition binds f to the function (�x

1

: : :x

m

:e).

From an operational point of view, f is bound to a heap-allocated closure, containing a

code pointer and (pointers to) the free variables v

1

; : : : ; v

n

. This closure represents the

function (�x

1

: : :x

m

:e); when its code is executed, a special register will point to the

closure thereby giving access to its free variables.

The right-hand side of a binding is called a lambda-form, and is the only site for a

lambda abstraction. Notice, though, that the abstraction can have free variables, so no

lambda lifting need be performed (Section 4.5).

The update ag on a lambda-form indicates whether its closure should be updated when

it reaches its normal form (Section 4.2). We say a lambda-form (or a closure built from

it) is updatable if its update ag is u, and non-updatable otherwise.

� The STG language supports unboxed values. This aspect is discussed below in Sec-

tion 4.7.

A STG program is just a collection of bindings. The variables de�ned by this top-level set of

bindings are called globals, while all other variables bound in the program are called locals.

The value of an STG program is the value of the global main.

The concrete syntax we use is conventional: parentheses are used to disambiguate; application

associates to the left and binds more tightly than any other operator; the body of a lambda

abstraction extends as far to the right as possible; and, where the layout makes the meaning

clear, we allow ourselves to omit semicolons between bindings and case alternatives.

The STG language is similar in some ways to \continuation-passing style" (CPS), a point we

return to in Section 4.8.

4.1 Translating into the STG language

In this section we outline how to translate a functional program into the STG language. We

begin with an example, the well-known function map. Its de�nition, in conventional notation

(eg Haskell), is as follows:

map f [] = []

map f (y:ys) = (f y) : (map f ys)

The corresponding STG binding is this:

map = {} \n {f,xs} ->

case xs of

Nil {} -> Nil {}

Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}

mfy = {f,ys} \u {} -> map {f,ys}

in Cons {fy,mfy}

Notice the attened structure, the explicit argument lists for every call, and the free-variable

lists and update ags on each lambda-form. Since map itself is a global constant it is not

considered to be a free variable of the lambda-form for mfy.

21

In this example, every lambda-form has either no arguments or no free variables. To illustrate

the two in combination, consider the following alternative de�nition for map:

map1 f = mf where mf [] = []

mf (y:ys) = (f y) : (mf ys)

Here the recursion is over mf, which has free variable f. The corresponding STG binding is:

map1 = {} \n {f} ->

letrec

mf = {f,mf} \n {xs} ->

case xs of

Nil {} -> Nil {}

Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}

mfy = {mf,ys} \u {} -> mf {ys}

in Cons {fy,mfy}

in mf

Here, mf is an example of a lambda-form with both free variables and arguments. Notice that

mf is a free variable of its own right-hand side (see Section 4.5).

4.1.1 The general transformation

In general, translation into the STG language involves the following transformations:

� Replace binary application by multiple application.

(: : :((f e

1

) e

2

) : : :) e

n

=) f fe

1

; e

2

; : : : ; e

n

g

The semantics is still that of curried application, of course, but the STG machine applies

a function to all the available arguments at once, rather than doing so one by one.

� Saturate all constructors and built-in operations, by �-expansion if necessary. That is

c fe

1

; : : : ; e

n

g =) �y

1

: : :y

m

: c fe

1

; : : : ; e

n

; y

1

; : : : ; y

m

g

where c is a built-in or constructor with arity n +m)

� Name every non-atomic function argument, and every lambda abstraction, by introduc-

ing a let expression:

� Convert the right-hand side of each let binding into a lambda-form, by adding free-

variable and update-ag information.

4.1.2 Identifying the free variables

The transformation to STG code requires the free variables of each lambda-form to be iden-

ti�ed. The rule is as follows: a variable must appear in the free variable list of a lambda-form

if

22

1. it is mentioned in the body of the lambda abstraction, and

2. it is not bound by the lambda, and

3. it is not bound at the top level of the program.

Thus, in the �rst version of map in the previous section, map does not appear in the free-

variable list of mfy because it is a global constant. On the other hand, in the second version

of map, mf is a free variable of both itself and mfy.

The free-variable rule handles mutual recursion without any further complications. For ex-

ample, the Haskell de�nition

f x y = fbody

where

g1 a = ...a...g2...x...

g2 b = ...b...g1...y...

would transform to the STG de�nition:

f = {} \n {x,y} -> letrec

g1 = {g2,x} \n {a} -> ...a...g2...x...

g2 = {g1,y} \n {b} -> ...b...g1...y...

in

fbody

The letrec builds a pair of closures, each of which points to the other.

The rule above says when a variable must appear in a free-variable list of a lambda-form. Of

course, any in-scope variable may appear (redundantly); surprisingly, there is one situation

in which such redundant free variables prove useful | see Section 4.4.

4.2 Closures and updates

In the STG language, let(rec) expressions bind variables to lambda-forms. Two pieces of

denotationally redundant but operationally signi�cant information are attached to a lambda-

form: a list of the free variables of the lambda-form, and an update ag. In this section we

focus on the update ag.

Updates are an expensive feature of lazy evaluation, whereby the closure representing an

unevaluated expression is updated with its (head) normal form when it is evaluated (Sec-

tion 3.1.2). The aim is to avoid evaluating a particular closure more than once.

In contrast to the G-machine, which performs an update after almost every reduction, the

Spineless Tagless G-machine is able to decide on a closure-by-closure basis whether updating

is required. (It shares this property with TIM and the Spineless G-machine.) The update/no-

update decision is controlled by the update ag on a lambda-form: if the update ag is \u",

the corresponding closure will be updated with its head normal form if it is ever evaluated; if

it is \n" no update will be performed.

It is clearly safe to set the update ag of every lambda-form to u, thereby updating every

23

closure. But we can do much better than this. The obvious question is: to which lambda-

forms can we safely assign an update ag of \n", without losing the single-evaluation property?

We explore this question by classifying lambda-forms into distinct classes:

Manifest functions. A manifest function is a lambda-form with a non-empty argument list.

For example, map and mf are manifest functions in the examples of the previous section.

Manifest functions do not require updating because they are already in head normal

form.

Partial applications. A partial application lambda-form is of the form

vs \n fg -> f fx

1

; : : : ; x

m

g

where f is known to be a manifest function taking more than m arguments. Like

manifest functions, partial applications are already in head normal form, and hence do

not require updating. Both manifest functions and partial applications are of course

function values.

Partial applications sometimes appear directly in programs, but they also arise as a

result of performing updates (Section 5.6).

Only lambda-forms in precisely the form given above are classi�ed as partial applica-

tions. For example, the lambda-form

{x,y} \u {} -> let z = ...

in f {z}

is not classi�ed as a partial application, because its body is not in the required form.

There is a good reason for this: if a closure built from this lambda-form was not updated,

the closure for z would be re-built each time it was entered.

Constructors. A constructor is a lambda-form of the form

vs \n fg -> c fx

1

; : : : ; x

m

g

where c is a constructor. (Since constructor applications are always saturated in the

STG language, c is bound to have arity m.) The update ag on a constructor is always

n (no update).

Thunks. The remaining lambda-forms, those with an empty argument list but not of the

special form of a partial application or a constructor, are called thunks. The lambda-

forms mfy and fy are examples of thunks in the previous section.

Since thunks are not in normal form, it appears at �rst that they should all have their

update ag set to u. However, if the compiler can prove that a thunk can be evaluated

at most once then it is safe to set its update ag to n, thereby allowing the update to

be omitted.

For example, consider the following de�nition:

24

f = {} \n {p,xs} -> let j = {p} \n {} -> factorial p

in

case xs of

Nil {} -> + {j,1}

Cons {y,ys} -> + {j,2}

Here it is clear that j will be evaluated at most once, so its closure does not need to be

updated.

In summary, updates are never required for functions, partial applications and constructors;

and may in addition sometimes be omitted for thunks.

The analysis phase which determines which thunks need not be updated is called update

analysis. Not much work seems to have been done on this topic, but we are working on a

simple update analyser.

4.3 Generating fewer updatable lambda-forms

The translation from the Core to STG language is largely straightforward (apart from the

update analysis, which can of course be omitted by agging all thunks as updatable). There

is an important opportunity to reduce the incidence of updates, which concerns constructors

and partial applications. Consider the Haskell expression

let xs = y1 : (y2 : (y3 : [])))

in ...

A straightforward translation into the STG language gives

let xs = {y1,y2,y3} \u {} ->

let t1 = {y2,y3} \u {} ->

let t2 = {y3} \u {} ->

let t3 = {} \n {} -> Nil {}

in Cons {y3,t3}

in Cons {y2,t2}

in Cons {y1,t1}

in ...

Three updatable thunks have been built which will subsequently be updated when (and if)

xs is traversed. An alternative, and usually superior, translation is this:

let t3 = {} \n {} -> Nil {}

in let t2 = {y3,t3} \n {} -> Cons {y3,t3}

in let t1 = {y2,t2} \n {} -> Cons {y2,t2}

in let xs = {y1,t1} \n {} -> Cons {y1,t1}

in ...

No updatable thunks are built at all. The only bad thing about this translation is that if xs

was to be discarded without being traversed then the work of constructing all four constructor

closures would have been wasted. (This is a strictly bounded amount of work, however.)

25

Just the same alternative translation is possible when a known function is applied to too few

arguments; the let bindings for the argument expressions can be lifted up a level so that a

partial-application lambda-form remains, which does not need to be updated.

In general,

� Updates can be omitted for parameterless lambda-forms if the body is a head normal

form.

� Opportunities for this improvement may be enhanced by moving let(rec) bindings

from the lambda-form to its enclosing context. More generally, any small, bounded,

computation may be moved from a lambda-form to its enclosing context to expose a

head normal form, and thereby avoid an update.

4.4 Standard constructors

The �nal form of the example in the previous section had three lambda-forms of the form

{x,xs} \n {} -> Cons {x,xs}

for various x and xs . Because they all have the same shape, they can clearly all share a single

code pointer. In general, a lambda-form of the form

fx

1

; : : : ; x

m

g \n fg -> c fx

1

; : : : ; x

m

g

where c is a constructor of arity m, is called a standard constructor. All such lambda-forms

for a particular constructor c can share common code.

The free-variable list of a global de�nition is usually empty, since the global can only mention

other globals, and is represented by a closure consisting only of a code pointer. However,

consider the following global Haskell de�nition:

aList = [thing]

thing = ...

A straightforward translation to the STG language gives

aList = {} \n Cons {thing,nil}

nil = {} \n Nil {}

thing = ...

This is perfectly correct, but it means having special-purpose code for aList, which has

references to thing and nil wired into it. If aList was a list with several items in it, each

cell in the list would have a separate code sequence! An alternative translation, is

aList = {thing,nil} \n Cons {thing,nil}

nil = {} \n Nil {}

thing = ...

The lambda-form for aList now has free variables which are not strictly necessary, but the

payo� is that the lambda-form is now a standard constructor, and can use the standard code

26

for Cons. Instead of being represented by a code pointer alone, aList is now represented by

the Cons code together with pointers to the globals thing and nil.

We apply this idea throughout, not just at top level, to make sure that every lambda-form

whose body is a simple constructor application is a standard constructor.

For nullary constructors, such as Nil, it is not only possible to share its code, but also to

share its closure. Thus, in the above example, the nil global can be shared by all occurrences

of Nil in the program.

4.5 Lambda lifting

Lambda lifting is a process whereby all function de�nitions are lifted to the top level, by

making their free variables into extra arguments (Johnsson [1985]; Peyton Jones & Lester

[1991]). In a lambda-lifted program each lambda-form has either no free variables or no

arguments. In contrast to most other abstract machines, the STG machine does not require

the program to be lambda lifted; a right-hand side can have both free variables and arguments.

The operational di�erence between the two is fairly slight. Consider the following STG

language de�nition:

f = {} \n {x1,x2,x3} -> let z = {x1,x3} \n {y} -> zbody

in fbody

in which the lambda-form for z has the free variables x1 and x3, and argument y. If lambda

lifting is performed, a new global function (or supercombinator) $z is introduced, giving:

$z = {} \n {x1,x3,y} -> zbody

f = {} \n {x1,x2,x3} -> let z = {x1,x3} \n {} -> $z {x1,x3}

in fbody

Now the program has only thunks (like z) and supercombinators (like f and $z). Opera-

tionally, what happens is that when z is entered, it pushes its two free variables, x1 and x3,

onto the evaluation stack and jumps to $z. In the original version, which the STG machine

can execute directly, the free variables can be used directly from the closure itself.

In short, the local environment in which the STG machine executes consists of two parts

(Section 5.2): values held in the closure just entered (its free variables), and values held on

the stack (its arguments). This two-level environment reduces somewhat the movement of

values from the heap to the stack, but it is not yet clear whether this is a big improvement

or only a marginal one.

4.6 Full laziness

Consider the binding

f = {x} \n {y} -> let z = {x} \u {} -> ez

in ef

27

where ez and ef are arbitrary expressions. Suppose x and y are both free in ef, but only x is

free in ez. Since the lambda-form for z does not have y as a free variable, this is equivalent

to the pair of bindings

z = {x} \u {} -> ez

f = {x,z} \n {y} -> ef

Furthermore, the latter form may save work if f is applied many times, because z will be

instantiated only once rather than once for each call of f. In general, each binding can be

moved outwards until its immediately enclosing lambda abstraction binds one of the free

variables of the binding. This transformation is called the full laziness transformation, and is

described in detail by Peyton Jones & Lester [1991].

4.7 Arithmetic and unboxed values

In a non-strict functional language implementation, when a variable is bound, it is generally

bound to an unevaluated closure allocated in the heap. When the value of the variable is

required, the closure to which it points is evaluated, and the closure is overwritten with the

resulting value. Further evaluations of the same closure will �nd the value immediately.

This evaluation model means that all numbers are represented by a pointer to a heap-allocated

closure, or \box", which contains either information which enables the number to be com-

puted, or (if the closure has been evaluated) the actual value of the number. We call the

\actual value" an unboxed value; it can be manipulated directly by the instruction set of the

machine.

The uniform boxed representation makes arithmetic horribly expensive. A simple addition,

which takes one instruction in a conventional system, requires a sequence of instructions to:

evaluate the two operands, fetch their values, add them, allocate a new box for the result,

and place the result in it.

One of the innovative features of our compiler is that unboxed values are explicitly part of the

Core and STG languages. That is, variables may be bound to unboxed values, functions may

take unboxed values as arguments and return them as results, unboxed values may be stored

in data structures, and so on. The main motivation for this approach is that we can then be

explicit about the steps involved in (say) addition. To begin with, we declare the following

data type:

data Int = MkInt Int#

This declares the data type of (boxed) integers, Int, as an algebraic data type with a single

constructor, MkInt. The latter has a single argument of type Int#, the type of unboxed

integers. So the value (MkInt 3#) represents the boxed integer 3 (3# stands for the unboxed

constant 3, of type Int#).

Now, given the expression (e1 + e2), say, we can rewrite it like this:

case e1 of

MkInt x# -> case e2 of

MkInt y# -> case (x# +# y#) of

28

t# -> MkInt t#

The outer two case expressions evaluate e1 and e2 respectively, while the inner case expresses

the fact that x# and y# are added, and then their result t# is boxed with a MkInt constructor.

(By convention, we use a trailing # for identi�ers whose values or results are primitive. This

is just for human readability: the identi�ers + and +# are distinct, but the # is not otherwise

recognised specially by the compiler.)

It turns out that this simple idea allows several optimisations which hitherto were buried in

the code generator to be reformulated as program transformations. Furthermore, the idea can

be generalised in a number of directions, such as allowing general algebraic data types with

unboxed components (rather than just Int). All of this is discussed in detail in Peyton Jones

& Launchbury [1991].

For the purposes of this paper, it su�ces to establish the following facts:

� Data types are divided into two kinds: algebraic data types are introduced by explicit

data declarations, while primitive data types are built into the system. Values of primi-

tive type can be manipulated directly by machine instructions, and are always unboxed.

For example, Int is an algebraic type, while Int# is primitive. For the purpose of this

paper, it su�ces to identify primitive types with unboxed types, though the generalisa-

tions discussed in Peyton Jones & Launchbury [1991] permit unboxed algebraic types

as well.

� All literal constants are of primitive type; literals of algebraic type are expressed by

giving an explicit application of a constructor.

� All arithmetic built-in operations operate over primitive values (for example +# above).

De�nitions for functions operating over non-primitive (ie algebraic) values can be ex-

pressed directly in the STG language, and hence do not need to be built in.

� Values of unboxed type need not be the same size as a pointer. For example, Double#,

the type of double-precision oating-point numbers, occupy 64 bits while pointers usu-

ally occupy 32 bits. As a result, polymorphic functions can take only arguments of boxed

type, because arguments must be passed to such functions in a uniform representation.

(Even if unboxed values were always the same size as a pointer there would still be a

di�culty for the garbage collector in distinguishing a pointer from a non-pointer.)

� A let or letrec expression cannot bind a variable of unboxed type. Such a binding is

instead made using a case expression. The reason for this is that when a variable of

unboxed type is bound, the expression to which it is bound must be evaluated imme-

diately; the whole point about unboxed values is that they cannot be represented by

as-yet-unevaluated closures.

In other words, in the STG language, case expressions perform evaluation, while let

and letrec build closures. This uniform semantics gives rise to uniform transformation

laws; for example, a let expression whose bound variable is not used can always be

elided.

For the same reason, the global (top-level) bindings of an STG program cannot bind

values of unboxed type.

29

� There are two forms of case expression, as the the syntax of Figure 3 describes. One

takes apart a value of an algebraic data type, while the other performs case analysis on

a value of primitive type.

4.8 Relationship to CPS conversion

Transformation to continuation-passing style (CPS) is a technique which has been used to

good e�ect in several compilers for strict (call-by-value) languages (Appel [1992]; Fradet &

Metayer [1991]; Kelsey [1989]; Kranz [1988]; Steele [1978]). Though the STG language is lazy,

it has much the same avour as CPS: nested constructs are attened to an explicit sequence

of simple operations, so that the ow of control is manifest, and there is a direct relationship

between the remaining language constructs and individual machine operations.

To make the connection explicit, the following table shows the approximate correspondence

between the constructs of the CPS language used by Appel (Appel [1992]), and those of the

STG language.

Operation Appel CPS form STG form

Application APP Application

Local function de�nition FIX

Record construction RECORD let(rec)

Thunk construction |

Forcing of data values |

Selection of alternative SWITCH case on algebraic types

Extraction of record components SELECT

Primitive operations PRIMOP case on primitive types

There are a few minor di�erences between Appel's CPS and the STG language. Firstly, CPS-

based implementations usually unbundle case expressions into forcing, multi-way selection,

and extraction of the components of the data value. These are all bundled up together in

case expressions which, as we have seen, can be used to advantage by the STG machine.

Secondly, the STG language uses a single construct, let(rec), to allocate function-valued

and data-valued closures, thus allowing arbitrary mutual recursion between the two. It is not

so clear how to achieve this using Appel's form of CPS.

There is a much more important di�erence though: the STG language is not a continuation-

passing style! In CPS, every user-de�ned function is given an extra parameter, namely the

continuation to apply to its result. For example, assuming a continuation k, the expression

(f x) + y

would be converted to the CPS form

f x (\fx. + fx y (\r. k r))

The call to f is made into a tail call, passing to f an extra argument, the continuation

(\fx. + fx y (\r. k r)). This continuation says what to do after (f x) has been com-

puted, namely add the result to y and pass that value to k. In contrast, the STG form of the

same expression is:

30

case (f x) of

MkInt x# -> case y of

MkInt y# -> case (x# +# y#) of

r# -> MkInt r#

The continuation to the call to f is passed implicitly; when evaluation of f x is complete,

control returns to the second case expression. The second case evaluates y, which of course

is not necessary in Appel's world since SML is strict. A lazy version of CPS would require the

suspended computation inside a thunk to be a function taking a continuation as its argument.

So the CPS form would really be

f x (\fx. force y (\yr. + fx yr (\r. k r)))

where force is the function which forces a thunk (its �rst argument) by applying it to force's

second argument (the continuation). This code is strikingly similar to the STG form above.

This di�erence in the way in which continuations are handled clearly distinguishes CPS from

the STG language, but it is quite di�cult to pin down all the implications of the di�erence.

For example, the CPS version has a natural stack-less implementation, since every call is a tail

call. On the other hand, it may thereby incur the cost of heap-allocating the closure for the

continuation, and passing it as an argument to f. The STG version suggests a stack-based

implementation, since the current activation frame contains the environment in which the

continuation should be executed. But of course, either implementation is possible from both

styles.

The STG style also seems to be more natural for curried function application. Consider the

call (f x y), which is left unchanged by the conversion to the STG language. If converted

to CPS (assuming that the call itself has continuation k), this would generate something like:

f x (\w. w k y)

This is a rather expensive and clumsy compilation for an ordinary function application! We

expect curried function application to be pervasive, so the STG language provides it as prim-

itive.

Of course, this imposes an extra requirement on the code generator for the STG language:

it must cope with functions applied to more or fewer arguments than they are expecting.

(For example f might take one argument, x, do a lot of computation, and �nally reduce to a

function which takes the second argument y.) As Section 5 will show, though, graph reduction

gives a natural way to provide this functionality.

In summary, the STG language has a similar avour to CPS, but is a little less extreme.

So far we have not discovered any opportunities for optimisation which are exposed by CPS

but hidden by the STG language. (Consel & Danvy [1991] show that transforming the source

program to CPS may improve the accuracy of some analyses; we have not investigated whether

or not the STG language has a similar property.)

31

5 Operational semantics of the STG language

The STG language is the abstract machine code for the STG machine. In this section we give

a direct operational semantics for the STG language using a state transition system.

A state transition semantics speci�es (a) an initial state for the machine, and (b) a series of

state transition rules. Each rule speci�es a set of source states and the corresponding target

states after the transition has taken place. The set of source states is speci�ed implicitly, using

pattern-matching and guard conditions; if a state is in the source set for a given transition

rule we say that the rule matches the state. At most one transition rule should match any

given state, and if no rule matches, the machine halts.

The state has �ve components:

1. the code, which takes one of several forms, given below;

2. the argument stack, as , which contains values;

3. the return stack, rs , which contains continuations;

4. the update stack, us , which contains update frames;

5. the heap, h, which contains (only) closures;

6. the global environment, �, which gives the addresses of all closures de�ned at top level.

Sequences are used extensively in what follows. They are denoted using curly brackets, thus

fa

1

; : : : ; a

n

g. The empty sequence is denoted fg; if as and bs are two sequences then as ++ bs

is their concatenation; and a : as denotes the sequence obtained by adding the item a to the

beginning of the sequence as . The length of a sequence as is denoted length(as).

A value takes one of the following forms:

Addr a A heap address

Int n A primitive integer value

In the operational semantics, values are tagged with Addr and Int and so on to distinguish

these di�erent kinds of value. We discuss later ways to avoid actually implementing this

tagging in a real implementation (Section 8). We could add further forms of value for other

primitive data types, such as oating-point numbers, but they are handled exactly analogously

to integers, so we omit them to reduce clutter.

We use w ;w

1

; : : :, to range over values, and ws to range over sequences of values.

The argument stack, as , is just a sequence of values. The \top" of the stack is the beginning

of the sequence. The return stack and update stack will be dealt with later (Sections 5.4 and

5.6 respectively).

The heap, h, is a mapping from addresses, ranged over by a; a

1

; : : :, to closures. Every closure

is of the form

(vs \� xs -> e) ws

32

Intuitively, the lambda-form (vs \� xs -> e) denotes the code of the closure, while the sequence

of values ws gives the value of each of the free variables vs . (We use � to range over update

ags, which can be either u or n.) This is exactly the uniform representation discussed in

Section 3.1.3.

The global environment component of the state, �, maps the name of each variable bound at

the top level of the program to the address of its closure. These closures can all be allocated

once and for all before execution begins. (Indeed, unlike the other components, � does not

change during execution.) The STG machine is unusual in binding globals to closures rather

than to code sequences. It is important to do so, however, because a global may be updatable,

so there must be a closure to update!

As we discussed earlier, it is possible to share the code for standard-constructor closures

(Section 4.4). In the special case of constructors with no arguments (such as Nil) it is

possible to share not just the code for the closure, but the closure itself. For example, all

references to Nil can use the address of a single global closure. This is easily done by adding

niladic constructors as a possible form of atom (Figure 3), and extending � with the address

of a suitable closure for each niladic constructor. For the sake of simplicity, we do not perform

this optimisation in the operational semantics which follows.

Finally, the code component of the state takes one of the following four forms, each of which

is accompanied by its intuitive meaning:

Eval e � Evaluate the expression e in environment �

and apply its value to the arguments on the

argument stack. The expression e is an arbi-

trarily complex STG-language expression.

Enter a Apply the closure at address a to the argu-

ments on the argument stack.

ReturnCon c ws Return the constructor c applied to values ws

to the continuation on the return stack.

ReturnInt k Return the primitive integer k to the continu-

ation on the return stack.

The local environment, �, maps variable names to values. The notation �[v 7! w] extends the

map � with a mapping of the variable v to value w . This notation also extends in the obvious

way to sequences of variables and values; for example �[vs 7! ws].

The val function takes an atom (Figure 3) and delivers a value:

val � � k = Int k

val � � v = � v if v 2 dom(�)

= � v otherwise

If the atom is a literal k , val returns a primitive integer value. If it is a variable, val looks

it up in � or � as appropriate. val extends in the obvious way to sequences of variables:

val � � vs is the sequence of values to which val � � maps the variables vs .

33

5.1 The initial state

We begin by specifying the initial state of the STG machine. The general form of an STG

program is as follows:

g

1

= vs

1

\�

1

xs

1

-> e

1

: : :

g

n

= vs

n

\�

n

xs

n

-> e

n

One of the g

i

will be main. Given this program, the corresponding initial state of the machine

is:

Arg Return Update

Code stack stack stack Heap Globals

Eval (main fg) fg fg fg fg h

init

�

where � =

2

6

4

g

1

7! (Addr a

1

)

: : :

g

n

7! (Addr a

n

)

3

7

5

h

init

=

2

6

4

a

1

7! (vs

1

\�

1

xs

1

-> e

1

) (� vs

1

)

: : :

a

n

7! (vs

n

\�

n

xs

n

-> e

n

) (� vs

n

)

3

7

5

We write a machine state as a horizontal row of its components, sometimes with auxiliary

de�nitions (as here) introduced by a \where" clause. In this initial state, the code component

says that main is to be evaluated in the empty local environment; the argument, return and

update stacks are empty; the initial heap, h

init

, contains a closure for each global; and the

global environment, �, binds each global to its closure.

Notice that the values in the range of the global environment are all addresses. This reects

the fact that global variables are always boxed.

5.2 Applications

We begin the main operational semantics with the rule for applications.

(1)

Eval (f xs) � as rs us h �

such that val � � f = Addr a

=) Enter a (val � � xs) ++ as rs us h �

The top line of the rule gives the state before the transition, while the bottom line gives

the state afterwards. We use a pattern-matching notation for the top line. In this case, the

rule only matches if the code component is an Eval of an expression of the given form. The

\such that" clause further constrains the rule to the case where f is bound to the address of

a closure (and not to a primitive value).

34

The rule says that to perform a tail call, the values of the arguments are put on the argument

stack, and the value of the function is entered. The function is expected to be a closure; the

other case, when f is not an address but rather is a primitive value instead, is dealt with in

Section 5.5. Notice that the local environment is discarded at this point; in general, the local

environment only has a very local lifetime.

The next thing to discuss is the rule for entering a closure. We give only the rule for entering

non-updatable closures; the rule for updatable closures is given in Section 5.6.

(2)

Enter a as rs us h[a 7! (vs \n xs -> e) ws

f

] �

such that length(as) � length(xs)

=) Eval e � as

0

rs us h �

where ws

a

++ as

0

= as

length(ws

a

) = length(xs)

� = [vs 7! ws

f

; xs 7! ws

a

]

When a non-updatable closure is entered, the local environment is constructed by binding its

free variables to the values, ws

f

, found in the closure, and its arguments to the values, ws

a

,

found on the stack. Then the body of the closure is evaluated in this environment. In this

rule we use a \where" clause to give values to variables used in the result state of the rule.

5.3 let(rec) expressions

As mentioned earlier, a let expression constructs one or more closures in the heap.

(3)

Eval

0

B

B

B

@

let x

1

= vs

1

\�

1

xs

1

-> e

1

: : :

x

n

= vs

n

\�

n

xs

n

-> e

n

in e

1

C

C

C

A

� as rs us h �

=) Eval e �

0

as rs us h

0

�

where �

0

= �[x

1

7! Addr a

1

; : : : ; x

n

7! Addr a

n

]

h

0

= h

2

6

4

a

1

7! (vs

1

\�

1

xs

1

-> e

1

) (�

rhs

vs

1

)

: : :

a

n

7! (vs

n

\�

n

xs

n

-> e

n

) (�

rhs

vs

n

)

3

7

5

�

rhs

= �

The rule for letrec is almost identical, except that �

rhs

is de�ned to be �

0

instead of �.

35

5.4 Case expressions and data constructors

The return stack is used for the �rst time when we come to case expressions. Given the

expression

case e of alts

the operational interpretation is \push a continuation onto the return stack, and evaluate e".

When the evaluation of e is complete, execution will resume at the continuation, which then

decides which alternative to execute. The rule for case follows fairly directly:

(4)

Eval (case e of alts) � as rs us h �

=) Eval e � as (alts ; �) : rs us h �

The continuation is a pair (alts ; �); the alternatives alts say what to do when evaluation of

e completes, while the environment � provides the context in which to evaluate the chosen

alternative. We will have more to say about how this expensive-looking environment saving

is performed later, in Section 9.4.1.

The other side of the coin is the rules for constructors and literals. Presumably e eventu-

ally evaluates to either a constructor or a literal, at which point the continuation must be

popped from the return stack and executed. The rules for constructors and literals each use

an intermediate state, ReturnCon and ReturnInt respectively, just as the rule for function

application uses Enter . Primitive values are dealt with in the next section, while the rules

for constructors are given next.

Evaluating a constructor application simply moves into the ReturnCon state:

(5)

Eval (c xs) � as rs us h �

=) ReturnCon c (val � � xs) as rs us h �

The rules for ReturnCon return to the appropriate continuation taken from the return stack:

(6)

ReturnCon c ws as (: : :; c vs -> e; : : : ; �) : rs us h �

=) Eval e �[vs 7! ws] as rs us h �

Provided that the continuation on the return stack contains a pattern c vs whose constructor

c is the same as that being evaluated, we just evaluate the right-hand side of that alternative,

in the saved environment � augmented with bindings for the variables vs to the values of the

actual arguments to c.

If there is no such alternative, the default alternative is taken. The rule for this is easy when

no variable is bound in the default case:

(7)

ReturnCon c ws as

0

B

B

B

@

c

1

vs

1

-> e

1

;

: : :;

c

n

vs

n

-> e

n

;

default -> e

d

; �

1

C

C

C

A

: rs us h �

such that c 6= c

i

(1 � i � n)

=) Eval e

d

� as rs us h �

36

However, if a variable v is bound by the default, we need to heap-allocate a constructor

closure to which to bind v , thus:

(8)

ReturnCon c ws as

0

B

B

B

@

c

1

vs

1

-> e

1

;

: : :;

c

n

vs

n

-> e

n

;

v -> e

d

; �

1

C

C

C

A

: rs us h �

such that c 6= c

i

(1 � i � n)

=) Eval e

d

�[v 7! a] as rs us h

0

�

where h

0

= h[a 7! (vs \n {} -> c vs) ws]

vs is a sequence of arbitrary distinct variables

length(vs) = length(ws)

This rule is a little complicated, and a simple program transformation can eliminate the

variable-binding form of default from the language (for algebraic case expressions, anyway):

case e of : : :; v -> b =)

let v = xs \u {} -> e

in

case v of : : :; default -> b

In implementation terms this version is a little less e�cient, because a closure for v will be

allocated and then updated, whereas using Rule 8 simply allocates the constructor in its �nal

form.

Lastly, if there is no match and no default alternative, no rule matches, which is interpreted

as failure.

5.5 Built in operations

In this section we give the extra rules which handle primitive values. The rule for evaluating

a primitive literal, k , enters the ReturnInt state:

(9)

Eval k � as rs us h �

=) ReturnInt k as rs us h �

A similar rule deals with the case where a variable bound to a primitive value is entered:

(10)

Eval (f fg) �[f 7! Int k] as rs us h �

=) ReturnInt k as rs us h �

Next come the rules for the ReturnInt state, which look for a continuation on the return

stack. First, the case where there is an alternative which matches the literal:

(11)

ReturnInt k as (: : :; k->e; : : : ; �) : rs us h �

=) Eval e � as rs us h �

Next, the cases where the default alternative is taken:

37

(12)

ReturnInt k as

0

B

B

B

@

k

1

-> e

1

;

: : :;

k

n

-> e

n

;

x -> e

; �

1

C

C

C

A

: rs us h �

such that k 6= k

i

(1 � i � n)

=) Eval e �[x 7! Int k] as rs us h �

(13)

ReturnInt k as

0

B

B

B

@

k

1

-> e

1

;

: : :;

k

n

-> e

n

;

default -> e

; �

1

C

C

C

A

: rs us h �

such that k 6= k

i

(1 � i � n)

=) Eval e � as rs us h �

Finally, we need a family of rules for built-in arithmetic operations which, for each binary

built-in operation � have the form:

(14)

Eval (� fx

1

; x

2

g) �[x

1

7! Int i

1

; x

2

7! Int i

2

] as rs us h �

=) ReturnInt (i

1

� i

2

) as rs us h �

5.6 Updating

In this section we cover the updating technology necessary for a graph reduction machine.

Updates happen in two stages:

1. When an updatable closure is entered, it pushes an update frame onto the update

stack, and makes the argument and return stacks empty. An update frame is a triple

(as

u

; rs

u

; a

u

), consisting of:

� as

u

, the previous argument stack;

� rs

u

, the previous return stack;

� a

u

, a pointer to the closure being entered, and which should later be updated.

2. When evaluation of the closure is complete an update is triggered. This can happen in

one of two ways:

� If the value of the closure is a data constructor or literal, an attempt will be made

to pop a continuation from the return stack, which will fail because the return

stack is empty. This failure triggers an update. (In the real implementation we

can avoid making the test by merging the return and update stacks, and making

the update into a special sort of continuation | Section 10.1.)

� If the value of the closure is a function, the function will attempt to bind arguments

which are not present on the argument stack (because they were squirreled away

in the update frame). This failure to �nd enough arguments triggers an update.

38

These situations are made precise in the following rules. First, we need to add an extra rule

which applies when entering an updatable closure (that is, one whose update ag is u). The

rule is similar to the usual closure-entry rule (Rule 2):

(15)

Enter a as rs us h[a 7! (vs \u {} -> e) ws

f

] �

=) Eval e � fg fg (as ; rs ; a) : us h �

where � = [vs 7! ws

f

]

The di�erence is that the argument stack, return stack, and closure being entered are formed

into an update frame, which is pushed onto the update stack. (Naturally, the real implemen-

tation manipulates pointers rather than copying entire stacks | Section 10.3.) Since closures

with a non-empty argument list are never updatable (Section 4.2), we only deal with this case

in the rule given.

Next, we need new rules for constructors which see an empty return stack. When this happens,

they update the closure pointed to by the update frame, restore the argument and return

stacks from the update frame, and try again. It may be that the restored return stack contains

the continuation, but it too may be empty, in which case a second update is performed, and

so on until the continuation is exposed.

(16)

ReturnCon c ws fg fg (as

u

; rs

u

; a

u

) : us h �

=) ReturnCon c ws as

u

rs

u

us h

u

�

where vs is a sequence of arbitrary distinct variables

length(vs) = length(ws)

h

u

= h[a

u

7! (vs \n fg -> c vs) ws]

The closure to be updated (address a

u

) is just updated with a standard-constructor closure.

Only a rule for ReturnCon need be given. It is not possible for the ReturnInt state to see

an empty return stack, because that would imply that a closure should be updated with a

primitive value; but no closure has a primitive type (Section 4.7).

Finally, we need a rule to handle the case where there are not enough arguments on the stack

to be bound by a lambda abstraction, which triggers an update. The relevant rule is:

(17)

Enter a as fg (as

u

; rs

u

; a

u

) : us h �

such that h a = (vs \n xs -> e) ws

f

length(as) < length(xs)

=) Enter a as ++ as

u

rs

u

us h

u

�

where xs

1

++ xs

2

= xs

length(xs

1

) = length(as)

h

u

= h[a

u

7! ((vs ++ xs

1

) \n xs

2

-> e) (ws

f

++ as)]

39

(The rule will only apply if the number of arguments #xs is greater than zero, so the closure

being entered will be non-updatable; hence the \n in the �rst line of the rule.) The closure

to be updated (address a

u

) has as its value the value of the closure being entered (address

a) applied to the arguments on the stack as . It is therefore updated with a closure whose

code is ((vs ++ xs

1

) \n xs

2

-> e); the body e is the same as that of a, but it has more free

variables (xs

1

as well as vs) and fewer arguments (xs

2

instead of xs). After the update the

Enter is retried.

This concludes the basic rules for updating. However, one of the constraints in a real im-

plementation is that it cannot manufacture compiled code \on the y", so we need to be

careful about the code part of closures which are created by updating. The code required for

constructors, (vs \n fg -> c vs) is OK, because we can precompile it for each constructor c.

The code for partial applications, ((vs ++ xs

1

) \n xs

2

-> e), is more tiresome, since it suggests

that we need to precompile the entire body e of every function for every possible partial

application. An alternative rule for partial-application updates avoids this problem:

(17a)

Enter a as fg (as

u

; rs

u

; a

u

) : us h �

such that h a = (vs \n xs -> e) ws

f

length(as) < length(xs)

=) Enter a as ++ as

u

rs

u

us h

u

�

where xs

1

++ xs

2

= xs

length(xs

1

) = length(as)

f is an arbitrary variable

h

u

= h[a

u

7! ((f : xs

1

) \n fg -> f xs

1

) (a : as)]

Here the closure being entered, a, is used in the new closure. The new code required, namely

((f : xs

1

) \n fg -> f xs

1

), can be shared between all partial applications to the same number

of arguments. All that is required is a family of such code-blocks, one for each possible number

of arguments.

40

Part III: Mapping the abstract machine to stock

hardware

We have now completed the abstract description of the Spineless Tagless G-machine. Whilst

it has some interesting features, its real justi�cation is that it maps very nicely onto stock

hardware, with a rich set of design alternatives, some of which we have already indicated. In

the rest of the paper we describe the mapping in detail.

6 Target language

Our goal is, of course, to generate good native code for a variety of stock architectures. One

approach to this is to write individual code generators for each architecture, and this is likely

to give the best results in the end. Unfortunately, to compete with more mature imperative

languages, whose code generators have evolved and improved over many years, we would have

to do a comparably good job of code generation, which is a lot of work.

Motivated by this concern, we generate code in the C language as our primary target, rather

than generating native code direct. In this way we gain instant portability, because C is

implemented on a wide variety of architectures, and we bene�t directly from improvements

in C code generation. This approach, of using C as a \high-level assembler" has gained

popularity recently (Bartlett [1989]; Miranda [1991]).

4

In particular, the work of Tarditi et

al on compiling SML to C, developed independently and concurrently with ours, addresses

essentially the same problems (Tarditi, Acharya & Lee [1991]).

Rather than generating C directly, we go via an internal datatype called \Abstract C". This

allows the following spectrum of alternatives for the �nal code generation, with increasing

e�ciency and decreasing portability:

� We can generate ANSI-standard C, which should be widely portable.

� We can generate C which exploits various non-standard extensions to C supported by

the Gnu C compiler (Stallman [1992]).

� We can generate native machine code directly.

So far we have concentrated only on the �rst two alternatives.

Compiling via C is very attractive for portability reasons, but like all good things, it does not

come for free. In the rest of this section we describe a few tricks which substantially improve

the code we can generate using this route, usually by exploiting non-standard extensions to

C provided by Gnu C.

4

Here, \Miranda" is not the trade mark. It is the last name of a researcher at Queen Mary and West�eld

College, London.

41

6.1 Mapping the STG machine to C

At �rst it appears sensible to try to map functions from the original functional program

onto C functions, but we soon abandoned this approach. The mis-match between C and a

non-strict higher-order functional language is too great.

Instead, the argument stacks and control stack are mapped onto explicit C arrays, bypassing

the usual C parameter-passing mechanism. All \registers", such as the stack pointers, heap

pointer, heap limit, and other registers introduced later, are held in global variables.

This approach results in a great deal of global-variable manipulation. The overheads can

be reduced without losing portability, by caching such globals in (register-allocated) local

variables during the execution of a single code-block, based on a simple usage analysis (Tarditi,

Acharya & Lee [1991]). At the expense of portability, the overheads can be eliminated entirely,

by telling the C compiler to keep particular globals in speci�ed registers permanently, a (highly

non-standard, architecture-speci�c) facility provided by the Gnu C compiler.

6.2 Compiling jumps

The main di�culty with generating C concerns labels. We use the term code label (or just

label) to mean an identi�er for a code sequence. The important characteristics of a code label

are that:

� It can be used to name an arbitrary block of code.

� It can be manipulated; for example, it can be pushed onto a stack, stored in a closure,

or placed in a table.

� It can be used as the destination of a jump.

We usually think of labels as being represented by code addresses. The trouble is that C has

nothing which directly corresponds to code labels. There are two ways out of this dilemma,

which we outline in the following subsections.

6.2.1 Using a giant switch

The �rst solution is to map labels onto integer tags, and embed the entire program in a loop

with the following form:

int cont = 1;

while (TRUE) do

switch (cont) {

1: ...code for label 1...;

2: ...code for label 2...;

... and so on ...

}

42

Now a jump can be implemented by assigning to cont followed by a break statement. The

switch statement will then re-execute with the new label.

The shortcomings of the technique are clear. Firstly, a layer of indirection has been imposed,

because labels are not implemented directly as code pointers.

Secondly, and more seriously, separate compilation is made much more di�cult. The C code

for the entire program, including the run-time system, has to be gathered together into a

single giant C procedure and then compiled. Not only does this stress the C compiler quite

substantially, and impose heavy recompilation costs on even local changes, but it also means

that a special linker has to be written to paste together the C code generated from each

separately-compiled source-language module.

6.2.2 Using a tiny interpreter

Because of these problems we use an alternative method, based on a nice trick. The idea

is to compile each labelled block of code to a parameter-less C function whose name is the

required label. Now, C does treat functions as storable values, representing each by a pointer

to its code. The only problem is how to jump to such a code block. The only mechanism C

provides is to call the function, but then every jump would make C's return stack grow by

one more word, causing certain stack overow.

A C compiler which implemented a tail call as a jump would not su�er from this problem, but

it would hardly be a portable solution to require such an optimisation for correct operation.

Furthermore, C is complicated enough to make the tail-call optimisation quite hard to get

right (in the presence of variadic functions, for example) and no C compiler known to us does

so.

So here is the trick: each parameterless function, representing a code block, returns the code

pointer to which it would like to jump, rather than calling it. The execution of the entire

program is controlled by the following one-line \interpreter":

while (TRUE) { cont = (*cont)(); }

That is, cont is the address of the code block (that is, C function) to be executed next. The

function to which it points is called, and returns the address of the next one, and so on. The

loop is �nally broken by a long-jump, though one could equally well test cont for a particular

value instead, for a fairly minor cost.

Here, for example, is a code block which jumps to a label found on top of the return stack:

CodeLabel f() {

CodeLabel lbl = *RetSp--;

return(lbl);

}

The result is a fully-portable implementation which supports separate compilation in the

usual way, with a standard linker. Labels are represented directly by code addresses.

Temporary variables, used within a single code block, are declared as local variables of the

C function generated for the code block. Their scope is thereby limited, so that a good C

43

compiler will put them in registers where possible.

It turns out that this idea is actually very old, and that we only reinvented it. Like several

other clever ideas, Steele seems to have been its inventor; he called it the \UUO handler" in

his Rabbit compiler for Scheme (Steele [1978]). The same idea is used by Tarditi, Acharya &

Lee [1991], who use C as a target for their SML compiler.

6.3 Optimising the tiny interpreter

In the portable tiny interpreter described above, a \jump" has the following overheads:

� the epilogue generated by the C compiler for the current C function, concluding with a

return instruction, which pops the return address to return to the \interpreter";

� a jump to implement the interpreter's loop;

� a subroutine call instruction, which pushes the interpreter's return address;

� the prologue generated by the C compiler for the new C function.

At the expense of portability, we can make some architecture- and compiler-speci�c optimi-

sations to this jump sequence:

Eliminating register saves. For architectures with a �xed register set, most C compilers

implement a callee-saves convention for all registers except a small number of work

registers. There is a save sequence at the start of each function and a restore sequence

at the end.

Gnu C provides a compiler ag which makes the compiler use a caller-saves convention.

In conjunction with the direct-jump optimisation described below this eliminates all

register save instructions.

Eliminating the frame pointer. Most C compilers generate instructions at the beginning

and end of functions to set up a frame pointer register. This is redundant, because the

compiler can always �gure out the o�sets of local variables from the stack pointer itself,

but it is vital for debuggers.

Gnu C provides a compiler ag to suppress frame-pointer manipulation, at the expense

of confusing the debugger.

Generating direct jumps. Instead of generating return(lbl) we actually generate

JUMP(lbl), where JUMP is a macro. For a portable implementation, JUMP expands

to a return statement, but the implementation can be made faster by making JUMP

expand to an in-line assembly-code instruction which really does take a jump. (Most C

compilers provide an assembly-language trapdoor, which we exploit here.) Using in-line

assembly code in this way has its pitfalls, especially if we simultaneously try to use local

variables. Miranda gives details of the tricky things one has to do (Miranda [1991]).

44

6.4 Debugging

The use of a tiny interpreter turned out to have a very useful property which we had not

anticipated: it is a tremendous debugging aid.

The STG machine frequently takes an indirect jump, to the code pointed to by a closure. If

a bug has caused a closure to be corrupted, this indirect jump usually causes a segmentation

fault or illegal instruction. The di�culty is that there usually no way of backing up to the

code which performed the jump, which is the �rst step in identifying the source of the error.

Using the (unoptimised) tiny interpreter provides an easy solution, because it can easily record

a trail of the most recent few jumps. Since every jump passes through the tiny interpreter, it

faithfully records the address of the code block containing the fatal jump.

Furthermore, it is easy to add to the tiny interpreter's loop a call to a hygiene-checking

routine, which checks that the machine state looks plausible. While it slows down the program

considerably, we have found this hygiene-checking an invaluable aid for trapping the point

at which the machine state becomes corrupt, rather than the point at which the corruption

causes a crash, which is often much much later.

It is hard to overstate the usefulness of this trick, especially since it has no impact at all on the

compiler and the code it generates. Only people who have spent all night trying to �nd the

cause of the heap corruption which subsequently led to a system crash can truly appreciate

it!

7 The heap

The heap is a collection of closures of variable size, each identi�ed by a unique address. We

use the term pointer to refer to the address of a closure.

7.1 How closures are represented

Each closure occupies a contiguous sequence of machine words, which is always laid out as

shown in Figure 4.

The �rst word of a closure is called its info pointer, and points to its info table. Following

the info pointer is a block of words each of which contains a pointer, followed by a block of

words containing no pointers. (The distinction between the two is that the garbage collector

must follow the former but not the latter.) There is a single, statically-allocated, info table

associated with each bind in the program text (Figure 3). Each dynamic instance of this

binding is a heap-allocated closure whose info-pointer refers to its static info table (Rule 3).

The info table contains a number of �elds which will be described later, but the most important

is the �rst �eld, which contains the label of the closure's standard-entry code. The operation

of entering a closure is performed by:

� loading the address of the closure into the Node register, and

45

t

t

t

t

-

-

-

-

.

.

.

Standard entry code

Evacuation code

Scavenge code

Other info...

Info table

Pointer words Non-pointer words

Info pointer

Figure 4: The layout of a closure

� jumping to the standard-entry code for the closure, whose label is usually fetched from

the info table by indirecting from Node.

The standard-entry code can access the various �elds of the closure by indexing from the

Node register. The rest of the info table contains:

� Enough information to enable the garbage-collector to do its job. In fact we implement

this information as two code labels, which are described further in Section 7.3.

� Debugging information for inspection by a debugger or trace generator.

� For our parallel implementation, enough information to enable the closure to be ushed

into global memory. This, too, is actually implemented as a code label.

It is usual for heap-allocated objects to contain layout information, to specify their size and

which of their �elds contain pointers. In contrast, our closures do not contain any such

information. Rather, as we shall see, size and layout information is encoded in the info table.

Indirection closures are generated by update operations, and they have a particularly e�cient

representation:

-

Ind Info Pointer to another closure

The standard-entry code for Ind_Info consists of only two instructions: one to load the

indirection pointer from the closure into Node and a second to enter the new closure.

In retrospect, this representation is quite similar to that chosen by the Chalmers group for

their G-machine implementation (Johnsson [1987]). In their system, every heap cell has a

one-word \tag" which points to a table of entry points for the various operations that could

be performed on the cell. Our system di�ers from theirs in two respects. First, and most

46

important, rather than having a �xed collection of \tags", we generate a new info table for

each bind in the program text, together with its associated code. This essentially eliminates

the \interpretive unwind" used by the G-machine. Second, the operation of entering a closure

involves an indirection to �nd the code label to jump to; this indirection can be avoided when

generating native code directly, as Section 7.6 discusses.

7.2 Allocation

The closures for top-level globals are allocated statically at �xed addresses; we call them static

closures. A static closure is not necessarily immutable, however, because it may be a thunk

which is updated during execution. (The alert reader will spot that this policy gives rise to

a garbage-collection problem, which we return to in Section 10.8.)

All other closures are allocated dynamically from the heap. As is now well understood, for

good performance it is essential to allocate from a contiguous block of free space, rather than

from a free list (Appel [1987]). Free space is delimited by two special registers: the Hp register

points to one end of it, while the HLimit register points to the other. Allocation is done on a

basic-block basis, so that only one free-space exhaustion check is made for each basic block.

7.3 Two-space garbage collection

Garbage collection is performed by a two-space stop-and-copy collector (Baker [1978]). Avail-

able memory is divided into two semi-spaces. When garbage collection is initiated, all live

closures are copied from one semi-space to (one end of) the other.

This copying process involves two basic operations on closures:

� Each live closure must be evacuated from from-space to to-space.

� As to-space is scanned linearly, each closure must be scavenged; that is, each closure to

which it points must be evacuated, unless it has already been evacuated, and the new

to-space pointer substituted for the old from-space pointer.

The unusual feature of our system is that these two operations, evacuation and scavenging,

are implemented by code pointed to from the info table of each closure. These code sequences

\know" the exact structure of the closure, and therefore can operate without interpretive

loops, and without any further layout information.

The evacuation code, which is called as a C function, does the following:

� It copies the closure into to-space.

� It overwrites the closure in from-space with a forwarding pointer, which points to the

newly-allocated copy of the closure in to-space.

� It returns the new to-space address of the closure to the caller.

47

The scavenging code of a closure, also called as a C function, does the following. For each

pointer in the closure,

� it calls the evacuation code for the closure to which it points;

� it replaces the pointer in the original closure with the to-space pointer returned from

this evacuation call.

The scavenging code knows which of the argument �elds contain closure addresses (and hence

must be evacuated), and which are not (and hence must not be evacuated).

A C function does the once-per-collection work of switching spaces and accumulating statis-

tical information, but almost all the work of garbage-collection is carried out by the evacuate

and scavenge routines of the closures in the heap. As in the case of the standard-entry code

of a closure, the info-table dispatch mechanism for evacuation and scavenging provides the

opportunity to deal with several special cases \for free" (that is, without any further tests):

Forwarding pointers. A forwarding pointer handles the situation where a second attempt

is made to evacuate the closure; an attempt to evacuate a closure which has been

overwritten with a forwarding pointer simply returns the to-space address found in

the forwarding pointer. There is a nice optimisation available here. Most systems

distinguish a forwarding pointer by some sort of tag bit, which has to be tested just

before evacuating. Instead, we make a forwarding pointer look just like any other

closure: it has an info pointer and one �eld which points to the to-space copy. The

info table for a forwarding pointer has rather simple \evacuation" code, which just

returns the to-space address found in the forwarding pointer! So to evacuate a closure

one simply jumps to its evacuation code, regardless of whether the closure is now a

forwarding pointer or not. No forwarding-pointer test is performed.

All heap-allocated closures are at least two words long, in order to leave enough space

for a forwarding pointer.

Indirections. All indirections can easily be removed during garbage collection, by another

nice trick. All that is required is that the evacuation routine of an indirection jumps

to the evacuation routine of the closure to which the indirection points! (The use of

\jumps to" rather than \calls" is deliberate | this is a tail call!) Since indirections are

thereby never moved into to-space, they don't have a scavenging routine.

Static closures. Some closures, notably those for global closures (Section 5.1), are allocated

at �xed, static locations. These closures must not be moved by the garbage collector.

This is easily arranged by making their evacuation code return immediately without

moving the closure.

Constructor closures can exist in both static and dynamic space (Section 4.4), so in

fact we need two info tables for each constructor, one for each of these cases. (The

standard-entry code for the constructor can still be shared, of course.)

Small integers. A �xed-precision integer (of type Int) is represented by the MkInt construc-

tor applied to the primitive integer value (Section 4.7). This in turn is represented by

48

a two-word closure consisting of the MkInt info pointer and the primitive integer value.

The evacuation code for MkInt sees if the value of the integer lies in a pre-determined

range and, if so, uses the integer to index a table of statically-allocated Int closures,

returning the address of this static closure. The e�ect is that all small integers are

\commoned up" by the garbage collector, and made to point to one of a �xed collection

of small-integer closures.

If the integer is not in the range of the table, the closure is evacuated to to-space as

usual. There is an easy re�nement: give the new copy a di�erent info pointer which

won't perform the test again next time (because it will certainly fail again).

The small-integer check could of course be made at the time an Int is allocated, but

that means generating extra code in lots of places, whereas doing it in the garbage

collector requires just one chunk of extra code. The same optimisation applies to Char

closures and all other constructors isomorphic to Int or Char.

7.4 Other garbage collector variants

Two-space garbage collection works well until the residency of the program approaches half

the real memory available, at which point the virtual memory system begins to thrash. We

have implemented a dual-mode collector, which switches dynamically between a single-space

compacting collector and a two-space collector to try to minimise paging, with encourag-

ing early results (Sansom [1991]). We are developing a further extension to a generational

collector, based on Appel's simple two-generation scheme (Appel [1989]).

7.5 Trading code size for speed

The info-table dispatch mechanism outlined above allows some interesting space-time tradeo�s

to be made.

So far we have assumed that each kind of closure has its own evacuation and scavenging

code, which \knows about" its size and layout. This requires new evacuation and scavenging

routines to be compiled for each closure in the program. But since the garbage collection

routines for a closure depend only on its structure, it is often possible to share them. For

example, all closures which consist of exactly one pointer �eld (apart from the info pointer)

can share the same evacuation and scavenging routines. Indeed our runtime system contains

standard garbage-collection routines for a number of common layouts.

What if a closure must be constructed which does not match one of these standard layouts?

It is possible to compile special garbage-collection code for it, but actually we adopt a com-

promise position which allows us to provide all evacuation and scavenging routines as part

of the runtime system. Instead of generating code for garbage-collection routines for a \non-

standard" closure, we provide \generic" evacuation and scavenging routines in the runtime

system. These routines look in the closure's info table to �nd certain layout information,

namely the number of pointer words and non-pointer words in the closure. (This is contained

in the \Other info" �eld of Figure 4.) They then each use a loop to do their work, instead of

having the loop unrolled as the special-purpose routines do. Notice that the layout informa-

49

tion is stored in the (static) info table, so there is no extra cost in allocating the closure. The

only extra execution cost is in executing the loops in the garbage collection routines.

It is for the bene�t of these \generic" routines that closures are laid out with pointers preceding

non-pointers. This convention means that only two numbers are required to encode the layout

information. It also makes it more likely that a closure's layout will \�t" a standard layout

directly supported by the runtime system. For example, all closures with two words of non-

pointers and two of pointers can use the same routines; if the layout convention was more

liberal, there would be a number of di�erent possible layouts of such closures. The convention

carries no runtime cost, of course.

7.6 The standard-entry code for a closure

There is one particular place where we have found that the use of C prevents an obvious

code improvement. The info pointer of a closure points to a table containing a number of

code labels. One of these is used much more than the others, namely the one used when the

closure is entered.

It would be better to arrange that the info pointer pointed directly to this code, placing

the rest of the info table just before the code. Then, entering the closure takes one fewer

indirections, but the other info-table entries are still available by using negative o�set from

the info pointer.

This is usually quite easy to arrange when generating native code, but even the Gnu C compiler

doesn't allow the programmer to specify that an array (the info table) must immediately

precede the �rst word of the code for a function!

We abstract away from this issue by using a C macro ENTER(c), where c contains the

address of the closure to be entered. The usual de�nition of ENTER is:

#define ENTER(c) JUMP(**c)

8 Stacks

The abstract machine contains three stacks:

� The argument stack, which contains a mixture of closure addresses and primitive values.

� The return stack, which contains continuations for case expressions.

� The update stack, which contains update frames.

The question is: how are these stacks to be mapped onto a concrete machine?

8.1 One stack?

The three stacks all operate in synchrony, so it would be possible to represent them all by

a single concrete stack. The major reason we choose not to do so is to avoid confusing the

50

garbage collector. The garbage collector must use all the pointers in the stack as a source of

roots, and must update them to point to the new locations of the closures. Thus, it needs to

know which stack locations are closure addresses and which are code addresses or primitive

values.

There are a couple of ways around this problem, while retaining a single stack. One possibility

is to distinguish pointers from non-pointers with a tag bit (usually the least-signi�cant bit).

This is a nuisance, because it makes arithmetic slower, and because it makes standard 32-bit

oating-point numbers impossible. It is also rather against the spirit of our implementation,

where all type information is static, requiring no runtime testing.

Another possibility, described in an earlier version of the Spineless Tagless G-machine (Pey-

ton Jones & Salkild [1989]) uses static bit-masks associated with the code pointed to by

return addresses on the stack to give the stack layout. This works �ne, but since then we

have introduced the idea of fully-edged unboxed values, which fatally wounds this technique.

Consider, for example, the program

pick b f g = if b then f else g

h b n = pick b (+# 1#) (-# 1#) n

Here, when pick is called, the four arguments b, (+# 1#), (-# 1#), and n will be on the

argument stack. The last of these will presumably be primitive, since later (+# 1#) or

(-# 1#) will be applied to them. Now here is the point: if garbage collection is initiated

during the evaluation of b, there is no context information available to tell that the bottom

argument on the stack is primitive.

To conclude, using a single stack seems to require runtime tagging; previous ways of avoiding

this cannot cope with fully-edged unboxed values.

8.2 Two stacks

The obvious solution, which we use, is to provide two concrete stacks, the A-stack for pointers

and the B-stack for non-pointers. This was the solution adopted by the G-machine, where

the non-pointer stack was called the V-stack, and a number of subsequent systems. The

nomenclature we use is taken from the ABC machine (Koopman [1990]), where \A" stands

for \argument" and \B" for basic value. However, our argument stack is split between the A

and B stacks, and the B stack contains other things besides non-pointer arguments, as will

become apparent. The detailed mapping of each of the abstract stacks to these two concrete

stacks is given in subsequent sections.

The stack pointers are held in special registers SpA and SpB. Like other twin-stack imple-

mentations, we make the two stacks grow towards each other, to avoid the risk that one will

overow while the other has plenty of space left; in this paper, the A-stack grows towards

lower addresses. In our sequential implementation, this stack space is allocated in a �xed-size

area, separate from the heap.

51

9 Compiling the STG language to C

We are now at last ready to discuss the code which is generated for each of the constructs

in the STG language. This section is rather long and detailed. We make no apology for this

because, as remarked earlier, an abstract machine can only be considered a success if it maps

well onto concrete architectures, with plenty of opportunities for optimisations.

We begin with an overview of the code generation process for an arbitrary STG expression,

by considering the various syntactic forms an expression can take (Figure 3):

� Calls to non-built-in functions (Section 9.2). The expression f a

1

; : : : ; a

n

is compiled to

a sequence of statements which pushes the arguments a

1

; : : : ; a

n

onto the appropriate

stacks, adjusts the A and B stack pointers to their �nal values, and enters the function

f . As we discuss later, this \enter" may take the form of entering the closure bound to

f via its info table, or of jumping direct to the appropriate code for f .

� let(rec) expressions (Section 9.3). The let expression

let x

1

= lf

1

; : : :; x

n

= lf

n

in e

is compiled to a sequence of statements which allocates a closure in the heap for each

lambda-formlf

1

; : : : ; lf

n

, followed by the code for e. letrec expressions are treated in

the same way, the only di�erence being that the closures allocated thereby may be

cyclic.

If the lambda-formlf

i

is not a standard constructor, the code generator also produces:

{ A separate block of code labelled x

i

_entry, obtained by compiling the body of lf

i

.

(See Section 9.2.1 for why it may be useful to give this code an extra entry point.)

{ The declaration for a statically-initialised array x

i

_info, which is the info table

for x

i

. The �rst element of the info table is (the label of) the standard-entry code

x

i

_entry.

Both of these declarations are hoisted out to the top level, rather than appearing em-

bedded in the middle of the code for the let expression. In our code generator this

attening process is performed after code generation, the intermediate data type (Ab-

stract C) permitting nested declarations.

If the lambda-formis a standard constructor, the shared info table for the appropriate

constructor can be used, and there is no need to generate x

i

_info and x

i

_entry.

� Literals and calls of built-in operators (Section 9.5). A primitive literal k is compiled

to statements which load k into a register (exactly which register depends on k 's type),

adjusts the A and B stack pointers to their �nal values, and returns to the address on

top of the B stack. A call to a built-in operation works in the same way except that the

operation is performed �rst.

This makes it sound as if every built-in operation is associated with a return, but an

easy optimisation allows sequences of built-in operations to be compiled (Section 9.5).

52

� case expressions (Section 9.4). The primitive case expression

case e of palts

is compiled to code which saves any volatile variables used by palts on the stacks, and

pushes a return address on the B stack, followed by the code for e. An arbitrary but

unique label is invented for the return address, which is used to label a separate block

of code compiled from palts .

The code compiled for palts performs case analysis on the value returned (if there are

any non-default alternatives) followed by the code for each alternative expression. Like

the code for lambda-forms, this entire code block is hoisted to the top level.

The code for algebraic case expressions is similar, except that (the address of) a return

vector is pushed instead of a return address (Section 9.4.3).

� Top level bindings (Section 9.1). The top-level bindings are treated a little di�erently

to nested ones. Each declaration g

i

= lf

i

is compiled to the declaration of a statically-

initialised array g

i

_closure, which represents the static closure for g

i

. An info table

g

i

_info and standard-entry code-block g

i

_entry are also produced just as for nested

bindings.

� Standard constructors (Section 9.4.2). As already mentioned, no code is generated for

lambda-forms which are standard constructors, the shared info table and code for the

constructor being used instead. It is therefore necessary to generate this info table and

entry code for each constructor declared in the module.

To make these ideas concrete, Figure 5 gives the code compiled for map, whose STG code is

as follows (see Section 4.1):

map = {} \n {f,xs} ->

case xs of

Nil {} -> Nil {}

Cons {y,ys} -> let fy = {f,y} \u {} -> f {y}

mfy = {f,ys} \u {} -> map {f,ys}

in Cons {fy,mfy}

This code is written assuming that lists use a vectored return convention, and Cons returns

its arguments in registers, matters which are explained more fully in Section 9.4.

The rest of this section explores code generation in more detail. Each subsection corresponds

to the similarly-numbered subsection of Section 5 which gives !the operational semantics of

the STG language.

9.1 The initial state

The machine is initialised to evaluate the global main, with empty argument, return and

update stacks (Section 5.1). The abstract machine's initial heap is not empty, but rather

contains a closure for each globally-de�ned variable. We implement this by allocating a static

closure for each such variable (Section 7.2). Each of these closures can be referred to directly

by its C label, thus e�ectively using the linker to implement the global environment �.

53

StgWord map_closure[] = {map_info};

StgWord map_info[] = {map_entry, ...rest of info table...}

map_entry() {

...argument satisfaction check...

JUMP(map_direct);

}

map_direct() {

...stack overflow check...

SpB[1] = ret_vec1; SpB = SpB+1; /* Push return vector */

Node = SpA[1]; ENTER(Node); /* Enter xs */

}

StgWord ret_vec1[] = {ret_nil1, upd_nil, ret_cons1, upd_cons};

ret_nil1() {

SpA = SpA+2; /* Pop args */

SpB = SpB-1; RetVecReg = SpB[1]; /* Grab return vector */

JUMP(RetVecReg[0]);

}

ret_cons1() { /* Head and tail in regs RetData1 and RetData2 */

/* Allocate fy and mfy */

Hp = Hp + 6;

...heap overflow check...

Hp[-5] = fy_info; Hp[-4] = SpA[0]; Hp[-3] = RetData1;

Hp[-2] = mfy_info; Hp[-1] = SpA[0]; Hp[0] = RetData2;

/* Return the cons cell */

RetData1 = &Hp[-5]; RetData2 = &Hp[-2];

SpB = SpB-1; RetVecReg = SpB[1]; SpA = SpA+2;

JUMP(RetVecReg[2]);

}

StgWord fy_info[] = {fy_entry, ...rest of info table...}

fy_entry() {

...push update frame... /* This is an updatable thunk */

...stack overflow check...

SpA[-1] = Node[2]; SpA = SpA-1; /* Push y */

Node = Node[1]; ENTER(Node); /* Enter f */

}

StgWord mfy[] = {mfy_entry, ...rest of info table...}

mfy_entry() {

...stack overflow check ...

SpA[-1] = Node[2]; SpA[-2] = Node[1]; SpA = SpA-2; /* Push f,ys */

JUMP(map_direct);

}

Figure 5: The code generated for map

54

9.2 Applications

The code generated for applications follows directly from Rule 1 in the operational semantics,

and consists of two steps:

� push the arguments on the stack and adjust the stack pointer,

� enter the closure which represents the function.

We discuss these steps separately below. Before doing so, here is a small example. Consider

the binding

apply3 = {} \n {f,x} -> f {x,x,x}

The following code is generated for the application f {x,x,x}. When this code is executed,

a pointer to f is on top of the A stack, and under it is a pointer to x.

Node = SpA[0]; /* Grab f into Node register */

t = SpA[1]; /* Grab x into a local variable */

SpA[0] = t; /* Push extra args */

SpA[-1] = t;

SpA = SpA - 1; /* Adjust stack pointer */

ENTER(Node); /* Enter f */

9.2.1 Entering a closure

What does it mean to \enter" a closure? After all, the operational semantics has quite a

few rules dealing with the Enter state. The Spineless Tagless machine devolves responsibility

for all these complications to the closure being entered, so that the code to enter a closure

is simple and uniform. We establish the following very simple entry convention for closures:

when a closure is entered a particular register, the Node register, points to the closure. The

code for the closure can access its free variables by indexing directly from the Node register.

All the \caller" has to do is to load a pointer to the closure into the Node register, and jump

to the standard-entry code for the closure via its info pointer. (As previously discussed, this

jump can involve either one or two indirections, depending on the particular representation

chosen for closures and info tables | Section 7.6.)

It is possible to make some useful optimisations to this process, when entering a non-updatable

closure. Many functions are de�ned at the top level of the program, or in standard libraries

(map, for example). Entry to such functions can be made much more e�cient than the

standard entry mechanism just described:

� Such a function has no free variables, so there is no point in making Node point to its

closure.

� The code label for the function is statically determined, so the jump can be a direct

one, rather than indirecting via the info pointer.

55

� The code generator knows how many arguments (if any) the closure is expecting, so if

at least this number of arguments is being supplied by the call, the jump can be made

to a point (called the direct-entry point) just after the argument satisfaction check (see

Section 9.3.2 below). Indeed, with a bit more cleverness, the stack and heap overow

checks can often be bypassed as well.

� The argument-passing convention at the direct-entry point can be di�erent to the stan-

dard ones. In particular, arguments can be passed in registers.

This should be bene�cial, but perhaps less so than in a strict language, because functions

frequently begin by evaluating one of their arguments, so the others have to be saved

on the stack anyway. We have not yet implemented this idea.

Of these improvements, all but the �rst can be applied to locally-de�ned functions as well.

For example, consider the expression

f = {} \n {x,y} -> let g = {x} \n {z} -> + {x,z}

in g {y}

The call to g can be made by pushing its argument y onto the stack, loading a pointer to

the closure for g into Node, and then jumping directly to the appropriate code for g. Since

the call is to a function whose de�nition is statically visible, the code generator can compile

direct jumps, including bypassing the argument satisfaction check where appropriate.

We need to take a bit more care when entering an updatable closure. In this case we must

jump to it via its info pointer, and never directly to its standard-entry code, because an

update might have changed the info pointer! At �rst it seems that we must also always make

Node point to the closure, since the standard-entry code for an updatable closure begins by

pushing an update frame recording the address of the closure to be updated. But since the

code to push the update frame is compiled individually for each closure, we can arrange for

it to include the static address of the closure in the update frame, rather than Node.

No optimisations at all apply when entering the closure for a lambda-bound variable, as in

the case of apply3 above.

9.2.2 Pushing the arguments

\Pushing the arguments onto the stack" is not quite as simple as it sounds.

Firstly, the arguments may be a mixture of pointers and non-pointers so each must be pushed

on the appropriate stack. The argument stack of the operational semantics is thereby split

between the A and B stacks.

Secondly, in our implementation the environment � of the operational semantics is represented

partly by locations in the stacks. This is quite conventional in many language implementa-

tions. It means, though, that the stacks must be cleared of the accumulated environment

(or perhaps just part of it | see Section 9.4.1) before pushing the arguments to the call.

Of course, we need to take a little care here: we must not overwrite a stack location which

contains a value which is required for another argument position. There are several ways to

56

solve this, the simplest being to move all the threatened live stack locations into registers

(when generating C, local variables) before starting to overwrite them.

Here is an example:

f = {} \n {x,y} -> g {y,x}

On entry to f, x and y will be on the stack. It immediately calls g which requires the same

arguments, but in the other order, so at least one register must be used during the stack

rearrangement.

Such argument-shu�ing is rather unusual. It is much more common for the same argument

to appear in the same position, in which case no code need be generated at all. This is often

the case for recursive functions which pass some arguments along unchanged.

9.3 let(rec) expressions

As mentioned earlier, let and letrec expressions always compile to code which allocates a

closure in the heap for each de�nition, followed by code to evaluate the body of the let(rec).

Each of these closures consists of an info pointer, and a �eld for each of its free variables.

For example, the expression

let f = fs \� xs -> b

in e

compiles to code which allocates a closure for f , and then continues with code to evaluate e.

For example, consider the de�nition of compose:

compose = {} \n {f,g,x} -> let gx = {g,x} \u {} -> g {x}

in f {gx}

The code for the body of compose runs as follows:

/* Allocate heap block */

Hp = Hp - 3; /* Allocate some heap */

if (Hp < HLimit) /* Heap exhaustion check */

{ ...trigger GC... };

/* Fill in closure for gx */

Hp[0] = &gx_info; /* info pointer */

Hp[1] = SpA[1]; /* g */

Hp[2] = SpA[2]; /* x */

/* Call f */

Node = SpA[0]; /* Grab f into Node */

SpA[2] = &Hp[0]; /* Push gx */

SpA = SpA + 2; /* Adjust SpA */

ENTER(Node);

Here, gx_info is the statically-allocated info table for gx:

57

static int gx_info[] =

{ &gx_entry,

&scavenge_2,

&evacuate_2,

...

}

In this info table, gx_entry is the name of the C function which implements the standard-

entry code for the closure gx. scavenge_2 and evacuate_2 are runtime system routines for

performing garbage collection on closures containing two pointers (Section 7.3).

9.3.1 Allocation

The allocation of these closures is straightforward, and was discussed in Section 7.2.

References to dynamically-allocated closures within a single instruction sequence are made

by o�setting from the heap pointer. (The code generator keeps track of the physical position

of the heap pointer, so that correct o�sets can be made even if it is moved by instructions

within the basic block.)

Notice the use here of the term \single instruction sequence". In particular, this method of

addressing cannot survive over the evaluation triggered by a case expression, because such

an evaluation may take an unbounded amount of computation. Not only may this move the

heap pointer unpredictably, but it may trigger garbage collection, which may rearrange the

relative positions of the closures. In short, at the points in the operational semantics where

the environment � is saved on the return stack, a pointer to each live closure must be saved

on the pointer stack (Section 9.4.1).

9.3.2 The code for a closure

Much more interesting, of course, is the standard-entry code for the closure. This is the code

which will get executed if the closure is ever entered. The standard-entry code for every

closure begins with the following sequence:

Argument satisfaction check. This concerns updating, and is discussed in Section 10.2.

It is only generated if there are one or more arguments.

Stack overow check. If the execution of the closure can cause either stack to overow, or

(if the stacks are organised to grow towards each other) collide, execution is halted. (On

a parallel machine, which works with many stacks, di�erent action is taken.) This stack

overow check can \look ahead" into all the branches of any case expressions involved

in the evaluation of the closure, taking the worst-case path as the overow criterion. Of

course, if there is no net stack growth, no check is performed.

Heap overow check. A similar check is performed for heap overow, if any heap is allo-

cated. This was discussed in Section 7.2. The heap check cannot look ahead into case

branches, because the evaluation implied by a case can perform an unbounded amount

of computation.

58

Info pointer update. In the case of an updatable closure, its info pointer may now be

overwritten with a \black hole" info pointer or, in a parallel system, a \queue me" info

pointer. This is discussed in more detail below (Section 9.3.3).

Update frame construction. For updatable closures only, an update frame is pushed onto

the update stack. This action causes a later update, which overwrites the closure with

its head normal form. The implementation of updates, and the mapping of the update

stack, are discussed in detail in Section 10.

Code is now generated for the body of the closure, with the free variables bound to appro-

priate o�sets from the Node register, and the arguments to o�sets from the appropriate stack

pointers. (Like many other compilers, ours keeps track of where the stack pointers are point-

ing within the current activation record, so that at any moment it can generate the correct

o�set from the current stack pointer.)

9.3.3 Black holes

When an updatable closure is entered, its standard-entry code has the opportunity to over-

write the closure's info pointer with a standard \black hole" info pointer provided by the

runtime system. Whilst this operation costs an instruction, it has two advantages:

� If the closure is ever re-entered before it is updated, the black hole entry code can report

an error. This situation occurs in programs where a value depends on itself; for example

letrec a = 1+a in a

� If a closure is left undisturbed until it is �nally updated with its head normal form,

there is a serious risk of a space leak. For example, consider the STG de�nitions

ns = {} \u {x} -> ..x..

l = {} \u {ns} -> last {ns}

where ..x.. produces some very long list. and last returns the last element of a list. If

the thunk for l is left undisturbed until it is �nally updated with the last element of the

list ns, it will retain a pointer to the entire list, rather than consuming it incrementally.

(This nice example is due to Jones [1991].) Overwriting the thunk for l with a black

hole immediately it is entered solves this space leak, because a black hole retains no

pointers.

It is also possible to obtain both these advantages in a slightly more subtle way, without per-

forming the black-hole overwriting operation. Firstly, non-termination of the form detectable

by black holes always results in stack overow. The cause of the stack overow can then

easily be determined by noticing that there is more than one pointer on the update stack to

the same closure. This can only happen if its value depends on itself. It is also possible that

the error message obtainable from a post-mortem of the update stack could be rather more

informative, because the entire collection of closures involved in the self-dependent loop can

59

be identi�ed and, since they all still have their original info tables attached, their source code

location information could be shown too.

Secondly, we address the space-leak question. In the above example, the pointer to ns retained

by l only matters at garbage-collection time. In almost all cases a thunk will be entered and

updated between garbage collections, so that no space improvement is gained by overwriting

with a black hole. What we would like to do is to black-hole only those thunks which are

under evaluation at garbage collection time. Happily, they are exactly the thunks to which

the update stack points! So we can safely omit the black-hole update on thunk entry, provided

that instead we begin garbage collection by black-holing all the thunks pointed to from the

update stack.

Since both these techniques rely on the update stack, they only apply to updatable thunks

(update ag u). If a thunk is non-updatable (update ag n) it must still be black-holed by

its standard-entry code. For this reason in our implementation we have two variants of the

n update ag: r for reentrant (the closure may be entered many times, and should not be

black-holed), and s for single-entry (the closure will be entered at most once, and should be

black-holed). The r ag is used for manifest functions, constructors and partial applications,

while the s ag is only used for thunks where update analysis has determined that an update

is not required.

In a parallel system, the standard-entry code for an updatable thunk should overwrite the

thunk with a \queue me" info pointer (Section 3.1.3). Unlike the black-holing of a sequential

system, this operation cannot be postponed until garbage collection.

9.4 case expressions

Pattern matching, via case expressions, is utterly pervasive in lazy functional programs, all

the more so in the Spineless Tagless G-machine because the boxing and unboxing operations

of arithmetic are done using case expressions rather than by some ad hoc mechanism. One

of the strengths of the Spineless Tagless G-Machine is that there is a rather rich design space

for how pattern-matching can be implemented, including some rather e�cient options.

case expressions (and only case expressions) cause evaluation to take place. In the op-

erational semantics this is expressed by pushing a continuation onto the return stack, and

evaluating the expression to be scrutinised (Rule 4). This is mirrored precisely by the code

generated for case expressions.

In code generation for most languages the act of pushing a continuation (or return address)

is immediately followed by a function call. It is worth noticing in passing that this is not

the case for the STG language; there may be a signi�cant gap between the instruction(s)

which push the continuation and the instruction (if any) which actually transfers control. For

example, consider the expression

case (case f x of ...)

of ...

The continuation for the outer case is pushed, then the continuation for the inner case, and

then the call to f is made. Few programmers write this sort of code, but it arises as a result

60

of program transformations within the compiler. The order of the two case expressions can

be interchanged, but only at the risk of code duplication.

The main point of interest is how continuations are represented. Recall that a continuation

in the operational semantics consists of two parts:

1. The alternatives of the case expression.

2. The environment � in which they should be executed.

The representation of alternatives is intimately connected with the code generated for prim-

itive values and constructors, so we defer discussion of the �rst topic until the following

sections. Environment-saving is independent of constructors, so we discuss it �rst.

9.4.1 Saving the local environment

The local environment is saved by saving in the stacks the values of all variables which are

live (that is, free) in any of the alternatives. The way in which a live variable is saved depends

on where it currently resides:

� It may already be in a stack, for example if it was an argument to the current closure.

No code need be generated.

� It may be in a register, or it may be bound to an o�set from the heap pointer. In this

case it must be saved in the appropriate stack.

� It may be in the closure currently pointed to by Node. In this case there are two

possibilities: save the variable itself, or save Node.

The latter reduces the number of saves because saving Node e�ectively saves the values

of several variables at once. On the other hand, an extra memory access is subsequently

required to get the value of the variable.

Another problem with saving Node is that the entire contents of the closure must then

be retained by the garbage collector, even though the continuation may only use some

of its �elds. The space-leak avoidance mechanisms described in Section 9.3.3 cannot be

applied. (It is possible to rescue the space behaviour by compiling a bitmask to indicate

which �elds of the closure are live, but it is complicated.)

Our current policy is to avoid these di�culties by saving all variables individually.

When saving a variable in a stack, we can economise on stack usage by re-using stack slots

belonging to variables which are now dead. There is also a useful side bene�t: the structure

pointed to by dead pointers in the stack cannot be reclaimed by the garbage collector, so

overwriting such pointers with live ones helps to avoid space leaks. One could experiment

(though we have not yet done so) with generating extra instructions to overwrite dead pointers

whose slots are not to be reused, speci�cally in order to make their space reclaimable. We

call this \stack stubbing".

61

9.4.2 Constructor applications

The expression scrutinised by a case expression must eventually evaluate either to a primitive

value or a constructor application. We deal with the latter case in this section, deferring the

primitive case to Section 9.5.

The code generated for a constructor application must return control to the appropriate

alternative of the case expression, making the argument of the application available to the

alternative. This is just what is done by the rules for constructors in the operational semantics

(Rules 5, 6 and 7).

For example, consider the expression:

let

hd = {} \n {xs} -> case xs of

Cons {y,ys} -> y {}

Nil {} -> error {}

single = {w,ws} \n {} -> Cons {w, ws}

in

hd {single}

where w and ws are bound by some enclosing scope. The code generated for the case ex-

pression in hd pushes a continuation and enters the closure for xs, which is bound to single

in this case. The code for the constructor application Cons {w,ws}, in the body of single,

should return control to the appropriate alternative, returning w and ws in some agreed way.

(Remember that constructor applications in the STG language are always saturated.)

There are two main aspects to consider:

� There may be several alternatives, so there is the question of how the appropriate one

is selected.

� The constructor for a particular alternative may have arguments, in which case these

need to be communicated to the code for the alternative.

These two issues are now discussed in turn.

9.4.3 Selecting the alternative

The simplest possible representation for the alternatives is a single code label, which we call

a return address, pushed on the B stack. Control is returned by the constructor application

to the labelled code when evaluation of the scrutinised object is completed.

If there is only one member of the algebraic data type (tuples, for example), the evaluation

of the (single) alternative can proceed immediately. If there is more than one member of the

type (lists, for example), the tag of the object is put into a particular register RTag, and a

C switch statement is generated to perform the case analysis on RTag. (In a native-code

generator, this multi-way jump can be compiled using a tree of conditionals or using a jump

62

-

-

-

Return vector

B stack

Code for Nil alternative

Code for Cons alternative

Figure 6: Vectored returns

table, depending on the sparsity of the alternatives, but using C as our target code allows to

delegate this choice to the C compiler.)

This is not the only possible representation for the alternatives. Another possibility is to

represent the alternatives by a pointer to a table of code labels, with one entry in the table

for each constructor in the data type. Figure 6 illustrates the situation for a case expression

which is scrutinising a list. A pointer to this table, which we call a return vector, is pushed

on the B stack by the code for the case expression. Then, instead of loading RTag, the code

for the constructor application can transfer control directly to the appropriate destination,

thus saving a jump. We call this a vectored return, and the pointer to the return vector a

vectored return address.

The important point to note is that the return convention can be chosen independently on

a datatype by datatype basis. A particular case expression will only scrutinise objects of a

particular type. In practice, we (somewhat arbitrarily) use vectored returns for data types

with up to eight constructors, because this catches the vast majority of data types without

risking wasting (code) space on large sparsely-used return vectors.

9.4.4 Returning the constructor arguments

There is a correspondingly simple convention available for communicating the constructor

arguments to the alternative: make the Node register point to a constructor closure containing

the appropriate values. The code for the alternative can then address its components by

indexing from the Node register as usual.

This works �ne, and is simple enough, but a much better alternative is readily available: if

there are su�ciently few arguments, return them in registers! If the closure being scrutinised

is already a constructor then not much is gained; indeed something may be lost, because all

its components may be loaded into registers when perhaps the alternative only requires one

of them. But there is a terri�c gain when a thunk is scrutinised, because it may thereby

avoid ever building the constructor in the heap. The most critical example of this is ordinary

integer arithmetic. Consider the following example:

63

neg = {} \n {x} -> case x of

MkInt {x#} -> case (neg# {x#}) of

y# -> MkInt {y#}

neg is the function which negates an integer. It operates by evaluating the integer x to extract

its primitive value x#, negating it to give y#, and then returning the integer MkInt {y#}. Now,

under the simple return convention, the boxed value MkInt {y#} would be constructed in the

heap, Node would be made to point to it, and control returned to the continuation. If, instead,

the component of the constructor, y# is returned in a register, the value need never be built

in the heap, except as result of an update (Section 10). It turns out that this has a big e�ect

on performance .

As before, the important point is that the return convention can be chosen on a datatype by

datatype basis. Integers are not a special case. For example, list \cons" cells can be returned

by putting the head and tail values into speci�c registers. (Independently, a vectored or non-

vectored return convention can be chosen.) Even the choice of which registers are used to

return values can also be made independently for each data type. For example, a oating-

point number can be returned in a oating-point register.

For the reason given before, it is probably not a good idea to return constructors with many

arguments entirely in registers. We therefore make a virtue of necessity (there are only a

limited number of registers) and return larger constructors by allocating them in the heap

and making Node point to them.

It turns out that the return-in-registers convention makes updates substantially harder, as we

shall see, but the gain is well worth it.

9.5 Arithmetic

Suppose that the expression scrutinised by a case turns out to evaluate to a primitive value;

that is, either a primitive literal (Rule 9), a variable whose value is primitive (Rule 10), or

an arithmetic operation whose result is primitive (Rule 14). All three of these rules enter the

ReturnInt state, which takes action depending on the alternatives stored on top of the return

stack.

The return convention for primitive values is simple. The continuation on top of the return

stack is always a return address, pointing directly to the continuation code. The primitive

value itself is returned in a standard return register, chosen independently for each primitive

data type. For example, one register can be used for integers and another for oating point

values. The code generated for a primitive literal simply loads the speci�ed value into the

appropriate return register, pops the return address from the B stack and jumps to it. Simi-

larly, the code generated for a primitive variable just loads the value of the variable into the

return register and returns; and arithmetic follows in the same way.

The code generated at the return address implements the case analysis implied by the alter-

natives (if any), using a suitable C switch statement. Often there is only one alternative,

which binds a variable to the value returned. This is easily done by binding the variable to

the appropriate return register.

64

There is a very important special case, when compiling expressions of the form:

case v

1

� v

2

of alts

for built-in arithmetic operations �. It would be pointless to push a return address, evaluate

v

1

� v

2

, and return to the return address! These operations can easily be short-circuited,

and it is practically essential to do so. We can express this equivalence by doing some simple

transformations on the rules to give the derived rules:

(18)

Eval

0

B

B

B

B

B

@

case � fx

1

; x

2

g of

k

1

-> e

1

;

: : :

k

n

-> e

n

;

x -> e

1

C

C

C

C

C

A

�

"

x

1

7! Int i

1

x

2

7! Int i

2

#

as rs us h �

=) Eval e �[x 7! Int (i

1

� i

2

)] as rs us h �

where k

j

6= i

1

� i

2

(1 � j � n)

(19)

Eval

0

B

B

B

@

case � fx

1

; x

2

g of

: : :

k -> e;

: : :

1

C

C

C

A

�

"

x

1

7! Int i

1

x

2

7! Int i

2

#

as rs us h �

=) Eval e � as rs us h �

where k = i

1

� i

2

In particular, once this optimisation is implemented, the expression

case � fx

1

; x

2

g of x -> e

compiles to the simple C statement:

x = x1 � x2

where x, x1 and x2 are the C local variables used to hold the values of x , x

1

and x

2

.

10 Adding updates

So far everything has been quite tidy: tree reduction is nice and easy. Sadly, graph reduction

is harder, and updates are quite complicated. This is much the trickiest part of the Spineless

Tagless G-machine. Still, we begin bravely enough.

10.1 Representing update frames

Recall that when a closure is entered it has the opportunity to push an update frame onto

the update stack. An update frame consists of

65

� A pointer to the closure to be updated.

� The saved argument and return stacks.

After an update frame is pushed, execution continues with empty argument and return stacks.

Of course, we don't actually copy the argument and return stacks onto a separate update

stack! Instead, we dedicate two registers, called the stack base registers, to point just below

the bottom-most word of the A and B stacks respectively. The argument and return stacks

can now be \saved" and then \made empty" merely by saving the stack base registers in the

update frame, and making them point to the current top of the A and B stacks.

Where is the update stack kept? It could be represented by a separate stack all of its own,

but we have chosen to merge it with the B stack. The minor reason for this is to avoid yet

another stack. The major reason is that it makes available an important optimisation which

we discuss below (Section 10.3).

To conclude, the operation of pushing an update frame (Rule 15) is done by:

� Pushing an update frame onto the B stack.

� Setting the stack base registers to point to the top of their respective stacks.

(The alert reader will have spotted that a pointer (to the closure to be updated) has thereby

ended up on the B stack. We discuss this in Section 10.7.)

An update is triggered in one of two ways: either a function �nds too few arguments on the

stack, or a constructor application �nds an empty return stack. These two situations are

discussed in the following sections.

10.2 Partial applications

When a closure is entered which �nds too few arguments on the stack, an update is triggered.

This is described by Rules 17 and 17a. The check for too few arguments is called the argument

satisfaction check, and occurs at the start of the code for every closure which takes one or

more arguments (cf Section 9.3.2).

A minor complication is that the arguments are split between the A and B stacks, but this

presents little di�culty. If the last argument is available then certainly all the others will be,

so the check is performed only on the stack which contains the last argument.

The argument satisfaction check is performed by subtracting the stack base pointer of the

appropriate stack from the corresponding stack pointer, giving a di�erence in words. This

is compared with the (statically calculated) number of words required for all the arguments

which are passed on that stack. If too few words are present, a jump is taken to a runtime

system routine, UpdatePAP, which performs the update. Once the update has been done,

UpdatePAP concludes by re-entering the closure, which Node should be pointing to. The

argument satisfaction check is thereby performed again, as Rule 17 requires, in case a further

update is needed.

66

A special case is required for top-level closures, because the code entering the closure may not

have made Node point to it (Section 9.2.1). In this case, just before jumping to UpdatePAP,

the argument-satisfaction-check code loads a pointer to the closure into Node. (Recall that

top-level closures are statically allocated, so their address is �xed.)

What does UpdatePAP do? It follows Rule 17a:

1. First, it builds in the heap a closure representing the partial application, whose structure

is given below.

2. Next, it overwrites the closure to be updated (obtained from the update frame) with

an indirection to the newly-constructed closure.

3. It restores the values of the stack-base registers from their values saved in the update

frame.

4. It removes the update frame from the B stack, sliding down the portion of the stack (if

any) which is above it.

5. Finally, it re-enters the closure pointed to by Node.

What does the partial-application closure look like? In the most general case it contains:

� The info pointer PAP_Info.

� The total size of the closure, and the number of pointers in it. As well as being used

by the storage manager, this information is required by the standard-entry code of

PAP_Info (see below).

� The pointer to the function closure, which is in Node.

� The contents of the A stack between the top of stack and its stack base pointer.

� The contents of the B stack between the top of stack and its stack base pointer.

If this partial-application closure is entered, the standard-entry code of PAP_Info pushes the

saved stack contents onto their respective stacks (using the size information to determine

how many words to move to which stack), and then enters the function closure saved in the

partial application closure. Its garbage-collection routines use the size information stored in

the closure to guide their work.

So much for the general case. A couple of optimisations are readily available. Firstly, a col-

lection of specialised PAP_Info pointers can be provided for various combinations of numbers

of pointer and non-pointer words. For example, PAP_Info_1_0 is used when there is one

pointer word and no non-pointers. The advantages of such specialised info pointers are: there

is no need to store the �eld sizes in the closure; and the entry and garbage-collection code is

faster because it has no interpretive loop. There is, of course, a small execution-time cost in

UpdatePAP to decide whether a special case applies.

Secondly, if the new closure is small enough it can be built directly on top of the closure to

be updated.

67

10.3 Constructors

The other way in which an update can be triggered is when a constructor �nds an empty

return stack. It looks as though the code for a constructor application has to test for an empty

return stack; indeed this is just what is implied by Rule 16. This looks expensive, because

constructors are so common. Furthermore, the return stack is almost always non-empty, so

the test is in vain. Data structures are often built once and then repeatedly traversed. Each

time pattern matching is performed on a data structure, a continuation is pushed on the

return stack, and the closure representing the data structure is entered. Since it is already

evaluated, it returns immediately (perhaps using a vectored return), but it must �rst perform

the return-stack test.

So now comes the tricky part. Since update frames and continuations are both stored on the

B stack, if a return address is not on top of the stack, then an update frame must be. If

we make the top word of each update frame into a code label, UpdateConstr, the constructor

could just return without making any test. In the common case where there is no update

frame this does just what we want. If an update is required there will be an update frame on

top of the B stack, so the \return" will land in the UpdateConstr code, which can perform

the update and then return again, perhaps to another update frame, or perhaps to the \real"

continuation.

Before we examine the complications, it is worth looking at the crude costs and bene�ts. The

cost is one extra instruction for every update frame pushed. The bene�t is the omission of

a couple of instructions (one of them a conditional jump) from every constructor evaluation.

If data structures are traversed repeatedly, constructor evaluations will occur substantially

more often than updates. The bene�ts look signi�cant.

The trouble is that this trick interacts awkwardly with the various return conventions for

constructors discussed in Sections 9.4.3 and 9.4.4. With the simple return conventions, ev-

erything works �ne. The case alternatives are always represented by a simple code label on

the B stack, and the result is returned by making Node point to the constructor closure. All

UpdateConstr need do is to overwrite the closure to be updated with an indirection to this

constructor closure, restore the stack base registers, and return again.

10.4 Vectored returns

Life gets more complicated when we add vectored returns. There is no problem with providing

a vectored form of UpdateConstr; each entry in its return vector points to code which performs

the update and then returns in its turn in a vectored fashion. The di�culty is that when the

update frame is created, the return convention is not known. This is because the type of the

expression may be polymorphic. Consider, for example, the compose function, which looks

like this in the STG language:

compose = {} \n {f,g,x} -> let gx = {g,x} \u {} -> g {x}

in f {gx}

The code for the closure gx does not know its type. Hence, when it pushes the update frame

it cannot know whether a vectored return is to be expected or not. In short, UpdateConstr

68

- -

-

-

-

Code for Nil alternative

Code to update with Nil

Code for Cons alternative

Code to update with Cons

Return vector

B stack

Figure 7: Vectored updates

must be able to cope with either a vectored or a non-vectored return.

If we were generating machine code this would present little problem. We just adopt the

convention that the pointer to a vector table points just after the end of the table, so that

the table is accessed by indexing backwards from the pointer. Now UpdateConstr labels

ordinary code immediately preceded by its vector table. Sadly, C does not allow us to specify

the relative placement of data and code in this way, so instead we have to adopt the convention

that non-vectored returns behave just like vectored returns through a vector table with one

entry (cf Section 7.6). This imposes an extra indirection on non-vectored returns.

10.5 Returning values in registers

Unfortunately, matters get worse when we consider the idea of returning constructor values

in registers. Now UpdateConstr has no way to �gure out how to perform the update, because

it has no way to tell what return convention is being used. Can the closure which pushed

the update frame push a version of UpdateConstr appropriate for the data type? As just

discussed, the answer is no, because of polymorphism.

This looks like a rather serious problem. There is a way round it, but it is rather tricky.

The idea is this: the update frame may not know the type of the value being returned, but the

case expression which caused the evaluation in the �rst place certainly does. So UpdateConstr

does not perform an update at all; it merely records that an update is required, by placing

a pointer to the closure to be updated in a special register UpdatePtr. It is up to the case

expression continuation to perform the update. How does the continuation \know" whether

an update is pending? Simple: each entry in the case-expression's return vector is expanded

to a pair of code labels (Figure 7). The �rst of these is just as before (ie the code for the case-

expression alternative); the other performs an update on the closure pointed to by UpdatePtr,

and then jumps to the �rst. We call these the normal return code and update return code

respectively. All UpdateConstr has to do to precipitate the update is to return to the update

return code rather than the normal return code, which it can do merely by increasing its

o�set into the return vector by one.

69

The costs are surprising slight. There is a static space cost, as each vector table now doubles

in size. The extra code to perform the update can be generated once only for each constructor,

and then pointed to from all the return vectors for its data type. This per-constructor update

code can still �nd its way to the appropriate case alternative provided the pointer to the

return vector is kept handy in a register.

One objection remains, which looks serious: suppose there are several update frames on top

of each other before the \real" continuation is reached? This can arise in programs like the

following:

let x1 = ...

in

let x2 = {x1} \u {} -> x1

in

let x3 = {x2} \u {} -> x2

in

...x3...

When x3 is entered, it will push an update frame and then enter x2, which will push another

update frame and enter x1. When x1 reaches head normal form it will �nd two update frames

on top of the stack, reecting the fact that both the closure for x2 and that for x3 must be

updated with x1's value. This looks like a rather special case, but it does arise in practice: any

closure which may return the value of another closure has the same property. For example,

the de�nition of x3 could be:

x3 = {x2,z} \u {} case ... of

Nil {} -> x2

Cons {p,ps} -> p

The problem with multiple update frames is that the UpdatePtr register can only point to

one closure! Fortunately there is an easy solution. Recall that all return vectors including

that for UpdateConstr consist of paired entries, and that UpdateConstr returns to the update

return code rather than the normal return code of the pair. The update return code of the

UpdateConstr vector therefore knows that it is not the �rst update frame, and so UpdatePtr

is already in use. One possibility would be to chain together all the closures to be updated,

but there is a simpler way: the second (and subsequent) update frames just update their

closures with an indirection to the one pointed to by UpdatePtr. When the latter is �nally

updated all the updating has been successfully completed. This can result in chains of at most

two indirections; and remember that indirections are all eliminated by the garbage collector.

Finally, what of non-vectored returns? We still need a pair of code addresses to return to,

as in the vectored case. If the results are returned in a heap-allocated closure pointed to by

Node there is no problem: the update return code just performs the update and jumps to the

normal return code. If results are being returned in registers, then the update return code

needs to perform case analysis on RTag to �gure out how to perform the update. As before,

there need be only one copy of this update return code.

70

10.6 Update in place

The update technology just described has another very important bene�t: it allows the up-

dated closure to be overwritten directly with the result (if it is small enough), rather than being

overwritten with an indirection to the result.

Up to now, our uniform return convention has meant that closures are only ever overwritten

by indirections, even though it is often the case that it is in principle possible to overwrite it

directly with the result. Not only does this introduce extra indirections but, more seriously,

it gives rise to a lot of extra memory allocation. Kieburtz and Agapiev speci�cally identify

and quantify this shortcoming (Kieburtz & Agapiev [1988]).

If the dual-return mechanism of the previous section is used, however, then this shortcoming

can easily be overcome. The code performing the update knows exactly how the closure is

laid out so, if it is small enough, it can directly overwrite the closure to be updated. For

example, here is the code to perform updates for a list Cons cell:

ConsUpd() {

UpdatePtr[0] = Cons_Info;

UpdatePtr[1] = Head;

UpdatePtr[2] = Tail;

JUMP(ReturnVector[2]);

}

Here we are assuming that the Cons constructor returns its head in a register Head and tail in

Tail. Cons_Info is the info table for the Cons constructor. The address of the return vector

is assumed to be in a register ReturnVector. The o�set of 2 picks the �rst code address of

the pair for Cons.

For larger constructors, the new object cannot be built directly on top of the old one, so a new

object must be built in the heap and the old one updated with an indirection to it. The usual

heap-exhaustion check must be made, and garbage collection triggered if no space remains.

The update routine must then be careful to save any pointers being returned in registers into

a place where the garbage collector will �nd them.

How does the updating code know if the closure to be updated is large enough? There are

two main possibilities:

� We can establish a global convention for the minimum size of updatable closures; making

them all large enough (by padding if necessary) to contain a list cons cell seems a

plausible guess. There is scope for another small optimisation here: if a closure is being

allocated whose type is (say) Int, then it cannot possibly be updated by anything other

than an integer, so it does not need to be padded out to cons-cell size.

� The updating code can look in the closure's info table to �nd its size, and either update

in place or use an indirection, depending on what it �nds. This costs more time than

the unconditional scheme, but has the merit that it will succeed in updating in place

more often. This is another aspect of the design which we plan to quantify.

Update in place is not always desirable. Suppose that the value of the thunk turned out to

71

be an already-existing constructor which returns its components in registers. Then update-in-

place will overwrite the thunk with a copy of the constructor. No work is duplicated thereby,

but there is a potential loss of space if both copies stay live for a while. At worst, a great many

copies of the same object could be built in this way, substantially increasing the space usage

of the program. The point is this: once copied, there is no cheap mechanism for \commoning

up" the original with the copy.

Our preliminary measurements suggest that up to 10% of all updates copy an already-existing

constructor, though the �gure can occasionally be much higher (for the program reported by

Runciman & Wakeling [1992] it is 47%). We plan to make more careful measurements to

see how important this e�ect is. If it turns out to be signi�cant we will implement a simple

extension of the dual-return-address scheme outlined in Section 10.5, whereby each element

of the return vector is a triple of return addresses. We omit the details, but the scheme has

the e�ect of always updating a thunk with an indirection whenever the value of the thunk is

an already-existing heap object.

10.7 Update frames and garbage collection

Update frames, which include a pointer to the closure to be updated, are kept on the B stack.

At �rst this looks rather awkward, because the garbage collector expects all pointers to be on

the pointer stack, but it actually turns out to be quite convenient, because of the following

observation: if the only pointer to a closure is from an update frame, then the closure can be

reclaimed, and the update frame discarded.

We can take advantage of this during garbage collection in the following way. First perform

garbage collection as usual, but without using the pointers from update frames as roots. Now,

look at each update frame and see if it points to a closure which has been marked as live. If

so, and a copying collector is being used, adjust the pointer to point to the new copy of the

closure. If not, squeeze the update frame out of the B stack altogether.

It is easy to �nd all the update frames, because the stack base register for the B stack always

points to the topmost word of the topmost update frame; and the saved stack base register for

the B stack points to the next update frame, and so on. This gives a top-to-bottom traversal,

but it turns out that a bottom-to-top traversal makes the \squeezing-out" process much more

e�cient, for two reasons:

� Since the squeeze must move data towards the bottom of the stack (otherwise the stack

would creep up in memory!), working from bottom to top means that each word of the

B stack is moved only once.

� When an update frame is removed, the stack-base pointers for the next update frame

above it need to be adjusted. This is easy to do when working bottom to top.

Happily, it is easy to make a top-to-bottom traversal, reversing all the pointers, and then

make the bottom-to-top traversal to do the work.

The result of all this is that the garbage collector reclaims redundant update frames. The

main bene�t is the saving in updates performed. This optimisation was performed, but not

documented, in Fairbairn and Wray's original TIM implementation.

72

10.8 Global updatable closures

As previously discussed (Section 9.1), each globally-de�ned variable is bound to a statically-

allocated closure. Since such closures have no free variables (except of course other statically-

allocated closures), there is no need to treat them as a source of roots during garbage collec-

tion.

But some of these global closures may have no arguments, and hence be updatable: we call

such such argument-less top-level closures constant applicative forms or CAFs. For example,

ints is a CAF whose value is the in�nite list of integers:

ints = {} \u {} from {zero}

zero = {} \n {} MkInt {0#}

where from is a function returning the in�nite list of integers starting from its argument.

There are two di�culties:

1. If such a CAF is updated, there will be pointers from the static space into the dynamic

heap. The question is: how is the garbage collector to �nd all such pointers?

2. With the garbage-collection techniques described in Section 7.3 closures in static space

need di�erent garbage-collection code from those in the dynamically-allocated heap.

The two are readily distinguishable (by address) but it is unfortunate if every update

is slowed down by a test when the vast majority of updates are to dynamic closures.

There is more than one way to solve this problem, but the one we have adopted is as follows.

The idea is to arrange that:

1. CAFs which are being evaluated, or whose evaluation is complete, are linked together

onto the CAF list, which is known to the garbage collector. This solves the �rst of the

above problems.

2. All update frames point to closures in the dynamic heap, thus solving the second prob-

lem.

We achieve these goals by adding a little extra code to the start of the standard-entry code for

a CAF (Figure 8). The extra code does the following: it allocates a black hole closure in the

heap whose purpose is to receive the subsequent update; it pushes an update frame pointing

to this black hole; and it overwrites the static CAF closure with a three-word CAFlist cell,

pointing to the black hole in the heap, and linked onto the CAF list.

In the example shown in Figure 8, the CAFs p, q and r have all been entered, and hence are

linked onto the CAF list (we use CL to abbreviate the info pointer for a CAFList cell). The

evaluation of p is not yet complete, so it still points to a black hole in the dynamic heap (info

pointer BH). The evaluation of q has been completed, and the black hole has been updated

with an indirection (info pointer I) to its value. s has not been entered, so it consists of a

info pointer (S) only.

A CAFList cell looks like any other closure. If entered, it simply enters the heap-allocated

closure to which it points, behaving just like an indirection. The garbage collector knows

73

- -

- - -

�

�

-

-

p q r s

CL CL

Caf List

I

S

STATIC SPACE

DYNAMIC HEAP

CL

BH

Figure 8: Global updates

about the CAF list, and walks it iteratively, evacuating the heap-allocated closure to which

each cell points, and updating the cell appropriately. This is slightly pessimistic, since it

holds onto the value of every CAF even though the program may never reference it again,

but there is no avoiding this unless the garbage collector traverses the code as well.

11 Status and pro�ling results

We have built a compiler for Haskell whose back end is based on the STG machine, just

as described above. The whole implementation has been constructed rather carefully so

that it may be used as a \motherboard" into which other implementors may \plug in"

their optimisation passes. All the source code is available by anonymous FTP by contacting

haskell-request@dcs.glasgow.ac.uk.

Apart from the STGmachine technology described in the current paper, the major innovations

of the compiler are:

� The systematic use of unboxed values to implement built-in data types.

� A new approach to input/output based on monads, which allows the entire I/O system

to be written in Haskell (Hammond, Peyton Jones & Wadler [1992]). This is done via

a general-purpose mechanism which allows arbitrary calls to be made from Haskell to

C. As a result the I/O system can be readily extended without modifying the compiler

or its runtime system.

� The Core language, which serves as the main intermediate data type in the compiler,

is actually based on the second-order lambda calculus, complete with type abstraction

and application. This permits us to maintain complete type information in the presence

of extensive program transformation, as well as accommodating other front ends whose

type system is more expressive than Haskell's.

74

The implementation covers almost the whole language, but virtually no optimisations have

yet been implemented. As a result, we have not compared its absolute performance with

other compilers. (This omission is an important shortcoming of this paper, which will be

recti�ed by a follow-up paper.)

We have begun to gather simple dynamic statistics, however. Figure 9 shows some output

taken from a run of a simple type-inference program. This program takes some 600 lines

of Haskell source code (apart from functions used from the Prelude), and the sample run

allocated about 10 megabytes of heap. The pro�le has the following main headings:

Allocations, split into various categories. Most allocation is for thunks. The proportion

of data-value allocation seems surprisingly low, because most data values are built by

updating a thunk, rather than by performing new allocation in a let(rec). This

program uses monads heavily, so quite a lot of function-valued closures are allocated.

Stack high-water marks are self explanatory.

Enters, with a classi�cation of what kind of closure is being entered. In this case, a rather

low proportion of function calls (34%) bypass the argument satisfaction check, again

due to the very higher-order nature of the program.

Returns, which give information about the data-value returns which took place. In this

run, almost all were vectored and in registers. The third classi�cation tells how many

returns were from entering an already-evaluated constructor (some 50% in this case).

In the cell model, the enter/return sequence would not be performed for these cases.

Update frames classi�es various forms of update frame, which is rather uninformative in

this case.

Updates. The �fth line counts the number of times two or more update frames were stacked

directly on top of one another. The last line counts the number of updates in which an

already-existing value was copied by an updates (Section 10.6).

Acknowledgements

This paper has been a long time in gestation. I would like to thank those who have been

kind enough to give me help and guidance in improving it. Andrew Appel made detailed

comments about the relationship of this work to his. Geo� Burn, Cordy Hall, Denis Howe,

Rishiyur Nikhil, Chris Okasaki, Julian Seward, and the two anonymous referees gave very

useful feedback. The implementation of the compiler itself owes much to the work of Cordy

Hall and Will Partain.

Sadly, my friend and colleague Jon Salkild, who co-authored the �rst STG paper, died most

suddenly in 1991.

75

ALLOCATIONS: 73920 (231212 words total:

70387 admin, 136489 goods, 24336 slop)

avg #words of: admin goods slop

14426 (19.5%) function values 1.0 1.7 0.1

45131 (61.1%) thunks 1.0 1.7 0.5

9609 (13.0%) data values 1.0 1.7 0.0

0 (0.0%) big tuples

0 (0.0%) partial applications

407 (0.6%) black-hole closures 3.0 0.0 0.0

4341 (5.9%) partial-application updates 0.0 4.4 0.0

6 (0.0%) data-value updates 0.0 4.5 0.0

Total storage-manager allocations: 49594 (235559 words)

STACK USAGE:

A stack max. depth: 222 words

B stack max. depth: 446 words

ENTERS: 142737, of which 41914 (29.4%) direct to the entry code

[the rest indirected via Node's info ptr]

35626 (25.0%) thunks

24713 (17.3%) data values

64346 (45.1%) function values

[of which 21604 (33.6%) bypassed arg-satisfaction chk]

4788 (3.4%) partial applications

13264 (9.3%) indirections

RETURNS: 49212

48991 (99.6%) in registers [the rest in the heap]

49210 (100.0%) vectored [the rest unvectored]

24499 (49.8%) from entering a new constructor

[the rest from entering an existing constructor]

UPDATE FRAMES: 35626 (0 omitted from thunks)

35626 (100.0%) standard frames

0 (0.0%) constructor frames

0 (0.0%) black-hole frames

UPDATES: 35626

25788 (72.4%) data values

[25781 in place, 6 allocated new space, 1 with Node]

4349 (12.2%) partial applications

[8 in place, 4341 allocated new space]

5489 (15.4%) updates followed immediately

2594 (10.1%) in-place updates copied

Figure 9: Example output of dynamic pro�ling information

76

Bibliography

R Alverson, D Callahan, D Cummings, B Koblenz, A porter�eld & B Smith [June 1990],

\The Tera computer system," in Proc International Conference on Supercomputing,

Amsterdam.

AW Appel [1987], \Garbage collection can be faster than stack allocation," Info Proc Lett 25,

275{279.

AW Appel [1992], Compiling with continuations, Cambridge University Press.

AW Appel [Feb 1989], \Simple generational garbage collection and fast allocation," Software

{ Practice and Experience 19, 171{183.

AW Appel & T Jim [Jan 1989], \Continuation-passing, closure-passing style," in Proc ACM

Conference on Principles of Programming Languages, ACM, 293{302.

ZM Ariola & Arvind [June 1991], \A syntactic approach to program transformations," in

Symposium on Partial Evaluation and Semantics-Based Program Manipulation, Yale.

L Augustsson [1987], \Compiling lazy functional languages, part II," PhD thesis, Dept Comp

Sci, Chalmers University, Sweden.

L Augustsson & T Johnsson [Sept 1989], \Parallel graph reduction with the <nu,G>-machine,"

in Proc IFIP Conference on Functional Programming Languages and Computer Ar-

chitecture, London, ACM.

Henry Baker [Apr 1978], \List processing in real time on a serial computer," CACM 21, 280{

294.

JF Bartlett [Jan 1989], \SCHEME to C: a portable Scheme-to-C compiler," DEC WRL RR

89/1.

A Bloss, P Hudak & J Young [1988], \Code optimizations for lazy evaluation," Lisp and

Symbolic Computation 1, 147{164.

Geo� Burn, SL Peyton Jones & John Robson [July 1988], \The Spineless G-machine," in Proc

ACM Conference on Lisp and Functional Programming, Snowbird, 244{258.

C Consel & O Danvy [Sept 1991], \For a better support of static data ow," in Functional

Programming Languages and Computer Architecture, Boston, Hughes, ed., LNCS

523, Springer Verlag, 496{519.

EC Cooper & JG Morrisett [Dec 1990], \Adding threads to Standard ML," CMU-CS-90-186,

Dept Comp Sci, Carnegie Mellon Univ.

AJT Davie & DJ McNally [1989], \CASE - a lazy version of an SECD machine with a at

environment," in Proc IEEE TENCON, Bombay .

77

Jon Fairbairn & Stuart Wray [Sept 1987], \TIM - a simple lazy abstract machine to execute

supercombinators," in Proc IFIP conference on Functional Programming Languages

and Computer Architecture, Portland, G Kahn, ed., Springer Verlag LNCS 274, 34{45.

AJ Field & PG Harrison [1988], in Functional programming , Addison Wesley.

P Fradet & D Le Metayer [Jan 1991], \Compilation of functional languages by program trans-

formation," ACM Transactions on Programming Languages and Systems 13.

K Hammond, SL Peyton Jones & PL Wadler [Feb 1992], \A new input/output model for

purely-functional languages," Dept of Computing Science, University of Glasgow.

P Henderson [1980], Functional programming: application and implementation, Prentice Hall.

R Hieb, RK Dybvig & C Bruggeman [June 1990], \Representing control in the presence of

�rst-class continuations," in Proc Conference on Programming Language Design and

Implementation (PLDI 90).

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guzman,

K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain & J Peterson

[May 1992], \Report on the functional programming language Haskell, Version 1.2,"

SIGPLAN Notices 27.

John Hughes [Apr 1989], \Why functional programming matters," The Computer Journal 32,

98{107.

PZ Ingerman [1961], \Thunks," Comm ACM 4, 55{58.

E Ireland [Jan 1992], \The Lazy Functional Abstract Machine," in Proc 15th Australian

Computer Science Conference, Hobart, World Scienti�c Publishing.

Thomas Johnsson [1985], \Lambda lifting: transforming programs to recursive equations,"

in Proc IFIP Conference on Functional Programming and Computer Architecture,

Jouannaud, ed., LNCS 201, Springer Verlag, 190{205.

Thomas Johnsson [1987], \Compiling lazy functional languages," PhD thesis, PMG, Chalmers

University, Goteborg, Sweden.

Thomas Johnsson [June 1984], \E�cient compilation of lazy evaluation," in Proc SIGPLAN

Symposium on Compiler Construction, Montreal.

R Jones [March 1991], \Tail recursion without space leaks," Department of Computer Science,

University of Kent.

R Kelsey [May 1989], \Compilation by program transformation," YALEU/DCS/RR-702, PhD

thesis, Department of Computer Science, Yale University.

RB Kieburtz [Oct 1987], \A RISC architecture for symbolic computation," in Proc ASPLOS

II .

78

RB Kieburtz & B Agapiev [Sept 1988], \Optimising the evaluation of suspensions," in Proc

workshop on implementation of lazy functional languages, Aspenas.

H Kingdon, D Lester & GL Burn [1991], \The HDG-machine: a highly distributed graph

reducer for a transputer network," Computer Journal 34, 290{302.

PWM Koopman [1990], \Functional programs as executable speci�cations," PhD thesis, Uni-

versity of Nijmegen.

DA Kranz [May 1988], \ORBIT - an optimising compiler for Scheme," PhD thesis, Department

of Computer Science, Yale University.

PJ Landin [March 1965], \A correspondence between Algol 60 and Church's lambda calculus,"

Comm ACM 8, 158{165.

D Lester [Apr 1989], \Combinator graph reduction: a congruence and its applications," PhD

Thesis, Programming Research Group, Oxford.

Erik Meijer [Sept 1988], \Generalised expression evaluation," in Proc workshop on implemen-

tation of lazy functional languages, Aspenas.

E Miranda [Apr 1991], \How to do machine-independent fast threaded code," Dept of Com-

puter Science, Queen Mary and West�eld College, London.

SL Peyton Jones [1987], The implementation of functional programming languages, Prentice

Hall.

SL Peyton Jones [1988], \FLIC - a functional language intermediate code," SIGPLAN Notices

23.

SL Peyton Jones, C Clack & J Salkild [June 1989], \High-performance parallel graph reduc-

tion," in Proc Parallel Architectures and Languages Europe (PARLE), E Odijk, M

Rem & J-C Syre, eds., LNCS 365, Springer Verlag, 193{206.

SL Peyton Jones & J Launchbury [Sept 1991], \Unboxed values as �rst class citizens," in

Functional Programming Languages and Computer Architecture, Boston, Hughes,

ed., LNCS 523, Springer Verlag.

SL Peyton Jones & D Lester [May 1991], \A modular fully-lazy lambda lifter in Haskell,"

Software { Practice and Experience 21.

SL Peyton Jones & DR Lester [1992], Implementing functional languages: a tutorial, Prentice

Hall.

SL Peyton Jones & Jon Salkild [Sept 1989], \The Spineless Tagless G-machine," in Functional

Programming Languages and Computer Architecture, D MacQueen, ed., Addison

Wesley.

C Runciman & D Wakeling [April 1992], \Heap pro�ling of lazy functional programs," De-

partment of Computer Science, University of York.

79

P Sansom [Aug 1991], \Combining copying and compacting garbage collection," in Proc

Fourth Annual Glasgow Workshop on Functional Programming , Springer Verlag

Workshops in Computer Science.

Mark Scheevel [Aug 1986], \NORMA - a graph reduction processor," Proc ACM Conference

on Lisp and Functional Programming .

S Smetsers, E Nocker, J van Groningen & R Plasmeijer [Sept 1991], \Generating e�cient code

for lazy functional languages," in Functional Programming Languages and Computer

Architecture, Boston, Hughes, ed., LNCS 523, Springer Verlag.

RM Stallman [Feb 1992], \Using and porting Gnu CC, Version 2.0," Free Software Foundation

Inc.

GL Steele [1978], \Rabbit: a compiler for Scheme," AI-TR-474, MIT Lab for Computer Sci-

ence.

William Stoye, Thomas Clarke & Arthur Norman [August 1984], \Some practical methods for

rapid combinator reduction," in Proc 1984 ACM symposium on Lisp and functional

programming , 159{166.

D Tarditi, A Acharya & P Lee [March 1991], \No assembly required: compiling Standard ML

to C," School of Computer Science, Carnegie Mellon University.

AP Tolmach & AW Appel [June 1990], \Debugging Standard ML without reverse engineer-

ing," in Proc ACM Conference on Lisp and Functional Programming, Nice, ACM.

DA Turner [1979], \A new implementation technique for applicative languages," Software

Practice and Experience 9, 31{49.

P Wadler [1987], \E�cient compilation of pattern matching," in The implementation of func-

tional programming languages, SL Peyton Jones, ed., Prentice Hall, 78{103.

80

PR Wilson, MS Lam & TG Moher [Jan 1992], \Caching considerations for generational

garbage collection," Department of Computer Science, University of Texas.

A The gory details

This appendix contains gory implementation-speci�c notes for the Glasgow Haskell compiler.

ToDo: add some stu� about stack stubbing.

A.1 Update ags

There are really three kinds of update ag:

� Updatable. Update me with my normal form.

� Single-entry. Don't update me with my normal form, but you can overwrite me with a

black hole to prevent a space leak. I promise I will be entered at most once.

� Reentrant. Don't update me with my normal form, or with a black hole. I may be

entered (and re-evaluated) more than once. Manifest functions, constructors, and partial

applications are always reentrant. Note that the latter two have zero arguments, so zero-

arg things may be reentrant.

A.2 Black holes

There are three reasons for overwriting a thunk with a black hole immediately it is entered:

� To prevent space leaks.

� To give a better error message when there's an in�nite loop.

� To do thread synchronisation in a parallel system.

The �rst two can be dealt with in a di�erent way by the garbage collector. Space leaks can

be prevented by black-holing the things on the update stack at GC time. In�nite loops can

be detected by a post-mortem on the update stack, following a stack overow. So until we

need parallelism, black-holing is a waste of instructions.

A.3 Adding �llers

The great invariant is this: if a closure is to be modi�ed, either by being overwritten with a

black hole, or by updating, a �ller is written over the \tail" of the closure, so that the initial

segment is exactly FIXED_HDR_SIZE+MIN_UPD_SIZE words long.

81

MIN_UPD_SIZE is at least 2, to allow for cons cells and linked indirections. Another truth:

GEN objects are always bigger than FIXED_HDR_SIZE+MIN_UPD_SIZE+2; that leaves room for

a GEN �ller following a min-size closure slot.

That means that the black hole and update code have a well-de�ned �xed-size thing to modify.

All such closures are thunks, of either SPEC or GEN form. If the latter, the �ller is set with

SET_GEN_FILLER(Node, slop)

where slop is the size of the closure (excl �xed hdr, of course) � MIN_UPD_SIZE.

If the closure is of SPEC form, and there are more than MIN_UPD_SIZE words of ptrs + non-ptrs,

the �ller is set with

SET_SPEC_FILLER(Node, slop)

where slop is the size of the closure - MIN_UPD_SIZE. In the SPEC case, the slop argument is

guaranteed to be an integer, so can be used in building a label. (Remember, SPEC closures

have no variable header, so the size is just ptrs + non-ptrs, which the compiler can calculate.)

All this is done at the end of the basic block, just before Node is discarded (or assigned). But

if Node is being loaded from the closure itself we have to go via a temporary, so we need:

SET_GEN_FILLER_AND_LOAD_NODE(Node, final_node, size)

SET_SPEC_FILLER_AND_LOAD_NODE(Node, final_node, size)

If one-space collection isn't being done, these �ller macros generate nothing (except of course

the LOAD_NODE variants still load Node).

A.4 Performing updates

The update-performing code behaves as follows:

� If the new closure doesn't �t in a min-size closure slot:

Allocate the new object from the heap

UPD_IND(&Hp[-xxx], HeapCheck_xxxLive)

� If the new closure �ts in a min-size closure slot:

UPD_INPLACE(UpdPtr, HeapCheck_xxxLive)

Fill in UpdPtr[0...]

if incompletely filled, use SET_UPD_FILLER(UpdPtr, slop)

In generational GC the UPD_INPLACE code checks for a old-gen update, and if so allocates

a min-size closure in new-space, updates the old-gen thing with a pointer to the new-

space thing, and makes UpdPtr point to it.

The SET_UPD_FILLER �lls in any remaining slop. The slop argument is guaranteed to

be an integer.

82

A.5 Lambda-form info

Now we are ready to summarise the (remarkably subtle) questions of entry and update con-

ventions.

Reentrant Updatable Single-entry

Node must

point to it

If has fvs; or ar-

ity=0 and using

cost centres (note

9,12)

Yes (note 6) If has fvs or using cost-

centres (note 9)

Can jump di-

rect to code

Yes (note 8) No Yes

Push update

frame

No Yes (note 5) No

Black hole on

entry (note 7)

No Optional (notes 2,3) i� has fvs (notes 4)

UPD_BH_UPDATABLE UPD_BH_SINGLE_ENTRY

Use �ller (if 1s

gc)

No Yes, unless static (note

11)

I� has fvs (note 10)

SET_xxx_FILLER ditto

Note 1. We NO LONGER assume that any closure with no free variables is allocated stati-

cally. However, we do assume that (HAS FVS implies NOT STATIC).

Note 2. We never black-hole an updatable static closure. Instead, it will be overwritten with

a CAFList cell pointing to a newly allocated black hole.

Note 3. Black-holing can be done by the garbage collector (by running down the update

stack and black-holing any pending updatees); and in�nite loops detected by a post-

mortem on the update stack.

Note 4. A single-entry closure which has free vars is *always* black-holed, to avoid space

leaks. The trick mentioned in Note 3 doesn't work for them because they don't sit on

the update stack.

One could argue that space leaks from omitting the black-hole for single-entry things

are similar to other unavoidable space leaks, but we don't; we black-hole them.

A single-entry closure with no fvs is *never* black-holed; it cannot give rise to a space

leak, and we trust the single-entry ag which should mean it can't form part of a

loop. (Even if that's not true, the update stack post-mortem would reveal the loop.)

Notice that this means that static single-entry closures (which have no fvs) are never

black-holed.

Note 5. For updatable static closures, the update frame will point to the newly-allocated

black hole.

Note 6. If a closure is updatable, Node must be made to point to it, even if it is a static

no-fv closure. Reason: it may have been updated with a CAF indirection. We have

to indirect via the closure to get the entry code anyway (because it might have been

83

updated), so it is no big deal to load Node too. In theory we could have a di�erent

CAF indirection code for each CAF, which "knows" the closure address, but it saves no

time.

Note 7. The node-must-point-to-it conditions ensure that Node always points to a closure

which is to be black-holed.

Note 8. For reentrant things with arity > 0, there is still a choice as to whether to jump to

the fast or slow entry point, depending on how many args the thing is applied to.

Note 9. When cost-centre pro�ling, Node must point to anything which isn't a HNF (even

if it has no fvs) , so that the cost centre can be extracted from the closure.

Note 10. Single-entry closures only need a �ller if they have been black-holed. Hence the

condition. (NB fvs implies not static.)

Note 11. Static updatable closures don't need a �ller, because the black hole freshly allo-

cated for them is already the standard size.

Note 12. This rule says that Node doesn't need to point to no-fv closures with arity > 0.

But that could be a problem because such things have an argument-satisfaction check,

which needs to know where the closure is. We solve this by allocating such closures

statically: this can't result in a space leak because they are HNFs already and have no

fvs; nor can it result in loss of laziness.

Imported things which we know nothing about are entered as if they were updatable things

with no free vars.

A.6 Stack stubbing

Black holing closures is a way to avoid space leaks, but there is another important source

which is not caught thereby, namely pointers on the stack which happen to be dead. For

example

f x = case x of ...not involving x...

Here x is passed to f on the stack, but is dead as soon as it is entered.

The simplest solution is:

� Just before every tail call, overwrite any stack-held ptrs which are now dead with a

pointer to a special Stub closure. Stub is a static closure with no pointers inside it, so

it plugs any space leak.

The entry code for Stub elicits an error message, because the stack slot is supposed to

be dead.

How do we know which slots are dead? Because they are bound to variables which aren't free

in the continuation.

Unfortunately, this stack-stubbing takes instructions to perform. We can improve matters

somewhat:

84

� Use dead stack slots to save volatile variables in for a case expression. Not only does

this mean that fewer slots need to be stubbed, but it also reduces stack growth.

There is one way of avoiding the remaining stack-stubbing instructions, namely by attaching a

bit-mask to return (vector) addresses pushed on the B stack, which identify the dead A-stack

pointers. This is quite a bit more work, so we don't do it at present | but we count how

many stubbing instructions we execute.

A.6.1 Implementation

We need to keep extra information in the code generator state:

1. We need to keep track of which A-stack slots are used for what purpose; in particular,

which slots are used to store which variables.

This info is used when saving volatile variables (at a case expression), to identify dead

slots, and at a tail call to identify slots which must be stubbed.

We can do this just by adding an extra component to the code generator state, car-

ried around by the monad, and making sure we keep it up to date when we alter the

environment.

2. When compiling a tail call we need to know which variables, if any are used in the

continuation (if any) so that any others occupying stack slots below the tail-call SpA

can be stubbed.

This is easy too: just add a piece of inherited information to the monad rather like the

set-�ller stu�. The di�erence is that at a case expression the needed-var info goes into

the case branches rather than into the scrutinee.

The scheme so far is slightly pessimistic. Consider the expresion

f x = let y = ... in

case x of

...y...

The code generated for this is:

Allocate y

Save y on the stack

Push the continuation

Enter x

Now, since x is still live at the point we save y, we will allocate a new stack slot for y, and

have to stub the x slot just before entering x. It would be better to save y in x's slot. We

can spot this as a special case, perhaps including the slightly more general case where the

scrutinee is a function application.

85

Index

h�;Gi-machine, 14, 15

A-stack, 51

ABC machine, 5, 14

Abstract C, 8, 52

activation frame, 15, 31

address, 32, 45

algebraic data type, 29

allocation, 58

argument satisfaction check, 38, 58, 66

argument stack, 32, 50

arithmetic, 28, 64

B-stack, 51

black holes, 12, 59

built-in operation, 52

cache, 15

CAF list, 73

CAFs, 73

call/cc, 15

case expression, 16

case expressions, 19

cell model, 11

closure, 9

closure mode, 12

closures, 12, 32, 45

entering, 10, 45, 55

static, 47, 48

code, 33

code pointer, 10

continuation, 38

constant applicative form, see CAFs

constructors, 16, 24

niladic, 33

standard, 26, 52, 53

continuation, 60

continuation-passing style, see CPS

Core language, 8

CPS, 21, 30

currying, 14, 31

data structures, 16

data values, 9

debugging, 45

direct-entry point, 56

Enter , 33

entering, see closures

environment pointer, 10

evacuation, 47

Eval , 33

eval-apply model, 14

evaluation stack, 15, 31

forcing, see thunks

forwarding pointer, 48

frame, 10

frame pointer, 44

free variables, 22

full laziness, 27

function application, 14, 31, 34, 55

function values, 9, 10

G-machine, 14

garbage collection, 47, 72

generational garbage collection, 15, 49

global environment, 33

globals, 21, 29, 47, 53, 73

graph reduction, 14

Haskell, 7

head normal forms, 9

heap, 32

heap overow check, 58

indirection, 12

indirections, 46, 70

info pointer, 45

info table, 45, 50, 52

initial state, 34, 53

input/output, 74

integers

small, 48

lambda lifting, 21, 27

lambda-form, 21

laziness, 11

local environment, 33

saving, 61

locality, 15

86

locally-de�ned functions, 56

locals, 21

main, 21, 34

manifest functions, 24

monads, 74

non-updatable, 21

normal forms, 9

normal return code, 69

operational semantics, 32

paging, 15

PAP_Info, 67

parallel execution, 13

partial applications, 24, 40, 67

pattern matching, 16, 19, 60

pointer, 45

primitive data type, 29

primitive values, 37

pro�ling, 74

push-enter model, 14

\queue me", 13, 60

reduction, 11

reentrant, 81

register saves, 44

return address, 62

return convention, 17, 63

return stack, 36, 50

return vector, 63

ReturnCon, 33, 36

ReturnInt , 33, 36, 37, 64

scavenging, 48

SECD machine, 14

second-order lambda calculus, 74

self-updating model, 11

sequences, 32

single-entry, 81

space leak, 10, 59, 61

stack base registers, 66

stack overow check, 58

stack stubbing, 61

stacks, 50

standard constructors, see constructors

standard-entry code, 45, 58

state transition system, 32

status ag, 11

STG language, 8, 19

strictness analysis, 8

supercombinator, 27

suspension, 9

T-code, 7

tag big, 51

tagless, 12

target language, 41

threads, 15

Three Instruction Machine, see TIM

thunks, 9, 24

forcing, 11, 16

representing, 11

TIM, 10, 14

unboxed values, 8, 28

uniform representation, 12

updatable, 21, 81

update ag, 20, 23

reentrant, 60

single-entry, 60

update frame, 38, 59, 65, 68

update return code, 69

update stack, 38, 50

UpdatePAP, 66

updates, 11, 12, 23, 38

in place, 71

values, 9, 32

vectored return, 63, 68

vectored returns, 17

87

