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ABSTRACT 

In this paper we describe and evaluate a series of new algorithms 
that compensate for the effects of unknown acoustical environ- 
ments or changes in environment. The algorithms use compensa- 
tion vectors that are added to the cepstral representations of 
speech that is input to a speech recognition system. While these 
vectors are computed from direct frame-by-frame comparisons of 
cepstra of speech simultaneously recorded in the training environ- 
ment and various prototype testing environments, the compensa- 
tion algorithms do not assume that the acoustical characteristics of 
the actual testing environment are known. The speciEc compensa- 
tion vector applied in a given frame depends on either physical 
attributes such as SNR or presumed phonetic identity. The com- 
pensation algorithms are evaluated using the 1992 ARPA 5000- 
word WSJKSR corpus. The best system combines phoneme- 
based and SNR-based cepstral compensation with cepstral mean 
normalization, and provides a 66.8% reduction in error rate over 
baseline processing when tested using a standard suite of 
unknown microphones. 

1. INTRODUCTION 

The need for speech recognition systems and spoken language 
systems to be robust with respect to their acoustical environment 
has become more widely appreciated in recent years (e.g. [ 11). 
Many approaches have been considered in the development of 
robust speech recognition systems including techniques based on 
autoregressive analysis, the use of special distortion measures, the 
use of auditory models, and the use of microphone arrays, among 
many other approaches (as reviewed in [1,2]). 

Over the past few years, CMU and other sites have developed a 
series of algorithms that reduce the effects of environmental vari- 
ability on speech recognition accuracy [e.g. 2,3]. The CMU nor- 
malization algorithms are based on three different types of 
approaches. The first approach is that of cepstral remapping based 
on a structural model of the acoustical degradation. An example 
of this type of processing is the codeworddependent cepstral nor- 
malization algorithm (CDCN), which assumes that the effects of 
environmental distortion can be characterized as unknown addi- 
tive noise combined with unknown linear filtering [4]. The second 
approach to environmental normalization is that of high-passfil- 
tering of cepstral coeflcients, as exemplified by the various 
RASTA algorithms [5] and the practice of cepstral mean removal. 
The third approach, which is the focus of this paper, is based on 

direct cepstral comparisons of simultaneously-recorded data from 
different environments on a frame-by-frame basis. We describe 
some of the more useful cepstral-comparison algorithms in the 
next section. 

2. ENVIRONMENTAL NORMALIZATION 
USING CEPSTRAL COMPARISON 

Environment-normalization algorithms based on cepstral compar- 
ison all assume that differences between the training and testing 
environments can be characterized by an additive correction to the 
cepstral vectors that represent the speech. The compensation vec- 
tors are estimated empirically on the basis of direct frame-by- 
frame comparisons of the cepstral representations of speech that 
is simultaneously recorded in the training environment and vari- 
ous testing environments (“stereo data”). The individual algo- 
rithms differ in the way the compensation vectors are estimated 
from training data, and in the way in which the need for stereo 
data is circumvented when the recognition system analyzes 
speech from an unknown environment. This general approach has 
become much more popular with the availability of the ARPA 
Wall Street Journal corpus, which in its initial phase contained 
about 31,000 utterances of stereo data recorded in 16 different 
acoustical environments. 

2.1. The SDCN and FCDCN algorithms 

SDCN. The simplest compensation algorithm, SNR-Dependent 
Cepstral Normalization (SDCN) [2], applies an additive correc- 
tion in the cepstral domain that depends exclusively on the instan- 
taneous SNR of the signal. This compensation vector equals the 
average difference in cepstra between simultaneous stereo record- 
ings of speech samples from both the training and testing environ- 
ments at each SNR in the testing environment. At high SNRs, this 
compensation vector primarily compensates for the effects of 
unknown linear filtering, while at low SNRs the vector provides a 
form of noise subtraction. The SDCN algorithm is simple and 
effective, but it requires environment-specific training. 

FCDCN. Fixed codeword-dependent cepstral normalization 
(FCDCN) [2] is similar to SDCN, but it provides a greater number 
of compensation vectors. At each SNR the observed cepstra in the 
testing environment are also clustered, based on a VQ codebook. 
The FCDCN algorithm applies an additive correction that 
depends on both the instantaneous SNR of each frame of input 
speech, and the VQ codeword location to which the cepstral com- 
pensation vector is closest. FCDCN compensation provides 
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greater recognition accuracy than SDCN, but it also requires envi- 
ronment-specific training. 

Figure 1 illustrates some typical compensation vectors obtained 
with the FCDCN algorithm, computed using the ARPA standard 
close-talking Sennheiser HMD-414 microphone and the unidirec- 
tional desktop PCC-160 microphone used as the testing environ- 
ment. The vectors are computed at the extreme SNRs of 0 and 29 
dB, as well as at 5 dB. The horizontal axis represents frequency, 
warped nonlinearly according to the me1 scale, with a maximum 
frequency of 8000 Hz. We note that the spectral profile of the 
compensation vector varies with SNR, and that especially for the 
intermediate SNRs the various VQ clusters require compensation 
vectors of different spectral shapes. 
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Figure 1: Comparison of compensation vectors using the 
FCDCN method with the PCC-160 unidirectional desktop micro- 
phone, at three different signal-to-noise ratios. The maximum 
SNR used by the FCDCN algorithm is 29 dB. 

2.2. MFCDCN and related algorithms 

MFCDCN. Multiple fixed codeword-dependent cepstral normal- 
ization (MFCDCN) is a simple extension of the FCDCN algorithm 
[2] that has the advantage of not requiring that the identity of the 
testing environment be known a priori. In MFCDCN, compensa- 
tion vectors are precomputed in parallel for each of a set of testing 
environments using the FCDCN training procedure. When an 
utterance from some unknown environment is input to the recog- 
nition system, the system first determines which of the testing 
environments in the training data is most similar to the current 
testing environment. Compensation vectors for the chosen testing 
environment are applied to normalize the utterance according to 
the expression ki = zi + r [ki ,  l i ,  e ]  where k i ,  l i ,  i ,  and e are 

the VQ codeword index, instantaneous frame SNR, frame index 

and the index of the chosen environment, respectively, and 2, Z, 
and r are the compensated (transformed) data, original data and 
compensation vectors, respectively. 

Environment selection. We have made use of two schemes for 
environment selection. In the first procedure, referred to as selec- 
tion by compemdion, compensation vectors computed using each 
of the possible testing environments are applied successively to the 
incoming test utterance. The environment e is chosen that mini- 
mizes the average residual VQ distortion over the entire utterance. 

In the second approach, referred to as environment-spec#c VQ, 
codebooks that are specific to each environment are generated from 
the original uncompensated speech. Environment selection is 
accomplished by vector quantizing the incoming test utterance 
using each environment-specific codebook in turn and choosing the 
(uncompensated) testing environment that is closest to the incom- 
ing speech in terms of VQ distortion. 

Using data from the 11/92 ARPA Wall Street Journal corpus, the 
selection-by compensation method produces environment-selection 
errors 28.8% of the time for data from one of the 15 “secondary” 
environments and no selection errors for data obtained using the 
close-talking Sennheiser microphone used in the training data The 
environment-specific VQ approach produces a 14.21 misjudgment 
rate for data using secondary microphones and 0.3% for Sennheiser 
mic data. Both methods produce similar speech recognition accu- 
racy. The latter method is similar in spirit to an approach by BBN 
[4], in which each incoming utterance is classified into one of seven 
groups of acoustical environments. 

Interpolated FCDCN. The MFCDCN algorithm described above 
applies compensation from the single environment in the training 
set that is believed to have acoustical characteristics that most 
closely resemble those of the testing environment. In some cases, 
however, the testing environment does not closely resemble any 
single environment in the training set. In that case, interpolating the 
compensation vectors of several environments may be more helpful 
than using compensation vectors from a single (incorrect) environ- 
ment. 

For these reasons, the Interpolated Fixed Codeword Dependent 
Cepstral Normalization algorithm (IFCDCN) estimates compensa- 
tion vectors for new environments by linear interpolation of several 
of the compensation vectors that had been precomputed for envi- 
ronments in the training database: 

where ? [ R ,  11 , flk,l,e], andfc are the estimated compensation vec- 
tors, the environment-specific compensation vector for the e* envi- 
ronment, and the weighting factor for the eth environment, 
respectively. 

The weighting factors for each environment are also based on resid- 
ual VQ distortion: 

U (et Z, 
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where 0 is the codebook standard deviation using clean speech 
and 2 is the testing utterance. With the present training and testing 
data we have generally used a value of 3 for E. 

2.3. Phone-Dependent Cepstral Normalization 
(PDCN) and related algorithms 

In th is  section, we describe a new family of algorithms, referred to 
as phone-dependent normalization procedures, which compensate 
for environmental variation based on the presumed phoneme iden- 
tity of individual acoustical segments during the search process. 
This approach has the advantage that information from the acous- 
tic-phonetic and language models as well as the constraints arising 
from the search process can be used to determine the most effec- 
tive form of environmental compensation. 

PDCN. In the current implementation of phone-dependent ceps- 
fral nonnalizution (PDCN), we develop compensation vectors that 
are specific to individual phonetical events, using a base phone set 
of 51 phonemes, including silence but excluding other types of 
non-lexical events. Labelled phonetic segments for training PDCN 
compensation are produced by running the decoder in supervised 
mode using the correct transcription of the incoming speech. For 
each phoneme, compensation vectors are derived by averaging the 
difference between cepstral coefficients obtained from the training 
environment and a given testing environment, using the same ste- 
reo pairs of training sentences that were used for MFCDCN. This 
approach is similar to SDCN except that the different compensa- 
tion vectors are calculated according to phonetic identity rather 
than according to instantaneous frame SNR values. The compen- 
sation vectors in PDCN are described as follows, 

m 

wherefi is the phoneme for frame i ,  and Tu is length of the uth 
utterance out of A sentences from each of training environments in 
stereo databases. 

The SPHINX-11 system uses the senone [6,8], a generalized state- 
based probability density function, as the basic unit to compute 
the likelihood from acoustical models. The probability density 
function for senone s for frame i for the cepstral vector zi of 
incoming speech can be expressed as 

where m stands for the index of the best B Gaussian mixtures of 

senone s for frame i, and pm , d , and w m  are the correspond- 

ing mean, standard deviation, and weight for the mi*mixture of 
senone s. 

Similar to before, multiple compensated cepstral vectors are 
formed by adding various compensation vectors to incoming cep- 
stra, f i , p  = zi + c [ p ]  , on a frame-by-frame basis. This is a sim- 
ple process in the present implementation because each senone 

2 mz 2 

corresponds to only one distinctive base phoneme. As a result, 
senone probabilities can be calculated directly in terms of compen- 
sated incoming speech vectors, by assuming the phonetic identity 
that corresponds to a given senone. Using this approach, the 
senone probability with PDCN is re-written as 

where m is the index of the best B Gaussian mixtures for senone 

s at frame i with respect to the PDCN-normalized cepstral vector 
2 

for the corresponding phonetic label for senone s. % Ps* 

Compensation vectors are exploited by the decoder during the pro- 
cess of searching for the optimal sequence of states in the HMM, 
and scores used to evaluate hypotheses are calculated using the 
compensated cepstral vectors. The increase in computation 
incurred by PDCN is very minor and arises primarily from an 
increase in the number of vector quantization operations per- 
formed on the 51 alternatives for each cepstal vector. 

SNR-Dependent PDCN (SPDCN). The performance of PDCN 
can be further improved by further partitioning the compensation 
vectors in terms of SNR (as is done with SDCN and FCDCN). The 
estimation of compensation vectors for SPDCN can then be 
expressed as 

m 

where si is the instantaneous frame SNR of zi. We chose a range of 
30 dB of SNR in our current implementation. 

Interpolated PDCN (IPDCN). PDCN, like SDCN and FCDCN 
assumes the existence of a database of utterances recorded in ste- 
reo in the training and testing environments. As in the case of 
MFCDCN, the PDCN algorithm can be extended to cases where 
the testing environment is unknown by developing ensembles of 
PDCN compensation vectors for a variety of testing environments, 
and applying to incoming utterance either the set of compensation 
vectors from the “closest” environment used to train the algorithm 
(MPDCN), or an interpolation of compensation vectors from sev- 
eral of the closest environments (IPDCN). In the current imple- 
mentation of IPDCN, we use environment-specific VQ means and 
variances for environment selection to obtain the 3 closest envi- 
ronments with the best 4 Gaussian mixtures contributing to the 
interpolation weights. 

3. EXPERIMENTAL RESULTS 

The MFCDCN, IFCDCN, PDCN and related algorithms were 
evaluated using the SPHINX-11 recognition system [6]  in the con- 
text of the ARPA 5000-word closed-vocabulary task consisting of 
dictated sentences from the Wall Street Journal. The system was 
trained using the WSJO training corpus and has 7000 senones. The 
testing corpus consists of utterances from a set of “secondary” 
microphones including desktop microphones, stand-mounted 
microphones and telephone handsets and speakerphones. We also 
compared recognition accuracy for the same system using two 
types of cepstral high-pass filtering: the RASTA filter [SI as imple- 
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mented in the SRI ARPA system [7], and cepstral mean normal- 
ization (CMN). 

CMN+IFCDCN 
CMN+PDCN 

IFCDCN I 8.4 I -3.7 I 16.7 I 56.6 
CMN+MFCDCN 1 8.1 I 0 1  14.5 I 62.3 

8.4 -3.7 14.8 61.6 
- - 15.7 59.2 

Baseline 

CMN+MFCDCN I - I - I 12.8 I 66.8 I I +PDCN 

mic Dec. mics Dec. 
8.1 - 38.5 - 

Table 1: Percentage of word errors and corresponding error rate 
reduction for different jxocessing schemes on the test corpus for 
the ARPA 11/92 5OOO-word, closed-vocabulary task using sen- 
tences from the Wall Street Journal. 

Table 1 compares word error rates obtained using the various pro- 
cessing schemes along with the corresponding reduction of word 
error rate with respect to the baseline (no processing). The system 
was trained on the standard Sennheiser closetalking HMD-414 
microphone (CLSTLK), and tested using either the CLSTLK mic 
or one of several secondary microphones (OTHER). Table 2 sum- 
marizes similar results obtained with various combinations of 
MFCDCN IFCDCN, PDCN, and IPDCN when the actual testing 
environment was excluded from the set of data used to develop the 
compensation vectors.. 

1 METHOD I CLSTLK I % 1 OTHER I % 1 

CMN+MFCDCN 
+PDCN 

CMN+IFCDCN 
CMN+IFCDCN 8.4 

+IPDCN 

Table 2: Recognition accuracy obtained for the same task as in 
Table 1, but with the testing environments excluded from the cor- 
pus used to develop compensation vectors. 

The high baseline word e m r  rate obtained testing with alternate 
microphones demonstrates the impact of mismatches of training 
and testing environments. Among other results we note the fol- 
lowing: (1) Cepstral highpass filtering (RASTA and CMN) k sim- 
ple and quite effective, but the use of direct cepstral comparison 
(MFCDCN or IFCDCN) provides substantial further decreases in 
error rate. (2) The combination of highpass filtering and direct 
cepstral comparison jxovides a modest additional decrease in error 
ra te .  (3) PDCN provides a benefit comparable to that of 
MFCDCN, but best results are obtained when these two algo- 
rithms are used in consort. (4) If the testing environment is 
unknown or unavailable when compensation vectors are com- 

puted, better results are obtained by use of interpolated compensa- 
tion (as with IFCDCN and IPDCN). 

4. SUMMARY 

We describe a family of environmental normalization algorithms 
that apply additive corrections to incoming cepstral vectors based 
on either SNR (as in the MFCDCN algorithm) or presumed pho- 
neme identity (as in PDCN). When evaluated in the context of 
experimental results using the 1992 ARPA WSJlCSR task, best 
results were obtained using a combination of MFCDCN, PDCN. 
and cepstral mean normalization, which collectively reduce the 
error rate observed with secondary microphones by 66.8%. Inter- 
polated implementations of these algorithms are also described for 
application in which the acoustics of the testing environment are 
unknown. While the MFCDCN and PDCN are described in the 
context of the SPHINX-II system with semi-continuous HMMs, 
they can easily be implemented in recognition systems using dis- 
crete-density or continuousdensity HMMs. 
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