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Abstract

This paper examines the use of generational garbage col-

lection techniques for a lazy implementation of a non-strict

functional language. Detailed measurements which demon-

strate that a generational garbage collector can substan-

tially out-perform non-generational collectors, despite the

frequency of write operations in the underlying implemen-

tation, are presented.

Our measurements are taken from a state-of-the-art com-

piled implementation for Haskell, running substantial bench-

mark programs. We make measurements of dynamic proper-

ties (such as object lifetimes) which a�ect generational col-

lectors, study their interaction with a simple generational

scheme, make direct performance comparisons with simpler

collectors, and quantify the interaction with a paging sys-

tem.

The generational collector is demonstrably superior. At

least for our benchmarks, it reduces the net storage man-

agement overhead, and it allows larger programs to be run

on a given machine before thrashing ensues.

1 Introduction

Functional languages, like many modern programming lan-

guages, provide an abstraction of memory which relieves

the programmer of explicit storage management responsi-

bilities. The runtime system allocates storage as required

and is responsible for determining which storage locations

are no longer in use, making it available for re-allocation.

This process is known as garbage collection.

Many di�erent garbage collection algorithms have been

developed over the years (Cohen [1981]; Wilson [1992]), each

having di�erent properties and performance characteristics

(Heymann [1991]; Zorn [1990]). In particular, the 1980's

has seen the successful development of generational garbage

collection techniques (Lieberman & Hewitt [1983]; Moon

[1984]; Ungar [1984]), which is now well established in the

symbolic processing community.

Curiously, though, there have been few attempts to ex-

amine the suitability of generational garbage collection for

implementations of non-strict functional languages, such as

Haskell (see Section 7). This may be due to the observation

that common implementation techniques for non-strict func-

tional languages perform many write operations to already-

existing objects. This is precisely the operation that gener-

ational garbage collectors make expensive.

This paper explores the use of generational garbage col-

lection techniques in the Glasgow Haskell compiler (Pey-

ton Jones et al. [1993]); a lazy implementation of the non-

strict functional language Haskell (Hudak et al. [1992]). In

particular:

� We present measurements not only of object lifetimes,

but also of how often objects are updated, and how

old they are when this event occurs (Section 3). We

show that while updates are frequent, almost all ob-

jects which are updated are very young indeed. This

data is critical for generational garbage collection, and

to our knowledge has never been measured for a lazy

implementation before.

� We describe our generational collector, and compare

its wall-clock performance with those of the conven-

tional two-space copying scheme, and a one-space com-

pacting scheme (Section 5.1). The generational collec-

tor is demonstrably superior.

� We consider the interaction between the garbage col-

lector and the paging system. In particular, we give

measurements which show that the generational col-

lector degrades much more gracefully than the others

as the heap size is increased (Section 5.2).

� We study the interaction between lazy graph reduc-

tion and generational garbage collection, measuring

the overheads imposed by the generational technology,

and the promotion rates for a variety of allocation-

space sizes (Section 5.4). This leads to a proposal for

a modi�ed generational collection scheme (Section 6).

2 Generational Garbage Collection

Generational garbage collection exploits the dynamic prop-

erty exhibited by most programs that most objects live a

very short time, while a small percentage live much longer

(Wilson [1992]). The heap is divided into a number of ar-

eas, called generations, each generation containing objects

with a particular range of ages. The areas are collected

independently with the younger areas being collected more



frequently

1

, as determined by the collection policy employed.

The frequent young-generation (or minor) collections re-

claim the space occupied by the many short lived objects,

without incurring the execution cost required to collect the

entire heap containing all the long-lived data. Objects which

survive for long enough are promoted to an older generation,

in order to avoid repeatedly visiting them during minor col-

lections. The circumstances under which objects are pro-

moted are determined by the collection scheme's tenuring

policy.

The ability to collect part of the heap independently of

the rest does not come for free. Considerable extra book-

keeping is required. In particular, all references into a par-

ticular generation have to be identi�ed when it is collected,

including any references from objects in other generations.

These inter-generation references must be identi�ed by the

garbage collector when collection of a generation is required.

Generational collectors usually require the executing pro-

gram to maintain explicit remembered sets for the old-to-

new generation references. This enables the frequent minor

collections to proceed without referencing the older gener-

ations. Old-to-new references are created when an existing

object is updated with a reference to a newer one. Such

operations must be detected, using a so-called write bar-

rier, and the appropriate remembered set modi�ed

2

. The

less frequent old-generation collections normally require the

younger generations to be traversed to identify any new-

to-old references. The alternative, of maintaining explicit

new-to-old sets, is usually considered prohibitively expen-

sive, because object creation (a very frequent operation) in-

volves many potential new-to-old references. What is more,

an explicit new-to-old remembered set is of less bene�t, since

the older generations are collected less frequently.

The bene�ts of cheap reclamation of objects with a short

lifetime must be traded o� against the costs of: enforcing the

write barrier; maintaining the old-to-new remembered sets;

and organising the heap. These costs will in turn depend on

the age distribution of objects, and the frequency of write

operations.

Other performance criteria should also be considered. Of

particular interest is the improved paging behaviour exhib-

ited by generational collection schemes in virtual memory

environments. The frequent minor collections have a much

smaller working set, and result in less paging (Moon [1984];

Ungar [1984]).

3 Dynamic Properties of Lazy Graph Reduction

A generational garbage collector is deliberately designed to

exploit the \typical" dynamic behaviour of the programs it

supports. There exist substantial studies of the dynamic

properties of call-by-value languages such as Lisp (Clark &

Green [1977]; Zorn [1989]), and in practice generational col-

lectors have been shown to support them quite well. How-

ever, the pattern of memory access made by implementa-

tions of non-strict languages seems likely to di�er substan-

tially from these studies. For example, data structures are

1

The choice of algorithm used for collecting a generation is an

independent decision. It is quite possible, even bene�cial, to use dif-

ferent algorithms to collect the di�erent generations, exploiting the

dynamic properties of the particular generation being collected (San-

som [1991]).
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This can done by planting code which maintains a software write

barrier around updating pointer stores, or by using hardware write

traps (Zorn [1989]).

Exec Redn Total Residency

size time alloc Max Avg

hsc 4.5Mb 347.8s 585Mb 2.30Mb 1.69Mb

anna 1.8Mb 165.4s 190Mb 4.47Mb 1.99Mb

pic 0.6Mb 250.8s 304Mb 6.31Mb 2.72Mb

primes 0.3Mb 83.4s 118Mb 0.05Mb 0.03Mb

Figure 1: General statistics for the benchmark programs

built top-down, as they are demanded, instead of bottom

up as they would be in Lisp; updates are very frequent; and

execution is interleaved in a coroutine-like fashion between

di�erent parts of the program. It is not at all clear whether

generational garbage collectors will be a good \�t" with lazy

languages.

The rest of this section quanti�es some aspects of the

dynamic behaviour exhibited by our Haskell implementa-

tion. The latter's evaluation model is based on lazy graph

reduction (Peyton Jones [1987]), with the Spineless Tagless

G-machine as the abstract machine (Peyton Jones [1992]).

Wild, Glaser & Hartel [1991] is the only other detailed work

of this kind that we know of; our measurements di�er from

theirs in our use of substantially larger benchmarks, and our

focus on generational garbage collection.

We focus on properties that are of particular importance

to generational garbage collection:

� What proportion of heap objects, or closures, die young

(Section 3.2)? This gives an upper bound on the pro-

portion of garbage which might be recovered by the

minor collections.

� How frequent are the update operations (Section 3.3)?

These operations require a write barrier to be enforced.

� How many of these update operations create old-to-

new references (Section 3.3.2)? These require an entry

to be added to the relevant remembered set.

3.1 The programs

The execution of the following programs was examined

hsc is our Haskell compiler, compiling a 2000 line source

�le, TcExpr.lhs, one of its own modules. The com-

piler is a substantial piece of software consisting of

over 200 modules and 30,000 lines of Haskell source

(Peyton Jones et al. [1993]).

anna is a 12,000-line frontier-based strictness analyser, writ-

ten by Julian Seward (Manchester).

pic is a 500-line numerical program simulating particle

behaviour within a cell, written by Pat Fasel (Los

Alamos). Our benchmark run consists of only 4 itera-

tion steps so we expect some long time-scale activity.

primes is a 13-line \toy" program which prints the �rst

1000 prime numbers computed using the sieve of Eratos-

thenes. It is included because Seward [1992] found that

its behaviour was particularly inimical to generational

collectors.

Some general statistics for these programs are shown in

Figure 1. The \Exec size" is the size of the (stripped) ex-

ecutable binary. The \Redn time" (reduction time) is the

2
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Figure 2: Survival Distribution of Closures

execution time spent doing useful graph reduction, measured

on a Sun 4/60. It excludes any storage management costs

such as garbage collection or paging. Here, and throughout

the paper, all execution times are averaged over at least 4

runs.

The remaining columns show the heap requirements of

each program: its total heap allocation, maximum residency

and average residency. (The residency of a program at a par-

ticular moment is the size of its live heap-allocated data.

The residency data was obtained by forcing a two-space

garbage collection to determine the amount of live heap after

each 10 Kbytes were allocated.) These programs allocate in

excess of 1 Mbyte/sec on our Sun 4/60 placing considerable

stress on any storage management system.

3.2 Closure Lifetime

Figure 2 shows the lifetime distribution of heap objects,

or closures

3

, by plotting the proportion of closures which

survive beyond a particular lifespan. We measure the life-

span of a closure in units of bytes allocated, an easily acces-

sible, machine independent measure. For example, a closure

is 10 Kbytes \old" when 10 Kbytes have been allocated since

the closure itself was built.

Determining when a closure dies is not straightforward.

We employ an approximating brute force method. To ev-

ery heap object we added a creation-time �eld, measured

in bytes allocated. A two-space garbage collection was per-

formed every 1 Kbyte allocated

4

and an age pro�le con-

structed. Taking the di�erence between this and the pre-

vious age pro�le reveals the closures which died during the

last 1 Kbyte allocated. The pro�le is accurate to 1 Kbyte

with a tendency to overestimate lifetime i.e. closures which

died after 9 Kbytes allocation may be reported as live at the

10 Kbyte point. We only report the data down to 10 Kbytes

as below this point the approximation begins to distort the

data.

The graph reveals that between 75% and 95% of closures

die before they are 10 Kbytes old; and about 95% of closures

3

Here we are using the terminology of the STG-machine where all

heap objects are closures (Peyton Jones [1992]).

4

When measuring allocation our goal is to measure the allocation

which would occur during normal execution. The additional alloca-

tion of the creation-time �eld does not a�ect the allocation measure.

Updates Involving Pointer Stores

performed (% upds) (/Kb) (/sec)

hsc 25,096,390 67.3% 28.8 35,800

anna 9,634,627 61.4% 31.6 48,600

pic 10,667,510 47.6% 16.7 20,200

primes 6,238,563 66.5% 35.0 49,800

Figure 3: Frequency of Updates

die before they are 1 Mbyte old. These �gures are high

compared with those reported for other systems. The data

presented by Zorn [1989] indicates that, for Common Lisp

programs, between 50% and 90% (typically 70%) of objects

die before their 10 Kbyte birthday. In his recent garbage

collection survey, Wilson reports a death rate of 80% to

98% within 1 Mbyte allocation (Wilson [1992]).

In short, object lifetimes in lazy systems are typically

even briefer than in strict ones. This is not really surpris-

ing, because lazy systems allocate many closures for sus-

pended computations, a high proportion of which are evalu-

ated pretty quickly. This results in a high turnover of short-

lived \litter".

3.3 Updates

Lazy functional languages usually have no explicit assign-

ment operation which can update closures, thereby creating

old-to-new pointers

5

. However, in the lazy graph reduction

model, whenever a suspended computation, or thunk, is eval-

uated, its closure must be updated with the result so that

subsequent references do not have to perform the computa-

tion again. We refer to the closure which is overwritten by

one of these updates as the update target.

Thus, despite their absence in the language, updates are

very common in the underlying implementation. Figure 3

quanti�es the rate of updates for each of our programs, giv-

ing the absolute number of updates and the proportion of

updates which store one or more pointers. The frequency of

updates involving such pointer stores relative to the num-

ber of bytes allocated and per second execution on our Sun

4/60 is also given. For example, hsc performs 25 million up-

dates with 61% (17 million) involving pointer stores. This

is about 29 updates with pointer stores for every 1000 bytes

allocated. On our Sun 4/60 this corresponds to 48,600 up-

dates per second | it is this �gure which determines the

total write-barrier overhead.

In comparison, the data reported in Zorn [1989] for large

Common Lisp programs, reveals individual pointer-store

6

rates of between 50 and 500 pointer updates for every 1000

bytes allocated. These rates are actually higher than the

update rates we recorded, which is presumably because Lisp

implementations allocate much more slowly than our Haskell

system.

In absolute terms, Zorn reports between 3,000 and 50,000

pointer stores per second running on a Sun 4/280. Direct

5

Albeit, recent language developments have seen the introduction

of mutable arrays with sequenced update operations (Peyton Jones

& Wadler [1993]).

6

Zorn uses \pointer store" to mean the operation of storing a

pointer into an existing object. This is not the same as one of our

update operations, because one update operation may store multiple

pointers. So far as write-barrier costs are concerned, Zorn's pointer

stores and our updates are directly comparable, since each require

one write-barrier test.

3



Thunks Proportion evaluated

allocated zero once more

hsc 26,315,715 4.6% 77.4% 17.9%

anna 11,506,483 16.3% 56.2% 27.5%

pic 10,816,405 1.4% 79.3% 19.3%

primes 7,272,334 14.2% 50.1% 35.7%

Figure 4: Thunk Usage

frequency comparisons are di�cult as they depend on the

execution speeds of the di�erent machines used. Running

our hsc benchmark on a Sun 4/280 required 356 seconds

reduction time (a 3% slowdown) | the frequencies of Lisp

pointer updates and Haskell update operations are similar.

On both measures, our data contradicts the folk lore that

update rates in lazy implementations are unusually high.

3.3.1 Avoiding updates

One way to reduce the update rate is to avoid performing

updates which are not required. In particular, if a thunk is

evaluated only once, then it does not need to be updated.

Figure 4 presents measurements of how often thunks are

evaluated. The data is gathered by attaching a ag to every

closure. This is set when a closures is updated and reset

if the closure is subsequently entered again. The results

(which, so far as we know, are new) con�rm our suspicion

that the majority of updates are actually unnecessary. For

example, in hsc, 95% of thunks are entered and updated.

Of these only 23% are subsequently entered | that is, 77%

of the updates were unnecessary.

Though it is in general impossible to predict whether an

update is going to be necessary or not, we are actively work-

ing on an update analyser which we hope will detect a good

fraction these and avoid performing the update (Launchbury

et al. [1992]).

3.3.2 Age at update

We now turn our attention to the costs incurred by each

update. There are two costs:

1. the cost of checking whether the update target is in an

old generation (the write barrier), which is incurred

for every update;

2. the (larger) cost of modifying the remembered set,

which is only incurred if the update target is in the

old generation.

It is obviously interesting to know how often the second cost

will be paid. To illuminate this question, Figure 5 shows the

age distribution of closures at the moment they are updated.

It indicates that not only do closures die very young, but

they also tend to be updated even younger! Typically 95%

are updated before they are 100 Kbytes old, and more than

99% before they are 1 Mbyte old. This tells us that, even

with a modestly sized youngest generation, we will �nd that

the vast majority of updates modify closures in the youngest

generation, and hence cannot create old-to-new pointers.

The shape of the curves in Figure 5 is interesting. For

primes there is a pronounced \knee"; a substantial propor-

tion of thunks are updated (around 7%) between the ages

of 100 and 300 Kbytes.
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Figure 5: Age Distribution of Closures when Updated

The pic program is di�erent again. The at curve indi-

cates that almost no updates are occurring for thunks aged

between 20 Kbytes and 10 Mbytes; that is, about 5% of

update targets are older than 10 Mbytes. One can start to

understand just why this occurs by looking at the code, but

the main lesson is this: some programs have a small propor-

tion of relatively long-lived closures, which are sometimes

also updated in their old age.

One should be wary of generalisations drawn from few

programs, or from small programs. The programs in this

paper are few but they exhibit a variety of behaviours. The

larger programs, hsc and anna, exhibit di�erent behaviours

during their execution. The results reported reect an \av-

erage" of these behaviours.

3.4 Summary

The short lifetime of heap objects bodes well for the use

of generational garbage techniques with a lazy graph reduc-

tion system. The update frequency seems comparable with

other languages, with the young age of closures at update

suggesting a small proportion of these updates should actu-

ally occur in the old generation.

4 Our Generational Scheme

Having quanti�ed some of the dynamic properties of lazy

graph reduction, we now turn our attention to the design of

our generational garbage collector. We begin by discussing

the building-blocks from which the generational collector is

constructed, namely simple one-space and two-space collec-

tors.

4.1 The basic collectors

It is widely recognised that allocation from a contiguous area

of memory minimises the per-closure allocation cost (Appel

[1987]). Zorn [1990] reports that allocating from a free list

in a large Lisp system imposes a 4% execution overhead. If

we are aiming to reduce collection costs to around this level

then any free list allocation scheme is a non-starter.

Recent implementations of lazy functional languages have

used a simple two-space copying collector based on Fenichel

4
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The basic heap organisation of our collector is depicted in (a). Closures are allocated in new-gen. When this �lls, a

minor collection is performed. This collects the new generation, copying live data to the end of the old generation,

old-gen. The old generation is then extended to include the objects just collected, compare (b). The free heap is now

split, ensuring that there is enough space to copy promoted data, and allocation continues in the new generation. When

the old generation is extended beyond some threshold a major collection is performed, which marks and compacts the

old generation (c). The threshold for the next major collection is then set and execution resumes (d).

Figure 6: Operation of the Generational Garbage Collector

& Yochelson [1969] or Cheney [1970]. These collectors are

attractive in their simplicity requiring relatively little e�ort

to implement and debug. However they su�er from twomain

shortcomings:

� The heap usable by the program is restricted to half

of the memory allocated. Half the memory must be

reserved as a free semi-space into which the live heap is

copied during collection, freeing the other semi-space.

It is sometimes supposed that a paged virtual memory

eliminates this problem, but our results in Section 5.2

suggest otherwise.

� Every collection copies all live data. Any long lived

data is repeatedly copied between semi-spaces.

The space utilisation problem can be overcome by using a

mark and sweep collector augmented with an in-place com-

paction scheme (Cohen & Nicolau [1983]; Jonkers [1979]).

However, these compaction algorithms are usually consid-

ered to be prohibitively expensive, because they require the

heap to be sequentially scanned. As a result the cost of a

collection is proportional to the size of heap, rather than

to the size of the live data, as in the case for a two-space

copying collector.

However, we have found that our best in-place compact-

ing collector imposes lower total garbage-collection overhead

than our best two-space collector, unless residency is lower

than 25% of the available heap (see Section 5). This e�-

ciency is achieved, in part, by making use of a bit-vector to

keep track of marked objects, which can be scanned 32 words

at a time. When the residency is low, this process is rather

quick. When the residency is high the scanning overhead is

in any case dominated by the data-copying costs.

4.2 A simple generational scheme

Our simple generational collector is depicted in Figure 6.

It is an implementation of an extension to Appel's elegant

two-generation collection scheme (Appel [1989]) which we

�rst outlined in Sansom [1991]

7

.

We use both two-space copying and one-space compaction

in our collector. Since we expect low residencies when per-

forming a minor collection we use a two-space copying col-

lector for this purpose. Each minor collection copies the

live new-generation data to the end of the old generation,

thereby implicitly promoting it. When the old generation is

deemed full, it is collected using in-place compaction. Us-

ing an in-place collector allows the total heap residency to

increase well beyond 50% (in contrast to Appel's original

scheme), since there is no need to reserve an additional semi-

space for the old generation.

Within the framework of this collection scheme there are

two particular questions which must be answered:

� How big should the new-generation allocation area be?

(The \allocation area" is labelled with a heavy arrow

in Figure 6.)

� When should a major collection be performed?

Following a minor collection, the scheme depicted in Figure

6 splits the available free space in half, using the top half

as an allocation area. This strategy ensures the maximum

time interval between minor collections

8

, thereby providing

7

Seward's generational collection scheme (Seward [1992]) is very

similar to ours as it is also based on our earlier work.

8

An alternative approach is to use the in-place compacting collec-

tor to perform the minor collections as well. This would enable all the

free heap space to be allocated between minor collections. However,

as we expect a small proportion of the allocation area to be live when

we collect it we use the two-space algorithm | it is more e�cient

when collecting low residency heap areas (Sansom [1991]).

5



the greatest opportunity for the allocated closures to die

before the next collection is performed and the live closures

promoted.

Though this mortality rate is of critical importance to

the performance of the generational collector, it is not the

only criterion which should determine the allocation-area

size. For example, the allocation area is written from be-

ginning to end between every minor collection. This access

pattern has very poor paging and cache locality, and one

would certainly want, for example, to limit the size of the

allocation area to the available memory (Cooper, Nettles &

Subramanian [1992]). It has been suggested that making

the allocation area small enough to �t in the cache might

also improve cache locality (Wilson, Lam & Moher [1992]).

Our collector has a run-time option which allows us to limit

or �x the size of the new generation allocation area. We ex-

amine the operation of our collector for di�erent allocation

sizes in Section 5.4.

Deciding when a major collection is performed is also

critical to the performance. We want to minimise major

collections because they are expensive, both in execution

and paging costs. However, delaying a major collection too

long will result in poor minor-collection performance. As

closures are promoted into the old generation the size of

the new generation decreases and a smaller proportion of

objects in the new generation will die before they are col-

lected. There is a balance to be found. Seward reports the

optimum major generation threshold to be around 70-90%

of the total heap (Seward [1992]).

However, a �xed threshold like this can be detrimen-

tal to performance. If the heap residency approaches the

threshold, major collections become very frequent, repeat-

edly copying the large amount of long-lived data. Under

these circumstances it is better to increase this threshold,

paying the cost of less e�cient minor collections to reduce

the frequency of the expensive major collections. We have

adopted a very simple dynamic threshold scheme. After a

major collection is performed the threshold for the next ma-

jor collection is set to a proportion of the free heap. We

currently use a default proportion of two thirds of the free

heap (see Figure 6).

4.3 The write barrier

In an implementation of a lazy, purely-functional language

there is exactly one way in which an old-to-new pointer can

be created, namely when a thunk is updated with a pointer

or pointers

9

. The compiler emits extra code at the point of

update to implement a write barrier. (Sometimes a closure

may be updated with a value which contains no pointers,

such as an integer or a character, in which case no action

needs to be taken. This case can be detected at compile

time and no additional code is emitted.)

When a closure is being updated with one or more point-

ers, old-to-new pointers can be created only if the update

target resides in the old generation. Given our linear heap

organisation, a test for this situation can be accomplished

with a simple in-line conditional:

if ( UpdClosure <= OldLim ) {

/* process the old generation update */

}

9

Again we note that recent language developments have seen the

introduction of mutable arrays with sequenced update operations

(Peyton Jones & Wadler [1993]). These mutable heap objects are

identi�ed and explicitly scavenged by the garbage collector.

where UpdClosure is the address of the update target, and

OldLim contains the address of the current end of the old

generation. By arranging for both UpdClosure and OldLim

to be in registers, the test can be made very cheap.

One might also emit code to test to see if the pointer(s)

which are written into the update target do indeed point into

the new generation. However, since most of these updates

point to results which have been recently allocated, we omit

this test. Instead we accept the cost of recording a few old-

to-old pointers.

4.4 Maintaining the remembered set

Once the write barrier has determined that an old genera-

tion closure is being updated, we are left with the problem

of recording the old-to-new (or old-to-old) pointer(s). In our

lazy reduction scheme many updates overwrite their update

target with an indirection closure which contains a pointer

to the actual result. It is this indirection pointer which must

be recorded as the old-to-new reference. To avoid the need

for a separate table identifying these old-to-new references,

we simply link together all the indirection closures which

contain these old-to-new references. Linking the indirection

closure onto the OldRootsList is so simple that the com-

piler emits in-line code to do so, avoiding a function call

to register the pointer. During a minor garbage collection

this OldRootsList is traversed, and the indirection refer-

ences treated as new-generation roots. Once collection is

complete the list is discarded, because in this simple scheme

all live closures are promoted.

Unfortunately not all closures are updated with indirec-

tions. If it is known that the result will �t in the update

target, the compiler instead emits code to update the tar-

get in place. This complicates matters for the generational

storage manager, because now there can potentially be more

than one kind of old generation closure containing old-to-

new pointers. We avoid the complication by always forcing

an indirection update if the target is old. A new closure is

allocated in the new generation, and the update target in-

directed to it. The new closure is then updated in place as

normal. As before, we in-line all the code.

This scheme requires any updatable closure in the old

generation to be able to hold at least two pointers | the

indirection and the link. This can easily be arranged when

such closures are promoted.

5 Performance

Now that we have completed the description of our simple

generational collection scheme, we turn our attention to its

performance. We start by comparing its performance with

that of more traditional collectors.

5.1 Generational collection outperforms the others

Figure 7 compares the performance of three di�erent

garbage collectors (two-space copying, one-space compact-

ing, and generational) across a range of heap sizes, for oth-

erwise identical runs of hsc and anna. The comparison is as

\fair" as we could make it | that is, the same optimisation

techniques were used for each collector | but obviously it is

impossible to be sure that the �gures are not being distorted

by some peculiarity in the coding of one or other collector.

Following Heymann [1991], the vertical axis measures

productivity, that is, the fraction of the time which is spent
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Figure 7: Comparison of Collectors

actually doing useful work, excluding storage management

overheads.

productivity

user

=

Useful reduction time

Total \user" run time

That is, 100% productivity would be perfect. In all these

measurements, we measure \user time", which ignores pag-

ing costs. (We return to the issue of paging in Section 5.2.)

User time is slightly a�ected by system e�ects, including

paging, so we conservatively de�ne \useful reduction time"

as the minimum user time recorded in any test run, after de-

ducting any time spent in the garbage collector. (This min-

imum was always provided by the two-space or one-space

collector.) For the generational collector this de�nition en-

sures that the extra overhead imposed processing updates is

attributed to the collection scheme, not the reducer.

The horizontal axis measures the total space allocated

for the heap. Remember that the program runs are identical

(see Figure 1), and hence so are their storage demands. Only

the space allocated to the heap is varied.

For example, the maximum residency of the hsc run is

about 2.3 Mbytes, which is the reason for the steep fall-o� in

productivity of the one-space and generational collector as

the heap space is reduced towards this limit. The two-space

collector productivity falls o� at twice this level, because

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

W
al

l C
lo

ck
 P

ro
du

ct
iv

ity
 %

Heap Size (Mb)

Paging Effects   (hsc: 2.30Mb max R)

gen
2s
1s

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

W
al

l C
lo

ck
 P

ro
du

ct
iv

ity
 %

Heap Size (Mb)

Paging Effects   (anna: 4.46Mb max R)

gen
2s
1s

Figure 8: Paging E�ects

only half of the heap space is actually available to the pro-

gram.

Notice, too, that the one-space collector out-performs the

two-space collector until the heap size is about four times

the maximum residency of the program.

However, the main conclusion from these graphs is that

that, at least for these programs, the generational collector

out-performs both other collectors by a substantial margin

across a signi�cant range of heap sizes. Not only that, but

the productivity fall-o� as the heap size is decreased is much

later for the generational collector than for the others. To

put it another way, the generational collector survives bet-

ter as the program's residency approaches the size of the

available heap.

As the heap size is increased the performance of the

generational collector may drop below the more traditional

collectors because the overheads of detecting and recording

old generation updates become signi�cant (see Section 5.3).

These are much larger when the absolute heap size is small

(as for the primes program). The necessarily small allo-

cation area increases the generational overheads as newly

allocated closures are not given enough time to die before

being collected and promoted. However, this only occurs

when the heap size is greater than �ve times the maximum

program residency.
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Fixed No of GCs Old Generation Updates Promoted Live on Live Next

Alloc Minor Major Proportion (% updates) O'head (%) Promotion Minor GC

Area (8Mb

y

) NoPtrs Ptrs Ind Exec Alloc (% alloc) (% alloc) (% alloc)

hsc 50Kb 11967 24 1.32 4.13 2.56 10.3 2.1 25.8 18.7 12.7

100Kb 5944 20 0.73 2.85 1.31 6.9 1.5 21.7 15.8 12.1

1000Kb 587 11 0.12 0.66 0.19 2.6 0.3 12.9 8.6 1.9

anna 50Kb 3868 5 0.60 2.54 0.47 7.5 1.5 15.5 8.5 5.4

100Kb 1922 4 0.37 1.54 0.29 4.6 0.9 12.4 7.0 4.8

1000Kb 190 1 0.08 0.35 0.06 1.5 0.2 6.3 4.2 3.3

pic 50Kb 6098 9 0.43 0.48 4.72 8.0 0.2 16.0 6.6 5.6

100Kb 3046 9 0.35 0.32 4.63 4.5 0.1 15.1 5.9 5.3

1000Kb 304 8 0.22 0.17 4.51 0.7 0.1 14.0 5.4 5.3

primes 50Kb 2491 1 0.05 8.03 0.11 6.3 5.1 10.2 5.0 4.5

100Kb 1242 1 0.05 7.68 0.08 3.6 4.9 10.0 4.8 3.1

1000Kb 119 0 0.01 1.28 0.01 -1.0 0.8 6.2 0.9 0.03

y

No. of major collections are reported for a �xed old generation collection threshold of 8Mb.

Figure 9: Old Generation Updates and Promotion Behaviour for Various Fixed Allocation Areas

5.2 E�ects of Paging

In reality, the size of programs run on workstations is not

limited primarily by physical memory size, but rather by

the dramatic increase in wall-clock time when a program

causes substantial paging. It is therefore interesting to ask

how each of our garbage collectors interacts with the paging

system.

To measure these e�ects we ran our programs on a stand-

alone Sun 4/60 workstation, with 12 Mbytes of physical

memory. The machine was physically disconnected from

the network, and ran in single-user mode with no window

system. We measured the total wall-clock elapsed time for

each run, which includes any time spent paging. As before,

each measurement is averaged over at least 4 runs, and in

practice we only found only small time variations between

runs. We calculate the productivity much as before:

productivity

wall

=

Useful reduction time

Total wall-clock run time

except that the denominator is now the total elapsed time

for the run. Figure 8 shows the results, for the same runs of

hsc and anna as in Figure 7.

The graphs start o� much as before, but both the two-

space and one-space collectors collapse as thrashing sets in.

(This point happens with a heap size of about 8 Mbytes for

hsc and 9.5 Mbytes for anna; the di�erence is due to the

di�erent size of their executable binaries which also compete

for memory | see Figure 1.) Indeed, for anna, the two-

space collector thrashes even with the smallest heap size

which can accommodate the program at all. In e�ect, it is

impossible to run anna with a two-space collector on this

machine without thrashing.

In contrast, the generational collector degrades much

more gracefully as the heap size increases. Even with a heap

size of 16 Mbytes, well in excess of the 12 Mbyte physical

memory of the machine, productivity is still 50%; hardly

desirable, but many times better than the others. As in the

\user-time" productivity measurement of Section 5.1, the

absolute productivity of the generational collector is very

much better than the others at all heap sizes.

What all this means in practice is that generational col-

lection makes it possible to run larger programs on the same

machine, before thrashing ensues.

Execution O'head Inline Code

secs % total % object size

hsc 7.0 � 1.3 2.0% 1.0%

anna 2.7 � 0.5 1.6% 0.7%

pic 1.5 � 0.5 0.6% 0.0%

primes 0.0 � 0.1 0.0% 0.0%

Figure 10: Overheads of the Write Barrier

5.3 The overheads of generational collection

In Section 3.3.2 we identi�ed two overheads which are im-

posed on the update operation by a generational collector:

the write barrier overhead which is incurred for every up-

date, and the cost of modifying the remembered set which is

incurred only for updates of old objects.

5.3.1 Write barrier overhead

We measured the cost of the write barrier by comparing

the mutator time of the generational collector running in a

two-space copying mode, collecting the heap every 1 Mbyte

allocated, compiled both with and without the write-barrier

code. The results are presented in Figure 10. These numbers

should be treated with caution, especially for the smaller

programs, which are inuenced by caching e�ects. The large

programs, hsc and anna, provide the best indication of the

overheads. All that can be concluded is that the write bar-

rier overheads are small | about 2%.

5.3.2 Old generation updates

Section 3.3.2 measured the age pro�le of objects at their

moment of update. Figure 9 shows how this works out

in practice

10

. The old generation updates are divided into

three classes:

� NoPtrs: in-place updates which contain no pointers,

imposing no barrier or recording overheads.

10

As mentioned in Section 4.2, we usually vary the allocation area

size dynamically, but it is held constant here to avoid complicating

the results.
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Figure 11: Detailed Promotion Behaviour of hsc

� Ptrs: in-place updates which contain pointers. The

update target is updated with an indirection (added

to the OldRootsList) to a newly allocated closure in

the new generation which is then updated in-place.

� Ind: update with an indirection to an existing closure.

The indirection is added to the OldRootsList as it is

a potential old-to-new pointer.

Each of these �gures is given as a percentage of all updates

for three di�erent sizes of the allocation area | the larger

the allocation area, the fewer updates targets are in the old

generation.

The execution and allocation overheads of detecting and

recording the old generation updates for are also shown in

Figure 9. For an allocation area of 1 Mbyte we observe an ac-

ceptable execution overhead of less than 3%. Unfortunately

for small allocation areas this overhead is quite signi�cant

| over 6%. (This also includes some of the costs incurred

invoking the very frequent garbage collections.)

The dominant result is that even with a very small allo-

cation area (50 Kbytes), only a small proportion of updates

are in the old generation, though the overhead imposed by

these updates, and frequently invoking the numerous minor

garbage collections, is still signi�cant. Increasing the size

of the allocation area reduces this proportion further with

acceptable overheads observed with a 1 Mbyte allocation

area.

5.4 Tenuring Policies

In any generational scheme, the idea is to promote as

few objects as possible, thereby recovering their store with

a minor collection rather than a major one. How successful

is our scheme at minimising promotion?

Figure 9 also shows the promotion behaviour for the new

generation allocation sizes given a �xed major generation

threshold size. It is interesting to compare these with the

lifetime plots of Figure 2. For example, the latter tells us

that for hsc about 14% of closures survive their 100 Kbyte

birthday. One might hope that, with a 100 Kbyte allocation

area, only 14% of closures will be promoted. The actual

�gure, from Figure 9 is rather larger, nearly 22% promoted.

To take another example, Figure 2 suggests that in all the

benchmarks only 5% of closures survive beyond 1 Mbyte; yet

Allocation

Old Gen

Delaying Buckets
New Gen

Figure 12: Delayed Promotion Generational Scheme

the promotion rates with a 1 Mbyte allocation space range

from 6% to 14%.

The reason for this is our over-liberal promotion policy.

At a minor collection, every single live closure is promoted,

including some which are extremely young. Many closures

are being promoted before they have been given a chance to

die.

So far, the situation is no di�erent to that for strict

languages, but there is an interesting second-order e�ect

concerning lazy evaluation. It is this: the promotion of a

thunk causes the entire data structure with which the thunk

is subsequently updated to become rooted in the old gener-

ation, even though this data structure might quickly be-

come garbage. If the thunk had not been promoted prema-

turely, this data structure might well have been recovered

by a minor collection. In e�ect, lazy evaluation therefore

exacerbates the problem of premature promotion, because

the damage is not limited to a single prematurely promoted

closure, but rather spreads to the entire data structure with

which that closure is updated.

The extent of the damage is quanti�ed in Figure 9 by

the \Live on Promotion" column. This measures the pro-

portion of closures which were actually live when promoted.

The additional closures were promoted because an update

operation created a reference to them from an old genera-

tion closure which subsequently died. Being an old genera-

tion object however, its death is not detected by the minor

garbage collection. For example, in hsc 22% of closures allo-

cated were promoted with a 100 Kbyte allocation area with

16% of the closures allocated being live when they were pro-

moted. That is, 6% of the closures allocated (27% of the

closures promoted) were dead on promotion. A complete

plot of the promotion characteristics of hsc are presented in

Figure 11.

The cost of this over-liberal promotion policy is time

spent promoting dead closures as well as more frequent ma-

jor collections.

6 Future Work | Delayed Promotion

In response to the problems associated with over-liberal

promotion we are currently implementing an extension to

this basic generational scheme based on Wilson & Moher

[1989]. It uses a more sophisticated tenuring policy employ-

ing a second area, or bucket, in the new generation. This

holds the live closures copied from the allocation area, de-

laying their promotion into the old generation by one minor

9



garbage collection cycle. During the next minor collection

they are copied into the old generation, while the live alloca-

tion area closures are copied into the delaying bucket. The

bucket actually consists of two spaces so that we can copy

into and out of the bucket simultaneously during a minor

collection | the roles of the spaces being reversed before

each minor collection. The basic organisation is depicted in

Figure 12.

This scheme ensures that all promoted closures have sur-

vived for at least the time taken to allocate the entire alloca-

tion area. The �nal column of Figure 9, \Live Next Minor

GC", presents the proportion of closures allocated which are

live at the next minor garbage collection | any additional

closures promoted were promoted dead or prematurely. We

would expect a plot of \Live Next Minor" against alloca-

tion area size to approximate the lifetime plot in Figure 2

as closures must survive the allocation of at least an entire

allocation area. This is con�rmed by Figure 11. This \Live

Next Minor" plot provides us with an upper bound on the

potential improvements of delayed promotion | we still ex-

pect some old generation updates (though fewer than the

current scheme) to result in unnecessary promotion of dead

closures.

Delaying promotion complicates the collection somewhat.

During a minor collection, closures will be copied either into

the old generation, or into the second bucket in the new gen-

eration, which complicates the copying collection algorithm.

It also requires more bookkeeping during collection, since

old-to-new pointers from the old generation to the delaying

bucket will remain and must be identi�ed. (Previously the

OldRootsList could be discarded after a minor collection.)

It is hoped that this scheme will signi�cantly improve the

promotion properties, especially for small allocation sizes

area. We are interested in experimenting with small alloca-

tion areas, in an attempt to improve cache hit rates.

6.1 Other variations

It is not necessary to promote all the live closures from the

delaying bucket when a minor collection is performed. In-

stead they can be copied to the other bucket. A whole range

of tenuring policies might be considered (Ungar & Jackson

[1988]). One possibility is to vary the tenuring policy de-

pending on the kind of closure. In particular, one might

consider delaying the promotion of updatable thunks, re-

ducing the number of updates which occur in the old gener-

ation. Indeed, it is possible to delay the promotion of these

thunks inde�nitely (R�ojemo [1992]; Wild, Glaser & Hartel

[1991]). This would mean that all updates were performed

in the new generation, avoiding the need to maintain a write

barrier at all. These bene�ts must be weighed against the

cost of repeatedly copying any live thunks, which are still

to be updated, within the new generation. Alternatively a

separate new generation bucket could be used to store them,

which would only need to be scanned during a minor collec-

tion.

It is also possible to generalise generational collectors in

other ways, by introducing more generations and/or more

sophisticated tenuring policies. All these schemes tend to

increase the overheads of the garbage collector, but they

may come into their own when paging costs are considered

| if a more complex collector improves paging, then almost

any overhead looks cheap!

7 Related Work

As mentioned earlier there have been relatively few attempts

to use generational garbage collection with a lazy functional

language.

Ireland describes the �rst use of a generational collector

in a lazy functional language which we are aware of (Ire-

land [1989]). His scheme uses a separate \paradoxical" area

for all updatable objects; which is scanned at every minor

collection. Unfortunately no performance results from this

implementation have been reported, however the comments

we solicited were fairly negative. We expect this was be-

cause of the number of updatable objects which had to be

allocated and scanned in the paradoxical area.

More recently Seward has described and experimented

with a scheme based on the same ideas as ours, but in an

interpreted lazy implementation (Seward [1992]). His results

were very encouraging and spurred us on to perform this

experimental work for our compiled implementation.

Finally we are aware of a generational scheme which has

been added to the hbc/lml compiler (Augustsson & Johns-

son [1989]; R�ojemo [1993]). It is also based on a simple

two-generation collection scheme but uses a di�erent mech-

anism to detect and record old generation updates. Up-

datable closures \know" which generation they are in when

they are entered, adding themselves to the remembered set

if in the old generation. We speculate that the negative re-

sults reported in R�ojemo [1993] are probably due to a higher

update frequency in the G-machine implementation. Unfor-

tunately, we do not have access to detailed results which we

can compare with those reported here.

8 Conclusions

We have demonstrated the e�ectiveness of generational garb-

age collection for lazy functional languages, based on quan-

titative measurements of substantial programs compiled by

a production compiler. Despite the unusual heap-usage pat-

terns of lazy evaluators, our simple generational garbage

collector substantially out-performs other collectors, and ex-

tends the size of programs which can reasonably be run on

a given machine.
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