
Lazy Functional State Threads

John Launchbury and Simon L Peyton Jones

University of Glasgow

Email: {simonpj,jl}@dcs.glasgow.ac.uk. Phone: +44-41-330-4500

March 10, 1994

Abstract

Some algorithms make critical internal use of updatable

state, even though their external speci�cation is purely

functional. Based on earlier work on monads, we present

a way of securely encapsulating stateful computations

that manipulate multiple, named, mutable objects, in the

context of a non-strict, purely-functional language.

The security of the encapsulation is assured by the type

system, using parametricity. Intriguingly, this para-

metricity requires the provision of a (single) constant with

a rank-2 polymorphic type.

A shorter version of this paper appears in the Proceedings

of the ACM Conference on Programming Languages De-

sign and Implementation (PLDI), Orlando, June 1994.

1 Introduction

Purely functional programming languages allow many al-

gorithms to be expressed very concisely, but there are a

few algorithms in which in-place updatable state seems

to play a crucial role. For these algorithms, purely-

functional languages, which lack updatable state, appear

to be inherently ine�cient (Ponder, McGeer & Ng [1988]).

Take, for example, algorithms based on the use of

incrementally-modi�ed hash tables, where lookups are in-

terleaved with the insertion of new items. Similarly, the

union/�nd algorithm relies for its e�ciency on the set

representations being simpli�ed each time the structure

is examined. Likewise, many graph algorithms require a

dynamically changing structure in which sharing is ex-

plicit, so that changes are visible non-locally.

There is, furthermore, one absolutely unavoidable use of

state in every functional program: input/output. The

plain fact of the matter is that the whole purpose of run-

ning a program, functional or otherwise, is to make some

side e�ect on the world | an update-in-place, if you

please. In many programs these I/O e�ects are rather

complex, involving interleaved reads from and writes to

the world state.

We use the term \stateful" to describe computations or

algorithms in which the programmer really does want to

manipulate (updatable) state. What has been lacking

until now is a clean way of describing such algorithms

in a functional language | especially a non-strict one |

without throwing away the main virtues of functional lan-

guages: independence of order of evaluation (the Church-

Rosser property), referential transparency, non-strict se-

mantics, and so on.

In this paper we describe a way to express stateful al-

gorithms in non-strict, purely-functional languages. The

approach is a development of our earlier work on monadic

I/O and state encapsulation (Launchbury [1993]; Pey-

ton Jones & Wadler [1993]), but with an important tech-

nical innovation: we use parametric polymorphism to

achieve safe encapsulation of state. It turns out that this

allows mutable objects to be named without losing safety,

and it also allows input/output to be smoothly integrated

with other state mainpulation.

The other important feature of this paper is that it de-

scribes a complete system, and one that is implemented

in the Glasgow Haskell compiler and freely available. The

system has the following properties:

� Complete referential transparency is maintained. At

�rst it is not clear what this statement means: how

can a stateful computation be said to be referentially

transparent? To be more precise, a stateful compu-

tation is a state transformer, that is, a function from

an initial state to a �nal state. It is like a \script",

detailing the actions to be performed on its input

state. Like any other function, it is quite possible to

apply a single stateful computation to more than one

input state.

So, a state transformer is a pure function. But, be-

cause we guarantee that the state is used in a single-

threaded way, the �nal state can be constructed by

modifying the input state in-place. This e�cient im-

plementation respects the purely-functional seman-

1

tics of the state-transformer function, so all the usual

techniques for reasoning about functional programs

continue to work. Similarly, stateful programs can

be exposed to the full range of program transforma-

tions applied by a compiler, with no special cases or

side conditions.

� The programmer has complete control over where in-

place updates are used and where they are not. For

example, there is no complex analysis to determine

when an array is used in a single-threaded way. Since

the viability of the entire programmay be predicated

on the use of in-place updates, the programmer must

be con�dent in, and be able to reason about, the

outcome.

� Mutable objects can be named. This ability sounds

innocuous enough, but once an object can be named

its use cannot be controlled as readily. Yet naming

is important. For example, it gives us the ability to

manipulate multiple mutable objects simultaneously.

� Input/output takes its place as a specialised form

of stateful computation. Indeed, the type of I/O-

performing computations is an instance of the (more

polymorphic) type of stateful computations. Along

with I/O comes the ability to call imperative proce-

dures written in other languages.

� It is possible to encapsulate stateful computations so

that they appear to the rest of the program as pure

(stateless) functions which are guaranteed by the type

system to have no interactions whatever with other

computations, whether stateful or otherwise (except

via the values of arguments and results, of course).

Complete safety is maintained by this encapsula-

tion. A program may contain an arbitrary number of

stateful sub-computations, each simultaneously ac-

tive, without concern that a mutable object from one

might be mutated by another.

� Stateful computations can even be performed lazily

without losing safety. For example, suppose that

stateful depth-�rst search of a graph returns a list

of vertices in depth-�rst order. If the consumer of

this list only evaluates the �rst few elements of the

list, then only enough of the stateful computation is

executed to produce those elements.

2 Overview

This section introduces the key ideas of our approach to

stateful computation. We begin with the programmer's-

eye-view.

2.1 State transformers

A value of type (ST s a) is a computation which trans-

forms a state indexed by type s, and delivers a value of

type a. You can think of it as a box, like this:

State outState in

Result

Notice that this is a purely-functional account of state.

The \ST" stands for \a state transformer", which we take

to be synonymous with \a stateful computation": the

computation is seen as transforming one state into an-

other. (Of course, it is our intention that the new state

will actually be constructed by modifying the old one in

place, a matter to which we return in Section 6.) A state

transformer is a �rst-class value: it can be passed to a

function, returned as a result, stored in a data structure,

duplicated freely, and so on.

A state transformer can have other inputs besides the

state; if so, it will have a functional type. It can also have

many results, by returning them in a tuple. For example,

a state transformer with two inputs of type Int, and two

results of type Int and Bool, would have the type:

Int -> Int -> ST s (Int,Bool)

Its picture might look like this:

State outState in

Inputs Results

The simplest state transformer, returnST, simply delivers

a value without a�ecting the state at all:

returnST :: a -> ST s a

The picture for returnST is like this:

State outState in

2.2 References

What, then, is a \state"? Part of every state is a �nite

mapping from references to values. (A state may also

have other components, as we will see in Section 4.) A

reference can be thought of as the name of (or address of)

2

a variable, an updatable location in the state capable of

holding a value. The following primitive operations are

provided:

newVar :: a -> ST s (MutVar s a)

readVar :: MutVar s a -> ST s a

writeVar :: MutVar s a -> a -> ST s ()

The function newVar takes an initial value, of type

a, say, and delivers a state transformer of type

ST s (MutVar s a). When this is applied to a state,

it allocates a fresh reference | that is, one currently not

used in the state. It augments the state with a mapping

from this reference to the supplied value, and returns the

reference along with the modi�ed state.

The type MutVar s a is the type of references allocated

from a store of type s, containing a value of type a. Notice

that, unlike SML's Ref types, for example, MutVars are

parameterised over the type of the state as well as over

the type of the value to which the reference is mapped

by the state. (We use the name MutVar for the type of

references, rather than Ref, speci�cally to avoid confusion

with SML.)

Given a reference v, readVar v is a state transformer

which leaves the state unchanged, but uses the state to

map the reference to its value.

The function writeVar transforms the state so that it

maps the given reference to a new value. Notice that the

reference itself does not change; it is the state which is

modi�ed. writeVar delivers a result of the unit type (),

a type which only has one value (apart from bottom), also

written (). A state transformer of type ST s () is useful

only for its e�ect on the state.

2.3 Composing state transformers

State transformers can be composed in sequence, to form

a larger state transformer, using thenST, which has type

thenST :: ST s a -> (a -> ST s b) -> ST s b

The picture for (s1 `thenST` s2) is like this

1

:

State in

s1 s2

State out

Notice that the two computations must manipulate state

indexed by the same type, s. Notice also that thenST is

inherently sequential, because the state consumed by the

second computation is that produced by the �rst. Indeed,

we often refer to a state transformer as a thread, invok-

ing the picture of a series of primitive stateful operations

1

Backquotes are Haskell's notation for an in�x operator.

\threaded together" by a state passed from one to the

next.

Putting together what we have so far, here is a \proce-

dure" which swaps the contents of two variables:

swap :: MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v `thenST` (\a ->

readVar w `thenST` (\b ->

writeVar v b `thenST` (_ ->

writeVar w a)))

The syntax needs a little explanation. The form \\a->e"

is Haskell's syntax for a lambda abstraction. The body

of the lambda abstraction, e, extends as far to the right

as possible. So in the code for swap, the second argument

of the �rst thenST extends all the way from the \a to the

end of the function. That's just as you would expect: the

second argument of a thenST is meant to be a function.

The _" in the second-last line is a wild-card pattern,

which matches any value. We use it here because the

writeVar does not return a value of interest.

The parentheses can be omitted, since in�x operations

bind less tightly than the lambda abstraction operator.

Furthermore, we provide a special form of thenST, called

thenST_, with the following type signature:

thenST_ :: ST s () -> ST s b -> ST s b

Unlike thenST its second argument is not a function, so

the lambda isn't required. So we can rewite swap as fol-

lows:

swap :: MutVar s a -> MutVar s a -> ST s ()

swap v w = readVar v `thenST` \a ->

readVar w `thenST` \b ->

writeVar v b `thenST_`

writeVar w a

When swap v w is executed in a state thread (that is,

when given a state), v is dereferenced, returning a value

which is bound to a. Similarly the value of w is bound

to b. New values are then written into the state at these

locations, these values being b and a respectively.

In addition to thenST and returnST, we have found it

useful to introduce one other \plumbing" combinator,

fixST. It has the type

fixST :: (a -> ST s a) -> ST s a

and the usual knot-tying semantics, which we depict thus:

State outState in
s

This is the only point that relies on laziness. Everything

3

else in the paper is directly applicable to strict languages.

2.4 Encapsulation

So far we have been able to combine state transformers

to make larger state transformers, but how can we make

a state transformer part of a larger program which does

not manipulate state at all? What we need is a function,

runST, with a type something like the following:

runST :: ST s a -> a

The idea is that runST takes a state transformer as its

argument, conjures up an initial empty state, applies the

state transformer to it, and returns the result while dis-

carding the �nal state. The initial state is \empty" in

the sense that no references have been allocated in it by

newVar; it is the empty mapping.

But there seems to be a terrible aw: what is to prevent

a reference from one thread being used in another? For

example:

let v = runST (newVar True)

in

runST (readVar v)

Here, the reference allocated in the �rst runST's thread is

used inside the second runST. Doing so would be a great

mistake, because reads in one thread are not sequenced

with respect to writes in the other, and hence the result of

the program would depend on the evaluation order used

to execute it. It seems at �rst that a runtime check might

be required to ensure that references are only dereferenced

in the thread which allocated them. Unfortunately this

would be expensive. Even worse, our experience suggests

that it is surprisingly tricky to implement such a check |

the obvious ideas fail as it then becomes possible to test

the identity of a thread so losing referential transparency

| and we still do not know a straightforward way to do

so.

This problem brings us to the main technical contribution

of the paper: the di�culties with runST can all be solved

by giving it a more speci�c type. The type given for

runST above is implicitly universally quanti�ed over both

s and a. If we put in the quanti�cation explicitly, the

type might be written:

runST :: 8s,a. (ST s a -> a)

Now, what we really want to say is that runST should

only be applied to a state transformer which uses newVar

to create any references which are used in that thread.

To put it another way, the argument of runST should

not make any assumptions about what has already been

allocated in the initial state. That is, runST should work

regardless of what initial state it is given. So the type of

runST should be:

runST :: 8a. (8s. ST s a) -> a

This is not a Hindley-Milner type, because the quanti�ers

are not all at the top level; it is an example of rank-2

polymorphism (McCracken [1984]).

Why does this type prevent the \capture" of references

from one thread into another? Consider our example

again

let v = runST (newVar True)

in

runST (readVar v)

In the last line a reference v is used in a stateful thread

(readVar v), even though the latter is supposedly encap-

sulated by runST. This is where the type checker comes

into its own. During typechecking, the type of readVar v

will depend on the type of v so, for example, the type

derivation will contain a judgement of the form:

f: : : ; v : MutVar s Boolg ` readVar v : ST s Bool

Now in order to apply runST we have to be able to gen-

eralise the type of readVar v with respect to s, but we

cannot as s is free in the type environment: readVar v

simply does not have type 8s.ST s Bool.

What about the other way round? Let's check that the

type of runST prevents the \escape" of references from a

thread. Consider the de�nition of v above:

v = runST (newVar True)

Here, v is a reference that is allocated within the thread,

but then released to the outside world. Again, con-

sider what happens during typechecking. The expression

(newVar True) has type ST s (MutVar s Bool), which

will generalise nicely to 8s.ST s (MutVar s Bool).

However, this still does not match the type of runST. To

see this, consider the instance of runST with a instanti-

ated to MutVar s Bool:

runST :: (8s'. ST s' (MutVar s Bool))

-> MutVar s Bool

We have had to rename the bound variable s in the type of

runST to avoid it erroneously capturing the s in the type

MutVar s Bool. The argument type now doesn't match

v's type. Indeed there is no instance of runST which can

be applied to v.

Just to demonstrate that the type of runST does allow

some nice examples here is one that is �ne:

f :: MutVar s a -> MutVar s a

f v = runST (newVar v `thenST` \w->

readVar w)

4

where v is a reference from some arbitrary state thread.

Because v is not accessed, its state type does not a�ect the

local state type of the short thread (which is in fact totally

polymorphic in v). Thus it is �ne for an encapsulated

state thread to manipulate references from other threads

so long as no attempt is made to dereference them.

In short, by the expedient of giving runST a rank-2 poly-

morphic type we can enforce the safe encapsulation of

state transformers. More details on this are given in Sec-

tion 5.2, where we show that runST's type can be ac-

commodated with only a minor enhancement to the type

checker.

3 Array references

So far we have introduced the idea of references (Sec-

tion 2.2), which can be thought of as a single mutable

\box". Sometimes, though we want to update an array

which should be thought of as many \boxes", each in-

dependently mutable. For that we provide primitives to

allocate, read and write elements of arrays. They have

the following types

2

:

newArr :: Ix i => (i,i) -> elt

-> ST s (MutArr s i elt)

readArr :: Ix i => MutArr s i elt -> i

-> ST s elt

writeArr :: Ix i => MutArr s i elt -> i -> elt

-> ST s ()

freezeArr :: Ix i => MutArr s i elt

-> ST s (Array i elt)

Like references, newArr allocates a new array whose

bounds are given by its �rst argument. The second ar-

gument is a value to which each location is initialised.

The state transformer returns a reference to the array,

which we call an array reference. The functions readArr

and writeArr do what their names suggest. The result

is unde�ned if the index is out of bounds.

The interesting function is freezeArr which turns a

MutArr into a standard Haskell array. The latter is an

immutable value, which can certainly be returned from a

stateful thread, and hence lacks the parameterisation on

the state s. Operationally speaking, freezeArr takes the

name of an array as its argument, looks it up in the state,

and returns a copy of what it �nds, along with the un-

altered state. The copy is required in case a subsequent

writeArr changes the value of the array in the state, but

2

The \Ix i =>" part of the type is just Haskell's way of saying

that the type a must be an index type; that is, there must be a

mapping of a value of type a to an o�set in a linear array. Integers,

characters and tuples are automatically in the Ix class, but array

indexing is not restricted to these. Any type for which a mapping

to Int is provided (via an instance declaration for the class Ix at

that type) will do.

it is sometimes possible to avoid the overhead of making

the copy (see Section 6.2.3).

We give two examples of mutable arrays in action, but

leave the larger one to the Appendix.

3.1 Haskell Arrays

Using mutable arrays, we shall de�ne the Haskell \prim-

itive" accumArray, a high level array operation with the

type

3

:

accumArray :: Ix i => (a->b->a) -> a -> (i,i)

-> [(i,b)] -> Array i a

The result of a call (accumArray f x bnds ivs) is an

array whose size is determined by bnds, and whose values

are de�ned by separating all the values in the list ivs

according to their index, and then performing a left-fold

operation, using f, on each collection, starting with the

value x.

Typical uses of accumArray might be a histogram, for

example:

hist :: Ix i => (i,i) -> [i] -> Array i Int

hist bnds is = accumArray (+) 0 bnds

[(i,1)|i<-is, inRange bnds i]

which counts the occurrences of each element of the list

is that falls within the range given by the bounds bnds.

Another example is bin sort:

binSort :: Ix i => (i,i) -> (a->i)

-> [a] -> Array i a

binSort bnds key vs

= accumArray (flip(:)) [] bnds [(key v,v)|v<-vs]

where the value in vs are placed in bins according to their

key value as de�ned by the function key (whose results

are assumed to lie in the range speci�ed by the bounds

bnds). Each bin | that is, each element of the array

| will contain a list of the values with the same key

value. The lists start empty, and new elements are added

using a version of cons in which the order of arguments is

reversed. In both examples, the array is built by a single

pass along the input list.

The implementation of accumArray is as follows.

accumArray bnds f z ivs = runST

(newArr bnds z `thenST` \a ->

fill a f ivs `thenST_`

freezeArr a)

fill a f [] = returnST ()

fill a f ((i,v):ivs)

= readArr a i `thenST` \x ->

writeArr a i (f x v) `thenST_`

3

Technically the (i,b) should be Assoc i b

5

fill a f ivs)

On evaluating a call to accumArray, a new state thread is

generated. Within this thread an array is allocated, each

element of which is initialised to z. The reference to the

array is named a. This is passed to the fill procedure,

together with the accumulator function f, and the list of

index/value pairs.

When this list is exhausted, fill simply returns. If there

is at least one element in the list, it will be a pair (i,v).

The array a is accessed at location i, the value obtained

being bound to x, and a new value, namely (f x v), is

written into the array, again at location i. Then fill is

called recursively on the rest of the list.

Once fill has �nished, the array is frozen into an im-

mutable Haskell array which is returned from the thread.

Using mutable-array operations has enabled us to de-

scribe a complex array \primitive" in terms of much sim-

pler operations. Not only does this make the compiler-

writer's job easier, but it also allows programmers

to de�ne their own variants for, say, the cases when

accumArray does not match their application precisely.

The example is also interesting because of its use of encap-

sulated state. The implementation (or internal details) of

accumArray is imperative, but its external behaviour is

purely functional. Even the presence of the state cannot

be detected from outside the de�nition of accumArray.

3.1.1 Combining State Transformers

Because state transformers are �rst class values, we can

use the power of the functional language to de�ne new

combining forms. One that would be useful in the exam-

ple above is for sequencing a list of \procedures":

seqST :: [ST s ()] -> ST s ()

seqST = foldr thenST_ (returnST ())

Using this the example above can be rewritten:

accumArray bnds f z ivs = runST

(newArr bnds z `thenST` \a ->

seqST (map (update a f) ivs) `thenST_`

freezeArr a)

update a f (i,v) = readArr a i `thenST` \x->

writeArr a i (f x v)

The local function update takes an index/value pair and

evaluates to a state transformer which updates the array

referenced by a. Mapping this function down the list of

index/value pairs ivs produces a list of state transform-

ers, and these are sequenced together by seqST.

4 Input/output

Now that we have the state-transformer framework in

place, we can give a new account of input/output. An

I/O-performing computation is of type ST RealWorld a;

that is, it is a state transformer transforming a state of

type RealWorld, and delivering a value of type a. The

only thing which makes it special is the type of the state

it transforms, an abstract type whose values represent

the real world. It is convenient to use a type synonym to

express this specialisation:

type IO a = ST RealWorld a

Since IO a is an instance of ST s a, it follows that all the

state-transformer primitives concerning references and

arrays work equally well when mixed with I/O opera-

tions. More than that, the same \plumbing" combina-

tors, thenST, returnST and so on, work for I/O as for

other state transformers. In addition, however, we pro-

vide a variety of I/O operations that work only on the IO

instance of state (that is, they are not polymorphic in the

state), such as:

putChar :: Char -> IO ()

getChar :: IO Char

It is easy to build more sophisticated I/O operations on

top of these. For example:

putString :: [Char] -> IO ()

putString [] = returnST ()

putString (c:cs) = putChar c `thenST_`

putString cs

or, equivalently,

putString cs = seqST (map putChar cs)

There is no way for a caller to tell whether putString

is \primitive" or \programmed". Indeed, putChar and

getChar are not primitive either. There is actually only

one primitive I/O operation, called ccall, which allows

the Haskell programmer to call any C procedure. For

example, putChar is de�ned like this:

putChar :: Char -> IO ()

putChar c = ccall putchar c `thenST` _ ->

returnST ()

That is, the state transformer (putChar c) transforms

the real world by calling the C function putchar, pass-

ing it the character c. The value returned by the call

is ignored, as indicated by the _" wild card. Similarly,

getChar is implemented like this:

getChar :: IO Char

getChar = ccall getchar

ccall is actually implemented as a new language con-

struct, rather than as an ordinary function, because we

want it to work regardless of the number and type of its

6

arguments. The restrictions placed on its use are:

� All the arguments, and the result, must be types

which C understands: Int, Float, Double, Bool, or

Array. There is no automatic conversion of more

complex structured types, such as lists or trees.

� The �rst \argument" of ccall, which is the name of

the C function to be called, must appear literally. It

is really part of the construct.

4.1 Running IO

The IO type is a particular instance of state transformers

so, in particular, I/O operations are not polymorphic in

the state. An immediate consequence of this is that IO

operations cannot be encapsulated using runST. Why not?

Again, because of runsST's type. It demands that its

state transformer argument be universally quanti�ed over

the state, but that is exactly what IO is not!

Fortunately, this is exactly what we want. If IO oper-

ations could be encapsulated then it would be possible

to write apparently pure functions, but whose behaviour

depended on external factors, the contents of a �le, user

input, a shared C variable etc. The language would no

longer exhibit referential transparency.

However, this does leave us with a problem: how are IO

operations executed? The answer is to provide a top level

identi�er,

mainIO :: IO ()

and to de�ne the meaning of a program in terms of it.

When a program is executed, mainIO is applied to the

true external world state, and the meaning of the pro-

gram is given by the �nal world state returned by the

program (including, of course, all the incremental changes

en route).

By this means it is possible to give a full de�nition

of Haskell's standard input/output behaviour (involving

lists of requests and responses) as well as much more. In-

deed, the Glasgow implementation of the Haskell I/O sys-

tem is itself now written entirely in Haskell, using ccall

to invoke Unix I/O primitives directly. The same tech-

niques have been used to write libraries of routines for

calling X, etc.

5 Formal semantics

Having given the programmer's eye view, it is time now

to be more formal. In this section we present the static

and dynamic semantics of a small language supporting

state transformers, and give an outline proof of safety for

the encapsulation.

Up to now, we have presented state transformers in the

context of the full-sized programming language Haskell,

since that is where we have implemented the ideas. Here,

however, it is convenient to restrict ourselves to a smaller

language which includes only the essentials.

5.1 A Language

We focus on lambda calculus extended with the state

transformer operations. The syntax of the language is

given by:

e ::= x j k j e

1

e

2

j �x:e j

let x = e

1

in e

2

j runST e j

ccall x e

1

� � �e

n

k ::= : : : j thenST j returnST j fixST j

newVar j readVar j writeVar j

newArr j readArr j writeArr j

freezeArr

5.2 Types

Most of the type rules are the usual Hindley-Milner rules.

The most interesting addition is the typing judgement for

runST. Treating it as a language construct avoids the

need to go beyond Hindley-Milner types. So rather than

actually give runST the type

runST :: 8a.(8s.ST s a) -> a

as suggested in the introduction, we ensure that its typing

judgment has the same e�ect. So because it is consistent

with the rank-2 type, our previous intuition still applies.

As usual, we talk both of types and type schemes (that is,

types possibly with universal quanti�ers on the outside).

We use T for types, S for type schemes, and K for type

constants such as Int and Bool. In addition we use C

to range over the subset of K that correspond to the \C-

types" described in Section 4.

T ::= t j K j T

1

! T

2

j ST T

1

T

2

j

MutVar T

1

T

2

j MutArr T

1

T

2

S ::= T j 8t:S

Note that the MutArr type constructor has only two ar-

guments here. The missing one is the index type. For

the purposes of the semantics we shall assume that ar-

rays are always indexed by naturals, starting at 0. The

type rules are given in Figure 1. � ranges over type en-

vironments (that is, partial functions from references to

types), and we write FV (T) for the free variables of type

T and likewise for type environments.

7

APP

� ` e

1

: T

1

! T

2

� ` e

2

: T

1

� ` (e

1

e

2

) : T

2

LAM

�; x : T

1

` e : T

2

� ` �x:e : T

1

! T

2

LET

� ` e

1

: S �; x : S ` e

2

: T

� ` (let x = e

1

in e

2

) : T

V AR �; x : S ` x : S

SPEC

� ` e : 8t:S

� ` e : S[T=t]

t 62 FV (T)

GEN

� ` e : S

� ` e : 8t:S

t 62 FV (�)

CCALL

� ` e

1

: C

1

� � � � ` e

n

: C

n

� ` (ccall x e

1

: : : e

n

) : C

RUN

� ` e : 8t:ST t T

� ` (runST e) : T

t 62 FV (T)

Figure 1: Type rules

5.3 Denotational Semantics

The denotational semantics of state operations is easy

to add to standard semantics for lazy functional lan-

gauges. Figure 2 gives a standard semantics for a non-

strict lambda calculus, except that we extend it with state

transformers.

The valuation function E [[]] takes an expression and an

environment and returns a value. We use Env for the do-

main of environments, and Val for the domain of values,

de�ned as follows:

Env =

Q

�

(var

�

!D

�

)

Val =

S

�

D

�

The environment maps a variable of type � to a value in

the domain D

�

, and the domain of values is the union of

all the D

�

, where � ranges over monotypes.

From the point of view of the language, the type con-

structors ST, MutVar and MutArr are opaque. To give

themmeaning, however, the semantics must provide them

with some structure.

D

ST s a

= State s! (D

a

� State s)

D

MutVar s a

= N

?

D

MutArr s a

= (N �N)

?

State s = ((N ,! V al)�D

s

)

?

The state is a �nite partial function from locations (rep-

resented by natural numbers) to values, together with

a component which depends on the type of the state.

The only type of values here which will concern us is

RealWorld, the type that s takes in IO computations.

More on this later. We also add a bottom element to rep-

resent an unde�ned state, and distinguish between this

unde�ned state and states which are well-de�ned partial

functions, but which map every thing to ?. The unde-

�ned state arises naturally as the state which results from

an in�nite loop of state transformers, for example.

The meaning of a state transformer is a function which,

given a state, produces a pair of results: a value and a new

state. The least de�ned state transformer is the function

which, given any state, returns the pair containing an

unde�ned value and an unde�ned state (i.e. the bottom

of the product domain).

E [[Expr]] : Env ! Val

E [[k]] � = B[[k]]

E [[x]] � = � x

E [[e

1

e

2

]] = (E [[e

1

]] �) (E [[e

2

]] �)

E [[\x->e]] � = �v:(E [[e]] (� � fx 7! vg)

E [[runST e]] = run (E [[e]] �)

E [[e

1

`thenST` e

2

]] = bind (E [[e

1

]] �) (E [[e

2

]] �)

E [[returnST e]] = unit (E [[e]] �)

E [[fixST e]] = loop (E [[e]] �)

run m = �

1

(m (;;?))

(bind m k) � = k x �

0

where (x; �

0

) = m �

(unit v) � = (v; �)

(loop f) � = f x �

where x = fix (�y:�

1

(f y �))

Figure 2: Semantics of State Combinators

References are denoted simply by natural numbers, ex-

cept that it is possible to have an unde�ned reference

also, denoted by ?. The number represents a \location"

in the state. Arrays are located by a pair of naturals rep-

resenting the location of element 0, and the size of the

array, but again it is possible to have a totally unde�ned

array reference.

Turning to the details of Figures 2 to 5, we note a number

8

E [[newVar e

1

]] = newV ar v

1

E [[readVar e

1

]] =

�

?; if v

1

= ?

readV ar v

1

otherwise

where v

i

= E [[e

i

]] �

E [[writeVar e

1

e

2

]] =

�

?; if v

1

= ?

writeV ar v

1

v

2

otherwise

(newV ar v) ? = (?; ?)

(newV ar v) (�; w) = (p; (� [p 7! v]; w)) where p 62 dom(�)

(readV ar p) ? = (?; ?)

(readV ar p) (�; w) =

�

(?; ?); if p 62 dom(�)

(� p; (�; w)); otherwise

where v

i

= E [[e

i

]] �

(writeV ar p v) ? = (?; ?)

(writeV ar p v) (�; w) =

�

(?; ?); if p 62 dom(�)

((); � [p 7! v]); otherwise

Figure 3: Semantics of variables

E [[newArr e

1

e

2

]] =

�

?; if v

1

= ?

newArr v

1

v

2

otherwise

E [[readArr e

1

e

2

]] =

�

?; if v

1

= ? or v

2

= ?

readArr v

1

v

2

otherwise

where v

i

= E [[e

i

]] �

E [[writeArr e

1

e

2

e

3

]] =

�

?; if v

1

= ? or v

2

= ?

writeArr v

1

v

2

v

3

otherwise

E [[freezeArr e

1

]] =

�

?; if v

1

= ?

freezeArrv

1

otherwise

(newArr n v) ? = (?;?)

(newArr n v) (�; w) = ((p; n); (� [p 7! v; : : : ; (p+ n� 1) 7! v]; w))

where 8q : fp : : : (p+ n� 1)g:q 62 dom(�)

(readArr (p; n) i) ? = (?;?)

(readArr (p; n) i) (�; w) =

�

(?;?); if i 62 f0 : : : (n� 1)g or p+ i 62 dom(�)

(� (p+ i); (�; w)); otherwise

(writeArr (p; n) i v) ? = (?;?)

(writeArr (p; n) i v) (�; w) =

�

(?;?); if i 62 f0 : : : (n� 1)g or p+ i 62 dom(�)

((); (� [p+ i 7! v]; w)); otherwise

(freezeArr (p; n)) ? = (?;?)

(freezeArr (p; n)) (�; w) =

�

(?;?); if 9q : fp : : : (p+ n� 1)g:q 62 dom�

(fi 7! � (p+ i)g

n

i=0

; (�; w)); otherwise

Figure 4: Semantics of Arrays

9

of aspects. Some of the operations are strict. For exam-

ple, readVar, and writeVar are strict in their references,

but none of the operations are strict in the values stored.

Again, newVar, readVar, and writeVar are strict in the

state, but thenST and returnST are not. We shall return

to this point in a moment.

Array references are treated similarly, except that they

come in two parts: the base reference and an o�set (the

array index). We assume indexing ranges from 0 to the

size of the array minus 1. Again, readArr and writeArr

are strict in both the array reference and in the index.

They also return unde�ned if the index is out of bounds.

Finally, they and newArr are strict in the state. newArr

is also strict in the array size.

The semantics makes the nature of arrays crystal clear.

They are composed of many separate locations in the

state, each independently updatable, each update cost-

ing no more than a variable update would cost.

E [[ccall fn e

1

: : : e

n

]]

=

�

?; if 9i:v

i

= ?

doIO fn [v

1

; : : : ; v

n

] otherwise

where v

i

= E [[e

i

]] �

doIO : Name! SeqV al !

State RealWorld! (V al � State RealWord)

doIO fn args ? = (?; ?)

doIO fn args (�; rw) = (v; (�; rw

0

))

where (v; rw

0

) = IO fn args rw

IO : Name ! Seq V al !

RealWorld! (V al �RealWorld)

Figure 5: Semantics of IO operations

The semantics of IO operations is given with respect to

an unspeci�ed function IO which is a state transformer

on the RealWorld.

The primitive operations, such as newVar, readVar, and

so on, are necessarily strict in the state. After all, they

each depend on the value of the state. In contrast, the

semantics do not make thenST or runST strict in the state,

since they do not need its value.

What di�erence might this make? Consider the inter-

preter for a language with IO operations and state given

in Figure 6. The values of variables are stored in a mu-

table array, and a variable is used to store the input (a

lazy list). The result of obeying the commands is a list

of the output values. The output should appear as it is

generated: whenever a Write is obeyed, the returnST

should be able to make the �rst element of its output list

available to the outside world before obeying the rest of

the commands.

5.4 Safety

How can we be sure that the above type system ensures

that each state thread is independent of all others? A full

proof lies well outside the scope of this paper, but we will

provide an outline of the ideas, together with a (slightly

informal) statement of the main result.

Our ultimate intention is to implement all the distinct

state threads using the single, global, machine state, but

to do so without a�ecting the values returned by state

computations. That is, we want to be able to map each

thread on to the global state, and to ensure that the indi-

vidual state threads cannot communicate with each other

except through purely functional values. Similarly, we

want to guarantee that we can arbitrarily interleave the

evaluation of separate state threads, still without a�ect-

ing the result of the computation because, in practice, the

amount of computation which takes place in each thread

will depend on the demand for its �nal value. We cer-

tainly do not want the value of the result to depend on

the pattern of demand.

Consider then a single state thread. In the semantics it

is applied to the empty state, and this state is extended

by applications of newVar (and newArr of course). There

are no other active locations, and the state undergoes no

transformations other than those speci�ed by these reads

and writes.

In contrast, if we were to imagine using a single global

state for all the threads, then many more locations would

be active and, because of possible interleavings of op-

erations from other threads, the underlying state might

change while passing from one primitive operation to the

next. The big question is: how can we guarantee that

these changes do not a�ect the result of the state thread?

We view the state from the perspective of a single thread,

runST m, and model the changes made by other threads as

non-deterministic changes to the state. So, �rst, we have

to map the state of this particular thread into a global

state containing material from many separate threads.

We model this mapping by an injection (one-to-one map-

ping) � : N ! N which maps a reference from the local

state of m to a reference in a global state. The range of

� is that part of the global address space which supports

the execution of m.

We will say that a global state �

1

models the local state of

the semantics, �

m

, if �

m

= �

1

��. That is, if �

m

is de�ned

10

at some location v to have a value x, then �

1

is de�ned

at location � x also having value x. In addition, however,

�

1

may be de�ned at lots of other locations outside the

range of �.

We can also relate two global states using �: two global

states are related by � if they both model the same local

state. That is,

b

� : �

0

$ �

1

is a relation de�ned by �

0

�� =

�

1

��. So, two global states are related by

b

� if they agree

in all the positions in the range of �, but they can have

any old junk in all other locations.

Now, when we actually evaluate runST m, we will allocate

locations only in the range of �. Of course, � only exists as

a mathematical abstraction. The allocation mechanism

will merely choose a free location: � acts as a description

of how the allocation mechanism will have behaved.

Each separate thread will allocate references in non-

overlapping areas (otherwise the locations would not be

available). So from the perspective of a single thread,

the possible changes to the references belonging to other

threads can be described by allowing the state to be any

state which happens to model the true local state by �.

Now we can almost state the main correctness theorem.

To do so, we write m for the meaning of a state trans-

former m as given by the semantics, and m

�

as the mean-

ing of m assuming states are referenced via the coding

function �. That is, the same semantics, except that bind

and newV ar are replaced with bind

�

and newV ar

�

(bind

�

m k) � = k x �

00

where (x; �

0

) = m �

�

0

b

� �

00

(newV ar

�

v) (�; w) = (p; (� [p 7! v]; w))

where p 62 dom(�) ^ p 2 ran(�)

The only di�erences are that newV ar is only allowed to

allocate locations in the range of �, and that bind can

alter its intermediate state so long as the status of the

locations in the range of � are preserved.

Theorem. If m : 8s:ST s T (where s 62 FV (T)) then

for any injection � : N ! N , and any � : N ,! Val such

that � � � = ;, we have �

1

(m (;; w)) = �

1

(m

�

(�; w)),

for all real worlds w.

The proof uses parametric polymorphism in the style of

Mitchell & Meyer [1985].

The theorem says that we can choose any initial state, so

long as nothing is de�ned in the range of �, and the �nal

result is the same as when the semantics explicitly used

purely local state. Furthermore, the state can change in

each use of thenST (modelled by bind) so long as nothing

in the range of � is touched and, again, the �nal result is

unchanged.

The corollary to this is that no state thread can read a ref-

erence allocated by another thread (otherwise the result

of runST m would depend on the choice of initial state,

or on how the other parts of the state changed within

an application of bind). Similarly, no state thread can

write to a reference belonging to another thread because

the result of writeV ar depends on whether the location

is allocated or not, but again, the result of runST m is

independent of such matters.

In conclusion, therefore, each thread is independent of

other threads, even when implemented in a single global

store.

6 Implementation

The whole point of expressing stateful computations in

the framework that we have described is that operations

which modify the state can update the state in place.

The implementation is therefore crucial to the whole en-

terprise, rather than being a peripheral issue.

We have in mind the following implementation frame-

work:

� The state of each encapsulated state thread is rep-

resented by a collection of objects in heap-allocated

storage.

� A reference is represented by the address of an object

in heap-allocated store.

� A read operation returns the current contents of the

object whose reference is given.

� A write operation overwrites the contents of the spec-

i�ed object or, in the case of mutable arrays, part of

the contents.

� The I/O thread is a little di�erent because, as dis-

cussed in Section 5.3, its state also includes the actual

state of the real world. I/O operations are carried out

directly on the real world (updating it in place, as it

were).

As the previous section outlined, the correctness of this

implementation relies totally on the type system. Such

a reliance is quite familiar: for example, the implemen-

tation of addition makes no attempt to check that its

arguments are indeed integers, because the type system

ensures it. In the same way, the implementation of state

transformers makes no attempt to ensure, for example,

that references are only used in the same state thread in

11

which they were created; the type system ensures that

this is so.

6.1 Update in place

The most critical correctness issue concerns the update-

in-place behaviour of write operations. Why is update-in-

place safe? It is safe because all the combinators (thenST,

returnST, fixST) use the state only in a single-threaded

manner (Schmidt [1985]); that is, they each use the in-

coming state exactly once, and none duplicates it (Fig-

ure 2). Furthermore, all the primitive operations on the

state are strict in it. A write operation can modify the

state in place, because (a) it has the only copy of the

incoming state, and (b) since it is strict in the incoming

state, there can be no as-yet-unevaluated read operations

pending on that state.

Can the programmer somehow duplicate the state? No:

since the ST type is opaque, the only way the programmer

can manipulate the state is via the combinators thenST,

returnST and fixST. On the other hand, the program-

mer certainly does have access to named references into

the state. However, it is perfectly OK for these to be du-

plicated, stored in data structures and so on. Variables

are immutable; it is only the state to which they refer that

is altered by a write operation.

We �nd these arguments convincing, but they are cer-

tainly not formal. A formal proof would necessarily in-

volve some operational semantics, and a proof that no

evaluation order could change the behaviour of the pro-

gram. We have not yet undertaken such a proof.

6.2 E�ciency considerations

It would be possible to implement state transformers by

providing the combinators (thenST, returnST, etc) and

primitive operations (readVar, writeVar etc) as library

functions. But this would impose a very heavy overhead

on each operation and (worse still) on composition. For

example, a use of thenST would entail the construction of

two function-valued arguments, followed by a procedure

call to thenST. This compares very poorly with simple

juxtaposition of code, which is how sequential composi-

tion is implemented in conventional languages!

A better way would be to treat state-transformer oper-

ations specially in the code generator. But that risks

complicating an already complex part of the compiler.

Instead we implement state transformers in a way which

is both direct and e�cient: we simply give Haskell de�-

nitions for the combinators.

type ST s a = State s -> (a, State s)

returnST x s = (x,s)

thenST m k s = k x s' where (x,s') = m s

fixST k s = (r,s') where (r,s') = k r s

runST m = r where (r,s) = m currentState

Rather than provide ST as a built-in type, opaque to

the compiler, we give its representation with an explicit

Haskell type de�nition. (The representation of ST is not,

of course, exposed to the programmer, lest he or she write

functions which duplicate or discard the state.) It is then

easy to give Haskell de�nitions for the combinators, which

mirror precisely the semantics given for them in Figure 2

4

.

The implementation of runST is intriguing. Since its ar-

gument, m, works regardless of what state is passed to it,

we simply pass a value representing the current state of

the heap. As we will see shortly (Section 6.2.2), this value

is never actually looked at, so a constant value will do.

The code generator must, of course, remain responsible

for producing the appropriate code for each primitive op-

eration, such as readVar, ccall, and so on. In our im-

plementation we actually provide a Haskell \wrapper" for

each primitivewhich makes explicit the evaluation of their

arguments, using so-called \unboxed values". Both the

motivation for and the implementation of our approach

to unboxed values is detailed in Peyton Jones & Launch-

bury [1991], and we do not rehearse it here.

6.2.1 Transformation

The beauty of this approach is that all the combinators

can then be in-lined at their call sites, thus largely remov-

ing the \plumbing" costs. For example, the expression

m1 `thenST` \v1 ->

m2 `thenST` \v2 ->

returnST e

becomes, after in-lining thenST and returnST,

\s -> let (v1,s1) = m1 s

(v2,s2) = m2 s1

in (e,s3)

Furthermore, the resulting code is now exposed to the

full range of analyses and program transformations im-

plemented by the compiler. For example, if the compiler

can spot that the above code will be used in a context

which is strict in either component of the result tuple, it

will be transformed to

\s -> case m1 s of

(v1,s2) -> case m2 s1 of

(v2,s2) -> (e,s2)

In the let version, heap-allocated thunks are created for

4

Indeed, we have to admit that the implementation came �rst!

12

m1 s and m2 s1; the case version avoids this cost. These

sorts of optimisations could not be performed if the ST

type and its combinators were opaque to the compiler.

6.2.2 Passing the state around

The implementation of the ST type, given above, passes

around an explicit state. Yet, we said earlier that state-

manipulating operations are implemented by performing

side e�ects on the common, global heap. What, then,

is the role of the explicit state values which are passed

around by the above code? It plays two important roles.

Firstly, the compiler \shakes the code around" quite con-

siderably: is it possible that it might somehow end up

changing the order in which the primitive operations are

performed? No, it is not. The input state of each primi-

tive operation is produced by the preceding operation, so

the ordering between them is maintained by simple data

dependencies of the explicit state, which are certainly pre-

served by every correct program transformation.

Secondly, the explicit state allows us to express to the

compiler the strictness of the primitive operations in the

state. The State type is de�ned like this:

data State s = MkState (State# s)

That is, a state is represented by a single-constructor al-

gebraic data type, whose only contents is a value of type

State# s, the (�nally!) primitive type of states. The

lifting implied by the MkState constructor corresponds

exactly to the lifting in the semantics. Using this de�-

nition of State we can now de�ne newVar, for example,

like this:

newVar init (MkState s#)

= case newVar# init s# of

(v,t#) -> (v, MkState t#)

This de�nition makes absolutely explicit the evaluation

of the strictness of newVar in its state argument, �nally

calling the truly primitive newVar# to perform the allo-

cation.

We think of a primitive state | that is, a value of type

State# s, for some type s | as a \token" which stands

for the state of the heap and (in the case of the I/O

thread) the real world. The implementation never ac-

tually inspects a primitive state value, but it is faith-

fully passed to, and returned from every primitive state-

transformer operation. By the time the program reaches

the code generator, the role of these state values is over,

and the code generator arranges to generate no code at

all to move around values of type State# (assuming an

underlying ram architecture of course).

6.2.3 Arrays

The implementation of arrays is straightforward. The

only complication lies with freezeArray, which takes a

mutable array and returns a frozen, immutable copy. Of-

ten, though, we want to construct an array incrementally,

and then freeze it, performing no further mutation on the

mutable array. In this case it seems rather a waste to

copy the entire array, only to discard the mutable version

immediately thereafter.

The right solution is to do a good enough job in the

compiler to spot this special case. What we actually do

at the moment is to provide a highly dangerous opera-

tion dangerousFreezeArray, whose type is the same as

freezeArray, but which works without copying the mu-

table array. Frankly this is a hack, but since we only

expect to use it in one or two critical pieces of the stan-

dard library, we couldn't work up enough steam to do the

job properly just to handle these few occasions. We do

not provide general access to dangerousFreezeArray.

6.2.4 More efficient I/O

The I/O state transformer is a little special, because of

the following observation: the �nal state of the I/O thread

will certainly be demanded. Why? Because the whole

point in running the program in the �rst place is to cause

some side e�ect on the real world!

We can exploit this property to gain a little extra e�-

ciency. Since the �nal state of the I/O thread will be

demanded, so will every intermediate thread. So we can

safely use a strict, and hence more e�cient, version of

thenST:

thenIO :: IO a -> (a->IO b) -> IO b

thenIO m k s = case m s of

(r,s') -> k r s'

By using case instead of the let which appears in

thenST, we avoid the construction of a heap-allocated

thunk for m s.

7 Other useful combinators

We have found it useful to expand the range of combina-

tors and primitives beyond the minimal set presented so

far. This section presents the ones we have found most

useful.

7.1 Equality

The references we have correspond very closely to \point-

ers to variables". One useful additional operation on ref-

erences is to determine whether two references are aliases

13

for the same variable (so writes to the one will a�ect reads

from the other). It turns out to be quite straightforward

to add an additional constant,

eqMutVar :: MutVar s a -> MutVar s a -> Bool

eqMutArr :: Ix i =>

MutArr s i a -> MutArr s i a -> Bool

Notice that the result does not depend on the state|it

is simply a boolean. Notice also that we only provide a

test on references which exist in the same state thread.

References from di�erent state threads cannot be aliases

for one another.

7.2 Interleaved and parallel operations

The state-transformer composition combinator de�ned so

far, thenST, is strictly sequential: the state is passed from

the �rst state transformer on to the second. But some-

times that is not what is wanted. Consider, for exam-

ple, the operation of reading a �le. We may not want

to specify the precise relative ordering of the individual

character-by-character reads from the �le and other I/O

operations. Rather, we may want the �le to be read lazily,

as its contents is demanded.

We can provide this ability with a new combinator,

interleaveST:

interleaveST :: ST s a -> ST s a

Unlike

every other state transformer so far, interleaveST ac-

tually duplicates the state! The \plumbing diagram" for

(interleaveST s) is like this:

State outState in

Result

s

More precisely, interleaveST splits the state into two

parts, which should be disjoint. In the lazy-�le-read ex-

ample, the state of the �le is passed into one branch, and

the rest of the state of the world is passed into the other.

Since these states are disjoint, an arbitrary interleaving

of operations in each branch of the fork is legitimate.

To make all this concrete, here is an implementation of

lazy �le read:

readFile :: String -> IO [Char]

readFile filename

= openFile filename `thenST` \f ->

readCts f

readCts :: FileDescriptor -> IO [Char]

readCts f = interleaveST

(readCh f `thenST` \c ->

if c == eofChar

then returnST []

else readCts f `thenST` \cs ->

returnST (c:cs))

A parallel version of interleaveST, which starts up a

concurrent task to perform the forked I/O thread, seems

as though it would be useful in building responsive graph-

ical user interfaces. The idea is that forkIO would be

used to create a new widget, or window, which would be

capable of independent I/O through its part of the screen.

The only unsatisfactory feature of all this is that we see

absolutely no way to guarantee that the side e�ects per-

formed in the two branches of the fork are indeed inde-

pendent. That has to be left as a proof obligation for the

programmer; the only consolation is that at least the lo-

cation of these proof obligations is explicit. We fear that

there may be no absolutely secure system which is also

expressive enough to describe the programs which real

programmers want to write.

8 Related work

Several other languages from the functional stable provide

some kind of state.

For example, Standard ML provides reference types,

which may be updated (Paulson [1991]). The resulting

system has serious shortcomings, though. The meaning

of programs which use references depends on a complete

speci�cation of the order of evaluation of the program.

Since SML is strict this is an acceptable price to pay,

but it would become unworkable in a non-strict language

where the exact order of evaluation is hard to �gure out.

What is worse, however, is that referential transparency

is lost. Because an arbitrary function may rely on state

accesses, its result need not depend purely on the val-

ues of its arguments. This has additional implications

for polymorphism, leading to a weakened form in order

to maintain type safety (Tofte [1990]). We have none of

these problems here.

The dataow language Id provides I-structures and M-

structures as mutable datatypes (Nikhil [1988]). Within

a stateful program referential transparency is lost. For I-

structures, the result is independent of evaluation order,

provided that all sub-expressions are eventually evaluated

(in case they side-e�ect an I-structure). For M-structures,

the result of a program can depend on evaluation order.

Compared with I-structures and M-structures, our ap-

proach permits lazy evaluation (where values are eval-

14

uated on demand, and may never be evaluated if they

are not required), and supports a much stronger notion

of encapsulation. The big advantage of I-structures and

M-structures is that they are better suited to parallel pro-

gramming than is our method.

The Clean language takes a di�erent approach (Barend-

sen & Smetsers [1993]). The Clean type system supports

a form of linear types, called \unique types". A value

whose type is unique can safely be updated in place, be-

cause the type system ensures that the updating oper-

ation has the sole reference to the value. The contrast

with our work is interesting. We separate references from

the state to which they refer, and do not permit explicit

manipulation of the state. Clean identi�es the two, and

in consequence requires state to be manipulated explic-

itly. We allow references to be duplicated, stored in data

structures and so on, while Clean does not. Clean requires

a new type system to be explained to the programmer,

while our system does not. On the other hand, the separa-

tion between references and state is sometimes tiresome.

For example, while both systems can express the idea of

a mutable list, Clean does so more neatly because there

is less explicit de-referencing. The tradeo� between im-

plicit and explicit state in purely-functional languages is

far from clear.

There are signi�cant similarities with Gi�ord and Lu-

cassen's e�ect system which uses types to record side

e�ects performed by a program (Gi�ord & Lucassen

[1986]). However, the e�ects system is designed to de-

limit the e�ect of side e�ects which may occur as a result

of evaluation. Thus the semantic setting is still one which

relies on a predictable order of evaluation.

Our work also has strong similarities with Odersky, Ra-

bin and Hudak's �

var

(Odersky, Rabin & Hudak [1993]),

which itself was inuenced by the Imperative Lambda

Calculus (ILC) of Swarup, Reddy & Ireland [1991]. ILC

imposed a rigid strati�cation of applicative, state reading,

and imperative operations. The type of runST makes this

strati�cation unnecessary: state operations can be encap-

sulated and appear purely functional. This was also true

of �

var

but there it was achieved only through run-time

checking which, as a direct consequence, precludes the

style of lazy state given here.

In two earlier papers, we describe an approach to these is-

sues based onmonads, in the context of non-strict, purely-

functional languages. The �rst, Peyton Jones & Wadler

[1993], focusses mainly on input/output, while the sec-

ond, Launchbury [1993], deals with stateful computation

within a program. The approach taken by these papers

has two major shortcomings:

� State and input/output existed in separate frame-

works. The same general approach can handle both

but, for example, di�erent combinators were required

to compose stateful computations from those re-

quired for I/O-performing computation.

� State could only safely be handled if it was anony-

mous. Consequently, it was di�cult to write pro-

grams which manipulate more than one piece of state

at once. Hence, programs became rather \brittle":

an apparently innocuous change (adding an extra up-

datable array) became di�cult or impossible.

� Separate state threads required expensive run-time

checks to keep them apart. Without this, there was

the possibility that a reference might be created in

one stateful thread, and used asynchronously in an-

other, which would destroy the Church-Rosser prop-

erty.

Acknowledgements

The idea of adding an extra type variable to state threads

arose in discussion with John Hughes, and was presented

briey at the 1993 Copenhagen workshop on State in Pro-

gramming Languages, though at that time we suggested

using an existential quanti�cation in the type of runST. In

addition, all these ideas have bene�ted from discussions

amongst the Functional ProgrammingGroup at Glasgow.

References

E Barendsen & JEW Smetsers [Dec 1993], \Conventional

and uniqueness typing in graph rewrite systems,"

in Proc 13th Conference on the Foundations of

Software Technology and Theoretical Computer

Science, Springer Verlag LNCS.

DK Gi�ord & JM Lucassen [Aug 1986], \Integrating func-

tional and imperative programming," in ACM

Conference on Lisp and Functional Program-

ming, MIT, ACM, 28{38.

J Launchbury [June 1993], \Lazy imperative program-

ming," in Proc ACM Sigplan Workshop on State

in Programming Languages, Copenhagen (avail-

able as YALEU/DCS/RR-968, Yale University),

pp46{56.

NJ McCracken [June 1984], \The typechecking of pro-

grams with implicit type structure," in Seman-

tics of data types, Springer Verlag LNCS 173,

301{315.

15

JC Mitchell & AR Meyer [1985], \Second-order logical re-

lations," in Logics of Programs, R Parikh, ed.,

Springer Verlag LNCS 193.

Rishiyur Nikhil [March 1988], \Id Reference Manual,"

Lab for Computer Sci, MIT.

M Odersky, D Rabin & P Hudak [Jan 1993], \Call by

name, assignment, and the lambda calculus," in

20th ACM Symposium on Principles of Program-

ming Languages, Charleston, ACM, 43{56.

LC Paulson [1991], ML for the working programmer,

Cambridge University Press.

SL Peyton Jones & J Launchbury [Sept 1991], \Unboxed

values as �rst class citizens," in Functional Pro-

gramming Languages and Computer Architec-

ture, Boston, Hughes, ed., LNCS 523, Springer

Verlag, 636{666.

SL Peyton Jones & PL Wadler [Jan 1993], \Imperative

functional programming," in 20th ACM Sympo-

sium on Principles of Programming Languages,

Charleston, ACM, 71{84.

CG Ponder, PC McGeer & A P-C Ng [June 1988],

\Are applicative languages ine�cient?," SIG-

PLAN Notices 23, 135{139.

DA Schmidt [Apr 1985], \Detecting global variables in de-

notational speci�cations," TOPLAS 7, 299{310.

V Swarup, US Reddy & E Ireland [Sept 1991], \Assign-

ments for applicative languages," in Functional

Programming Languages and Computer Archi-

tecture, Boston, Hughes, ed., LNCS 523, Springer

Verlag, 192{214.

M Tofte [Nov 1990], \Type inference for polymorphic ref-

erences," Information and Computation89.

Appendix

Figure 6 gives a larger example of array references in

use. It de�nes an interpreter for a simple imperative lan-

guage, whose input is the program together with a list

of input values, and whose output is the list of values

written by the program. The interpreter naturally in-

volves a value representing the state of the store. The

idea is, of course, that the store should be implemented

as an in-place-updated array, and that is precisely what

is achieved

5

.

5

This programalso exhibits an awkward shortcomingof Haskell's

This example has long been a classic test case for systems

which infer single-threadedness (Schmidt [1985]). The

only unsatisfactory feature of the solution is that eval has

to be written as a fully-edged state transformer, while

one might perhaps like to take advantage of its \read-

only" nature.

type signatures, which it shares with every other widely-used func-

tional language we know. The type signatures for obey and eval

are given in comments only, because Haskell understands them as

implicitly universally quanti�ed over s. But of course they are

monomorphic in s! Alas.

16

data Com = Assign Var Exp | Read Var | Write Exp | While Exp [Com]

type Var = Char

data Exp =

interpret :: [Com] -> [Int] -> [Int]

interpret cs input = runST (newArr ('A','Z') 0 `thenST` \store ->

newVar input `thenST` \inp->

command cs store inp)

command :: [Com] -> MutArray s Int -> MutVar s [Int] -> ST s [Int]

command cs store inp = obey cs

where

-- obey :: [Com] -> ST s [Int]

obey [] = returnST []

obey (Assign v e:cs) = eval e `thenST` \val->

writeArr store v val `thenST_`

obey cs

obey (Read v:cs) = readVar inp `thenST` \(x:xs) ->

writeArr store v x `thenST_`

writeVar inp xs `thenST_`

obey cs

obey (Write e:cs) = eval e `thenST` \out->

obey cs `thenST` \outs->

returnST (out:outs)

obey (While e bs:cs) = eval e `thenST` \val->

if val==0 then

obey cs

else

obey (bs ++ While e bs : cs) inp

-- eval :: Exp -> ST s Int

eval e =

Figure 6: An interpreter with lazy stream output

17

