
An Operational Semantics for I/O in a Lazy Functional LanguageAndrew D. GordonProgramming Methodology Group,Department of Computer Science,Chalmers University of Technology,412 96 Gothenburg, Sweden.gordon@cs.chalmers.se
Appeared in FPCA'93: Conference on Functional Programming Lan-guages and Computer Architecture, Copenhagen, June 9{11, 1993, pages136{145. ACM Press, 1993.

AbstractI/O mechanisms are needed if functional languages are to besuitable for general purpose programming and several imple-mentations exist. But little is known about semantic meth-ods for specifying and proving properties of lazy functionalprograms engaged in I/O. As a step towards formal methodsof reasoning about realistic I/O we investigate three widelyimplemented mechanisms in the setting of teletype I/O:synchronised-stream (primitive in Haskell), continuation-passing (derived in Haskell) and Landin-stream I/O (whereprograms map an input stream to an output stream of char-acters). Using methods from Milner's CCS we give a la-belled transition semantics for the three mechanisms. Weadopt bisimulation equivalence as equality on programs en-gaged in I/O and give functions to map between the threekinds of I/O. The main result is the �rst formal proof ofsemantic equivalence of the three mechanisms, generalisingan informal argument of the Haskell committee.1 Introduction and motivationIn the absence of formal semantics and of ways to proveprogram properties, any mechanism for input/output (I/O)in a lazy functional language is bound to be contentious.The tension is plain. On the one hand, lazy functionallanguages are advocated on the basis of their simple se-mantics and the ease with which program properties canbe proved. On the other, I/O is concerned with state andcommunication and hence does not apparently �t into theframework of functional semantics and proof techniques usedwith lazy functional languages.The tension is immediate. Several di�erent I/O mech-anisms have been implemented for lazy languages such asHaskell, but virtually no work has been done to developsemantic methods to cope with I/O. Given these mecha-nisms, functional programs are capable of accessing com-plex operating system and window system facilities. Suchmechanisms are needed to make general purpose program-ming feasible in a lazy language. But it is unconvincing toadvocate a functional language on the basis both of its suit-ability for formal methods and of the expressiveness of its

I/O, unless the I/O mechanism can be well integrated intothe language's semantics.As a response to this tension, we advocate operationalsemantics and bisimulation equivalence as the basis of a sim-ple yet powerful theory of functional programming and I/O.We show in this paper how methods from the CCS theory ofconcurrency can be applied to specify and prove propertiesof functional programs engaged in I/O.We develop here an operational semantics for functionalI/O that was �rst used by Holmstr�om in his semantics ofPFL [9]. Holmstr�om used a continuation-passing style toembed CCS-like operations for communication and concur-rency in a functional language. Starting with an evaluationrelation for the host language, he de�ned the meaning of theembedded operations in the style of a labelled transition sys-tem, as used in CCS [18]. A labelled transition system is away to formalise the idea that an agent (such as a functionalprogram engaged in I/O) can perform an action (such as in-put or output of a character) and then become a successoragent. This style of semantics is attractive for at least threereasons. First, it can model a wide variety of nondetermin-istic and concurrent computation: witness the CCS schoolof concurrency theory. Second, the evaluation relation forthe host language is unmodi�ed; any property of the hostlanguage without I/O will still hold after the I/O mecha-nism has been added. Third, the method complements anoperational language de�nition such as that of SML [19].We go further than Holmstr�om by developing an equa-tional theory of functional I/O based on labelled transitions.In the context of teletype I/O (input from a keyboard, out-put to a printer) we give an operational semantics for threeI/O mechanisms: Landin-stream, synchronised-stream andcontinuation-passing I/O. We adopt bisimulation equiva-lence from CCS as equality on programs engaged in I/O.Bisimilarity is an equivalence on agents induced by theiroperational behaviour: two agents are bisimilar i� when-ever one can perform an action, the other can too such thattheir two successors are bisimilar. We verify that mappingsbetween these I/O mechanisms are bisimulation-preserving.Those between Landin-stream and continuation-passing I/Oare original, while the mappings between synchronised-stream and continuation-passing I/O were discovered duringthe design of Haskell [12, 11], but have not hitherto beenveri�ed formally.The method presented here is not immediately applica-ble to side-e�ecting I/O mechanisms, such as the \pseudofunctions" read and write in LISP 1.5 [17] and their descen-dants in say SML. Programmers using lazy languages are

�; � ::= X (type variable)j Int (natural numbers)j (�1 ->�2) (functions)j � (algebraic datatype)� ::= (dataX =dc1 | � � � | dcn) (algebraic datatype,X bound in each dci,constructors distinct)dc ::= (K �1 � � ��m) (data-clause, m � 0)c ::= n (literal, n 2 NN)j (\x::� -> e) (abstraction, x bound in e)j (K� e1 � � � em) (constructor application)e ::= x (value variable)j c (canonical term)j (e1�e2) (arithmetic,� 2 f+;�;�;=; <g)j (e1 e2) (call-by-name application)j (e1^e2) (call-by-value application)j rec�(x: e) (recursion, x bound in e)j (case� e ofcc1 | � � � | ccn) (case-term)cc ::= (K -> e) (case-clause)Figure 1: Syntax of Hencouraged not to concern themselves with evaluation or-der, which can be left to the implementation, and to use theproperty that expressions simply denote values when rea-soning about programs. Hence side-e�ecting I/O is unsuit-able for lazy languages: the programmer must be concernedwith evaluation order, expressions may denote sequences ofside-e�ects and established implementation techniques mayno longer be valid. This paper is concerned only with I/Omechanisms for lazy languages; we leave the development ofa theory of side-e�ecting I/O as an important open problem.2 H, a small functional languageIn this section we de�ne syntax, operational semantics andcontextual equality for a small functional language. H isessentially a core fragment of Haskell; it would be impracti-cal to work with the full language. The focus of this paperis functional I/O and so H is treated here only brie
y; fulldetails and proofs can be found elsewhere [7].The syntax of H is given by a BNF grammar in Fig-ure 1. Variables � and � range over types and variable Xover an in�nite set of type variables. There is a type Int ofnumbers, together with function types and algebraic types,�. Each algebraic type is a potentially-recursive sum-of-products, speci�ed by a list of data-clauses, dci, each ofwhich contains a unique constructor, K, and a list of ar-gument types. For instance, given a type �, the algebraictype of �-lists is simply (dataX = Nil | Cons �X). As inHaskell we call this type [�]. Type variables are used toexpress recursion; X is bound by the data construct andoccurs free in the Cons data-clause. We can de�ne Bool tobe the algebraic type (dataX = False | True). Algebraictypes of essentially this form are found in Haskell and SML.Let variable x range over an in�nite set of (term) vari-ables, e range over H terms, and c range over those termsthat are canonical. Intuitively, canonical terms representvalues, the outcomes of computation. The term syntaxdeparts from Haskell in three signi�cant ways. First, a

call-by-value function application, (e1^e2), is included; call-by-value is not expressible in Haskell but is frequently in-cluded in lazy language implementations.1 Call-by-value isincluded mainly because it was used in certain programs inthe author's dissertation [7], but also for technical reasonsexplained in the penultimate paragraph of this section. Sec-ond, recursive functions or data are constructed using a re-cursion operator, rec(x: e), rather than recursion equations.Finally, a case-term in H simply discriminates between thedi�erent constructors of an algebraic type. The case-clausesmust exactly match the data-clauses in the algebraic type;there is no general pattern-matching as in Haskell. For in-stance, here is the null-list predicate:\xs -> case xs of Nil -> True | Cons ->(\x -> \xs -> False):We adopt some standard syntactic conventions. We iden-tify syntax up to alpha-conversion; write e1 � e2 i� termse1 and e2 are syntactically identical up to systematic re-naming of bound variables. Write e1fe2=xg for the outcomeof subtituting e2 for each free occurrence of x in e1, withchange of bound variables in e1 as needed to avoid variablecapture. A context, C, is a \term with one or more holes";write C[e] for the term obtained by �lling in each hole in Cwith term e.H can be given a monomorphic type system. Let an en-vironment, �, be a �nite map from variables to closed types.The type system of H is a structurally de�ned type assign-ment relation, consisting of sentences of the form � ` e :: � ,where � is a closed type assigned to term e given environ-ment �. It is straightforward to write down structural rulesto de�ne this relation [7]; here we omit the details. Termsbear su�cient type information to make type assignmentsunique.Let a program be a closed well-typed term. The op-erational semantics of H is an evaluation relation, writtene) c, where e is a program and c is a canonical program,given inductively by the evaluation rules in Figure 2. Itis convenient in Figure 2 to let variable ` range over bothnumbers NN and truth-values fT; Fg, and to de�ne T and Fto mean True and False respectively. Hence one can infer1 = 0) False, for instance.Evaluation is deterministic and is lazy in the sense thatalgebraic type constructors do not evaluate their arguments(as in Haskell, but contrary to SML, say). It is conventionalto say that a program e converges and to write e+ to mean(9c: e) c). Conversely, say that program e diverges andwrite e* to mean that e does not converge. It is convenientto have a named divergent program. At each closed type �,let ?� be the term rec�(x: x); we have that ?�*.We follow Plotkin's seminal study of the semantics of thetyped higher-order functional language PCF [24], and adoptcontextual equality as the equality on H terms:De�nition 1 Contextual order, v, is the relation such thate v e0 i� for any context C such that C[e] and C[e] areprograms of type Int, C[e]+ implies C[e0]+.Contextual equality, =, is the relation such that e = e0i� e v e0 and e0 v e.For the purpose of this paper, to reason about functionalI/O speci�ed operationally, it is essential that both contex-tual order and equality are operationally adequate, where1For instance, (e1^e2) is expressible as (strict e1 e2) in Mark Jones'Gofer system.

c) ce1) `1 e2) `2(e1�e2)) `1 � `2 efrec(x: e)=xg) crec(x: e)) ce1) (\x -> e3) e3fe2=xg) c(e1 e2)) ce1) (\x -> e3) e2) c2 e3fc2=xg) c(e1^e2)) ce) (K� e1 � � � em) cci � (K -> e0) (e0 e1 � � � em)) c(case e of cc1 | � � � | ccn)) cFigure 2: Operational semantics of Ha relation R is operationally adequate when it possesses thefollowing properties:� If e) c then cRe.� e* i� eR?.� e+ i� for some canonical c, cRe.For the purpose of supporting established techniques forreasoning about functional programs [2], it is essential thatcontextual equality and order have a range of properties,including those in the following informal summary:� Congruence, that contextual order is a substitutivepreorder and contextual equality is a substitutiveequivalence relation;� An exhaustion principle, Strachey's law, that for anyprogram e there is an equal canonical program, or elsethat e equals ?;� Beta and eta laws analogous to those for untyped �-calculus;� Strictness laws indicating how ? propagates throughprograms;� Canonical exclusivity, that canonical programs c andc0 are equal just when the outermost syntactic con-structor of c and its immediate subterms are respec-tively equal to those of c0.� Structural induction principles for algebraic types.For a detailed axiomatisation of such properties for Mirandasee Thompson's paper [29], and Bird and Wadler's book fora good introduction to proofs of functional program prop-erties. Note that monotonicity of functions, that e1 v e1implies f e1 v f e2, follows from the substitutivity of con-textual order. It is appropriate to refer to the exhaustionprinciple above as Strachey's law, as it formalises his prin-ciple that the \characteristic feature of an expression is itsvalue" [28]. Side-e�ecting I/O in the style of SML, say, pre-cludes Strachey's law; a program with a side-e�ect equalsneither ? nor any canonical program. Strachey's law is oneaspect of what is generally called \referential transparency"[26].

For the remainder of this paper we will use Haskell no-tation to denote H types and programs. One might viewH as a core functional language of about the same level asFLIC [22]; translations from the level of Haskell to FLIC orH are well-known. We will usually omit type informationfrom terms. We will reason about contextual equality in theinformal way exempli�ed by Bird and Wadler and implic-itly by appeal to the properties stated above. Statementand proof of these properties can be found in the author'sdissertation [7], where a recent result of Howe's [10] is usedto develop Abramsky's applicative bisimulation [1], which isan alternative and tractable characterisation of contextualequality for H. In PCF and Haskell, applicative bisimula-tion would be �ner grained than contextual equality, but inH the two equivalences coincide because of the presence ofcall-by-value applications and case-terms [10]. The stan-dard example is that applicative bisimulation distinguishes? and \x ->?. In H, these are contextually distinct too,witness the context (\f -> 0)^[] (which produces a term oftype Int) but in PCF or Haskell (which have no call-by-valueapplications) the two are contextually indistinguishable.Of course, the properties above might also be proved viadomain-theoretic denotational semantics.3 Semantics of three I/O mechanismsWe adopt labelled transition systems from the theory ofCCS [18] to give semantics for Landin-stream, continuation-passing and synchronised stream I/O. In each of the mech-anisms there is a single H type whose programs can be exe-cuted to interact with the teletype. A program is executablei� it is of this type. For instance, executable programs us-ing Landin-stream I/O are of the stream transformer type[Char] ->[Char]. Let variables p and q range over exe-cutable programs. We formalise the execution of programsas a labelled transition system.De�nition 2 The set of actions, ranged over by �, is pro-duced by the following grammar:� ::= n (input character n 2 NN)j n (output character n 2 NN)A labelled transition system is a family of binary relationsindexed by actions, f ��!j � is an actiong, such that if p ��!q then p and q are executable programs.The intuitive meaning of transition p n�! q is that programp can input the character n from the keyboard to becomeprogram q. Similarly, the intuitive meaning of transitionp n�! q is that program p can output the character n tothe printer to become program q. For the sake of simplicity,de�ne the type of characters, Char, to be Int.We begin with a semantics of continuation-passing I/Oin x3.1. In x3.2 we introduce combinators for programmingboth kinds of stream-based I/O and use them in x3.3 to givesemantics to synchronised-streams. In x3.4 we show that asemantics of Landin-stream I/O cannot be based directlyon the operational semantics of H, essentially because wecannot test whether a function examines the value of itsargument. Our solution to this problem is to add to H asimple exception mechanism, in x3.5, to yield HX . Finally,in x3.6 we give a semantics for Landin-stream I/O based onHX .

3.1 Continuation-passing I/OIn continuation-passing I/O, the executable type is an alge-braic type with a constructor corresponding to each kind ofexpressible imperative activity. In the case of teletype I/Owe have:data CPS = INPUT (Char -> CPS)| OUTPUT Char CPS| DONEPFL [9] was the �rst functional language to take thecontinuation-passing mechanism as primitive. In earlierwork, Karlsson programmed continuation-passing opera-tions on top of a synchronised-stream mechanism [15]. Asimilar datatype was used by Plotkin in the Pisa notes [25]as semantics for side-e�ecting I/O. Several languages, suchas Perry's Hope+C [21], use continuation-passing I/O. Themechanism is so-called because of the similarity between theargument to INPUT and continuations as used in denotationalsemantics.The intended meaning of CPS-programs is easily given.� INPUT k is to mean \input a character n from the key-board and then execute (kn)."� OUTPUT n p is to mean \output character n to theprinter and then execute p."� DONE is to mean \terminate immediately."These intended meanings are re
ected in the followingtwo rules, which together de�ne a labelled transition systemfor CPS-programs.p)INPUT kp n�! kn p) OUTPUT v q v) np n�! q3.2 Stream transformersThe two remaining I/O mechanisms, synchronised-streamand Landin-stream I/O, are based on stream transformers.A stream is a list type whose cons operation is lazy, such as[�] in H. Stream transformers in H have the general type:type ST inp out = [inp] -> [out]The idea is simple: a stream transformer maps a streamof values of type inp into a stream of values of type out.This mapping represents an interactive computing devicethat consumes values of type inp and produces values oftype out. Intuitively, if the device has been o�ered the se-quence of values in1, : : : , inn for consumption, applyingthe stream transformer to the stream (in1 : : : : : inn : ?)yields a stream containing the sequence of values the devicecan produce. The list cons operation, :, has to have lazysemantics so that the partial list (in1 : : : : : inn : ?) doesnot simply equal ?. Implementations of stream-based I/O[14] typically represent the unde�ned value at the end of apartial list as a memory cell that can be instantiated to holdthe next input character and to point to a fresh unde�nedvalue. Such a technique is intuitively correct, but we leaveopen the question of how to verify formally that it correctlyimplements the semantics to be given here.Stream transformers for stream-based I/O have typicallybeen written using explicit construction of the output listand explicit examination of the input list [8, 14]. Such a

programming style can be hard to read. We can avoid ex-plicit mention of input and output lists by using the follow-ing combinators to construct stream transformers:getST :: (inp -> ST inp out) -> ST inp outputST :: out -> ST inp out -> ST inp outnilST :: ST inp outgetST k xs = case xs of (x:xs') -> k x xs'putST x f xs = x : f xsnilST xs = []A programmer can use the combinators above to con-struct stream transformers; to give semantics to stream-based I/O we use combinators giveST, nextST and skipST.The intention is that giveST feeds an input value to astream transformer, nextST tests whether a stream trans-former can produce an output value without any furtherinput, and skipST consumes an output value from a streamtransformer.data Maybe a = Yes a | NogiveST :: inp -> ST inp out -> ST inp outnextST :: (ST inp out) -> Maybe outskipST :: ST inp out -> ST inp outgiveST c f xs = f (c:xs)nextST f = case f ? of[] -> No(x:xs) -> Yes xskipST f xs = tail(f xs)The technique of using a mock argument ? to test whethera stream transformer is ready to produce output was dis-covered by the Haskell committee [12, 23]. Of course, if thenext output from a stream transformer f depends on thenext value in its input stream, then nextST f will loop.The following proposition relates the six combinators in-troduced in this section.Proposition 1 For all suitably-typed programs u, v, k, f:(1) (giveST u (getST k)) = (k u)(2) (nextST(putST v f))) (Yes v)(3) (nextST(nilST))) No(4) (skipST(putST v f)) = fProof. Straightforward calculations.3.3 Synchronised-stream I/OIn synchronised-stream I/O, the stream transformer pro-duces a stream of requests and consumes a stream of ac-knowledgements. The requests and acknowledgements arein one-to-one correspondence: the computing device speci-�ed by a stream transformer alternates between producingan output request and consuming an input acknowledge-ment. It is the programmer's burden to ensure that thevalue of each request does not depend on the correspond-ing acknowledgement. Synchronised-stream I/O was �rstreported as the underlying implementation technique forKarlsson's Nebula operating system [15]. It was indepen-dently discovered by Stoye [27], and O'Donnell [20]. It is

the mechanism underlying KAOS [4, 31] and Haskell I/O[12, 11] (where the mechanism is named a dialogue).Here is the type SS of executable programs in the settingof teletype I/O, together with intended meanings of someexample programs:type SS = ST Ack Reqdata Req = Get | Put Chardata Ack = Got Char | Did� putST Get (getST k) is to mean \input a character nfrom the keyboard and then execute (k (Got n))."� putST (Put n) (getST k) is to mean \output char-acter n to the printer and then execute (k Did)."� nilST is to mean \terminate immediately."A wide range of imperative activity can be expressed usingthis mechanism|witness Haskell I/O. We de�ne an aux-iliary function for use in examining the acknowledgementobtained from a Get request:outGot :: Ack -> CharoutGot (Got x) = xThe semantics of synchronised-streams can be given forSS-programs in H as the labelled transition system induc-tively de�ned by the following two rules:nextST f) Yes r r) Getf n�! giveST(Got n)(skipST f)nextST f) Yes r r) Put v v) nf n�! giveST Did (skipST f)We state a lemma to show that this formal semantics cor-rectly re
ects the informal intended meanings given forsynchronised-stream programs|apart from termination.Lemma 2 Suppose k::Char -> SS and h::SS are programs.De�ne programs f and g to be:f = putST Get (getST k)g = putST (Put v) (getST k)Then we have:(1) nextST f) Yes Get(2) nextST g) Yes(Put v)(3) f n�!= k (Got n)(4) g n�!= k Did if v) n.(The juxtaposition n�!= denotes the composition of rela-tions n�! and =.)Proof. Parts (1) and (2) follow from the de�nitions ofnextST, putST and getST. For parts (3) and (4), we can cal-culate the following transitions and equations using Propo-sition 1: f n�! giveST(Got n)(skipST f)= giveST(Got n)(getST k)= k (Got n)g n�! giveST Did (skipST g)= giveST Did (getST k)= k Did

3.4 Landin-stream I/O and HThe simplest kind of stream transformer used for I/O is onethat maps a stream of input characters to a stream of outputcharacters. We call such a mechanism Landin-stream I/O inhonour of Landin [16], who suggested that streams \wouldbe used to model input/output if ALGOL 60 included such."Henderson [8] was the �rst implementor of character-basedI/O based on Landin-stream I/O. Executable programs arestream transformers of type LS, with the following intendedmeanings:type LS = ST Char Char� getST k is to mean \input a character n from the key-board and then execute (k n)."� putST n f is to mean \output character n to theprinter and then execute f."� nilST is to mean \terminate immediately."We wish to implement this intended meaning using theoperational semantics of H. Given a function f::LS we areto compute whether f can output a character with no fur-ther input, or whether f needs an input character beforeproducing more output, or whether f can terminate. Moreprecisely, we need a function ready of the following typedata RWD out = R | W out | Dready :: ST inp out -> RWD outand satisfying the equations:ready(putST n f) = W nready(getST k) = Rready(nilST) = DWe show that in H there is no such program. Considerprograms e1 and e2 of type LS:e1 = getST (\x -> putST 205 nilST)e2 = putST 205 nilSTIt is not hard to see that for any xs the following equationshold: e1 xs = (case xs of (x : xs0) ->[205])e2 xs = [205]and hence that e1 v e2 and e2 6v e1 by Strachey's law.To see why there can be no function ready that obeys theequations shown above, we assume there is and derive acontradiction. We have ready(e1) = R and ready(e2) =(W 205), and R 6v (W 205). But e1 v e2 so by monotonicitywe have ready(e1) v ready(e2). Contradiction.2Intuitively, the problem is that inH there is no way to tellwhether a term depends on the value of one of its subterms,such as an element of the input stream. In the next sectionwe remedy this by adding an exception mechanism to H.2John Hughes showed me this argument in 1988.

EC ::= ([]�e) j ([] e) j ([]^e) j (case [] of cc1 | � � � | ccn)e) bang� EC[e] :: �EC[e]) bang�e1) ` e2) bang� (e1�e2)::�(e1�e2)) bang�e1) (\x -> e) e2) bang� (e1^e2)::�(e1^e2)) bang�e1) c Mute(c)(e1 ?? e2)) c e1) bang� e2) c(e1 ?? e2)) cFigure 3: Evaluation in HX3.5 HX : H plus one exceptionThe exception mechanism in SML, say, has the followingproperty: during evaluation of a term, if demand arises fora subterm which evaluates to an exception, then the ex-ception propagates to the outermost level, unless a handlerintervenes. Adding such an exception mechanism is a wayto modify evaluation in H to formalise the notion of demandfor the next character in a stream. Another motivation isto obtain a fully abstract denotational semantics; this is thepurpose of Cartwright and Felleisen's recent extension ofPCF with exceptions [3].We consider a language HX obtained from H by addingjust one exception, the canonical term bang. Raising anexception is represented by a program evaluating to bang,which is present at every type. For the sake of brevity, we saythe program has banged. Program bang bangs. In general,if a program needs to evaluate several subterms before ter-minating, and evaluation of any one of the subterms bangs,then the whole program bangs. The only exemptions fromthis rule are programs of the form (e1 ?? e2). If evaluationof e1 returns an answer or diverges, then evaluation of thewhole program does so too. But if evaluation of e1 bangs,then the whole program behaves the same as e2.To obtain HX from H, we add new canonical terms,bang�, and non-canonical terms (e1 ?? e2), subject to thefollowing typing rules:� ` bang� :: � � ` e1 :: � � ` e2 :: �� ` (e1 ?? e2) :: �The rest of the syntax and typing system of H is as before.De�ne the predicate Mute(c) on canonical terms to holdi� for no type � does c � bang� . The evaluation relationfor HX is the binary relation on HX programs,), de�nedinductively by the evaluation rules from Figures 2 and 3.The rule for call-by-value evaluation in Figure 2 is modi�edto apply only whenMute(c2). Contextual order and equalityare de�ned as before. The same symbols), v and = areused to denote relations in both H or HX , and are labelledwith the language name when necessary.A similar theory to the one sketched for H can be derivedfor HX . In particular, Strachey's law still applies, althoughnow there is an additional canonical program, bang, at each

type. For instance, at the type Int we have that everyprogram either equals ?, n for some n, or bang. Program? is less than the others in contextual order, v. The othersare mutually incomparable, because they are distinct andcanonical. Details can be found elsewhere [7]. The twolanguages can be compared as follows.Proposition 3 Let H0 and HX 0 be the sets of programs inH and HX respectively.(1) H0 � HX 0(2) If e 2 H0 and e)HX c then c 2 H0.(3) For any e; c 2 H0, e)HX c i� e)H c.(4) For any e; e0 2 H0, e vHX e0 implies e vH e0.(5) For any e; e0 2 H0, e =HX e0 implies e =H e0.(6) There are e; e0 2 H0 with e vH e0 but not e vHX e0.(7) There are e; e0 2 H0 with e =H e0 but not e =HX e0.Proof. Part (1) follows by de�nition. Parts (2) and (3) followby induction on depth of inference. Parts (4) and (5) followfrom the de�nition of contextual order and equality; any Hcontext is also anHX context. For parts (6) and (7) considere � (\x -> x�?) and e0 � (\x ->?): We have e =H e0 butnot e vHX e0 (consider the context ([] bang)).In the remainder of this paper we work with HX insteadof H. The only reason we do so is to model demand for alazy input stream. Parts (3){(5) of the proposition assureus that any HX evaluation, order or equality deduced aboutH programs in fact implies the corresponding H property.Parts (6) and (7) indicate that contextual order and equal-ity in HX are �ner grained than in H, intuitively becausean exception can detect whether a function examines its ar-gument.3.6 Landin-stream I/O and HXGiven HX , we can de�ne an operational semantics forLandin-stream I/O. First, we �nd that the argument thatthere can be no function ready in H does not hold inHX . InHX we have that the programs e1 and e2 are incomparable,because e1(bang) = bang, e2(bang) = [205], and bang and[205] are incomparable.Intuitively, to tell in HX whether a term depends on thevalue of one of its subterms, replace the subterm with bangand use the handler operator ?? to see if the whole termbangs. We can de�ne ready in HX as followsready f =(case (f bang) of[] -> D(x:_) -> W x)?? Rand one can calculate that the conditions on ready givenin x3.4 are satis�ed. The semantics of Landin-streams canbe given for LS-programs in HX as the labelled transitionsystem inductively de�ned by the following two rules:ready f) Rf n�! giveST n f ready f) W v v) nf n�! skipST f

The following lemma shows that this formal semanticscorrectly re
ects the informal intended meanings given forLandin-stream programs|apart from termination, whichwe have not formalised.Lemma 4(1) ready(getST k)) R(2) ready(putST v k)) W v(3) getST k n�!= (k n)(4) putST v p n�!= p if v) nProof. Parts (1) and (2) follow from the de�nitions of ready,getST and putST. For parts (3) and (4), we can calculate thefollowing transitions:getST k n�! giveST n (getST k)putST v p n�! skipST (putST v p)These, together with Proposition 1 establish the requiredresults.4 Bisimilarity of programs engaged in I/OFollowing Holmstr�om's method [9], we have given la-belled transition semantics for continuation-passing andsynchronised-stream I/O based onH, and for Landin-streamI/O based on HX . In this section we adopt (strong) bisim-ilarity from CCS [18] as a characterisation of identical I/Obehaviour. Unless otherwise stated, the evaluation, contex-tual order and equality relations are those of HX .De�nition 3 De�ne function h�i to be the function over bi-nary relations on HX programs such that phSiq i�(1) whenever p ��! p0 there is q0 with q ��! q0 and p0Sq0;(2) whenever q ��! q0 there is p0 with p ��! p0 and p0Sq0.A bisimulation is a binary relation on programs, S, such thatS � hSi. Bisimilarity, �, is the union of all bisimulations.Proposition 5(1) Function h�i is monotonic.(2) Bisimilarity is the greatest �xed-point of h�i and is thegreatest bisimulation.(3) p � q i� there is a bisimulation S such that pSq.(4) Bisimilarity is an equivalence relation.Proof. Part (1) follows easily from the de�nition. (2) followsfrom the Knaster-Tarski theorem from �xed-point theory [5].(3) For the forwards direction, take the bisimulation S to be� itself. For the backwards direction, we have S � �, sopSq implies p � q. Part (4) is straightforward (see Milner'sbook for details).This de�nition of bisimulation equivalence is very sim-ple, but for two reasons one might wish to develop it fur-ther. First, although each of the three I/O mechanisms hasa notion of program termination we have not modelled ter-mination in the labelled transition system. Hence a pro-gram that immediately terminates is bisimilar to one thatdiverges. Second, we have assumed that teletype input isobservable. Consider two Landin-stream programs f and g:

f xs = ?g xs = case xs of[] -> ?(_:xs) -> g xsGiven an input stream, g unravels it forever whereas f loopsimmediately. We have f =H g but f 6=HX g and f 6� g(because g forever inputs characters whereas f diverges).One might argue that they have indistinguishable behaviourbecause neither ever produces output. On the other hand,it seems reasonable to distinguish them on the ground thatteletype input is observable to the operating system, if notalways to the end user.4.1 Bisimilarity strictly contains contextual equalityFirst we prove that contextual equality (in HX) is a subsetof bisimilarity.Proposition 6 For any p and q, p = q implies p � q.Proof. By Proposition 5(3) it su�ces to show that the re-lation of contextual equality on programs is a bisimulation.We have to show that for any programs p and q, p = qimplies that ph=iq, which is to say:(1) whenever p ��! p0 there is q0 with q ��! q0 and p0 = q0;(2) whenever q ��! q0 there is p0 with p ��! p0 and p0 = q0.For (1), suppose that p ��! p0, and proceed by analysis ofthe six rules by which this inference can be derived. Weshow the details of the CPS rule for input.Suppose that p)INPUT k, � = n, and hence that p0 �kn. By operational adequacy we have p =INPUT k andalso that q+. Then by operational adequacy and canonicalexclusivity, there is a program k0 such that q =INPUT k0 andk = k0. By the CPS input rule we have that q ��! k0 n andthat k0 n = p0 as required.Examination of the other rules follows a similar patternto prove (1), and then (2) follows by symmetry.The force of this result is that the theory of contextualequality can be used to prove properties of the executionbehaviour of executable programs. The proof makes essen-tial appeal to operational adequacy.Second, we have that bisimilarity does not imply contex-tual equality.Proposition 7 There are program pairs, p and q, in each ofthe types CPS, LS and SS such that p � q but not p = q.Proof. Witness program pair Write? Done and ? in typeCPS, and pair putST? nilST and ? in each of the types SSand LS.Intuitively the proof depends on contextual equality distin-guishing more \junk" programs than bisimilarity. Given aricher I/O model there would be more signi�cant distinc-tions. Suppose we extended the CPS algebraic type with anew constructor Par::CPS -> CPS -> CPS, with intended mean-ing that Par p q is to be the parallel execution of programsp and q, as in PFL. Then if p 6= q, programs Par p q andPar q p would be contextually unequal (because Par is theconstructor of an algebraic type) but bisimilar (because asin CCS both lead to the parallel execution of p and q).

ss2cps f = case nextST f ofNo -> DONEYes r -> case r ofGet ->INPUT (\c ->ss2cps (giveST (Got c) (skipST f)))Put v ->OUTPUT v (ss2cps (giveST Did (skipST f)))cps2ss p = case p ofINPUT k ->putST Get (getST (\ack ->cps2ss (k (outGot ack))))OUTPUT c q ->putST (Put c) (getST (\ack -> cps2ss q))DONE -> nilSTFigure 4: Translation between SS and CPS in HX (and H)4.2 Bisimilarity coincides with trace equivalenceGiven its simple sequential nature, one would expect thesemantics of teletype I/O to be determinate. The followingresult makes this precise.Proposition 8 For any program p, p ��! p0 and p ��! p00implies p0 � p00.Proof. By inspection of each of the inference rules.Given this determinacy, bisimilarity can alternatively becharacterised in terms of traces. If s = �1; : : : ; �n is a �nitesequence of actions, say that s is a trace of program p i�there are programs pi with p �1�! p1 �2�! � � � �n�! pn. Twoprograms are trace equivalent i� they have the same set oftraces.In a nondeterministic calculus like CCS, trace equiva-lence does not in general imply bisimilarity. Given the de-terminacy result above, however, it is not hard to show thatthe two equivalences coincide. We omit the proof, but seeMilner's book for a more general result [18, Chapter 9].5 Translation between the three mechanismsWe show that each of the three mechanisms has equivalentexpressive power in the following sense. If p is an executableprogram with respect to one mechanism, then for each othermechanism, there is a function f such that f(p) is an exe-cutable program with respect to the other mechanism, andp and f(p) are bisimilar.We show in Figure 4 functions ss2cps and cps2ss tomap between the types SS and CPS, and in Figure 5 func-tions ls2cps and cps2ls to map between the types LS andCPS. The main result of the paper is that the three I/Omechanisms are equivalent in the following sense.Proposition 9(1) For any SS-program f, f � (ss2cps f).(2) For any CPS-program p, p � (cps2ss p).(3) For any LS-program f, f � (ls2cps f).(4) For any CPS-program p, p � (cps2ls p).

ls2cps f =case ready f ofR -> INPUT (\c -> ls2cps (giveST c f))W c -> OUTPUT c (ls2cps (skipST f))D -> DONEcps2ls p =case p ofINPUT k -> getST (\c -> cps2ls (k c))OUTPUT c q -> putST c (cps2ls q)DONE -> nilSTFigure 5: Translation between LS and CPS in HXProof. We only prove part (1); the other parts follow bysimilar arguments [7]. It su�ces to show that relation Sbelow is a bisimulation.S def= f(f; ss2cps f) j f is an SS-programgWe are to show that S � hSi. Let f be any SS-programand we have that (ss2cps f)::CPS. Hence the synchronised-stream rules apply to f and the continuation-passing rulesto (ss2cps f). We are to show that (f; ss2cps f) 2 hSi.We proceed by analysis of the evaluation behaviour of(nextST f). There are �ve cases to consider.(1) (nextST f)* or (nextST f)) bang(2) (nextST f)) No(3) (nextST f)) Yes r and either r* or r) bang(4) (nextST f)) Yes r and r) Get(5) (nextST f)) Yes r and r) Put vHere are the possible transitions from f and (ss2cps f).(1,2,3) There are no transitions from either (ss2cps f) or f.(4) The only transitions of f are of the formf n�! (giveST (Got n) (skipST f)) for any n.We have (ss2cps f) evaluates toINPUT(\c -> ss2cps(giveST (Got c) (skipST f))).So the only transitions of (ss2cps f) are of the form(ss2cps f) n�! ss2cps(giveST (Got n) (skipST f))for any n.(5) There is no transition from f unless v) n, whenf n�! (giveST Did (skipST f)).We have (ss2cps f) evaluates toOUTPUT v (ss2cps(giveST Did (skipST f))).So there is no transition from (ss2cps f) unless v) n,when (ss2cps f) n�! (ss2cps(giveST Did (skipST f))).One can see that in each case the conditions for(f; ss2cps f) 2 hSi are satis�ed, so part (1) follows fromProposition 5(3).A simple corollary of this proposition is that each of the fourtranslation functions is a bijection, up to �, and hence thatthe three types are in bijection, up to �. The point of theproposition is that any one of the three mechanisms can betaken as primitive, and execution of a program using one

of the other mechanisms can be simulated by its transla-tion into the primitive mechanism. The Haskell committeediscovered the ss2cps and cps2ss translations and choseto make synchronised-streams primitive because no e�cientimplementation of ss2cps was known [23].One might wonder whether a similar result could beproved for contextual equality instead of bisimilarity. Wecan show that none of the mapping functions is bijective upto contextual equality, and so the given translations do notestablish bijections between the three types.Proposition 10 Neither ss2cps nor ls2cps is injective, andneither cps2ss nor cps2ls is surjective up to contextualequality.Proof. (ss2cps) Witness f � getST(\x -> doneST) and g �getST(\x -> f) of type SS. Both these programs examine the�rst acknowledgement before producing a request, and henceboth are mapped to ? by ss2cps. Since g examines twoelements of the input stream, whereas f only examines one,the two are not contextually equal. Hence ss2cps is notinjective.(ls2cps) De�ne hi to be a family of LS-programs indexedby the character i given by\xs -> case xs of Nil ->[i] | Cons ->?:For each i we have ls2cps(hi) = Input(\c ->?), but hi = hjonly when i = j. So ls2cps is not injective.(cps2ss, cps2ls) One can check by case analysis thatno CPS-program is mapped to SS-program f above, and noCPS-program is mapped to any of the LS-programs hi. Henceneither cps2ss nor cps2ls is surjective.This result is further evidence that bisimilarity is the appro-priate equivalence as far as I/O behaviour is concerned; con-textual equality makes distinctions between programs withidentical I/O behaviour.6 Conclusions, related work and discussionThe main contribution of this paper is a framework in whichto study functional I/O. We considered three mechanismssuitable for lazy languages, and gave an operational seman-tics for each. We needed a simple exception mechanism tomodel demand for lazy input streams. We showed how thenotion of bisimilarity from CCS is a suitable equivalence onprograms engaged in I/O. The main result is the �rst formalproof of the equivalence of three of the most widely imple-mented functional I/O mechanisms, generalising an informalargument of the Haskell committee.The three mechanisms are equivalent in the speci�c sensethat there are bijections between them expressible in thelazy language itself. For a general framework for comparinglanguage expressiveness see Felleisen's study [6] of variousdialects of Scheme.There are several literature surveys of work on functionalI/O [13, 21, 7]. There has been little previous work on se-mantics for I/O in lazy languages. Thompson [30] studiedLandin-stream I/O using traces. Williams and Wimmers[34] developed algebraic laws for I/O in FL (a call-by-valuelanguage) in which each function has an extra, implicit his-tory parameter to express I/O. Hudak and Sundaresh [12]informally compared various I/O mechanisms. They gave asemantics to synchronised stream I/O, but using an infor-mally de�ned nondeterministic merge operator. There has

been no previous comparison of I/O mechanisms based ona formal semantics.A gulf separates the source-level semantics of the stream-based I/O mechanisms given here from their imperative im-plementation [14]. The gulf is particularly wide betweenthe semantics and implementation of lazy input streams.The only other semantics of stream-based I/O is Thomp-son's trace-based work [30], which is domain-theoretic andalso distant from practical implementations. In contrast, theoperational semantics we gave for continuation-passing I/Ocorresponds fairly closely to an interpretive implementation[21]. It is an open question how to relate abstract speci�-cations of I/O to e�cient implementations using side-e�ects[23].The low-level mechanisms discussed here can lead toa clumsy programming style; various high-level combina-tors have emerged from experience of functional I/O [30],the best-known being monadic I/O [4, 33, 23]. The au-thor's dissertation includes a semantics for a particularform of monadic I/O [7]; it remains future work to relatemonadic I/O to the three mechanisms studied here. An-other direction of future work is to extend the treatmentof continuation-passing I/O to accommodate more of Holm-str�om's PFL [9], and to model termination.Landin-stream I/O is good for teletype I/O but isnot general purpose. Lazy input streams admit elegantparsing techniques, which cannot be based so simply onsynchronised-stream or continuation-passing teletype I/O.Landin-stream programs can be written in either Haskell[11] or Hope+C [21] because both I/O mechanisms provideoperations to obtain a lazy input stream, and hence Landin-stream I/O can be simulated.The principal merit of synchronised-stream I/O overcontinuation-passing I/O is that the former can e�cientlysimulate the latter via a function such as cps2ss. Simu-lation of the former by the latter using a function such asss2cps is ine�cient in Haskell [12], although performancecan be improved using side-e�ects [23]. Synchronised-streamprograms su�er from problems relating to synchronisationbetween input and output streams that do not arise withcontinuation-passing [21] and have a more complex seman-tics. High-level combinators such as for monadic I/O can beimplemented on top of either mechanism [4, 23]. If all userprograms are to use such combinators there seems to be noreason to choose synchronised-stream I/O as the underlyingmechanism rather than continuation-passing I/O.7 AcknowledgementsThis is a revised version of Chapter 7 of my dissertation[7], written at the University of Cambridge Computer Lab-oratory. I extend my thanks again to all those who helpedme complete my PhD. I am grateful also to Simon PeytonJones, Phil Wadler and the anonymous referees for usefulcomments.References[1] Samson Abramsky. The lazy lambda calculus. InTurner [32], pages 65{116.[2] Richard Bird and Philip Wadler. Introduction to Func-tional Programming. Prentice-Hall International, 1988.

[3] Robert Cartwright and Matthias Felleisen. Observablesequentiality and full abstraction. In Proc. of the 19thACM Symp. on Principles of Programming Languages,pages 328{342, 1992.[4] J. Cupitt. A brief walk through KAOS. Technical Re-port 58, Computing Laboratory, University of Kent atCanterbury, February 1989.[5] B. A. Davey and H. A. Priestley. Introduction to Lat-tices and Order. Cambridge University Press, 1990.[6] Matthias Felleisen. On the expressive power of pro-gramming languages. Science of Computer Program-ming, 17:35{75, 1991.[7] Andrew D. Gordon. Functional Programming and In-put/Output. PhD thesis, Computer Laboratory, Univer-sity of Cambridge, February 1993. Available as Tech-nical Report 285.[8] Peter Henderson. Purely functional operating systems.In J. Darlington, P. Henderson, and D. A. Turner,editors, Functional Programming and its Applications,pages 177{192. Cambridge University Press, 1982.[9] S�oren Holmstr�om. PFL: A functional language for par-allel programming. In Declarative Programming Work-shop, pages 114{139. University College, London, 1983.Extended version published as Report 7, ProgrammingMethodology Group, Chalmers University. September1983.[10] Douglas J. Howe. Equality in lazy computation sys-tems. In Proc. of the 4th IEEE Symp. on Logic inComputer Science, pages 198{203, 1989.[11] Paul Hudak, Simon L. Peyton Jones, Philip Wadler,et al. Report on the functional programming languageHaskell: A non-strict, purely functional language ver-sion 1.2. ACM SIGPLAN Notices, 27(5), March 1992.Section R.[12] Paul Hudak and Raman S. Sundaresh. On the expres-siveness of purely functional I/O systems. Research Re-port YALEU/DCS/RR{665, Yale University Depart-ment of Computer Science, March 1989.[13] S. B. Jones and A. F. Sinclair. Functional program-ming and operating systems. The Computer Journal,32(2):162{174, April 1989.[14] Simon B. Jones. Abstract machine support for purelyfunctional operating systems. Technical Report PRG-34, Programming Research Group, Oxford UniversityComputing Laboratory, August 1983.[15] Kent Karlsson. Nebula: A functional operating sys-tem. Programming Methodology Group, University ofG�oteborg and Chalmers University of Technology, 1981.[16] P. J. Landin. A correspondence between ALGOL 60and Church's lambda-notation: Parts I and II. Commu-nications of the ACM, 8(2,3):89{101,158{165, Februaryand March 1965.[17] John McCarthy, Paul W. Abrahams, Daniel J. Ed-wards, Timothy P. Hart, and Michael I. Levin. LISP 1.5Programmer's Manual. MIT Press, Cambridge, Mass.,1962.

[18] Robin Milner. Communication and Concurrency.Prentice-Hall International, 1989.[19] Robin Milner, Mads Tofte, and Robert Harper. TheDe�nition of Standard ML. MIT Press, Cambridge,Mass., 1990.[20] John T. O'Donnell. Dialogues: A basis for constructingprogramming environments. In ACM Symp. on Lan-guage Issues in Programming Environments, pages 19{27, 1985. SIGPLAN Notices 20(7).[21] Nigel Perry. The Implementation of Practical Func-tional Programming Languages. PhD thesis, Depart-ment of Computing, Imperial College, London, June1991.[22] Simon L. Peyton Jones. FLIC|a functional languageintermediate code. ACM SIGPLAN Notices, 23(8):30{48, August 1988.[23] Simon L. Peyton Jones and Philip Wadler. Imperativefunctional programming. In Proc. 20th ACM Symp.on Principles of Programming Languages, Charleston,South Carolina, January 1993. ACM Press, 1993.[24] Gordon D. Plotkin. LCF considered as a programminglanguage. Theoretical Computer Science, 5:223{255,1977.[25] Gordon D. Plotkin. The category of complete partialorders: a tool for making meanings. Unpublished lec-ture notes for the Summer School on Foundations of Ar-ti�cial Intelligence and Computer Science, Pisa., June1978.[26] Harald S�ndergaard and Peter Sestoft. Referentialtransparency, de�niteness and unfoldability. Acta In-formatica, 27:505{517, 1990.[27] William Stoye. Message-based functional operating sys-tems. Science of Computer Programming, 6(3):291{311,1986.[28] Christopher Strachey. Fundamental concepts in pro-gramming languages. Unpublished lectures given at theInternational Summer School in Computer Program-ming, Copenhagen, August 1967.[29] Simon Thompson. A logic for Miranda. Formal Aspectsof Computing, 1(4):339{365, October{December 1989.[30] Simon Thompson. Interactive functional programs: Amethod and a formal semantics. In Turner [32], pages249{286.[31] David Turner. An approach to functional operatingsystems. In Turner [32], pages 199{217.[32] David Turner, editor. Research Topics in FunctionalProgramming. Addison-Wesley, 1990.[33] Philip Wadler. Comprehending monads. In Proc. of the1990 ACM Conf. on Lisp and Functional Programming,pages 61{78, June 1990.[34] John H. Williams and Edward L. Wimmers. Sacri�c-ing simplicity for convenience: Where do you draw theline? In Conf. Record of the 15th ACM Symp. on Prin-ciples of Programming Languages, pages 169{179, Jan-uary 1988.

