guages and Computer Architecture, Copenhagen, June 9-11, 1993, pages
136-145. ACM Press, 1993.

An Operational Semantics for I/O in a Lazy Functional Language

Andrew D. Gordon
Programming Methodology Group,
Department of Computer Science,
Chalmers University of Technology,

412 96 Gothenburg, Sweden.
gordon@cs.chalmers.se

Abstract

I/O mechanisms are needed if functional languages are to be
suitable for general purpose programming and several imple-
mentations exist. But little is known about semantic meth-
ods for specifying and proving properties of lazy functional
programs engaged in I/O. As a step towards formal methods
of reasoning about realistic I/O we investigate three widely
implemented mechanisms in the setting of teletype I/O:
synchronised-stream (primitive in Haskell), continuation-
passing (derived in Haskell) and Landin-stream I/O (where
programs map an input stream to an output stream of char-
acters). Using methods from Milner’s CCS we give a la-
belled transition semantics for the three mechanisms. We
adopt bisimulation equivalence as equality on programs en-
gaged in I/O and give functions to map between the three
kinds of I/O. The main result is the first formal proof of
semantic equivalence of the three mechanisms, generalising
an informal argument of the Haskell committee.

1 Introduction and motivation

In the absence of formal semantics and of ways to prove
program properties, any mechanism for input/output (I/0O)
in a lazy functional language is bound to be contentious.

The tension is plain. On the one hand, lazy functional
languages are advocated on the basis of their simple se-
mantics and the ease with which program properties can
be proved. On the other, I/O is concerned with state and
communication and hence does not apparently fit into the
framework of functional semantics and proof techniques used
with lazy functional languages.

The tension is immediate. Several different I/O mech-
anisms have been implemented for lazy languages such as
Haskell, but virtually no work has been done to develop
semantic methods to cope with I/O. Given these mecha-
nisms, functional programs are capable of accessing com-
plex operating system and window system facilities. Such
mechanisms are needed to make general purpose program-
ming feasible in a lazy language. But it is unconvincing to
advocate a functional language on the basis both of its suit-
ability for formal methods and of the expressiveness of its

I/O, unless the I/O mechanism can be well integrated into
the language’s semantics.

As a response to this tension, we advocate operational
semantics and bisimulation equivalence as the basis of a sim-
ple yet powerful theory of functional programming and I/0O.
We show in this paper how methods from the CCS theory of
concurrency can be applied to specify and prove properties
of functional programs engaged in I/0O.

We develop here an operational semantics for functional
I/O that was first used by Holmstrém in his semantics of
PFL [9]. Holmstrom used a continuation-passing style to
embed CCS-like operations for communication and concur-
rency in a functional language. Starting with an evaluation
relation for the host language, he defined the meaning of the
embedded operations in the style of a labelled transition sys-
tem, as used in CCS [18]. A labelled transition system is a
way to formalise the idea that an agent (such as a functional
program engaged in I/O) can perform an action (such as in-
put or output of a character) and then become a successor
agent. This style of semantics is attractive for at least three
reasons. First, it can model a wide variety of nondetermin-
istic and concurrent computation: witness the CCS school
of concurrency theory. Second, the evaluation relation for
the host language is unmodified; any property of the host
language without I/O will still hold after the I/O mecha-
nism has been added. Third, the method complements an
operational language definition such as that of SML [19].

We go further than Holmstrém by developing an equa-
tional theory of functional I/O based on labelled transitions.
In the context of teletype I/O (input from a keyboard, out-
put to a printer) we give an operational semantics for three
I/O mechanisms: Landin-stream, synchronised-strearn and
continuation-passing 1/O. We adopt bisimulation equiva-
lence from CCS as equality on programs engaged in I/O.
Bisimilarity is an equivalence on agents induced by their
operational behaviour: two agents are bisimilar iff when-
ever one can perform an action, the other can too such that
their two successors are bisimilar. We verify that mappings
between these I/O mechanisms are bisimulation-preserving.
Those between Landin-stream and continuation-passing I/0
are original, while the mappings between synchronised-
stream and continuation-passing I/O were discovered during
the design of Haskell [12, 11], but have not hitherto been
verified formally.

The method presented here is not immediately applica-
ble to side-effecting 1/O mechanisms, such as the “pseudo
functions” read and write in LISP 1.5 [17] and their descen-
dants in say SML. Programmers using lazy languages are

ot == X (type variable)
| Int (natural numbers)
| (o1->02) (functions)
| (algebraic datatype)
p = (dataX = (algebraic datatype,
dei | -+ | dey) X bound in each dc;,
constructors distinct)
dc == (Koi1- -om) (data-clause, m > 0)
c = mn (literal, n € N)
(\z:0->e) (abstraction, x bound in e)
(KFeip - em) (constructor application)
e = & (value variable)
c (canonical term)
(e1e2) (arithmetic,
SZS {+)_) X):)<})
(ere2) (call-by-name application)
(e1e2) (call-by-value application)
rec’ (x.e) (recursion, z bound in e)
(caset e of (case-term)
cer |-+ | ccy)
cc = (K->e) (case-clause)

Figure 1: Syntax of H

encouraged not to concern themselves with evaluation or-
der, which can be left to the implementation, and to use the
property that expressions simply denote values when rea-
soning about programs. Hence side-effecting I/O is unsuit-
able for lazy languages: the programmer must be concerned
with evaluation order, expressions may denote sequences of
side-effects and established implementation techniques may
no longer be valid. This paper is concerned only with I/O
mechanisms for lazy languages; we leave the development of
a theory of side-effecting I/O as an important open problem.

2 71, a small functional language

In this section we define syntax, operational semantics and
contextual equality for a small functional language. # is
essentially a core fragment of Haskell; it would be impracti-
cal to work with the full language. The focus of this paper
is functional I/O and so H is treated here only briefly; full
details and proofs can be found elsewhere [7].

The syntax of H is given by a BNF grammar in Fig-
ure 1. Variables o and 7 range over types and variable X
over an infinite set of type variables. There is a type Int of
numbers, together with function types and algebraic types,
. Each algebraic type is a potentially-recursive sum-of-
products, specified by a list of data-clauses, dc;, each of
which contains a unique constructor, K, and a list of ar-
gument types. For instance, given a type o, the algebraic
type of o-lists is simply (data X = Nil | Conso X). As in
Haskell we call this type [o]. Type variables are used to
express recursion; X is bound by the data construct and
occurs free in the Cons data-clause. We can define Bool to
be the algebraic type (data X = False | True). Algebraic
types of essentially this form are found in Haskell and SML.

Let variable z range over an infinite set of (term) vari-
ables, e range over ‘H terms, and c range over those terms
that are canonical. Intuitively, canonical terms represent
values, the outcomes of computation. The term syntax
departs from Haskell in three significant ways. First, a

call-by-value function application, (e1 e2), is included; call-
by-value is not expressible in Haskell but is frequently in-
cluded in lazy language implementations.' Call-by-value is
included mainly because it was used in certain programs in
the author’s dissertation [7], but also for technical reasons
explained in the penultimate paragraph of this section. Sec-
ond, recursive functions or data are constructed using a re-
cursion operator, rec(x. e), rather than recursion equations.
Finally, a case-term in # simply discriminates between the
different constructors of an algebraic type. The case-clauses
must exactly match the data-clauses in the algebraic type;
there is no general pattern-matching as in Haskell. For in-
stance, here is the null-list predicate:

\xs -> case xs of Nil -> True | Cons ->(\x -> \xs ->False).

We adopt some standard syntactic conventions. We iden-
tify syntax up to alpha-conversion; write e; = ey iff terms
e; and ey are syntactically identical up to systematic re-
naming of bound variables. Write e;{€2/z} for the outcome
of subtituting es for each free occurrence of z in ej, with
change of bound variables in e; as needed to avoid variable
capture. A contezt, C, is a “term with one or more holes”;
write C[e] for the term obtained by filling in each hole in C
with term e.

H can be given a monomorphic type system. Let an en-
vironment, I, be a finite map from variables to closed types.
The type system of H is a structurally defined type assign-
ment relation, consisting of sentences of the form I' e :: 7,
where 7 is a closed type assigned to term e given environ-
ment I'. It is straightforward to write down structural rules
to define this relation [7]; here we omit the details. Terms
bear sufficient type information to make type assignments
unique.

Let a program be a closed well-typed term. The op-
erational semantics of H is an evaluation relation, written
e = ¢, where e is a program and c is a canonical program,
given inductively by the evaluation rules in Figure 2. It
is convenient in Figure 2 to let variable ¢ range over both
numbers N and truth-values {7, F'}, and to define T’ and F
to mean True and False respectively. Hence one can infer
1 =0 = False, for instance.

Evaluation is deterministic and is lazy in the sense that
algebraic type constructors do not evaluate their arguments
(as in Haskell, but contrary to SML, say). It is conventional
to say that a program e converges and to write e|} to mean
(3c.e = c). Conversely, say that program e diverges and
write ef} to mean that e does not converge. It is convenient
to have a named divergent program. At each closed type o,
let L7 be the term rec?(z.z); we have that L.

We follow Plotkin’s seminal study of the semantics of the
typed higher-order functional language PCF [24], and adopt
contextual equality as the equality on H terms:

Definition 1 Contextual order, C, is the relation such that
e C e iff for any context C such that Cle] and Cle] are
programs of type Int, Cle]|} implies C[e']|}.

Contextual equality, =, is the relation such that e = &'
iffeCe ande Ce. [|

For the purpose of this paper, to reason about functional
I/0O specified operationally, it is essential that both contex-
tual order and equality are operationally adequate, where

I For instance, (e1 "ea) is expressible as (strict e; ea) in Mark Jones’
Gofer system.

c=cC

elié_l

(61@62) =0 Dl

ey = Lo e{rec(x-e)/x} =c

rec(z.e) = ¢

e1 = (\x->e3) es{e2x/r} = ¢

(e1e2) = ¢

e1 = (\z->e3) ez = C» es{®2fz} = c

(e1”e2) = ¢

e=(K"e; - en) cci=(K->e') (e'er-em)=c

(caseeofcci | -+ | ccp) = c

Figure 2: Operational semantics of H

a relation R is operationally adequate when it possesses the
following properties:

e If e = c then cRe.
o effiff eRL.
e el iff for some canonical c, cRe.

For the purpose of supporting established techniques for
reasoning about functional programs [2], it is essential that
contextual equality and order have a range of properties,
including those in the following informal summary:

e Congruence, that contextual order is a substitutive
preorder and contextual equality is a substitutive
equivalence relation;

e An exhaustion principle, Strachey’s law, that for any
program e there is an equal canonical program, or else
that e equals L;

e Beta and eta laws analogous to those for untyped A-
calculus;

e Strictness laws indicating how L propagates through
prograns;

e Canonical exclusivity, that canonical programs c and
¢’ are equal just when the outermost syntactic con-
structor of ¢ and its immediate subterms are respec-
tively equal to those of c’.

e Structural induction principles for algebraic types.

For a detailed axiomatisation of such properties for Miranda
see Thompson’s paper [29], and Bird and Wadler’s book for
a good introduction to proofs of functional program prop-
erties. Note that monotonicity of functions, that e; C e
implies fe; C fey, follows from the substitutivity of con-
textual order. It is appropriate to refer to the exhaustion
principle above as Strachey’s law, as it formalises his prin-
ciple that the “characteristic feature of an expression is its
value” [28]. Side-effecting I/O in the style of SML, say, pre-
cludes Strachey’s law; a program with a side-effect equals
neither L nor any canonical program. Strachey’s law is one
aspect of what is generally called “referential transparency”
[26].

For the remainder of this paper we will use Haskell no-
tation to denote H types and programs. One might view
H as a core functional language of about the same level as
FLIC [22]; translations from the level of Haskell to FLIC or
H are well-known. We will usually omit type information
from terms. We will reason about contextual equality in the
informal way exemplified by Bird and Wadler and implic-
itly by appeal to the properties stated above. Statement
and proof of these properties can be found in the author’s
dissertation [7], where a recent result of Howe’s [10] is used
to develop Abramsky’s applicative bisirnulation [1], which is
an alternative and tractable characterisation of contextual
equality for H. In PCF and Haskell, applicative bisimula-
tion would be finer grained than contextual equality, but in
H the two equivalences coincide because of the presence of
call-by-value applications and case-terms [10]. The stan-
dard example is that applicative bisimulation distinguishes
1 and \x->_L. In H, these are contextually distinct too,
witness the context (\f->0)"[] (which produces a term of
type Int) but in PCF or Haskell (which have no call-by-value
applications) the two are contextually indistinguishable.

Of course, the properties above might also be proved via
domain-theoretic denotational semantics.

3 Semantics of three 1/O mechanisms

We adopt labelled transition systems from the theory of
CCS [18] to give semantics for Landin-stream, continuation-
passing and synchronised stream I/O. In each of the mech-
anisms there is a single ‘H type whose programs can be eze-
cuted to interact with the teletype. A program is ezecutable
iff it is of this type. For instance, executable programs us-
ing Landin-stream I/O are of the stream transformer type
[Char] ->[Char]. Let variables p and q range over exe-
cutable programs. We formalise the execution of programs
as a labelled transition system.

Definition 2 The set of actions, ranged over by «, is pro-
duced by the following grammar:

a == n (input character n € N)
n (output character n € N)

A labelled transition system is a family of binary relations

indexed by actions, {——| « is an action}, such that if p —
q then p and q are executable programs.

The intuitive meaning of transition p — q is that program
p can input the character n from the keyboard to become
program q. Similarly, the intuitive meaning of transition

p —= q is that program p can output the character n to
the printer to become program q. For the sake of simplicity,
define the type of characters, Char, to be Int.

We begin with a semantics of continuation-passing I/0
in §3.1. In §3.2 we introduce combinators for programming
both kinds of stream-based I/O and use them in §3.3 to give
semantics to synchronised-streams. In §3.4 we show that a
semantics of Landin-stream I/O cannot be based directly
on the operational semantics of H, essentially because we
cannot test whether a function examines the value of its
argument. Our solution to this problem is to add to H a
simple exception mechanism, in §3.5, to yield HX'. Finally,
in §3.6 we give a semantics for Landin-stream I/O based on

HX.

3.1 Continuation-passing 1/0

In continuation-passing I/0, the executable type is an alge-
braic type with a constructor corresponding to each kind of
expressible imperative activity. In the case of teletype I/O
we have:

data CPS = INPUT (Char -> CPS)
| OUTPUT Char CPS
| DONE

PFL [9] was the first functional language to take the
continuation-passing mechanism as primitive. In earlier
work, Karlsson programmed continuation-passing opera-
tions on top of a synchronised-stream mechanism [15]. A
similar datatype was used by Plotkin in the Pisa notes [25]
as semantics for side-effecting I/0. Several languages, such
as Perry’s Hope+C [21], use continuation-passing I/O. The
mechanism is so-called because of the similarity between the
argument to INPUT and continuations as used in denotational
semantics.
The intended meaning of CPS-programs is easily given.

e INPUT k is to mean “input a character n from the key-
board and then execute (kn).”

e OUTPUTnp is to mean “output character n to the
printer and then execute p.”

e DONE is to mean “terminate immediately.”

These intended meanings are reflected in the following
two rules, which together define a labelled transition system
for CPS-programs.

p = OUTPUT vq v=n

p =INPUT k

p—kn pi>q

3.2 Stream transformers

The two remaining I/O mechanisms, synchronised-stream
and Landin-stream I/O, are based on stream transformers.
A stream is a list type whose cons operation is lazy, such as
[o] in H. Stream transformers in H have the general type:

type ST inp out = [inp]l -> [out]

The idea is simple: a stream transformer maps a stream
of values of type inp into a stream of values of type out.
This mapping represents an interactive computing device
that consumes values of type inp and produces values of
type out. Intuitively, if the device has been offered the se-
quence of values ini, ..., in, for consumption, applying
the stream transformer to the stream (inj : ... : in, : 1)
yields a stream containing the sequence of values the device
can produce. The list cons operation, :, has to have lazy
semantics so that the partial list (iny : ... : in, : 1) does
not simply equal L. Implementations of stream-based I/O
[14] typically represent the undefined value at the end of a
partial list as a memory cell that can be instantiated to hold
the next input character and to point to a fresh undefined
value. Such a technique is intuitively correct, but we leave
open the question of how to verify formally that it correctly
implements the semantics to be given here.

Stream transformers for stream-based I/O have typically
been written using explicit construction of the output list
and explicit examination of the input list [8, 14]. Such a

programming style can be hard to read. We can avoid ex-
plicit mention of input and output lists by using the follow-
ing combinators to construct stream transformers:

getST :: (inp -> ST inp out) -> ST inp out
putST :: out -> ST inp out -> ST inp out
nilST :: ST inp out

getST k xs = case xs of (x:xs’) -> k x xs’
putST x f xs = x : f xs
nilsT xs = []

A programmer can use the combinators above to con-
struct stream transformers; to give semantics to stream-
based I/O we use combinators giveST, nextST and skipST.
The intention is that giveST feeds an input value to a
stream transformer, nextST tests whether a stream trans-
former can produce an output value without any further
input, and skipST consumes an output value from a stream
transformer.

data Maybe a = Yes a | No

giveST :: inp -> ST inp out -> ST inp out
nextST :: (ST inp out) -> Maybe out
skipST :: ST inp out -> ST inp out
giveST ¢ f xs = f (c:xs)
nextST f = case f 1 of

a-> No

(x:x8) -> Yes x
skipST f xs = tail(f xs)

The technique of using a mock argument L to test whether
a stream transformer is ready to produce output was dis-
covered by the Haskell committee [12, 23]. Of course, if the
next output from a stream transformer f depends on the
next value in its input stream, then nextST £ will loop.

The following proposition relates the six combinators in-
troduced in this section.

Proposition 1 For all suitably-typed programs u, v, k, f:
(1) (giveST u (getSTk)) = (ku)

2) (nextST(putST v f)) = (Yes v)

) (
(3) (nextST(nilST)) = No
4) (

4) (skipST(putSTv f)) =f

Proof. Straightforward calculations. |

3.3 Synchronised-stream 1/0

In synchronised-strearn 1/0, the stream transformer pro-
duces a stream of requests and consumes a stream of ac-
knowledgements. The requests and acknowledgements are
in one-to-one correspondence: the computing device speci-
fied by a stream transformer alternates between producing
an output request and consuming an input acknowledge-
ment. It is the programmer’s burden to ensure that the
value of each request does not depend on the correspond-
ing acknowledgement. Synchronised-stream I/O was first
reported as the underlying implementation technique for
Karlsson’s Nebula operating system [15]. It was indepen-
dently discovered by Stoye [27], and O’Donnell [20]. It is

the mechanism underlying KAOS [4, 31] and Haskell I/O
[12, 11] (where the mechanism is named a dialogue).

Here is the type SS of executable programs in the setting
of teletype I/O, together with intended meanings of some
example programs:

type SS = ST Ack Req
data Req = Get | Put Char
data Ack = Got Char | Did

e putST Get (getST k) is to mean “input a character n
from the keyboard and then execute (k (Got m)).”

e putST (Put n) (getST k) is to mean “output char-
acter n to the printer and then execute (k Did).”

e nilST is to mean “terminate immediately.”

A wide range of imperative activity can be expressed using
this mechanism—witness Haskell I/O. We define an aux-
iliary function for use in examining the acknowledgement
obtained from a Get request:

outGot :: Ack -> Char
outGot (Got x) = x

The semantics of synchronised-streams can be given for
SS-programs in H as the labelled transition system induc-
tively defined by the following two rules:

nextST f = Yes r r = Get

f =5 giveST(Got n)(skipST f)

nextST f = Yes r r = Putv v=>n

£ "+ giveST Did (skipST £)

We state a lemma to show that this formal semantics cor-
rectly reflects the informal intended meanings given for
synchronised-stream programs—apart from termination.

Lemma 2 Suppose k::Char ->SS and h::SS are programs.
Define programs £ and g to be:

f = putST Get (getST k)
g putST (Put v) (getST k)

Then we have:

(1) nextST f = Yes Get

2) nextST g = Yes(Put v
g

(3) £ =k (Got n)

(4) g ~>=kDid if v = n.

(The juxtaposition = denotes the composition of rela-
tions — and =.)

Proof. Parts (1) and (2) follow from the definitions of
nextST, putST and getST. For parts (3) and (4), we can cal-
culate the following transitions and equations using Propo-
sition 1:

f - giveST(Got n)(skipST f)
= giveST(Got n)(getST k)
k (Got n)
giveST Did (skipST g)
giveST Did (getST k)
k Did |

NN

3.4 Landin-stream 1/O and X

The simplest kind of stream transformer used for I/O is one
that maps a stream of input characters to a stream of output
characters. We call such a mechanism Landin-stream I/0 in
honour of Landin [16], who suggested that streams “would
be used to model input/output if ALGOL 60 included such.”
Henderson [8] was the first implementor of character-based
I/O based on Landin-stream I/O. Executable programs are
stream transformers of type LS, with the following intended
meanings:

type LS = ST Char Char

e getST kis to mean “input a character n from the key-
board and then execute (k n).”

e putST n f is to mean “output character m to the
printer and then execute f.”

e nilST is to mean “terminate immediately.”

We wish to implement this intended meaning using the
operational semantics of ‘H. Given a function f::LS we are
to compute whether £ can output a character with no fur-
ther input, or whether £ needs an input character before
producing more output, or whether f can terminate. More
precisely, we need a function ready of the following type

data RWD out = R | W out | D
ready :: ST inp out -> RWD out

and satisfying the equations:

ready(putSTnf) =
ready(getST k)
ready(nilST) =

Il
O w=
I3

We show that in #H there is no such program. Consider
programs el and e2 of type LS:

el
e2

getST (\x-> putST 205 nilST)
putST 205 nilST

It is not hard to see that for any xs the following equations
hold:

elxs = (case xsof (x:xs')->[205])
e2xs = [205]

and hence that el C e2 and e2 [Z el by Strachey’s law.
To see why there can be no function ready that obeys the
equations shown above, we assume there is and derive a
contradiction. We have ready(el) = R and ready(e2) =
(W 205), and R Z (W 205). But el C e2 so by monotonicity
we have ready(el) C ready(e2). Contradiction.
Intuitively, the problem is that in # there is no way to tell
whether a term depends on the value of one of its subterms,
such as an element of the input stream. In the next section
we remedy this by adding an exception mechanism to H.

2John Hughes showed me this argument in 1988.

£C == (o) | (1) | (I°€) | (case [of cor | -+ | ccn)
e = bang’ ECle] = 7

ECle] = bang”

e; =/ e> = bang’ (e1@ez)ur
(e1Pe2) = bang’
e1 = (\z—>e) e2 = bang’ (e1"ez)ur
(e1"e2) = bang”
e] = ¢ Mute(c) e; = bang’ es = cC

(e1 77 e2) =>c (e1 ?7e2) =>c

Figure 3: Evaluation in ‘HX

3.5 HX: H plus one exception

The exception mechanism in SML, say, has the following
property: during evaluation of a term, if demand arises for
a subterm which evaluates to an exception, then the ex-
ception propagates to the outermost level, unless a handler
intervenes. Adding such an exception mechanism is a way
to modify evaluation in H to formalise the notion of demand
for the next character in a stream. Another motivation is
to obtain a fully abstract denotational semantics; this is the
purpose of Cartwright and Felleisen’s recent extension of
PCF with exceptions [3].

We consider a language HX' obtained from H by adding
just one exception, the canonical term bang. Raising an
exception is represented by a program evaluating to bang,
which is present at every type. For the sake of brevity, we say
the program has banged. Program bang bangs. In general,
if a program needs to evaluate several subterms before ter-
minating, and evaluation of any one of the subterms bangs,
then the whole program bangs. The only exemptions from
this rule are programs of the form (e: 77 e2). If evaluation
of e; returns an answer or diverges, then evaluation of the
whole program does so too. But if evaluation of e; bangs,
then the whole program behaves the same as es.

To obtain HX from H, we add new canonical terms,
bang?, and non-canonical terms (e; ?7? ez), subject to the
following typing rules:

I'kteiio I'Fex:to

I'Fbang’ :: o
F't(e1?7e2) 0

The rest of the syntax and typing system of H is as before.
Define the predicate Mute(c) on canonical terms to hold
iff for no type 7 does ¢ = bang”. The evaluation relation
for ‘HX is the binary relation on HX programs, =, defined
inductively by the evaluation rules from Figures 2 and 3.
The rule for call-by-value evaluation in Figure 2 is modified
to apply only when Mute(cz2). Contextual order and equality
are defined as before. The same symbols =, C and = are
used to denote relations in both H or HX, and are labelled
with the language name when necessary.

A similar theory to the one sketched for H can be derived
for HX. In particular, Strachey’s law still applies, although
now there is an additional canonical program, bang, at each

type. For instance, at the type Int we have that every
program either equals L, n for some n, or bang. Program
1 is less than the others in contextual order, C. The others
are mutually incomparable, because they are distinct and
canonical. Details can be found elsewhere [7]. The two
languages can be compared as follows.

Proposition 3 Let H° and HX° be the sets of programs in
H and HX respectively.

(1) H® Cc HA®

(2) Ife€ H® and e =MY ¢ then c € H°.

(3) For any e,c € H®, e MV ciffe st e,

(4) For any e,e’ € H°, e EHX e’ implies e EH e

(5) For any e,e’ € H°, e =HY o implies e =He.

(6) There are e,e’ € H° with e ™ ¢ but not e CHY &',
(7) There are e,e’ € H° with e =M ¢ but not e =" ¢

Proof. Part (1) follows by definition. Parts (2) and (3) follow
by induction on depth of inference. Parts (4) and (5) follow
from the definition of contextual order and equality; any H
context is also an HX context. For parts (6) and (7) consider

e = (\x->xx1)and e = (\x->L). We have e =M ¢ but
not e C &' (consider the context ([] bang)). [|

In the remainder of this paper we work with HX instead
of #. The only reason we do so is to model demand for a
lazy input stream. Parts (3)—(5) of the proposition assure
us that any HX evaluation, order or equality deduced about
‘H programs in fact implies the corresponding # property.
Parts (6) and (7) indicate that contextual order and equal-
ity in HX are finer grained than in #, intuitively because
an exception can detect whether a function examines its ar-
gument.

3.6 Landin-stream 1/O and HY

Given HX, we can define an operational semantics for
Landin-stream I/O. First, we find that the argument that
there can be no function ready in # does not hold in #X. In
HX we have that the programs el and e2 are incomparable,
because el(bang) = bang, e2(bang) = [205], and bang and
[205] are incomparable.

Intuitively, to tell in #X whether a term depends on the
value of one of its subterms, replace the subterm with bang
and use the handler operator 7?7 to see if the whole term
bangs. We can define ready in ‘HX as follows

ready f =
(case (f bang) of
0->0o
(x:2) -> W x)
7?7 R

and one can calculate that the conditions on ready given
in §3.4 are satisfied. The semantics of Landin-streams can
be given for LS-programs in HX as the labelled transition
system inductively defined by the following two rules:

ready f =R ready f = Wv v=>n

£ giveST n £ £ 5 skipST £

The following lemma shows that this formal semantics
correctly reflects the informal intended meanings given for
Landin-stream programs—apart from termination, which
we have not formalised.

Lemma 4
(1) ready(getSTk) =R
(2) ready(putSTvk) =Wv

(3) getSTk ——== (k n)
4) putSTvpi)zp ifv=mn

Proof. Parts (1) and (2) follow from the definitions of ready,
getST and putST. For parts (3) and (4), we can calculate the
following transitions:

getSTk — giveST n (getST k)
putSTvp — skipST (putST v p)

These, together with Proposition 1 establish the required
results. |

4 Bisimilarity of programs engaged in 1/0

Following Holmstrém’s method [9], we have given la-
belled transition semantics for continuation-passing and
synchronised-stream I/O based on #, and for Landin-stream
I/O based on HX. In this section we adopt (strong) bisim-
ilarity from CCS [18] as a characterisation of identical I/O
behaviour. Unless otherwise stated, the evaluation, contex-
tual order and equality relations are those of HX.

Definition 3 Define function (-) to be the function over bi-
nary relations on HX programs such that p(S)q iff

(1) whenever p — p’ there is ' with q — q' and p'Sq’;

(2) whenever q — q' there is p’ with p — p’ and p'Sq’.

A bisimulation is a binary relation on programs, S, such that
S C (S). Bisimilarity, ~, is the union of all bisimulations.

Proposition 5
(1) Function (-) is monotonic.

(2) Bisimilarity is the greatest fixed-point of (-) and is the
greatest bisimulation.

(3) p ~ q iff there is a bisimulation S such that pSq.

(4) Bisimilarity is an equivalence relation.

Proof. Part (1) follows easily from the definition. (2) follows
from the Knaster-Tarski theorem from fixed-point theory [5].
(3) For the forwards direction, take the bisimulation S to be
~ itself. For the backwards direction, we have § C ~, so
pSq implies p ~ q. Part (4) is straightforward (see Milner’s
book for details).]

This definition of bisimulation equivalence is very sim-
ple, but for two reasons one might wish to develop it fur-
ther. First, although each of the three I/O mechanisms has
a notion of program termination we have not modelled ter-
mination in the labelled transition system. Hence a pro-
gram that immediately terminates is bisimilar to one that
diverges. Second, we have assumed that teletype input is
observable. Consider two Landin-stream programs f and g:

fxs=.1

g xs = case xs of
ab->1
(_:xs) => g xs

Given an input stream, g unravels it forever whereas £ loops

immediately. We have f =M g but £ #HX gand f % g
(because g forever inputs characters whereas f diverges).
One might argue that they have indistinguishable behaviour
because neither ever produces output. On the other hand,
it seems reasonable to distinguish them on the ground that
teletype input is observable to the operating system, if not
always to the end user.

4.1 Bisimilarity strictly contains contextual equality

First we prove that contextual equality (in HX) is a subset
of bisimilarity.

Proposition 6 For any p and q, p = q implies p ~ q.

Proof. By Proposition 5(3) it suffices to show that the re-
lation of contextual equality on programs is a bisimulation.
We have to show that for any programs p and q, p = q
implies that p(=)q, which is to say:

(1) whenever p — p' thereis q’ withq -+ q' andp’ = q’;
(2) whenever q — q' thereis p’ with p — p’ andp’ =q’.

For (1), suppose that p — p’, and proceed by analysis of
the six rules by which this inference can be derived. We
show the details of the CPS rule for input.

Suppose that p =INPUT k, o = n, and hence that p’' =
kn. By operational adequacy we have p =INPUT k and
also that q}. Then by operational adequacy and canonical
exclusivity, there is a program k' such that ¢ =INPUT k' and

k =k'. By the CPS input rule we have that ¢ — k' n and
that X' n = p’ as required.

Examination of the other rules follows a similar pattern
to prove (1), and then (2) follows by symmetry.]

The force of this result is that the theory of contextual
equality can be used to prove properties of the execution
behaviour of executable programs. The proof makes essen-
tial appeal to operational adequacy.

Second, we have that bisimilarity does not imply contex-
tual equality.

Proposition 7 There are program pairs, p and q, in each of
the types CPS, LS and SS such that p ~ q but not p = q.

Proof. Witness program pair Write 1 Done and L in type
CPS, and pair putST L nilST and L in each of the types SS
and LS.]

Intuitively the proof depends on contextual equality distin-
guishing more “junk” programs than bisimilarity. Given a
richer I/O model there would be more significant distinc-
tions. Suppose we extended the CPS algebraic type with a
new constructor Par::CPS -> CPS -> CPS, with intended mean-
ing that Parpgq is to be the parallel execution of programs
p and q, as in PFL. Then if p # q, programs Parpq and
Par gp would be contextually unequal (because Par is the
constructor of an algebraic type) but bisimilar (because as
in CCS both lead to the parallel execution of p and q).

ss2cps f = case nextST f of
No -> DONE
Yes r -> case r of
Get ->
INPUT (\c¢ ->
ss2cps (giveST (Got c) (skipST £)))
Put v ->
OUTPUT v (ss2cps (giveST Did (skipST £)))

cps2ss p = case p of
INPUT k ->
putST Get (getST (\ack ->
cps2ss (k (outGot ack))))
OUTPUT ¢ q ->
putST (Put c) (getST (\ack -> cps2ss q))
DONE -> nilST

Figure 4: Translation between SS and CPS in HXY (and H)

4.2 Bisimilarity coincides with trace equivalence

Given its simple sequential nature, one would expect the
semantics of teletype I/O to be determinate. The following
result makes this precise.

Proposition 8 For any program p, p — p’ and p — p”
implies p' = p"'.
Proof. By inspection of each of the inference rules. |

Given this determinacy, bisimilarity can alternatively be
characterised in terms of traces. If s = a1,...,ay, is a finite
sequence of actions, say that s is a trace of program p iff
there are programs p; with p B P1 22 2y pn. Two
programs are trace equivalent iff they have the same set of
traces.

In a nondeterministic calculus like CCS, trace equiva-
lence does not in general imply bisimilarity. Given the de-
terminacy result above, however, it is not hard to show that
the two equivalences coincide. We omit the proof, but see
Milner’s book for a more general result [18, Chapter 9].

5 Translation between the three mechanisms

We show that each of the three mechanisms has equivalent
expressive power in the following sense. If p is an executable
program with respect to one mechanism, then for each other
mechanism, there is a function £ such that £(p) is an exe-
cutable program with respect to the other mechanism, and
p and f(p) are bisimilar.

We show in Figure 4 functions ss2cps and cps2ss to
map between the types SS and CPS, and in Figure 5 func-
tions 1s2cps and cps2ls to map between the types LS and
CPS. The main result of the paper is that the three I/O
mechanisms are equivalent in the following sense.

Proposition 9
(1) For any SS-program f, f ~ (ss2cps f).
(2) For any CPS-program p, p ~ (cps2ss p).
(3) For any LS-program f, f ~ (1s2cps f).
(4) For any CPS-program p, p ~ (cps2ls p).

1s2cps f =
case ready f of
R -> INPUT (\c -> 1s2cps (giveST c f))
W c -> OUTPUT ¢ (1s2cps (skipST f))

D -> DONE
cps2ls p =
case p of
INPUT k -> getST (\c¢c -> cps2ls (k c))

OUTPUT c q -> putST c (cps2ls q)
DONE -> nilST

Figure 5: Translation between LS and CPS in ‘HX

Proof. We only prove part (1); the other parts follow by
similar arguments [7]. It suffices to show that relation S
below is a bisimulation.

s & {(f,ss2cps f) | £ is an SS-program}

We are to show that S C (S). Let £ be any SS-program
and we have that (ss2cps £)::CPS. Hence the synchronised-
stream rules apply to £ and the continuation-passing rules
to (ss2cps £). We are to show that (f,ss2cps £) € (S).
We proceed by analysis of the evaluation behaviour of
(nextST £). There are five cases to consider.

(1) (nextST £){} or (nextST f) = bang

(2) (nextST £f) = No

(3) (nextST f) = Yes r and either r{f or r = bang
(4) (nextST f) = Yes r and r = Get

(5) (nextSTf)=Yesr and r = Putv

Here are the possible transitions from f and (ss2cps f).

(1,2,3) There are no transitions from either (ss2cps f) or f.

(4) The only transitions of £ are of the form
f 3 (giveST (Got n) (skipST £)) for any n.
We have (ss2cps f) evaluates to
INPUT(\c ->ss2cps(giveST (Got c) (skipST f))).
So the only transitions of (ss2cps f) are of the form
(ss2cps) — ss2cps(giveST (Got n) (skipST f))
for any n.

(5) There is no transition from f unless v = n, when

f = (giveST Did (skipST f)).

We have (ss2cps f) evaluates to

OUTPUT v (ss2cps(giveST Did (skipST £))).

So there is no transition from (ss2cps f) unless v = n,

when (ss2cps £) - (ss2cps(giveST Did (skipST £))).

One can see that in each case the conditions for
(f,ss2cps f) € (S) are satisfied, so part (1) follows from
Proposition 5(3). |

A simple corollary of this proposition is that each of the four
translation functions is a bijection, up to ~, and hence that
the three types are in bijection, up to ~. The point of the
proposition is that any one of the three mechanisms can be
taken as primitive, and execution of a program using one

of the other mechanisms can be simulated by its transla-
tion into the primitive mechanism. The Haskell committee
discovered the ss2cps and cps2ss translations and chose
to make synchronised-streams primitive because no efficient
implementation of ss2cps was known [23].

One might wonder whether a similar result could be
proved for contextual equality instead of bisimilarity. We
can show that none of the mapping functions is bijective up
to contextual equality, and so the given translations do not
establish bijections between the three types.

Proposition 10 Neither ss2cps nor 1s2cps Is injective, and
neither cps2ss nor cps2ls is surjective up to contextual
equality.

Proof. (ss2cps) Witness £ = getST(\x->doneST) and g =
getST(\x->£) of type SS. Both these programs examine the
first acknowledgement before producing a request, and hence
both are mapped to L by ss2cps. Since g examines two
elements of the input stream, whereas f only examines one,
the two are not contextually equal. Hence ss2cps is not
injective.

(1s2cps) Define h; to be a family of LS-programs indexed
by the character i given by

\xs ->case xs of Nil->[z] | Cons -> L.

For each i we have 1s2cps(h;) = Input(\c->_L), but h; = h;
only when ¢ = j. So 1s2cps is not injective.

(cps2ss, cps2ls) One can check by case analysis that
no CPS-program is mapped to SS-program f above, and no
CPS-program is mapped to any of the LS-programs h;. Hence
neither cps2ss nor cps2ls is surjective. u

This result is further evidence that bisimilarity is the appro-
priate equivalence as far as I/O behaviour is concerned; con-
textual equality makes distinctions between programs with
identical I/O behaviour.

6 Conclusions, related work and discussion

The main contribution of this paper is a framework in which
to study functional I/O. We considered three mechanisms
suitable for lazy languages, and gave an operational seman-
tics for each. We needed a simple exception mechanism to
model demand for lazy input streams. We showed how the
notion of bisimilarity from CCS is a suitable equivalence on
programs engaged in I/O. The main result is the first formal
proof of the equivalence of three of the most widely imple-
mented functional I/O mechanisms, generalising an informal
argument of the Haskell committee.

The three mechanisms are equivalent in the specific sense
that there are bijections between them expressible in the
lazy language itself. For a general framework for comparing
language expressiveness see Felleisen’s study [6] of various
dialects of Scheme.

There are several literature surveys of work on functional
I/O [13, 21, 7]. There has been little previous work on se-
mantics for I/O in lazy languages. Thompson [30] studied
Landin-stream I/O using traces. Williams and Wimmers
[34] developed algebraic laws for I/O in FL (a call-by-value
language) in which each function has an extra, implicit his-
tory parameter to express I/O. Hudak and Sundaresh [12]
informally compared various I/O mechanisms. They gave a
semantics to synchronised stream I/O, but using an infor-
mally defined nondeterministic merge operator. There has

been no previous comparison of I/O mechanisms based on
a formal semantics.

A gulf separates the source-level semantics of the stream-
based I/O mechanisms given here from their imperative im-
plementation [14]. The gulf is particularly wide between
the semantics and implementation of lazy input streams.
The only other semantics of stream-based I/O is Thomp-
son’s trace-based work [30], which is domain-theoretic and
also distant from practical implementations. In contrast, the
operational semantics we gave for continuation-passing I/O
corresponds fairly closely to an interpretive implementation
[21]. It is an open question how to relate abstract specifi-
cations of I/O to efficient implementations using side-effects
[23].

The low-level mechanisms discussed here can lead to
a clumsy programming style; various high-level combina-
tors have emerged from experience of functional I/0O [30],
the best-known being monadic I/O [4, 33, 23]. The au-
thor’s dissertation includes a semantics for a particular
form of monadic I/O [7]; it remains future work to relate
monadic I/O to the three mechanisms studied here. An-
other direction of future work is to extend the treatment
of continuation-passing I/O to accommodate more of Holm-
strom’s PFL [9], and to model termination.

Landin-stream I/O is good for teletype I/O but is
not general purpose. Lazy input streams admit elegant
parsing techniques, which cannot be based so simply on
synchronised-stream or continuation-passing teletype I/0O.
Landin-stream programs can be written in either Haskell
[11] or Hope+C [21] because both I/O mechanisms provide
operations to obtain a lazy input stream, and hence Landin-
stream I/O can be simulated.

The principal merit of synchronised-stream I/O over
continuation-passing I/O is that the former can efficiently
simulate the latter via a function such as cps2ss. Simu-
lation of the former by the latter using a function such as
ss2cps is inefficient in Haskell [12], although performance
can be improved using side-effects [23]. Synchronised-stream
programs suffer from problems relating to synchronisation
between input and output streams that do not arise with
continuation-passing [21] and have a more complex seman-
tics. High-level combinators such as for monadic I/O can be
implemented on top of either mechanism [4, 23]. If all user
programs are to use such combinators there seems to be no
reason to choose synchronised-stream I/O as the underlying
mechanism rather than continuation-passing I/0O.

7 Acknowledgements

This is a revised version of Chapter 7 of my dissertation
[7], written at the University of Cambridge Computer Lab-
oratory. I extend my thanks again to all those who helped
me complete my PhD. I am grateful also to Simon Peyton
Jones, Phil Wadler and the anonymous referees for useful
comments.

References

[1] Samson Abramsky. The lazy lambda calculus. In
Turner [32], pages 65-116.

[2] Richard Bird and Philip Wadler. Introduction to Func-
tional Programming. Prentice-Hall International, 1988.

[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Robert Cartwright and Matthias Felleisen. Observable
sequentiality and full abstraction. In Proc. of the 19th
ACM Symp. on Principles of Programming Languages,
pages 328-342, 1992.

J. Cupitt. A brief walk through KAOS. Technical Re-
port 58, Computing Laboratory, University of Kent at
Canterbury, February 1989.

B. A. Davey and H. A. Priestley. Introduction to Lat-
tices and Order. Cambridge University Press, 1990.

Matthias Felleisen.
gramming languages.
ming, 17:35-75, 1991.

On the expressive power of pro-
Science of Computer Program-

Andrew D. Gordon. Functional Programming and In-
put/Output. PhD thesis, Computer Laboratory, Univer-
sity of Cambridge, February 1993. Available as Tech-
nical Report 285.

Peter Henderson. Purely functional operating systems.
In J. Darlington, P. Henderson, and D. A. Turner,
editors, Functional Programming and its Applications,
pages 177-192. Cambridge University Press, 1982.

Soren Holmstrém. PFL: A functional language for par-
allel programming. In Declarative Programming Work-
shop, pages 114-139. University College, London, 1983.
Extended version published as Report 7, Programming
Methodology Group, Chalmers University. September
1983.

Douglas J. Howe. Equality in lazy computation sys-
tems. In Proc. of the 4th IEEE Symp. on Logic in
Computer Science, pages 198-203, 1989.

Paul Hudak, Simon L. Peyton Jones, Philip Wadler,
et al. Report on the functional programming language
Haskell: A non-strict, purely functional language ver-
sion 1.2. ACM SIGPLAN Notices, 27(5), March 1992.
Section R.

Paul Hudak and Raman S. Sundaresh. On the expres-
siveness of purely functional I/O systems. Research Re-
port YALEU/DCS/RR-665, Yale University Depart-
ment of Computer Science, March 1989.

S. B. Jones and A. F. Sinclair. Functional program-
ming and operating systems. The Computer Journal,
32(2):162-174, April 1989.

Simon B. Jones. Abstract machine support for purely
functional operating systems. Technical Report PRG-
34, Programming Research Group, Oxford University
Computing Laboratory, August 1983.

Kent Karlsson. Nebula: A functional operating sys-
tem. Programming Methodology Group, University of
Goteborg and Chalmers University of Technology, 1981.

P. J. Landin. A correspondence between ALGOL 60
and Church’s lambda-notation: Parts I and II. Commu-
nications of the ACM, 8(2,3):89-101,158-165, February
and March 1965.

John McCarthy, Paul W. Abrahams, Daniel J. Ed-
wards, Timothy P. Hart, and Michael I. Levin. LISP 1.5
Programmer’s Manual. MIT Press, Cambridge, Mass.,
1962.

18]

[19]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[31]
[32]

[33]

34]

Robin Milner. Communication and Concurrency.
Prentice-Hall International, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, Cambridge,
Mass., 1990.

John T. O’Donnell. Dialogues: A basis for constructing
programming environments. In ACM Symp. on Lan-
guage Issues in Programming Environments, pages 19—
27, 1985. SIGPLAN Notices 20(7).

Nigel Perry. The Implementation of Practical Func-
tional Programming Languages. PhD thesis, Depart-
ment of Computing, Imperial College, London, June
1991.

Simon L. Peyton Jones. FLIC—a functional language
intermediate code. ACM SIGPLAN Notices, 23(8):30—
48, August 1988.

Simon L. Peyton Jones and Philip Wadler. Imperative
functional programming. In Proc. 20th ACM Symp.
on Principles of Programming Languages, Charleston,
South Carolina, January 1993. ACM Press, 1993.

Gordon D. Plotkin. LCF considered as a programming
language. Theoretical Computer Science, 5:223-255,
1977.

Gordon D. Plotkin. The category of complete partial
orders: a tool for making meanings. Unpublished lec-
ture notes for the Summer School on Foundations of Ar-
tificial Intelligence and Computer Science, Pisa., June
1978.

Harald Sgndergaard and Peter Sestoft. Referential
transparency, definiteness and unfoldability. Acta In-
formatica, 27:505-517, 1990.

William Stoye. Message-based functional operating sys-
tems. Science of Computer Programming, 6(3):291-311,
1986.

Christopher Strachey. Fundamental concepts in pro-
gramming languages. Unpublished lectures given at the
International Summer School in Computer Program-
ming, Copenhagen, August 1967.

Simon Thompson. A logic for Miranda. Formal Aspects
of Computing, 1(4):339-365, October—-December 1989.

Simon Thompson. Interactive functional programs: A
method and a formal semantics. In Turner [32], pages
249-286.

David Turner. An approach to functional operating
systems. In Turner [32], pages 199-217.

David Turner, editor. Research Topics in Functional
Programming. Addison-Wesley, 1990.

Philip Wadler. Comprehending monads. In Proc. of the
1990 ACM Conf. on Lisp and Functional Programming,
pages 61-78, June 1990.

John H. Williams and Edward L. Wimmers. Sacrific-
ing simplicity for convenience: Where do you draw the
line? In Conf. Record of the 15th ACM Symp. on Prin-
ciples of Programming Languages, pages 169-179, Jan-
uary 1988.

