
A Tutorial on Co-induction andFunctional ProgrammingAndrew D. Gordon�University of Cambridge Computer Laboratory,New Museums Site, Cambridge CB2 3QG, United Kingdom.adg@cl.cam.ac.uk

To appear in the Proceedings of the 1994 Glasgow Workshop on Func-tional Programming, September 8{10, 1994, Ayr, Scotland. SpringerWorkshops in Computing, 1995.

AbstractCo-induction is an important tool for reasoning about unboundedstructures. This tutorial explains the foundations of co-induction, andshows how it justi�es intuitive arguments about lazy streams, of centralimportance to lazy functional programmers. We explain from �rst prin-ciples a theory based on a new formulation of bisimilarity for functionalprograms, which coincides exactly with Morris-style contextual equiva-lence. We show how to prove properties of lazy streams by co-inductionand derive Bird and Wadler's Take Lemma, a well-known proof techniquefor lazy streams.The aim of this paper is to explain why co-inductive de�nitions and proofs byco-induction are useful to functional programmers.Co-induction is dual to induction. To say a set is inductively de�ned justmeans it is the least solution of a certain form of inequation. For instance, theset of natural numbers N is the least solution (ordered by set inclusion, �) ofthe inequationf0g [fS(x) j x 2 Xg � X: (1)The corresponding induction principle just says that if some other set sat-is�es the inequation, then it contains the inductively de�ned set. To prove aproperty of all numbers, let X be the set of numbers with that property andshow that X satis�es inequation (1). If so then N � X , since N is the leastsuch set. This is simply mathematical induction.Dually, a set is co-inductively de�ned if it is the greatest solution of a certainform of inequation. For instance, suppose that is the reduction relation in afunctional language. The set of divergent programs, ", is the greatest solutionof the inequationX � fa j 9b(a b & b 2 X)g: (2)The corresponding co-induction principle is just that if some other set satis-�es the inequation, then the co-inductively de�ned set contains it. For instance,�Royal Society University Research Fellow.1

suppose that program
 reduces to itself, that is,

. To see that
 iscontained in ", consider set X = f
g. Since X satis�es inequation (2), X � ",as " is the greatest such set. Hence
 is a member of ".Bisimilarity is an equality based on operational behaviour. This paper seeksto explain why bisimilarity is an important co-inductive de�nition for func-tional programmers. Bisimilarity was introduced into computer science byPark (1981) and developed by Milner in his theory of CCS (1989). Bisimi-larity in CCS is based on labelled transitions. A transition a ��! b means thatprogram (process) a can perform an observable action � to become successorprogram b. Any program gives rise to a (possibly in�nite) derivation tree,whose nodes are programs and whose arcs are transitions, labelled by actions.Two programs are bisimilar if they root the same derivation trees, when oneignores the syntactic structure at the nodes. Bisimilarity is a way to comparebehaviour, represented by actions, whilst discarding syntactic structure.Contextual equivalence (Morris 1968) is widely accepted as the natural notionof operational equivalence for PCF-like languages (Milner 1977; Plotkin 1977).Two programs are contextually equivalent if, whenever they are each insertedinto a hole in a larger program of integer type, the resulting programs eitherboth converge or both diverge. The main technical novelty of this paper isto show how to de�ne a labelled transition system for PCF-like languages (forinstance, Miranda and Haskell) such that bisimilarity|operationally-de�nedbehavioural equivalence|coincides with Morris' contextual equivalence. Byvirtue of this characterisation of contextual equivalence we can prove propertiesof functional programs using co-induction. We intend in a series of examplesto show how co-induction formally captures and justi�es intuitive operationalarguments.We begin in Section 1 by showing how induction and co-induction derive, du-ally, from the Tarski-Knaster �xpoint theorem. Section 2 introduces the smallcall-by-name functional language, essentially PCF extended with pairing andstreams, that is the vehicle for the paper. We make two conventional de�nitionsof divergence and contextual equivalence. In Section 3 we make a co-inductivede�nition of divergence, prove it equals the conventional one, and give an ex-ample of a co-inductive proof. The heart of the paper is Section 4 in whichwe introduce bisimilarity and prove it coincides with contextual equivalence.We give examples of co-inductive proofs and state a collection of useful equa-tional properties. We derive the Take Lemma of Bird and Wadler (1988) byco-induction. Section 5 explains why bisimilarity is a precongruence, that is,preserved by arbitrary contexts, using Howe's method (1989). We summarisethe paper in Section 6 and discuss related work.This paper is intended to introduce the basic ideas of bisimilarity and co-induction from �rst principles. It should be possible to apply the theory devel-oped in Section 4 without working through the details of Section 5, the hardestof the paper. In a companion paper (Gordon 1994a) we develop further co-inductive tools for functional programs. For more examples of bisimulationproofs see Milner (1989) or Gordon (1994b), for instance.

Here are our mathematical conventions. As usual we regard a relation R ona set X to be a subset of X � X . If R is a relation then we write x R y tomean (x; y) 2 R. If R and R0 are both relations on X then we write RR0 fortheir relational composition, that is, the relation such that xRR0y i� thereis z such that x R z and z R0 y. If R is a relation then Rop is its opposite,the relation such that xRop y i� y R x. If R is a relation, we write R+ for itstransitive closure, and R� for its reexive and transitive closure.1 A Tutorial on Induction and Co-inductionLet U be some universal set and F : }(U) ! }(U) be a monotone function(that is, F (X) � F (Y) whenever X � Y). Induction and co-induction aredual proof principles that derive from the de�nition of a set to be the least orgreatest solution, respectively, of equations of the form X = F (X).First some de�nitions. A set X � U is F -closed i� F (X) � X . Dually, a setX � U is F -dense i� X � F (X). A �xpoint of F is a solution of the equationX = F (X). Let �X:F (X) and �X: F (X) be the following subsets of U .�X:F (X) def= TfX j F (X) � Xg�X: F (X) def= SfX j X � F (X)gLemma 1(1) �X:F (X) is the least F -closed set.(2) �X: F (X) is the greatest F -dense set.Proof We prove (2); (1) follows by a dual argument. Since �X: F (X) con-tains every F -dense set by construction, we need only show that it is itselfF -dense, for which the following lemma su�ces.If every Xi is F -dense, so is the union SiXi.Since Xi � F (Xi) for every i, SiXi � Si F (Xi). Since F is monotone,F (Xi) � F (SiXi) for each i. Therefore Si F (Xi) � F (SiXi), and so wehave SiXi � F (SiXi) by transitivity, that is, SiXi is F -dense. �Theorem 1 (Tarski-Knaster)(1) �X:F (X) is the least �xpoint of F .(2) �X: F (X) is the greatest �xpoint of F .Proof Again we prove (2) alone; (1) follows by a dual argument. Let� = �X: F (X). We have � � F (�) by Lemma 1. So F (�) � F (F (�)) bymonotonicity of F . But then F (�) is F -dense, and therefore F (�) � �. Com-bining the inequalities we have � = F (�); it is the greatest �xpoint becauseany other is F -dense, and hence contained in �. �

We say that �X:F (X), the least solution of X = F (X), is the set inductivelyde�ned by F , and dually, that �X: F (X), the greatest solution of X = F (X),is the set co-inductively de�ned by F . We obtain two dual proof principlesassociated with these de�nitions.Induction: �X:F (X) � X if X is F -closed.Co-induction: X � �X: F (X) if X is F -dense.Let us revisit the example of mathematical induction, mentioned in the intro-duce. Suppose there is an element 0 2 U and an injective function S : U ! U .If we de�ne a monotone function F : }(U)! }(U) byF (X) def= f0g [fS(x) j x 2 Xgand set N def= �X:F (X), the associated principle of induction is that N � X ifF (X) � X , which is to say thatN � X if both 0 2 X and S(x) 2 X whenever x 2 X .In other words, mathematical induction is a special case of this general frame-work. Winskel (1993) shows in detail how structural induction and rule induc-tion, proof principles familiar to computer scientists, are induction principlesobtained from particular kinds of inductive de�nition. As for examples of co-induction, Sections 3 and 4 are devoted to co-inductive de�nitions of programdivergence and equivalence respectively. Aczel (1977) is the standard referenceon inductive de�nitions. Davey and Priestley (1990) give a more recent accountof �xpoint theory, including the Tarski-Knaster theorem.2 A Small Functional LanguageIn this section we introduce a small call-by-name functional language. It isPCF extended with pairing and streams, a core fragment of a lazy languagelike Miranda or Haskell. We de�ne its syntax, a type assignment relation, a`one-step' reduction relation, , and a `big-step' evaluation relation, +.Let x and y range over a countable set of variables. The types, A, B, andexpressions, e, are given by the following grammars.A;B ::= Int j Bool j A! A j (A;A) j [A]e ::= x j e e j �x:A: e j if e then e else e j kA j
A j �Awhere k ranges over a �nite collection of builtin constants,
 is the divergentconstant and � ranges over a �nite collection of user-de�ned constants.We assume these include map, iterate, take and filter; we give informalde�nitions below. The builtin constants are listed below. We say that kA is

admissable if k:A is an instance of one of the following schemas.tt ;� : Bool i : Intsucc; pred : Int! Int zero : Int! Boolfst : (A;B)! A snd : (A;B)! BPair : A! B ! (A;B) Nil : [A]Cons : A! [A]! [A] scase :B ! (A ! [A]! B)! [A]! BFor each user-de�ned constant � we assume given a de�nition �:A def= e�. Ine�ect these are de�nitions by mutual recursion, as each body e� can containoccurrences of any constant; hence there is no need for an explicit fix operator.We identify expressions up to alpha-conversion; that is, renaming of boundvariables. We write e[e0=x] for the substitution of expression e0 for each variablex free in expression e. A context, C, is an expression with one or more holes.A hole is written as [] and we write C[e] for the outcome of �lling each hole inC with the expression e.The type assignment relation� ` e : A where � is x1:A1; : : : ; xn:An,is given inductively by rules of simply typed �-calculus pluskA admissable� ` kA : A � `
A : A �:A def= e� ` � : A� ` e1 : Bool � ` e2 :A � ` e3 : A� ` if e1 then e2 else e3 :AWe assume that ? ` e� : A is derivable whenever �:A def= e� is a de�nition of auser-de�ned constant. Type assignment is unique in the sense that whenever� ` e : A and � ` e : B, then A = B.Given the type assignment relation, we can construct the following universalsets and relations.Prog(A) def= fe j ? ` e : Ag (programs of type A)a; b 2 Prog def= SA Prog(A) (programs of any type)Rel(A) def= f(a; b) j fa; bg � Prog(A)g (total relation on A programs)R;S � Rel def= SARel(A) (total relation on programs)The operational semantics is a one-step reduction relation, � Rel . It isinductively de�ned by the axiom schemes(�x: e)a e[a=x] �i ei if �i def= ei

 if ` thenatt elsea� a` ` 2 ftt;� gsucc i i+ 1 pred i+ 1 izero 0 tt zero i � if i 6= 0fst (Paira b) a snd (Paira b) bscasef b Nil b scasef b (Consa as) f a as

together with the scheme of structural rulesa bE [a] E [b]where E is an experiment (a kind of atomic evaluation context (Felleisenand Friedman 1986)), a context generated by the grammarE ::= [] a j succ [] j pred [] j zero [] j if [] thena else bj fst [] j snd [] j scasea b []:In other words the single structural rule above abbreviates eight di�erent rules,one for each kind of experiment. Together they specify a deterministic, call-by-name evaluation strategy. Now we can make the usual de�nitions of evaluation,convergence and divergence.a def= 9b(a b) `p reduces'a + b def= a � b & :(b) `a evaluates to b'a+ def= 9b(a + b) `a converges'a* def= whenever a � b, then b `a diverges'By expanding the de�nition we can easily check that + and * are complemen-tary, that is, a* i� :a+. We can characterise the answers returned by theevaluation relation, +, as follows. Let an normal program be a program asuch that :(a). Let a value, u or v, be a program generated by the grammarv ::= �x: e j k j k2 a j k2 a b where k2 2 fPair; Cons; scaseg:Lemma 2 A program is a value i� it is normal.Proof By inspection, each value is clearly normal. For the other direction,one can easily prove by structural induction on a, that a is a value if it is normal. �Two programs are contextually equivalent if they can be freely interchanged forone another in a larger program, without changing its observable behaviour.This is a form of Morris' \extensional equivalence" (Morris 1968). Here is theformal de�nition of contextual equivalence, ' � Rel . Recall that C standsfor contexts.a@� b i� whenever (C[a]; C[b]) 2 Rel(Int), that C[a]+ implies C[b]+.a ' b i� a@� b and b@� a.We have formalised `observable behaviour' as termination at integer type. Therelation is unchanged if we specify that C[a] and C[b] should both evaluate tothe same integer. Contextual equivalence does not discriminate on grounds oftermination at function or pair type. For instance, we will be able to prove that
A!B ' �x:A:
B . The two would be distinguished in a call-by-value setting,since one diverges and the other converges, but in our call-by-name setting nocontext of integer type can tell them apart.We have introduced the syntax and operational semantics of a small functionallanguage. Our de�nitions of divergence and contextual equivalence are natural

and intuitive, but do not lend themselves to proof. In the next two sectionswe develop co-inductive characterisations of both divergence and contextualequivalence. Hence we obtain a theory admitting proofs of program propertiesby co-induction.3 A Co-inductive De�nition of DivergenceWe can characterise divergence co-inductively in terms of unbounded reduction.Let D : }(Prog)! }(Prog) and " � Prog beD(X) def= fa j 9b(a b & b 2 X)g" def= �X:D(X)We can easily see that D is monotone. Hence by its co-inductive de�nition wehave:" is the greatest D-dense set and " = D(").Hughes and Moran (1993) give an alternative, `big-step', co-inductive formula-tion of divergence.As a simple example we can show that
". LetX
 def= f
g. X
 is D-dense, thatis, X
 � D(X
), because

 and
 2 X
. So X
 � " by co-induction,and therefore
".We have an obligation to show that this co-inductive de�nition matches theearlier one, that a* i� whenever a � b, then b .Theorem 2 * = ".Proof (" � *). Suppose that a". We must show whenever a � b, thatb . If a", then a 2 D(") so there is an a0 with a a0 and a0". Furthermoresince reduction is deterministic, a0 is unique. Hence, whenever a" and a � bit must be that b". Therefore b .(* � "). By co-induction it su�ces to prove that set * is D-dense. Supposethat a*. Since a � a, we have a , that is, a b for some b. But wheneverb � b0 it must be that a � b0 too, and in fact b0 since a*. Hence b* too,a 2 D(*) and * is D-dense. �4 A Co-inductive De�nition of EquivalenceWe begin with a labelled transition system that characterises the immediateobservations one can make of a program. It is de�ned in terms of the one-stepoperational semantics, and in some sense characterises the interface betweenthe language's interpreter and the outside world. It is a a family of relations(��! � Prog � Prog j � 2 Act), indexed by the set Act of actions. If we letLit , the set of literals, indexed by `, be ftt ;� g [f: : : ;�2;�1; 0; 1; 2; : : :g, the

actions are given as follows.�; � 2 Act def= Lit [f@a j a 2 Progg [ffst; snd; Nil; hd; tlgWe partition the set of types into active and passive types. The intention isthat we can directly observe termination of programs of active type, but notthose of passive type. Let a type be active i� it has the form Bool, Int or [A].Let a type be passive i� it has the form A ! B or PairAB. Arbitrarily wede�ne 0 def=
Int. Given these de�nitions, the labelled transition system maybe de�ned inductively as follows.` �̀! 0 Nil Nil�! 0 Consa b hd�! a Consa b tl�! ba b 2 Proga @b�! a b a 2 Prog((A;B))a fst�! fsta a 2 Prog((A;B))a snd�! sndaa a00 a00 ��! a0 � a 2 Prog(A)A activea ��! a0The derivation tree of a program a is the potentially in�nite tree whose nodesare programs, whose arcs are labelled transitions, and which is rooted at a. Forinstance, the trees of the constant
A are empty if A is active. In particular, thetree of 0 is empty. We use 0 in de�ning the transition system to indicate thatafter observing the value of a literal there is nothing more to observe. FollowingMilner (1989), we wish to regard two programs as behaviourally equivalent i�their derivation trees are isomorphic when we ignore the syntactic structureof the programs labelling the nodes. We formalise this idea by requiring ourbehavioural equivalence to be a relation � � Rel that satis�es property (�):whenever (a; b) 2 Rel , a � b i�(1) Whenever a ��! a0 there is b0 with b ��! b0 and a0 � b0;(2) Whenever b ��! b0 there is a0 with a ��! a0 and a0 � b0.In fact there are many such relations; the empty set is one. We are afterthe largest or most generous such relation. We can de�ne it co-inductively asfollows. First de�ne two functions [�]; h�i : }(Rel)! }(Rel) by[S] def= f(a; b) j whenever a ��! a0 there is b0 with b ��! b0 and a0 S b0ghSi def= [S] \ [Sop]opwhere S � Rel . By examining element-wise expansions of these de�nitions, itis not hard to check that a relation satis�es property (�) i� it is a �xpoint offunction h�i. One can easily check that both functions [�] and h�i are mono-tone. Hence what we seek, the greatest relation to satisfy (�), does exist, andequals �S: hSi, the greatest �xpoint of h�i. We make the following standardde�nitions (Milner 1989).� Bisimilarity, � � Rel , is �S: hSi.� A bisimulation is an h�i-dense relation.

Bisimilarity is the greatest bisimulation and � = h�i. Again by expanding thede�nitions we can see that relation S � Rel is a bisimulation i� a S b implies� Whenever a ��! a0 there is b0 with b ��! b0 and a0 S b0;� Whenever b ��! b0 there is a0 with a ��! a0 and a0 S b0.An asymmetric version of bisimilarity is of interest too.� Similarity, . � Rel , is �S: [S].� A simulation is an [�]-dense relation.We can easily establish the following basic facts.Lemma 3(1) . is a preorder and � an equivalence relation.(2) � = . \.op.(3) Both � � and + � �.Proof These are easily proved by co-induction. We omit the details. Parts(2) and (3) depend on the determinacy of . Part (1) corresponds to Propo-sition 4.2 of Milner (1989). �4.1 A co-inductive proof about lazy streamsTo motivate study of bisimilarity, let us see how straightforward it is to useco-induction to establish that two lazy streams are bisimilar. Suppose map anditerate are a couple of builtin constants speci�ed by the following equations.map f Nil = Nilmap f (Cons x xs) = Cons (f x) (map f xs)iterate f x = Cons x (iterate f (f x))These could easily be turned into formal de�nitions of two user-de�ned con-stants, but we omit the details. Pattern matching on streams would be accom-plished using scase. Intuitively the streamsiteratef (f x) and mapf (iteratef x)are equal, because they both consist of the sequencef x; f (f x); f (f (f x)); f (f (f (f x))); : : :We cannot directly prove this equality by induction, because there is no ar-gument to induct on. Instead we can easily prove it by co-induction, via thefollowing lemma.Lemma 4 If S � Rel isf(iteratef (f x); map f (iteratef x)) j9A(x 2 Prog(A) & f 2 Prog(A! A))gthen (S [�) � hS [�i.

Proof It su�ces to show that S � hS [�i and � � hS [�i. The latter isobvious, as � = h�i. To show S � hS [�i we must consider arbitrary a andb such that a S b, and establish that each transition a ��! a0 is matched by atransition b ��! b0, such that either a0 S b0 or a0 � b0, and vice versa. Supposethen that a is iteratef (f x), and b is mapf (iteratef x). We can calculatethe following reductions.a + Cons (f x) (iteratef (f (f x)))b + Cons (f x) (map f (iteratef (f x)))Whenever a � a0 we can check that a ��! a00 i� a0 ��! a00. Using thereductions above we can enumerate all the transitions of a and b.a hd�! f x (1)a tl�! iteratef (f (f x)) (2)b hd�! f x (3)b tl�! map f (iteratef (f x)) (4)Now it is plain that (a; b) 2 hS [�i. Transition (1) is matched by (3), and viceversa, with f x � f x (since � is reexive). Transition (2) is matched by (4),and vice versa, with iteratef (f (f x)) S mapf (iteratef (f x)). �Since S [� is h�i-dense, it follows that (S [�) � �. A corollary then is thatiteratef (f x) � map f (iteratef x)for any suitable f and x, what we set out to show.4.2 Operational ExtensionalityWe have an obligation to show that bisimilarity, �, equals contextual equiva-lence, '. The key fact we need is the following, that bisimilarity is a precon-gruence.Theorem 3 (Precongruence) If a � b then C[a] � C[b] for any suitablecontext C. The same holds for similarity, ..The proof is non-trivial; we shall postpone it till Section 5.Lemma 5 @� = ..Proof (. � @�) Suppose a . b, that (C[a]; C[b]) 2 Rel(Int) and that C[a]+.By precongruence, C[a] . C[b], so C[b]+ too. Hence a@� b as required.(@� � .) This follows if we can prove that contextual order @� is a simulation.The details are not hard, and we omit them. For full details of a similar proofsee Lemma 4.29 of Gordon (1994b), which was based on Theorem 3 of Howe(1989). �Contextual equivalence and bisimilarity are the symmetrisations of contextualorder and similarity, respectively. Hence a corollary, usually known as oper-ational extensionality (Bloom 1988), is that bisimilarity equals contextual

equivalence.Theorem 4 (Operational Extensionality) ' = �.4.3 A Theory of BisimilarityWe have de�ned bisimilarity as a greatest �xpoint, shown it to be a co-inductivecharacterisation of contextual equivalence, and illustrated how it admits co-inductive proofs of lazy streams. In this section we shall note without proofvarious equational properties needed in a theory of functional programming.Proofs of similar properties, but for a di�erent form of bisimilarity, can befound in Gordon (1994b). We noted already that � �, which justi�es acollection of beta laws. We can easily prove the following unrestricted eta lawsby co-induction.Proposition 1 (Eta) If a 2 Prog(A! B), a � �x: a x.Proposition 2 (Surjective Pairing)If a 2 Prog((A;B)), a � Pair (fsta) (snda).Furthermore we have an unrestricted principle of extensionality for functions.Proposition 3 (Extensionality) Suppose ff; gg � Prog(A ! B). If f a �g a for any a 2 Prog(A), then f � g.Here are two properties relating
 and divergence.Proposition 4 (Divergence)(1) E [
] �
 for any experiment E.(2) If a* then a �
.As promised, we can prove that �x:A:
B '
A!B , in fact by proving�x:A:
B �
A!B . Consider any a 2 Prog(A). We have (�x:A:
B) a �
Bby beta reduction and
A!B a �
B by part (1) of the last proposition. Hence�x:A:
B �
A!B by extensionality. In fact, then, the converse of (2) is false,for �x:A:
B �
A!B but �x:A:
B+.We can easily prove the following adequacy result.Proposition 5 (Adequacy) If a 2 Prog(A) and A is active, a* i� a �
.The condition that A be active is critical, because of our example �x:A:
B �
A!B , for instance.Every convergent program equals a value, but the syntax of values includespartial applications of curried function constants. Instead we can characteriseeach of the types by the simpler grammar of canonical programs.c ::= ` j �x: e j Paira b j Nil j Consa b:Proposition 6 (Exhaustion) For any program a 2 Prog(A) there is a canon-ical program c with a � c i� either a converges or A is passive.

The �, Pair and Cons operations are injective in the following sense.Proposition 7 (Canonical Freeness)(1) If �x:A: e � �x:A: e0 then e[a=x] � e0[a=x] for any a 2 Prog(A).(2) If Paira1 a2 � Pair b1 b2 then a1 � b1 and a2 � b2.(3) If Consa1 a2 � Cons b1 b2 then a1 � b1 and a2 � b2.4.4 Bird and Wadler's Take LemmaOur �nal example in this paper is to derive Bird and Wadler's Take Lemma(1988) to illustrate how a proof principle usually derived by domain-theoretic�xpoint induction follows also from co-induction.We begin with the take function, which returns a �nite approximation to anin�nite list.take 0 xs = Niltake n Nil = Niltake (n+1) (Cons x xs) = Cons x (take n xs)Here is the key lemma.Lemma 6 De�ne S � Rel by a S b i� 8n 2 N (take n+ 1 a � take n+ 1 b).(1) Whenever a S b and a + Nil, b + Nil too.(2) Whenever aS b and a + Consa0 a00 there are b0 and b00 with b + Cons b0 b00,a0 � b0 and a00 S b00.(3) (S [�) � hS [�i.Proof Recall that values of stream type take the form Nil or Consa b. Forany program, a, of stream type, either a* or there is a value v with a + v.Hence for any stream a, either a �
 (from a* by adequacy, Proposition 5) ora + Nil or a + Consa0 a00. Note also the following easily proved lemma abouttransitions of programs of active type, such as streams.Whenever a 2 Prog(A) and A active, a ��! b i� 9value v (a + v ��! b).(1) Using aS b and n = 0 we have take 1 a � take 1 b. Since a + Nil, we havea � Nil, and in fact that Nil � take 1 b by de�nition of take. We know thateither b �
, b + Nil or b + Cons b0 b00. The �rst and third possibilities wouldcontradict Nil � take 1 b, so it must be that b + Nil.(2) We havetake n+ 1 (Cons a0 a00) � take n+ 1 b:With n = 0 we haveCons a0 Nil � take 1 b

which rules out the possibilities that b �
 or b + Nil, so it must be thatb + Cons b0 b00. So we haveCons a0 (take n a00) � Cons b0 (take n b00)for any n, and hence a0 � b0 and a00 S b00 by canonical freeness, Proposition 7.(3) As before it su�ces to prove that S � hS [�i. Suppose that a S b. Foreach transition a ��! a0 we must exhibit b0 satisfying b ��! b0 and either a0 S b0or a0 � b0. Since a and b are streams, there are three possible actions � toconsider.(1) Action � is Nil. Hence a + Nil and a0 is 0. By part (1), b + Nil too.Hence b Nil�! 0, and 0 � 0 as required.(2) Action � is hd. Hence a + Cons a0 a00. By part (2), there are b0 and b00with b + Cons b0 b00, hence b hd�! b0, and in fact a0 � b0 by part (2).(3) Action � is tl. Hence a + Cons a0 a00. By part (2), there are b0 and b00with b + Cons b0 b00, hence b tl�! b00, and in fact a00 S b00 by part (2).This completes the proof of (3). �The Take Lemma is a corollary of (3) by co-induction.Theorem 5 (Take Lemma) Suppose a; b 2 Prog([A]).Then a � b i� 8n 2 N (take n+ 1 a � take n+ 1 b).See Bird and Wadler (1988) and Sander (1992), for instance, for examples ofhow the Take Lemma reduces a proof of equality of in�nite streams to aninduction over all their �nite approximations.Example equations such asmap (f o g) as � map f (map g as)(where o is function composition) in which the stream processing function pre-serves the size of its argument are easily proved using either co-induction or theTake Lemma. In either case we proceed by a simple case analysis of whetheras*, as + Nil or as + Consa as0. Suppose however that filterf is the streamprocessing function that returns a stream of all the elements a of its argumentsuch that f a + tt . Intuitively the following equation should holdfilterf (map g as) � map g (filter (f o g) as)but straightforward attacks on this problem using either the Take Lemma orco-induction in the style of Lemma 4 fail. The trouble is that the result streammay not have as many elements as the argument stream.These proof attempts can be repaired by resorting to a more sophisticatedanalysis of as than above. Lack of space prevents their inclusion, but in this waywe can obtain proofs of the equation using either the Take Lemma or a simpleco-induction. Alternatively, by more re�ned forms of co-induction|developedelsewhere (Gordon 1994a)|we can prove such equations using a simple-mindedcase analysis of the behaviour of as. These proof principles need more e�ort to

justify than the Take Lemma, but in problems like the map/filter equationare easier to use.5 Proof that Bisimilarity is a PrecongruenceIn this section we make good our promise to show that bisimilarity and sim-ilarity are precongruences, Theorem 3. We need to extend relations such asbisimilarity to open expressions rather than simply programs. Let a provedexpression be a triple (�; e; A) such that � ` e : A. If � = x1:A1; : : : ; xn:An,a �-closure is a substitution �[~a=~x] where each ai 2 Prog(Ai). Now if R � Rel ,let its open extension, R�, be the least relation between proved expressionssuch that(�; e; A)R� (�; e0; A) i� e[~a=~x]R e0[~a=~x] for any �-closure [~a=~x].For instance, relation Rel� holds between any two proved expressions (�; e; A)and (�0; e0; A0) provided only that � = �0 and A = A0. As a matter of notationwe shall write � ` eR e0 :A to mean that (�; e; A)R (�; e0; A) and, in fact, weshall often omit the type information.We need the following notion, of compatible re�nement, to characterise what itmeans for a relation on open expressions to be a precongruence. If R � Rel�,its compatible re�nement, bR � Rel�, is de�ned inductively by the followingrules. � ` e bR e if e 2 fx; k;
; �jg�; x:A ` eR e0� ` �x:A: e bR �x:A: e0 � ` e1 R e01 � ` e2 R e02� ` e1 e2 bR e01 e02� ` ei R e0i (i = 1; 2; 3)� ` if e1 then e2 else e3 bR if e01 then e02 else e03De�ne a relation R � Rel� to be a precongruence i� it contains its owncompatible re�nement, that is, bR � R. This de�nition is equivalent to sayingthat a relation is preserved by substitution into any context.Lemma 7 Assume that R � Rel� is a preorder. R is a precongruence i�� ` C[e]R C[e0] whenever � ` eR e0 and C is a context.The proof of the `only if' direction is by induction on the size of context C; theother direction is straightforward. Note that whenever a and b are programsof type A, that a � b i� (?; a; A) �� (?; b; A), and similarly for similarity, ..Hence given the Lemma 7, to prove Theorem 3 it will be enough to show that�� and .� are precongruences, that is c�� � �� and c.� � .�.We shall use a general method established by Howe (1989). First we provethat the open extension of similarity is a precongruence. We de�ne a secondrelation .�, which by construction satis�es c.� � .� and .� � .�. We proveby co-induction that .� � .�. Hence .� and .� are one and the same relation,

and .� is a precongruence because .� is.Second we prove that the open extension of bisimilarity is a precongruence. Let& = .op. Recall Lemma 3(2), that � = . \ &. Furthermore �� = .� \ &�follows by de�nition of open extension. We can easily prove another fact, that\R\ S = bR \ bS whenever R;S � Rel�. We havec�� = \(.� \&�) = c.� \ c&� � .� \&� = ��which is to say that �� is a precongruence. Indeed, being an equivalencerelation, it is a congruence.We have only sketched the �rst part, that .� is a precongruence. We devote theremainder of this section to a more detailed account. Compatible re�nment, b�,permits a concise inductive induction of Howe's relation .� � Rel� as �S: bS.�,which is to say that .� is the least relation to satisfy the rule� ` e c.� e00 � ` e00 .� e0� ` e .� e0Sands (1992) found the following neat presentation of some basic properties of.� from Howe's paper.Lemma 8 (Sands) .� is the least relation closed under the rules� ` e .� e0� ` e .� e0 � ` e c.� e0� ` e .� e0 � ` e .� e00 � ` e00 .� e0� ` e .� e0 :We claimed earlier that c.� � .� and .� � .�; these follow from the lemma.The proof is routine, as is that of the following substitution lemma.Lemma 9 If �; x:B ` e1 .� e2 and � ` e01 .� e02 : B then � ` e1[e01=x] .�e2[e02=x].What remains of Howe's method is to prove that .� � .�, which we do byco-induction. First note the following lemma|which is the crux of the proof|relating .� and transition.Lemma 10 Let S def= f(a; b) j ? ` a .� bg.(1) Whenever a S b and a a0 then a0 S b.(2) Whenever a S b and a ��! a0 there is b0 with b ��! b0 and a0 S b0.Proof The proofs are induction on the depth of inference of reduction a a0and transition a ��! a0 respectively. Details of similar proofs may be found inHowe (1989) and Gordon (1994b). �By this lemma, S is a simulation, and hence S � . by co-induction. Openextension is monotone, so S� � .�. Now .� � S� follows from the substitutionlemma (Lemma 9) and the reexivity of .� (Lemma 8 and reexivity of .�).Hence we have .� � .�. But the reverse inclusion follows from Lemma 8, soin fact .� = .� and hence .� is a precongruence.

6 Summary and Related WorkWe explained the dual foundations of induction and co-induction. We de�nednotions of divergence and contextual equivalence for a small functional lan-guage, an extension of PCF. We gave co-inductive characterisations of bothdivergence and contextual equivalence, and illustrated their utility by a seriesof examples and properties. In particular we derived the `Take Lemma' of Birdand Wadler (1988). We explained Howe's method for proving that bisimilar-ity, our co-inductive formulation of contextual equivalence, is a precongruence.We hope to have shown both by general principles and speci�c examples thatthere is an easy path leading from the reduction rules that de�ne a functionallanguage to a powerful theory of program equivalence based on co-induction.Although our particular formulation is new, bisimilarity for functional lan-guages is not. Often it is known as `applicative bisimulation' and is basedon a natural semantics style evaluation relation. The earliest reference I can�nd is to Abramsky's unpublished 1984 work on Martin-L�of's type theory,which eventually led to his study of lazy lambda-calculus1 (Abramsky and Ong1993). Other work includes papers by Howe (1989), Smith (1991), Sands (1992,1994), Ong (1993), Pitts and Stark (1993), Ritter and Pitts (1994), Crole andGordon (1994) and my book (1994b). The present formulation is the �rst tocoincide with contextual equivalence for PCF-like languages. It amounts toa co-inductive generalisation of Milner's original term model for PCF (1977).Since it equals contextual equivalence it answers Turner's (1990, Preface) con-cern that Abramsky's applicative bisimulation makes more distinctions thanare observable by well-typed program contexts.Domain theory is one perspective on the foundations of lazy functional pro-gramming; this paper o�ers another. Any subject bene�ts from multiple per-spectives. In this case the two are of about equal expressiveness. Domaintheory is independent of syntax and operational semantics, and provides �x-point induction for proving program properties. If we take care to distinguishdenotations from texts of programs, the theory of bisimilarity set out in Sec-tion 4 can be paralleled by a theory based on a domain-theoretic denotationalsemantics. Winskel (1993), for instance, shows how to prove adequacy for alazy language with recursive types (albeit one in which functions and pairsare active types). Pitts (1994) develops a co-induction principle from domaintheory. On the other hand, Smith (1991) shows how operational methodsbased on a form of bisimilarity can support �xpoint induction. One advantageof the operational approach is that bisimilarity coincides exactly with contex-tual equivalence. The corresponding property of a denotational semantics|fullabstraction|is notoriously hard to achieve (Ong 1994).1The earliest presentation of lazy lambda-calculus appears to be Abramsky's thesis (1987,Chapter 6), in which he explains that the \main results of Chapter 6 were obtained in thesetting of Martin-L�of's Domain Interpretation of his Type Theory, during and shortly aftera visit to Chalmers in March 1984."

AcknowledgementsThe idea of de�ning bisimilarity on a deterministic functional language via alabelled transition system arose in joint work with Roy Crole (1994). MartinCoen pointed out the map/filter example to me. I hold a Royal Society Uni-versity Research Fellowship. This work has been partially supported by theCEC TYPES BRA, but was begun while I was a member of the Program-ming Methodology Group at Chalmers. I bene�tted greatly from presenting atutorial on this work to the Functional Programming group at Glasgow Uni-versity. I am grateful to colleagues at the Ayr workshop, and at Chalmers andCambridge, for many useful conversations.ReferencesAbramsky, S. (1987, October 5). Domain Theory and the Logic of Ob-servable Properties. Ph. D. thesis, Queen Mary College, University ofLondon.Abramsky, S. and L. Ong (1993). Full abstraction in the lazy lambda calculus.Information and Computation 105, 159{267.Aczel, P. (1977). An introduction to inductive de�nitions. In J. Barwise (Ed.),Handbook of Mathematical Logic, pp. 739{782. North-Holland.Bird, R. and P. Wadler (1988). Introduction to Functional Program-ming. Prentice-Hall.Bloom, B. (1988). Can LCF be topped? Flat lattice models of typed lambdacalculus. In Proceedings 3rd LICS, pp. 282{295.Crole, R. L. and A. D. Gordon (1994, September). A sound metalogicalsemantics for input/output e�ects. In Computer Science Logic'94,Kazimierz, Poland. Proceedings to appear in Springer LNCS.Davey, B. A. and H. A. Priestley (1990). Introduction to Lattices andOrder. Cambridge University Press.Felleisen, M. and D. Friedman (1986). Control operators, the SECD-machine,and the �-calculus. In Formal Description of Programming Con-cepts III, pp. 193{217. North-Holland.Gordon, A. D. (1994a). Bisimilarity as a theory of functional programming.Submitted for publication.Gordon, A. D. (1994b). Functional Programming and Input/Output.Cambridge University Press. Revision of 1992 PhD dissertation.Howe, D. J. (1989). Equality in lazy computation systems. In Proceedings4th LICS, pp. 198{203.Hughes, J. and A. Moran (1993, June). Natural semantics for non-determinism. In Proceedings of El Winterm�ote, pp. 211{222.Chalmers PMG. Available as Report 73.Milner, R. (1977). Fully abstract models of typed lambda-calculi. TCS 4,1{23.Milner, R. (1989). Communication and Concurrency. Prentice-Hall.

Morris, J. H. (1968, December). Lambda-Calculus Models of Program-ming Languages. Ph. D. thesis, MIT.Ong, C.-H. L. (1993, June). Non-determinism in a functional setting (ex-tended abstract). In Proceedings 8th LICS, pp. 275{286.Ong, C.-H. L. (1994, January). Correspondence between operational anddenotational semantics: The full abstraction problem for PCF. Submittedto Handbook of Logic in Computer Science Volume 3, OUP 1994.Park, D. (1981, March). Concurrency and automata on in�nite sequences.In P. Deussen (Ed.), Theoretical Computer Science: 5th GI-Conference, Volume 104 of Lecture Notes in Computer Science,pp. 167{183. Springer-Verlag.Pitts, A. and I. Stark (1993, June). On the observable properties of higherorder functions that dynamically create local names (preliminary report).In SIPL'93, pp. 31{45.Pitts, A. M. (1994). A co-induction principle for recursively de�ned domains.TCS 124, 195{219.Plotkin, G. D. (1977). LCF considered as a programming language. TCS 5,223{255.Ritter, E. and A. M. Pitts (1994, September). A fully abstract translationbetween a �-calculus with reference types and Standard ML. To appearin TLCA'95.Sander, H. (1992). A Logic of Functional Programs with an Applica-tion to Concurrency. Ph. D. thesis, Chalmers PMG.Sands, D. (1992). Operational theories of improvement in functional lan-guages (extended abstract). In Functional Programming, Glasgow1991, Workshops in Computing, pp. 298{311. Springer-Verlag.Sands, D. (1994, May). Total correctness and improvement in the transforma-tion of functional programs (1st draft). DIKU, University of Copenhagen.Smith, S. F. (1991). From operational to denotational semantics. In MFPSVII, Pittsburgh, Volume 598 of Lecture Notes in Computer Sci-ence, pp. 54{76. Springer-Verlag.Turner, D. (Ed.) (1990).Research Topics in Functional Programming.Addison-Wesley.Winskel, G. (1993). The Formal Semantics of Programming Lan-guages. MIT Press, Cambridge, Mass.

