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Abstract

It is widely claimed that functional languages are particularly suitable for programming

parallel computers. A claimed advantage is that the programmer is not burdened with details

of task creation, placement, scheduling, and synchronisation, these decisions being taken by

the system instead. Leaving aside the question of whether a pure functional language is

expressive enough to encompass all the parallel algorithms we might wish to program, there

remains the question of how e�ectively the compiler and run-time system map the program

onto a real parallel system, a task usually carried out mostly by the programmer. This is

the question we address in this paper.

We �rst introduce the system architecture of GRIP, a shared-memory parallel machine

supporting an implementation of the functional language Haskell. GRIP executes func-

tional programs in parallel using compiled supercombinator graph reduction, a form of declar-

ative rule system.

We then describe several strategies for run-time resource control which we have tried,

presenting comprehensive measurements of their e�ectiveness. We are particularly concerned

with strategies controlling task creation, in order to improve task granularity and minimise

communication overheads. This is, so far as we know, one of the �rst attempts to make a

systematic study of task-control strategies in a high-performance parallel functional-language

system. GRIP's high absolute performance render these results credible for real applications.

1 Introduction

It has long been claimed that functional programming languages are particularly suitable for

programming parallel computers.

We will not rehearse this argument here, except to identify its main basis: namely that, compared

with parallel imperative languages, much of the burden of resource allocation is shifted from

the programmer to the system. Since the parallelism is implicit, the programmer does not

have to describe the details of thread creation, placement, scheduling, communication, and

synchronisation

1

.

�

Department of Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow, UK. Tel: +44-41-

339-8855 ext f5619,4500g. Email: fkh,simonpjgcs.glasgow.ac.uk

1

Throughout this paper we use the term thread for a sequential activity which (potentially) runs concurrently

with other threads.
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If this claim is valid then the advantages will be considerable: it should be easier to write correct

programs, and programs should be much more independent of the target architecture than their

more explicit counterparts. To substantiate the claim, though, functional programmers need to

address two main questions:

� Firstly, are functional programming languages su�ciently expressive to encompass the par-

allel algorithms we would like to run? Notice that we dismiss immediately the unrealistic

expectation that an arbitrary functional program will speed up when run on a parallel

machine. Rather, we approach a parallel machine with a parallel algorithm in mind: the

question is whether we can readily express our thoughts in the medium of a functional

programming language.

In some cases, such as divide-and-conquer algorithms, the answer is plainly yes. In others,

such as branch-and-bound algorithms, the picture is altogether murkier. This question has

received some attention from researchers, many of whom have proposed extensions to the

language to increase their expressiveness. Examples include the MIT data
ow work, which

introduces I-structures [AE87]; Warren Burton's work on improving values for branch-and-

bound algorithms [Bur89]; Hudak's \para-functional" programming style [Hud86]; Hughes

and O'Donnell's proposals for parallel non-deterministic algorithms [HOD89]; and Roe's

recent thesis [Roe91]. For the most part, this work is unproven in practice, and needs to

be implemented and evaluated on real parallel systems.

� Secondly, does the system make e�ective use of the resources of the parallel machine?

Mapping the requirements of a parallel program onto the resources of a multiprocessor is

a very complex task. Issues of thread creation, placement and synchronisation consume

a large proportion of the brain-power of parallel programmers. Worse, the e�ectiveness

or otherwise of resource-control strategies makes a substantial impact on performance.

Handing over control of these resources to the system is a two-edged weapon: it relieves

the programmer of a di�cult and error-prone task, but it risks losing a large performance

margin if the system does a worse job than the programmer.

If the performance loss is su�ciently small, or there is a performance gain, then a parallel

functional system will be useful for all but the most stringent applications (expressiveness

aside). If the performance loss is always substantial, then parallel functional programming

will �nd few customers. Paged virtual memory is a useful analogy here: the performance

loss from automatic paging (compared with explicit overlays) is so small, and the reduction

in program complexity so great, that for most applications we barely consider the paging

system at all. Only for the most demanding applications do we try to take more control

over paging strategies.

Our research goals include both of these questions. In our view, they have not been much

addressed so far because there have been few attempts to build a parallel functional-language

system which delivers substantial absolute speedup over the best sequential implemenation of

the same langauge, let alone of a FORTRAN program for the same problem. It is very di�cult

to persuade an application programmer to learn a totally new language, recode his application,

only to be rewarded with a substantial loss of performance! Similarly, it is hard to make credible

statements about the e�ectiveness with which a parallel functional program is mapped onto a

parallel machine if there is a substantial slow-down factor to discount �rst.

Apart from our own work, the only other researchers who have reported a parallel functional-

language system with this absolute-speed-up property are Johnsson and Augustsson, whose
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h�;Gi-machine was the �rst to achieve this property.

In an attempt to bite this particular bullet, we have built

� A multiprocessor, GRIP (Graph Reduction in Parallel), designed to execute functional

programs in parallel using graph reduction, a form of declarative rule system. GRIP's

architecture is described further below (Section 3).

� A compiler for the Haskell functional programming language [HW90]. This compiler

is based on an earlier compiler for the LML language from Chalmers University [Joh84],

with a new code generator organised around the Spineless Tagless G-machine [Pey89]. It

generates native code for both Sun3 workstations and the GRIP multiprocessor.

GRIP runs parallel Haskell programs with substantial absolute speedup over the same program

running on a uniprocessor Sun with a comparable microprocessor [HP90]. We have now begun

to make Haskell and GRIP available to a number of colleagues in the UK who are using it

to write parallel applications. This work is at an early stage as yet, but we are committed

to \closing the loop", by using the experience of our users to guide our priorities in further

development.

In this paper we make no attempt to discuss the issue of expressiveness. Instead, we focus

mainly on two aspects of resource management: thread creation and thread scheduling.

We begin with an overview of the GRIP system, and how we perform compiled graph reduction.

This is followed by a discussion of scheduling strategies and a description of the results we have

obtained.

2 Parallel graph reduction

Execution of a functional program on GRIP is based on graph reduction [Pey87].

Speci�cally, our graph reduction model uses an abstract machine calleed the Spineless Tagless

G-machine [Pey89]. The expression to be evaluated is represented by a graph of closures, each of

which is held in heap. Each closure consists of a pointer to its code, together with zero or more

free-variable �elds. Some closures are in head normal form, in which case their code is usually

just a return instruction. Other closures represent unevaluated expressions, in which case their

code will perform the evaluation.

A closure is evaluated by jumping to the code it points to, leaving a pointer to the closure in a

register so that the code can access the free variables; this is called entering the closure. When

evaluation is complete, the closure is updated with (an indirection to) a closure representing its

head normal form.

A thread is a sequential computation whose purpose is to reduce a particular sub-graph to normal

form. At any moment there may be many threads available for execution in a parallel graph

reduction machine; this collection of threads is called the thread pool. A processor in search of

work fetches a new thread from the thread pool and executes it. A particular physical processor

may execute a single thread at a time, or may split its time between a number of threads.
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Initially there is only one thread, whose job is to evaluate the whole program. During its

execution, this thread may encounter a closure whose value will be required in the future. In

this case it has the option of placing of placing a pointer to the closure in the thread pool, where

it is available for execution by other processors | we call this sparking a child thread.

If the parent thread requires the value of the sparked closure while the child thread is com-

puting it, the parent becomes blocked. When the child thread completes the evaluation of the

closure, the closure is updated with its normal form, and the parent thread is resumed. This

blocking/resumption mechanism is the only form of inter-thread communication and synchroni-

sation. Once an expression has been evaluated to normal form, then arbitrarily many threads

can inspect it simultaneously without contention.

There are two main ways of organising the blocking/resumption process. In the noti�cation

model, the parent is blocked if the child thread has not completed when the parent requires

its value, or if it has not started work (presumably because no processor was free to execute

it). When the child thread completes it noti�es the parent, which causes the parent to be

resumed. The same applies to any other thread which is by then awaiting the value of the

closure. The advantage of this model is that a parent can suspend execution with a noti�cation

count, awaiting noti�cation from several children before it is resumed.

In the evaluate-and-die model, when the parent requires the value of a closure which it has

sparked a child to evaluate, the parent simply evaluates the closure just as if it had never

created the child. There are then three cases to consider:

� The child has completed its work, and the closure is now in normal form. In this case the

parent's evaluation is rather fast, since it degenerates to a fetch of the value.

� The child is currently evaluating the closure. In this case the parent is blocked, and

reawakened when the child completes evaluation. Upon reawakening the parent sees the

closure in its normal form, and continues as in the previous case.

� The child has not started work yet. In this case there is no point in blocking the parent,

and it can proceed to evaluate the closure. The child thread is still in the thread pool, but

it has become an orphan, and can be discarded.

The evaluate-and-die model is the one we use in GRIP, for two main reasons. Firstly, blocking

only occurs when the parent and child actually collide. In all other cases, the parent's execution

continues unhindered without any context-switching overhead. In e�ect, the granularity has

been dynamically increased by absorbing the child into the parent.

Secondly, since the parent will evaluate the sparked closure later, it is legitimate for the run-

time system to discard sparks altogether. This opens up a very useful opportunity for load

management, as we discuss in Section 5.1.

This concludes our overview of parallel graph reduction. Other useful references on the subject

are [Eek88, LKI89, Gol88]. We now turn our attention to the GRIP architecture.

3 Architectural overview of the GRIP system
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Figure 1: A GRIP board
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GRIP consists of up to 20 printed circuit boards, each of which comprises up to four processors,

one Intelligent Memory Unit (IMU) [JCSH87], and a communication subsystem (see Figure 1).

The boards are interconnected using a fast packet-switched bus [Pey86], and the whole machine

is attached to a Unix host. A bus was chosen speci�cally to make the locality issue less pressing.

GRIP still allows us to study locality, but does not require us to solve the locality problem

before being able to produce a convincingly fast implementation. Communication between

components on the same board is marginally faster than between components on di�erent boards,

but otherwise no di�erence in communication protocol is perceived by either the sender or

recipient.

Each PE consists of a M68020 CPU, a 
oating-point coprocessor, and 1 Mbyte of private memory

which is inaccessible to other processors.

The IMUs collectively constitute the global address space, and hold the graph. They each

contain 1M words of 40 bits, together with a microprogrammable data engine. The microcode

interprets incoming requests from the bus, services them and dispatches a reply to the sender.

In this way, the IMUs can support a rich variety of memory operations, rather than the simple

READ and WRITE operations supported by conventional memories.

The following range of operations is supported by our current microcode:

� Variable-sized heap objects may be allocated and initialised.

� Garbage collection is performed autonomously by the IMUs in parallel with graph reduc-

tion, using a variant of Baker's real-time collector [Bak78].

� Each IMU maintains a pool of executable threads. Idle processors poll the IMUs in search

of these threads.

� Synchronised access to heap objects is supported. Heap objects are divided into two

classes: evaluated and unevaluated. A lock bit is associated with each unevaluated object,

which is set when the object is �rst fetched. Any subsequent attempt to fetch it is refused,

and a descriptor for the fetching thread is automatically attached to the object.

When the object is overwritten with its evaluated form (using another IMU operation),

any thread descriptors attached to the object are automatically put in the thread pool by

the IMU.

The IMUs are the most innovative feature of the GRIP architecture, o�ering a fast implemen-

tation of low-level memory operations with considerable 
exibility. A separate project, called

BRAVE, involves writing di�erent microcode for the IMUs to support Prolog on the same hard-

ware base [RK90].

The communications system and IMUs are quite fast. For example, it takes about 12�s for a

one-word packet (eg a simple memory read) to be prepared by the PE, sent to an IMU, processed

by the IMU (a few dozen microinstructions in this experiment), returned to the PE, and read

by the PE. Of this 12�s, most is spent by the PE code executed in the test, rather than in the

communication latency or IMU processing time.
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4 Parallel graph reduction on GRIP

In this section we describe how we map the requirements of parallel graph reduction onto the

resources provided by the GRIP hardware.

We start from the belief that parallel graph reduction will only be competitive if it can take

advantage of all the compiler technology that has been developed for sequential graph-reduction

implementations [Pey87]. Our intention is that, provided a thread does not refer to remote

closures, it should be executed exactly as on a sequential system, including memory allocation

and garbage collection.

We achieve this goal on GRIP in the following way (see Figure 2). The IMUs together hold the

global heap, which is accessible to all PEs. A �xed part of the address space is supported by

each IMU. In addition, each PE uses its private memory as a local heap, accessible only to that

PE, in which it allocates new closures and caches copies of global closures. Each processor also

holds a complete copy of the code for the program in its private memory.

We ensure that there are no pointers into the local heap from outside the processor, so it can

be garbage-collected completely independently of the rest of the system. In contrast, when the

IMUs run out of memory, the entire system is synchronised and global garbage collection is

performed. Global garbage collections occur much less frequently than local garbage collections

(by a factor of 100 or more).
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Many closures are allocated, used, and garbage-collected without ever being copied into the

global heap. In e�ect, local garbage collections recycle short-term \litter", while global garbage

collection is required to recover data which has been shared. This e�ect is similar to that

of a generational storage management system with just two levels, with two main di�erences.

Firstly, the processor only has direct access to local-heap objects; global-heap objects are made

accessible by caching a copy of them in the local heap. Secondly, closures are 
ushed into global

memory for reasons other than increasing age, as we now discuss.

4.1 Moving closures between local and global heaps

When a processor needs a non-local closure, it fetches it from the appropriate IMU, and caches

a copy in its local heap

2

. In the other direction, there are three reasons why a processor may

decide to move a closure from local into global memory:

Making threads global. Each processor maintains a private thread pool of threads which it

has sparked. Each such thread is just a pointer to a closure whose value will later be

required. If the system load is low enough, it exports part of this pool to an IMU, remem-

bering again to move into global memory the entire subgraph thereby made accessible.

Again, the cost is a necessary one: threads which are being made public must be moved

into a publicly visible place.

Nevertheless, this cost is only incurred when the system load is low. When the system �lls

up with threads, each processor simply runs locally.

Updating non-local closures. When a processor completes evaluation of a closure, it updates

it with the evaluated head normal form. If the closure is a copy of a global one, the PE

must also update the global copy. This is relatively expensive because, in order to maintain

the invariant that there are no external pointers into a processor's private memory, the

entire subgraph accessible from the updated closure has to be moved into global memory

(at least, those parts which are not already there). This process is called 
ushing the

subgraph.

Shortage of local heap space. When the local heap becomes full, extra space can be made

in two ways. First, any local objects which are copies of global ones can be discarded; they

will be re-fetched if they are needed again. Second, local objects which are not copies of

global ones can be 
ushed to global memory and then discarded. Thus the system fails

through memory exhausion only when the global heap becomes full.

Since 
ushing is expensive, it is clearly desirable to avoid performing sparks and updates when-

ever possible.

So far as sparks are concerned, a major topic of this paper is the avoidance of unnecessary sparks

(Section 5.1).

Turning to updates, the Spineless Tagless G-machine (in common with some other abstract

machines) allows the compiler to express on a case-by-case basis whether a closure requires to

be updated. In particular, an update is unnecessary if the closure being updated is not shared.

2

The fetch latency is such that it is not worth the overhead of context-switching while awaiting the result.
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While this is a dynamic property of the graph, it is possible to derive an approximation to it at

compile time. Two approaches look promising. Firstly, a static analysis can be made to detect

sharing. This has the advantage of not requiring any changes to the program, but it is generally

defeated by data structures. For example, even if a pair is not itself shared, its components may

be when they are extracted somewhere else in the program.

A complementary new approach is based on linear type systems [Wad90, Abr90], whereby the

type system of the program is used to express some of its sharing properties. Most proposals

use a linear type system to avoid garbage collection (since an unshared object can be recovered

immediately after its �rst use) [Wak90], but update avoidance looks like another promising

application.

4.2 Coherence

Since each PE's local heap acts as a cache, containing copies of global closures, it is natural

to ask how the thorny problem of multiprocessor cache coherence is dealt with. The answer is

rather illuminating: the cache coherence problem does not arise in a parallel graph reduction

system! There are two cases to consider:

� If a global closure is in head normal form, then it is immutable, and hence can freely be

copied by as many PEs as wish to do so.

� If a global closure is not in head normal form, then the �rst to fetch it will lock it, and

subsequent attempts to access it will be blocked, until the �rst PE updates it with its head

normal form.

It follows immediately that cache incoherence cannot arise. This considerable architectural

bene�t derives directly from the declarative semantics of functional languages. The absence of

side e�ects leads to a reduction of hardware cost, and an increase in performance, of the storage

hierachy management system.

4.3 How it works

In this section we sketch how the two-level heap system is implemented on GRIP, focussing

especially on the \�t" between it and the evaluation model used by the Spineless Tagless G-

machine. No hardware support is required.

Each closure contains the following �elds (Figure 3):

� Its code pointer.

� The address of the global closure of which it is a copy. If the closure has been locally

allocated, and has no global counterpart, this �eld is zero.

� Zero or more �elds for the free variables of the closure, each of which may or may not be

a pointer.
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Code for closure

‘

Code

Figure 3: Accessing garbage-collection code from a closure

4.3.1 Fetching closures from the global heap

A potential source of overhead in the two-level heap is the need for the PE to distinguish

between global and local pointers. It would indeed be a serious problem if, whenever the PE

manipulated a pointer it had �rst to test a bit (say) to discover whether it was locally accessible

or not! To explain how we avoid this cost, we digress for a moment to discuss the Spineless

Tagless G-machine's evaluation model.

Suppose the value of closure is required. For example, the append function scrutinises its �rst

argument to see if it is an empty list or a cons cell. If the closure is not yet evaluated it must

be evaluated before being scrutinised.

This could be achieved by providing a 
ag on each closure to indicate whether it is in head

normal form, and testing the 
ag just before the scrutinising code. Instead, we adopt the

following convention: a closure is always entered before being scrutinised. (Recall that entering

a closure amounts to loading a pointer to it into an environment register and jumping to its

code.) If the closure is already evaluated, its code will simply be a return instruction, which

will resume the scrutinising code. If not, its code will perform the evaluation, and return to the

scrutinising code only when this is complete.

The advantage of this convention is that we can now add other special cases for free

3

. For

example, when a closure is updated with its head normal form, what actually happens is that it

is overwritten with an indirection to a closure representing the head normal form, which might

be larger than the original closure

4

. No test need be made for an indirection, however, when

scrutinising a closure, because when an indirection is entered, it simply enters the closure to

3

As always, the term \for free" means \already paid for", but in this case the cost is fully justi�ed!

4

There are a number of special cases an optimisations which allow the original closure to be overwritten in

place when it is certain that there is room to do so, but we won't disuss that further here.
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which it points.

We are now ready to return to the question of distinguishing local from global pointers. The

solution is now pretty obvious: use another form of indirection. Speci�cally, a pointer to a

global closure is represented by a pointer to a local closure, whose global address �eld points to

the object, and whose code is called FETCHME. When a FETCHME closure is entered, the

FETCHME code copies the appropriate closure from global memory into the local heap, and

updates the FETCHME closure with an (ordinary) indirection to the new closure. Any global

pointers within the new closure are replaced with local pointers to new FETCHME closures.

In this way, closures are fetched lazily from global memory as and when required. Importantly,

in the common case of local graph manipulation, it imposes no overhead at all.

This scheme suggests an interesting question: are graphs fetched as graphs, or are they unravelled

as trees? Notice that the only issue here is saving (local) heap space, and communications

bandwidth for the redundant fetches. There is no danger of duplicating computations in the

original program, because of the coherence property mentioned above: only head-normal-form

closures can be duplicated. It is easy enough to ensure that graphs remain as graphs, by having

a hash table mapping global addresses onto local ones, but there is some cost associated with

this. At present we have not implemented such a hash table, so graphs are unravelled. We plan

to measure the impact of adding a hash table in due course.

4.3.2 Local garbage collection

Local garbage collection is performed using a conventional two-space copying collector. Its only

unusual feature is the use it makes of precompiled code rather than interpretation.

A copying collector performs two operations on each object: it evacuates it from from-space

into to-space, and it scavenges each object in to-space, which amounts to evacuating all the

objects to which it points. We implement these operations by placing a table of code pointers

immediately before the code pointed to by the closure (Figure 3). Two particular entries in this

table point to code for evacuating and scavenging the closure. Since they are speci�c to the

particular kind of closure, they know its exact structure, so they do not need to interpret layout

information.

Furthermore, various special cases can be dealt with uniformly. For example, indirection closures

have special-purpose evacuation code which \shorts them out" by instead evacuating the object

to which they point. Similarly, forwarding pointers, which overwrite evacuated objects in from-

space, have special-purpose code to return the address of the already-evacuated object. In short,

the garbage collector performs almost no conditional tests, which makes it perform well.

4.3.3 Global garbage collection

For global garbage collection the IMUs also implement a two-space copying collector. They need

to be told by the PEs the roots from which to collect. The PEs oblige by performing a local

garbage collection, and sending the global-address �eld of every live closure (discovered during

scavenging) to the appropriate IMU. The IMU responds with a new global address, with which
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the PE updates closure's global-address �eld.

The main interest in the global garbage collection algorithm is that it requires a distributed

termination algorithm to detect completion. Even a single in-
ight message from a PE to an

IMU, telling it of a live closure, can give rise to an unbounded amount of further work. We use

an algorithm derived from one designed by Dijkstra [DFG85].

4.4 Scheduling

In addition to managing the global heap, each IMU holds two pools of runnable threads:

� A thread is added to the sparked thread pool when a processor sends a spark message to the

IMU, giving the address of a (global) closure whose value will subsequently be required.

In fact, before doing so the IMU checks whether the closure referred to is in head normal

form already, or is locked (indicating that it is under evaluation). In both these cases the

thread is redundant, so it is discarded. Otherwise, it is added to the sparked thread pool.

� An thread is added to the unblocked thread pool when a closure is updated on which one

or more threads are blocked. The blocked threads now become runnable, so are added to

the unblocked thread pool. Unlike sparks, these threads must not be discarded.

When a PE runs out of local threads, it polls the IMUs until it �nds some new ones to do. (It

starts this process with the IMU on its own board, to enhance locality.)

The IMU returns an unblocked thread in preference to a sparked thread, if it has any. Unblocked

threads represent partially-completed activities, which are best completed before starting new

ones. In fact, the unblocked pool seldom seems to become large.

We make the usual assumption of conservative parallelism. That is, we assume that the value

of sparked threads will eventually be required to produce the result of the program, and that

threads are not wantonly sparked just on the o�-chance that their value will prove useful. This

assumption means that, to �rst order, it does not matter which thread from the pool we choose

to execute, because all are required to get the �nal result. This is not the whole story, as we

discuss in Section 5.2.

If non-essential (speculative) threads are present, the scheduler gets much more complicated. A

priority system is required to make sure that progress is made on the non-speculative threads,

and (harder still) some means of changing the priority of threads is required. (Thread priorities

change when they become garbage (priority zero), or change from being speculative to being

essential.)

Nevertheless, the conservative-parallelism constraint has a serious impact on expressiveness.

It rules out, for example, programs which rely on parallel search which terminates with the

�rst successful solution. For this reason, we plan eventually to relax this constraint in some

carefully-controlled ways.
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4.5 System management

As well as performing graph reduction, there are a number of system managment functions

which GRIP must perform. As a result, each PE runs a small multitasking operating system

called GLOS (GRIP Lightweight Operating System).

Each instance of GLOS supports one or more tasks. Most PEs run exactly one task, which

performs graph reduction, but some run system management tasks which have a relatively low

duty cycle, and therefore do not merit a processor to themselves. Speci�cally, there are the

following system management tasks:

� The Host Interface task is the medium through which the host loads new tasks into the

system and initiates them.

� The functional program is controlled by the System Management task, which coordinates

the activities of the following three tasks, and the reduction task on each PE.

� The Garbage Collection task is responsible for the synchronisation of global garbage col-

lection.

� The Load Management task controls global strategy for sparking and scheduling. These

strategies are discussed in more details below.

� The Statistics task gathers statistics about the running of the functional program.

5 Sparking and scheduling strategies

In this paper we focus on two particular aspects of resource management, namely the decisions

about when to spark a thread, and which thread to schedule. This section outlines the issues

involved, while the following section describes the experiments we have performed.

5.1 When to spark a thread

The control of spark generation is critical: too few sparks will fail to exploit the parallelism

o�ered by the machine, while too many will saturate the machine with many small threads.

In the latter case, not only is the granularity of each thread small, but there is also a serious

communications overhead, as the sparked threads have to be 
ushed into global memory so

that they can be made visible to other processors. Finally, there is a danger that the machine's

memory will be swamped with half-completed computations, thus preventing it completing any

of them. Throttling the system by limiting the number of sparks generated may prove essential.

This is an aspect which has so far received little attention | existing work (e.g. [Sar87, SW89])

has focused mainly on load sharing rather than on thread creation. A notable exception is the

MIT work on k-bounded loops [CA88], which restricts the number of concurrent iterations of a

particular loop. This approach does not work in the more general setting of arbitrary recursive

parallel programs, and we have tried a more general approach.
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There are two times at which spark generation decisions can be made:

At compile time. All the opportunities for sparking are planted by the compiler. When the

compiler �nds a point where a closure can be sparked, it plants a call to the runtime

system, passing a pointer to the closure.

A clever compiler with a strictness analyser might be able to insert sparks into an unanno-

tated source program, but for the present we content ourselves with inserting annotations

manually. So far our experience is that this is not hard to do, and not many are required.

At run time. We recall from Section 2 that the runtime system is free to discard sparks.

Of course this risks losing parallelism, but it does provide an opportunity to regulate

sparking based on the dynamic properties of the program running on a particular machine

con�guration, which is very hard to predict statically.

From now on we focus on runtime strategies for spark regulation. The goal is to have as few

sparks as possible, consistent with keeping all the processors busy. On any machine, fewer sparks

means larger threads and less communication. On GRIP, fewer sparks also means less 
ushing.

So far we have considered four main strategies.

Unregulated. Plenty of spark annotations in the source code, and no runtime regulation at

all.

Cuto�. When the total pool of sparks exceeds a certain level, there is (usually) no point in

creating further tasks; indeed, as pointed out above, there are signi�cant costs associated

with so doing. The Cuto� strategy is implemented by the Load Manager task, which

regularly monitors the total size of the global spark pool, and issues a spark rate to each

PE. This spark rate gives the number of sparks the PE is allowed to create in each clock

tick. At its crudest, a spark rate of zero switches o� all sparking, while one of in�nity

removes all spark restrictions.

Our present system uses two parameters to control the Load Manager. When the size of

the spark pool increases to exceed the spark cuto� level, the Load Manager tells all PEs

to stop sparking (ie discard all spark opportunities). When the pool size decreases again

below the spark switch-on level, it tells them to start sparking again.

The intended e�ect to control the size of the spark pool to some speci�ed level. Having

two levels gives some hysteresis to avoid lots of 
ipping between the two states. So far,

though, we have only made measurements with the two levels equal.

Delayed spawning. A common bad scenario is when a parent thread sparks a child, and then

turns out to require the value of the child almost immediately. A typical example is the

expression e

1

+ e

2

: suppose the parent sparks e

1

, and then discovers that e

2

is either

already in normal form, or very quick to evaluate. The parent now returns to e

1

, and may

well get blocked if another processor has started evaluating e

1

in parallel. Even if no other

processor is evaluating it, a considerable cost has been paid to 
ush it into the global heap.

An idea which looks promising is to delay making the spark public for some �xed period.

Then, if the parent returns to it quickly it will never be 
ushed, but if the parent does have

lots of work to do, parallelism is not lost. Clearly the onset of parallel execution is delayed

somewhat, but this may well be a price worth paying. We have not yet implemented this

idea.

14



Hand tuning. For many programs it is possible to put more work into the annotations and

thereby get a much better granularity. For example, in a divide-and-conquer algorithm,

the programmer can cause sparks to happen only for the �rst n divisions (thus creating

2

n

threads), hence matching the number of threads created to the number of processors

available.

It would sad if it turned out that this was always necessary, but it does give a useful

baseline against which to measure the more automatic techniques.

5.2 Which thread to schedule

When an IMU is asked by a PE for a sparked thread, it has a choice of which of the threads in

its spark pool to return. The assumption of conservative parallelism means that the choice does

not matter \much", because all threads contribute to the �nal result. But it is possible that a

poor choice can degrade performance. For example, if all the theads are small except one large

one, it would be a mistake to schedule the large one last!

A beautiful paper by Eager et al shows how to derive bounds on how good or bad the scheduling

policy can be [EZL86]. They show that, under rather general assumptions, the worst case

approaches the optimum as the average parallelism in the problem increases. When the average

parallelism is equal to the number of processors, the worst case is only twice as bad as the

optimum schedule.

Notwithstanding these results, it has been known for some while that the choice of scheduling

policy has a signi�cant impact on the size of the spark pool [BS81, RS87, Wat89]. Speci�cally,

two strategies have been studied:

Return the most recently-sparked thread (LIFO). This strategy gives rise to a depth-

�rst exploration of the process tree, which tends to limit the growth of parallelism.

Return the least recently-sparked thread (FIFO). In contrast, threads sparked earlier

tend to correspond to larger computations, each of which itself contains more parallelism,

so the FIFO strategy tends to give rise to a more rapid growth of parallelism.

This suggests that a FIFO strategy is appropriate when there are few tasks in the pool, switching

to a LIFO strategy when the pool becomes fuller. In our system the Load Manager controls

whether the IMUs follow a LIFO or FIFO scheduling strategy, based on its measurement of the

overall load.

Somewhat surprisingly, in the absence of throttling, the choice of FIFO or LIFO strategy has

at most a marginal impact on GRIP. We �rst realised this as a result of Deschner's simulation

experiments [Des91], and then veri�ed it on GRIP as we report in Section 6.3 below. However,

these experiments do show that there is an interaction between LIFO/FIFO and other throttling

strategies.

The e�ect is easily explained. Previous researchers have worked (in e�ect) entirely with the no-

ti�cation model for thread synchronisation (Section 5.1). That is, a parent thread sparks several

children and then blocks awaiting their replies. This provides an opportunity to reschedule the
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processor running the parent. A LIFO strategy will tend to pick up one of the newly-sparked

children right away, while a FIFO strategy will pick up an older thread.

By contrast, GRIP's evaluate-and-die model for thread synchronisation ensures that the parent

thread will always execute one of the children itself, which e�ectively gives a LIFO strategy. The

FIFO/LIFO decision is only made by processors which have become idle through being blocked,

or completing a thread. Even so, the strategy does make some di�erence as we demonstrate

below.

5.3 Measuring system load

Both the Cuto� sparking strategy and the LIFO/FIFO scheduling strategy depend on mea-

surements of the overall system load made by the Load Manager. This measurement is rather

imperfect, for two main reasons:

� It is always somewhat out of date, since there is no hardware support for computing it.

� It is based on counting the number of threads in the spark pools, rather than their size.

Indeed, for many of them, by the time they are scheduled the closure to which they point

may already have been reduced to head normal form by some other thread, in which case

the spark has zero size

5

.

One of the things we want to learn from our experiments is how much these imperfections

matter. Is a crude load measurement good enough to deliver acceptable results?

6 Experimental Results

We have run a variety of experiments on GRIP. Previously we demonstrated absolute speedups

for GRIP compared with an equivalent Sun workstation [HP90]. Here we report on results

obtained using two of the simpler tests: naive Fibonnaci and a bitonic merge sort. The Fibonnaci

program uses a regular divide-and-conquer algorithm producing a large number of extremely �ne-

grained computations (tens or hundreds of thousands of threads in the typical case). It is thus

an e�ective \stress test" for our load-balancing strategies. Bitonic merge sort uses an irregular

divide-and-conquer algorithm to sort an array of values represented by a binary tree. It also

generates many �ne-grained threads, but these threads are rather larger than for Fibonacci.

[We have run GRIP on various more interesting programs than these two, and the �nal paper

will report on this data.]

The timings reported here were obtained from GRIP's internal clock, which has a resolution

of 1ms. Timings were taken from the start of reduction to the receipt of the �rst \kill" signal

by the system manager. Unless otherwise stated, all tests were run on an 18-PE GRIP with 7

IMUs.

5

This case can be detected by the IMU, which then simply discards the spark rather than returning it to a

PE.
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6.1 The spark cuto� policy

Our �rst experiment tests the e�ectiveness of the Cuto� sparking policy (see Section 5.1), by

varying the spark cuto� setting while keeping the spark rate constant. Figure 4 shows the

timing results obtained from the Bitonic merge sort example for a spark cuto� level varying

between 1 and 100000, at a constant spark rate of 15 sparks per PE per millisecond clock tick.

Clearly, the spark cuto� setting has little e�ect on the overall runtime for this example. Equally

clearly, there is a wide variation in the timings which results from a single cuto� value. This

is disappointing since we anticipated that the cuto� could be set heuristically to provide good,

consistent timings for a given application.
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Figure 4: Bitonic Merge Sort, Spark Rate = 15

Figure 5 gives more detailed picture of one particular run, with a spark cuto� of 100 sparks. The

upper graph shows the processor activity in three categories: reducing, idle, and communication

(reading and 
ushing). The lower graph shows how sparks are generated and consumed. The

solid line indicates the number of sparks in each time period; the dashed line shows the number

of sparks taken from the thread pool in the time period; and the dotted line shows the number

of blocked threads which are resumed.

There are oscillations in the reduction rate, and signi�cant variations in the sparking rate. The

large number of resumed threads indicates that many threads are blocked awaiting some result

to be computed, that is that the data inter-dependency is high.

We conclude that, in this case, the Load Manager is not responding su�ciently rapidly to changes

in the system load | it only samples the state of the system every 1ms. This is an important

result. We have a number of as-yet unimplemented ideas for improving the load management

policy to avoid this erratic behaviour. Firstly, each PE can keep a local pool of hundreds of

sparks (which are cheap, because have not been 
ushed). Secondly, the Load Manager can give
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Figure 5: Bitonic Merge Sort, Aggregate Activity and Spark Pro�les

each IMU a target thread pool size; each IMU can then negotiate with its local processors to


ush some of their local thread pool when necessary. What is clear is that control of the thread

pool size must be devolved more than at present.

6.2 Varying the spark rate

For our next experiment, we vary the spark rate while keeping the spark cuto� constant. Figure

6 shows the timings for a parallel Fibonacci program with a cuto� of 50. Although the curve is

not smooth, it is clear that low (< 10) and high (> 1000) spark rates are both detrimental to

the overall runtime performance, with the best timings occurring at spark rates between these

values. This is a result we expect: at low spark rates, starvation is likely; conversely, at high

spark rates, congestion will occur.

6.3 LIFO/FIFO scheduling strategy

Figure 7 compares a �xed LIFO thread pool strategy, against a �xed FIFO thread pool strategy

with no spark cuto�. This demonstrates the interesting e�ect discussed in Section 5.2: GRIP

is insensitive to the thread pool strategy in use. In fact, pure LIFO scheduling is marginally

less e�ective than pure FIFO scheduling for all spark rates, with the spark cuto� set at in�nity.

This result is an artefact of GRIP's evaluate-and-die synchronisation policy, discussed earlier.

Interestingly, the LIFO/FIFO decision and seems to be much more important in conjunction

with the spark cuto� policy. Figure 8 shows the same program with a spark cuto� level of

1000 sparks. The LIFO strategy shows far less variation than the FIFO strategy, and is also

consistently faster (and considerably faster than either policy without a cuto� at all). This is

consistent with results from the literature on data
ow machines.

18



0

2

4

6

8

10

12

1 10 100 1000 10000

T
i
m
e
 
(
s
)

Spark Rate

FIFO

Figure 6: Fibonacci, Spark Cuto� = 50

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000

T
i
m
e
 
(
s
)

Spark Rate

LIFO
FIFO

Figure 7: Fibonacci, LIFO v. FIFO, Cuto� = 1
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Figure 8: Fibonacci, LIFO v. FIFO, Cuto� = 1000

6.4 Varying the number of processors

In Figure 9, we demonstrate the speedup obtained as we add PEs, for the Fibonacci pro-

gram. As mentioned earlier, because the granularity is very �ne this is a real stress test for an

automatically-scheduled system.

We plot not only the total times, but also the absolute times spent in reduction and communi-

cation, together with the idle time. This gives a measure of the e�ectiveness of our throttling

strategy. We observe that the PEs spend approximately 65% of their time reducing, 25% commu-

nicating with the IMUs, and <10% idle. Garbage collection (not shown on this graph) accounts

for 2-3% of the PEs' time. Overall, the 18-PE system is 9 times faster than a sequential version

of the program.

Figure 10 gives a more detailed look at a single run, showing the processor activity and spark

pro�les. Overall, about 64% of the PEs' time is spent reducing, 25% communicating (read-

ing/
ushing) and 9% is spent idle. The remainder (2%) is garbage collection time. It is possible

to observe a correlation between the aggregate spark rate and the communication time, as we

would expect. The peaks of spark usage probably correspond to situations where many small

threads are executed in a short space of time. The drops in the number of sparks generated,

which occur simultaneously with these peaks, supports this hypothesis (each thread used is

generating very few new sparks).

Finally, Figure 11 shows yet more detail from the same run, by giving the activity graphs

for four of the individual PEs. Loss of reduction time is accounted for almost entirely by an

increase in communication. From these results and those cited earlier it is clear that signi�cant

performance improvements can only be achieved by concentrating on reducing communication

overhead, either by more restrictive throttling, as with the local scheme we tried previously
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[HP90], or by using a scheme where sparked closures are 
ushed to global memory only on

demand as suggested in Section 6.1.
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Figure 11: Fibonacci, Spark Cuto� = 50, Reduction Pro�les

These results are encouraging. We are lose only a factor of two (compared with perfect linear

speedup) by handing over almost complete control to the system, and accepting very small

threads. Our work is still at an early stage, and we are con�dent that we can improve this

�gure by tuning the scheduling heuristics, still without requiring programmer intervention. A

programmer who wanted to improve matters still further could take more care not to spark

small tasks. It remains to be seen whether we can reprodue these results for other programs.
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6.5 Varying the number of IMUs

Another interesting question is how sensitive the system is to the number of IMUs. Figure

12 shows that varying the number of IMUs in the system has little e�ect on overall runtime

performance. Response is slightly better if the number of IMUs is increased (probably re
ecting

decreased packet queuing), but this di�erence does not appear to be signi�cant. This is a
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Figure 12: Bitonic Merge Sort, Spark Rate = 15, Spark Cuto� = 25

rather satisfactory result. Even one IMU seems quite capable of servicing all 18 PEs without

signi�cantly holding up the system. The IMUs seem unlikely to become a bottleneck.

7 Conclusions

We have presented the results of running several experiments on the GRIP parallel reducer, a

purpose-built machine designed to execute functional programs e�ciently. Our results lead us

to draw three main conclusions:

� It is possible to execute at least some �ne-grained programs on GRIP, without incurring

more than a small constant factor overhead in performance. (Indeed, such a program

may have better performance than a badly-partitioned coarse-grained version of the same

algorithm.)

� For GRIP, there is no signi�cant di�erence between LIFO and FIFO scheduling if no

sparks are discarded. However, LIFO scheduling often gives better performance when a

spark-discarding load manager is used.
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� To be e�ective, the load management system must respond more rapidly to important

changes in the system (perhaps even anticipating these changes and taking appropriate

preemptive action).

8 Further Work

Several strands remain to be explored. Most obviously, the results presented here consider

only trivial programs. We believe that experiments with larger programs, such as the partial

evaluator and the theorem prover we have compiled for GRIP, will support these results, but

further rigorous experimentation is needed.

Our results have highlighted the primary de�ciency of the current load manager: its instability

under rapidly changing conditions. One obvious solution is to devolve certain load management

tasks from the load manager to the IMUs. If the IMUs are each provided with a target thread

pool size, then they may actively reject unwanted sparks, or stimulate the PEs to produce more

sparks if the thread pool is empty. We are reluctant to simply increase the frequency with which

the load manager runs, since this could lead to bus saturation or other performance bugs if not

carefully controlled.

Our results also show in a graphic way the overhead associated with 
ushing closures to memory

when they are sparked. By maintaining a pool of potential sparks locally in each PE, it may

be possible to avoid 
ushing closures unless some other PE is capable of evaluating the closure.

This local pool might even be fetched preemptively by an IMU if the size of its thread pool fell

below some threshold.

Although we have implemented hysteresis in the spark cuto� policy in our system (Section 5.1,

we have not yet conducted signi�cant experiments using this mechanism (principally because

the slackness in the load management loop would make the e�ect of hysteresis unpredictable).

We intend to experiment with this mechanism once we have improved the feedback loop in the

load manager.
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