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Abstract

We describe the design and use of monadic
I/O in Haskell 1.3, the latest revision of the
lazy functional programming language Haskell.
Haskell 1.3 standardises the monadic I/O mech-
anisms now available in many Haskell sys-
tems. The new facilities allow more sophis-
ticated text-based application programs to be
written portably in Haskell. Apart from the
use of monads, the main advances over stan-
dard Haskell 1.2 are: character I/O based on
handles (analogous to ANSI C file pointers), an
error handling mechanism, terminal interrupt
handling and a POSIX interface. The stan-
dard also provides implementors with a flexible
framework for extending Haskell to incorporate
new language features. In addition to a tuto-
rial description of the new facilities this paper
includes a worked example: a monad for com-

binator parsing which is based on the standard
I/O monad.

1 Introduction

Haskell 1.3 improves on previous versions of
Haskell [11] by adopting an I/O mechanism
based on monads [18]. This paper explains the
structure of this monadic I/O mechanism, jus-
tifies some of the design decisions, and explains
how to program with the new facilities. This pa-
per provides a more in-depth treatment of I/0O
than is possible in the Haskell 1.3 report [8] and
library documentation [9].

Previous versions of Haskell used synchro-
nised streams or dialogues for 1/O. In practice,
many Haskell programmers found it cumber-
some to use these constructs directly. Awkward
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main “( Str input : ~ (Success : _ )) =
[ ReadChan stdin,

AppendChan stdout input

]

Figure 1: Dialogue I/O in Haskell 1.2

pattern matching against the input stream was
necessary, as illustrated by the program in Fig-
ure 1, which simply copies its standard input to
its standard output. Instead, it was common
practice to program at a higher level using li-
braries of derived functions. One such library
(for continuation-passing 1/O [13, 16]) used to
be part of the Haskell standard prelude.

Recently, researchers have experimented with
new I/O combinators based on monads [7, 17].
These combinators are capable of capturing all
the I/O operations that could be provided us-
ing the previous stream-based approach, and
provide the same type security as the contin-
uation library. The monadic approach is sig-
nificantly more flexible than the other two ap-
proaches, however, in the ease with which new
I/O primitives can be introduced or existing I/O
primitives combined to create new combinators.
Monadic I/O has proved sufficiently attractive
that several Haskell systems already support
at least a basic implementation, and some also
support more sophisticated mechanisms such as
inter-language working, concurrency, or direct
state-manipulation.

One of the main purposes of Haskell 1.3 is to
standardise primitives for monadic I/O. The de-
sign provides a basic (but “industrial-strength”
and extensible) interface to common operating
systems such as Unix, DOS, VMS, or the Macin-
tosh. The design has been influenced by the I/O
operations found in imperative languages. Ex-
perimental features with which the Haskell com-



in previous versions of Haskell. Some rarely-
used features, such as Binary files, have been
removed, pending better designs.

The definition of Haskell 1.3 consists of two
documents. The report proper [8] defines the
Haskell language and the standard prelude. The
standard libraries are defined in a separate doc-
ument [9]. Sections 2, 3 and 4 of this paper
describe the contents of the I/O libraries. Sec-
tion 5 shows how to write combinator parsers in
terms Haskell 1.3 I/O primitives. Section 6 out-
lines previous work on functional I/O and Sec-
tion 7 summarises. Appendix A summarises the
types of all the I/O and operating system oper-
ations provided by Haskell 1.3 and Appendix B
contains code for combinator parsing.

2 Elements of Monadic I/0

Monadic I/O depends on the builtin type con-
structor, I0. An expression of some type I0 ade-
notes a computation, that may perform I/O and
then returns a result of type a. The main pro-
gram (function main from module Main, which
we write Main.main) has type I0 (), that is,
it is a computation which performs some I/O
and returns an uninteresting result. The “triv-
ial” type (O has only one value, the unit value,
which is also written (). When a Haskell pro-
gram runs, there is a single top-level thread of
control that executes the computation denoted
by Main.main. Only this thread of control actu-
ally executes the computations denoted by 1/O
expressions.

The type constructor I0 is a major exten-
sion to Haskell in that it allows many impera-
tive commands to be expressed within a higher-
order type-secure language. Unlike languages
like Lisp or ML, however, in which arbitrary ex-
pressions may have side-effects, only expressions
of type I0 a may do so in Haskell, and only
then when interpreted as computations by the
top-level thread of control. The meaning of ex-
pressions is therefore the same as in Haskell 1.2.

Section 2.1 introduces monadic I/O using the
handful of I/O operations present in the stan-
dard prelude. The majority of operations are in

plain control flow and error signalling operations
on the I0 monad in Section 2.3.

2.1 Simple programs

The simplest possible programs just output
their result to the standard output device (this
will normally be the user’s terminal). This is
done in Haskell using the print function, whose
type is given below.

print :: Text a => a -> I0 ()

If z has some type a which is in the Text class,
then print z is the computation that prints
show z, a textual representation of z, on the
standard output. The Text class contains types
such as Int, Bool and Char, lists and tuples
formed from them, and certain programmer-
declared algebraic types. The libraries docu-
ment [8] defines the show function and the Text
class. Here, for example, is a program to output
the first nine natural numbers and their powers
of two.

10 O
print [(n, 2°n) | n <- [0..8]]

main ::
main =

The output of the program is:

(o, 1, @, 2, 2, 4, @G, 8), (4, 16),
(5, 32), (6, 64), (7, 128), (8, 256) ]

The show function, and hence also print, for-
mats its output in a standard way, as in source
Haskell programs, so strings and characters are
quoted (for example, "Haskell B. Curry"),
special characters are output symbolically (that
is, \n’ rather than a newline), lists are en-
closed in square brackets, and so on. There
are other, more primitive functions which can
be used to output literal characters or strings
without quoting when this is needed (putChar,
putStr). These are described in the following
sections.

Interacting with the User

Haskell 1.3 continues to support Landin-stream
style interaction with standard input and out-
put, using interact. (The type String below
is a synonym for [Char].)



characters produced to standard output. For
example, the following program simply removes
all non-upper-case characters from its standard
input and echoes the result on its standard out-

put.
main = interact (filter isUpper)

The functions filter and isUpper come from
the Haskell prelude. They have the following

types.
filter (a -> Bool) —> [a] —> [al
isUpper :: Char -> Bool

When run on the following input,

Now is the time for all Good Men to come
to the aid of the Party.

this program would output the following.
NGMP

Since interact only blocks on input when de-
mand arises for the lazy input stream, it sup-
ports simple interactive programs; see Frost and
Launchbury [5], for instance.

Basic File I/O

writeFile, appendFile
:: FilePath -> String -> I0 ()
readFile :: FilePath -> IO String

The writeFile and appendFile functions write
or append their second argument, a string, to
the file named by their first argument. Type
FilePath is a synonym for String. To write
a value of any printable type, as with print,
use the show function to convert the value to a
string first. For example,

main =
appendFile "ascii-chars"
(show [(x,chr (x)) |

x <- [0..1271])

writes the following to the file ascii-chars:

[(0, °\NUL’), (1, °\SOH’), (2, ’\STX’),
(126, >~?), (127, ’\DEL’)]

The readFile function reads the file named by
its argument and returns the contents of the file
as a string. The file is read lazily, on demand,
as with interact.
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begins by running compl. When it returns a
result x, computation comp2 is run, which may
depend on z. For example, the following pro-
gram reads the file infile, turns all upper-case
characters into lower-case ones, and then writes
the result to the file outfile.

M

import LibIO

main =
readFile "infile" >>= \input ->
let output = map toLower input

in

writeFile "outfile" output

The notation \ p -> e is a Haskell lambda-
expression, denoting a function whose argument
is the pattern p and whose body is the expres-
sion e.

This level of programming (treating files as
Strings) was roughly all that could be done
with Haskell 1.2, and in fact programs at this
simple level can be used almost without change
in Haskell 1.3. To write more sophisticated pro-
grams than these in Haskell 1.3, one or more I/O
libraries need to be explicitly imported. There
are seven such libraries: LibIO, for basic I/0O
operations; LibSystem for interaction with the
system; LibDirectory for operations on file di-
rectories; LibUserInterrupt to handle user in-
terrupts; LibTime for operations on clock times;
LibCPUTime for CPU timing operations; and a
library for POSIX-compliant implementations
LibPOSIX. Most programs will only need to use
LiblIO.

2.2 Character-Based 1/0

Stream-based operations, working on complete
files or devices, such as writeFile or interact,
are in fact defined in terms of character-based
primitives. The two simplest functions are

. getChar and putChar.

I0 Char
:: Char —-> I0 ()

getChar
putChar

The getChar computation reads a character
¢ from the standard input device and returns



standard output (equivalently to, but somewhat
more verbosely than interact id!)

import LibIO

main =
isEQOF >>= \eof ->
if eof then return ()
else
getChar >>= \c ->
putChar c >>
main

This program uses several new functions. The
return function simply returns its argument as
the result of the monadic computation. The
function (>>) is identical to (>>=) except that
its continuation takes no argument: the result, if
any, of the first computation is simply discarded.
The function isEQF returns returns True when
the end-of-file is reached, and False otherwise.

2.3 Results and Errors

I/O operations need to indicate errors without
terminating the program, and implementations
need to handle these errors. Hence, as well as
terminating successfully with a result (for exam-
ple using return), I/O computations may ter-
minate in failure, returning an error value of the
builtin type IOError. For instance, input oper-
ations fail with the error value eofIOError to
indicate end of file. Programmers can generate
failures directly via the fail function, of type
I0Error -> I0 (). The parsing combinators
of Section 5 illustrate fail.

So that error values may propagate as in-
tended, the (>>=) function needs to take ac-
count of the possibility of failure. If the first
computation fails with some error value e, then
the entire computation also fails with e.

Here is a simple parity checker to compute
the parity of an input consisting of just Ts and
Fs. The function userError yields a program-
specific error value which is distinct from those
generated by the I/O primitives.

module Parity where
import LibIO

case isUserError err of
Just "Parity" -> True

- —-> False
parity :: Bool -> IO Bool
parity b =
isEQOF >>= \eof ->
if eof then return b
else getChar >>= \c¢ ->

if ¢c==’T’ then
(if b then parity False
else parity True)

else if c=="F’
parity b

|| isSpace c then

else fail parityError

The computation parity True returns True if
the number of Ts is even, and False if the num-
ber is odd. But if any character other than T, F
or white-space is in the input, the computation
fails with the programmer-defined error value
parityError.

Catching Errors

Failures can be handled by the programmer us-
ing the catch function, whose type is

catch :: I0 a -> (IOError->I0 a) -> I0 a

Computation catch comp f performs computa-
tion comp. If comp returns a result z, this is the
result of the entire computation. Otherwise, if
comp returns an error value z, the computation
continues with f z. For example, the following
program handles errors which are detected in
the parity function, but not those which are
generated by the I/O primitives.

import LibIO
import LibSystem
import Parity
main = (parity True >>= \p -> print p)
‘catch‘ handler

handler err =



If the parity function returns parityError,
a message is printed and the program is ter-
minated immediately with a failure exit code
using the exitFailure operation from library
LibSystem (see Section 4.2. Otherwise, the
handler function simply propagates the error
value using fail. If an error value is not caught
and handled then the program eventually ter-
minates with a failure code.

There is also an operation try which can
be used to expose error values in computa-
tions that fail, turning the failures into success-
ful computations. The type of try is I0 a ->
I0 (Either IOError a), where Either is a
prelude type defined by the following.

data Either a b = Left a | Right b

The computation try comp runs the computa-
tion comp, and if it returns the successful result
z, returns result Right z (the “right” answer).
Otherwise if comp returns an error value x it re-
turns the result Left z. Hence try comp never
fails with an error value. Of course it may loop
if comp loops. The try operation can be defined
in terms of the catch primitive as follows.

try p =
(p >>= (return . Right)) ‘catch®
(return . Left)

Haskell also defines a type Maybe which is sim-
ilar to Either. We will use this type to indi-
cate optional results from functions and compu-
tations.

data Maybe a = Nothing | Just a

For example,

isUserError IOError —-> Maybe String

determines whether its argument (an IOError)
is a programmer-defined error. If so it returns
Just err, where err is a programmer-specific
string. Otherwise it returns Nothing.

The Error Function

Haskell 1.3 continues to support the error func-
tion. An expression error msg can be of ar-
bitrary type. It has the same semantics as a

Haskell 1.3 as a way of indicating program bugs,
for instance, it is better to use error values in
computations, since these can be caught and
handled appropriately. There is no way to catch
an error indicated by the error function.

3 The LibIO Library

Having explained the basic operations on the
I0 monad, the objective of this section is to
cover the I/O operations provided by the LibI0
library. We begin in Section 3.1 by defining
Haskell files and handles. Section 3.2 explains
how files are opened and closed. Section 3.3 ex-
plains how to control the buffering of handle I/O
and Section 3.4 explains how handles may be re-
positioned in a file. Operations in Sections 3.5,
3.6 and 3.7 cover querying handle properties,
input and output respectively. The types of all
these functions are in Appendix A.

3.1 Files and Handles

Haskell interfaces to the external world through
an abstract file system. This file system is a col-
lection of named file system objects, which may
be organised in directories (see Section 4.1). We
call any file system object that isn’t a directory a
file, even though it could actually be a terminal,
a disk, a communication channel, or indeed any
other object recognised by the operating system.
File and directory names are strings. Files can
be opened, yielding a handle which can then be
used to operate on the contents of that file. Di-
rectories can be searched to determine whether
they contain a file system object. Files (and
normally also directories) can be added to or
deleted from directories.

To process files character-by-character,
Haskell 1.3 introduces handles, which are anal-
ogous to ANSI C’s file descriptors. A handle is
a value of type Handle which has at least the
following properties:

e whether the handle manages input or out-
put or both;

e whether the handle is open, closed or semi-
closed (see Section 3.2);



e a buffer (whose length may be zero).

Most handles will also have a current 1/O posi-
tion indicating where the next input or output
operation will occur.

Standard Handles

There are three standard handles which manage
the standard input (stdin), standard output,
(stdout), and standard error devices (stderr),
respectively. The first two are normally con-
nected to the user’s keyboard and screen, re-
spectively. The third, stderr, is often also con-
nected to the user’s screen—a separate handle is
provided because it is frequently useful to sep-
arate error output from the normal user out-
put which appears on stdout. In operating sys-
tems which support this separation, one or the
other is often directed into a file. If an operating
system doesn’t distinguish between normal user
output and error output, a sensible default is for
the two names to refer to the same handle. It
is common for the standard error handle to be
unbuffered (see Section 3.3) so that error output
appears immediately on the user’s terminal, but
this is not always the case.

3.2 Opening and Closing Files

The openFile function is used to obtain a new
handle for a file.

openFile

It takes a mode parameter of type I0Mode, that
controls whether the handle can be used for
input-only (ReadMode), output-only (WriteMode
or AppendMode), or both input and output
(ReadWriteMode). ReadWriteMode allows pro-
grammers to make small incremental changes to
text files—this can be much more efficient than
reading a complete file as a stream and writing
this back to a new file. When a file is opened
for output, it’s created if it doesn’t already exist.
If, however, the file does exist and it is opened
using WriteMode, it is first truncated to zero
length before any characters are written to it.

on files as follows.

import LibIO
import LibSystem

main =
getArgs >>= \args —->
let (inf:outf:_) = args in
openFile inf ReadMode >>= \ih >
openFile outf WriteMode >>= \oh ->
copyFile ih oh >>
hClose ih >>
hClose oh
copyFile :: Handle -> Handle -> I0 ()
copyFile ih oh =
hIsEof ih >>= \eof ->
if eof then return ()
else
hGetChar ih >>= \c¢ ->
hPutChar oh c >>
copyFile ih oh

The getArgs computation (whose type is IO
[String]) returns a list of strings which are the
arguments to the program. The hClose func-
tion closes a previously opened handle. Once
closed, no further I/O can be performed on a
handle. In this particular program, the two uses
of hClose are superfluous, since all open handles
are automatically closed when the program ter-
minates. It is generally good practice to close
open handles once they are finished with. Many

: FilePath -> I0OMode -> IO Handkgerating systems allow a program only a lim-

ited number of live references to file system ob-
jects.

Lazy Input Streams

The hGetContents function (whose type is
Handle -> IO String) is used to emulate
stream I/O by reading the contents of a handle
lazily on demand. For example, the standard
interact function described earlier can be de-
fined like this:

interact f =
hGetContents stdin
hPutStr stdout (f s)

>>= \s —>



error occurs on a semi-closed handle it is sim-
ply discarded. This is because it is not possible
to inject error values into the stream of results:
hGetContents returns a lazy list of characters,
and only computations of type I0 a can fail!

Normally semi-closed handles will be closed
automatically when the contents of the associ-
ated stream have been read completely. Occa-
sionally, however, the programmer may want to
force a semi-closed handle to be closed before
this happens, by using hClose (for instance if
an error occurs when reading a handle, or if the
entire contents is not needed but the file must
be overwritten with a new value). In such a case
the contents of the lazy input list are implemen-
tation dependent.

File Locking

A frequent problem with Haskell 1.2 was that
implementations were not required to lock files
when they were opened. Consequently, if a pro-
gram opened a file again for writing while it was
still being read, the results returned from the
read could be garbled. Because of lazy evalua-
tion and implicit buffering (also not specified by
Haskell 1.2), it was possible for this to happen
on some but not all program executions. This
problem only occurs with languages which im-
plement lazy stream input (& la hGetContents)
and also have non-strict semantics.

In general it is hard for programmers to
avoid opening a file when it has already been
opened in an incompatible way. Almost all non-
trivial programs open user-supplied filenames,
and there is often no way of telling from the
names whether two filenames refer to the same
file. The only safe thing to do is implement file
locks whenever a file is opened. This could be
done by the programmer if a suitable locking op-
eration was provided, but to be secure such lock-
ing would need to be done on every openFile
operation, and might also require knowledge of
the operating system.

The definition of Haskell 1.3 therefore requires
that identical files are locked against acciden-
tal overwriting within a single Haskell program
(single-writer, multiple-reader). Two physical

user’s data files. FEven so, the definition only
requires an implementation to take precautions
to avoid obvious and persistent problems due to
lazy file I/O (a language feature): it does not
require the implementation to protect against
interference by other applications or the operat-
ing system itself.

File Size and Extent

For a handle hdl which attached to a physical
file, computation hFileSize hdl returns the to-
tal size of that file as an integral number of
bytes.

hFileSize :: Handle -> I0 Integer

On some operating systems it is possible that
this will not be an accurate indication of the
number of characters that can be read from the
file.

On some systems, such as the Macintosh, it
is much more efficient to define the maximum
size of a file (or extent) when it is created, and
to modify this extent if the file changes. This
may allow a file to be laid out contiguously on
disk, for example, and therefore accessed more
efficiently. In any case, the actual file size will
be no greater than the extent. While efficient
file access is a desirable characteristic, we felt
that dealing with file extents was over-complex
for the normal programmer.

3.3 Buffering

Explicit control of buffering is important in
many applications, including ones that need to
deal with raw devices (such as disks), ones which
need instantaneous input from the user, or ones
which are involved in communication. Examples
might be interactive multimedia applications, or
programs such as telnet. In the absence of such
strict buffering semantics, it can also be difficult
to reason (even informally) about the contents
of a file following a series of interacting I/O op-
erations.

Three kinds of buffering are supported by
Haskell 1.3: line-buffering, block-buffering or
no-buffering. These modes have the following
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closed.

e block-buffering: the entire buffer is writ-
ten out whenever it overflows, a flush is is-
sued, or the handle is closed.

e no-buffering: output is written immedi-
ately, and never stored in the buffer.

The buffer is emptied as soon as it has been
written out.

Similarly, input occurs according to the buffer
mode for handle hdl

e line-buffering: when the buffer for hdl is
not empty, the next item is obtained from
the buffer; otherwise, when the buffer is
empty, characters up to and including the
next newline character are read into the
buffer. No characters are available until the
newline character is available.

e block-buffering: when the buffer for hdl
becomes empty, the next block of data is
read into the buffer.

e no-buffering: the next input item is read
and returned.

For most implementations, physical files will
normally be block-buffered and terminals will
normally be line-buffered.

The computation hSetBuffering hdl mode
(whose type is Handle -> BufferMode -> IO
()) sets the mode of buffering for handle hdl on
subsequent reads and writes as follows.

o If mode is LineBuffering, then line-

buffering is enabled if possible.

e If mode is BlockBuffering m, then block-
buffering is enabled if possible. The size of
the buffer is n items if m is Just n and is
otherwise implementation-dependent.

e If mode is NoBuffering, then buffering is
disabled if possible.

If the mode is changed from BlockBuffering or
LineBuffering to NoBuffering, then

The default buffering mode when a handle is
opened is implementation-dependent and may
depend on the object which is attached to that
handle. The three buffer modes mirror those
provided by ANSI C.

Flushing Buffers

Sometimes implicit buffering is inadequate, and
buffers must be flushed explicitly. The com-
putation hFlush hdl (whose type is Handle ->
I0 ()) causes any items buffered for output in
handle hdl to be sent immediately to the oper-
ating system. While it would, in principle, be
sufficient to provide only hFlush and so avoid
the complexity of explicit buffer setting, this
would be tedious to use for any kind of buffering
other than BlockBuffering, and would make it
harder to write library functions that worked for
different kinds of buffering.

3.4 Re-positioning Handles

Many applications need direct access to files
if they are to be implemented efficiently. Ex-
amples are text editors, or database applica-
tions. These applications often work on read-
write handles. The design given here draws
heavily on the ANSI C standard.

Seeking to a new I/O position

Many operating systems, including Unix and
the Macintosh, allow I/O at any position in
a file. The hSeek operation allows three
kinds of file positioning: absolute position-
ing AbsoluteSeek, positioning relative to the
current I/O position RelativeSeek, and po-
sitioning relative to the current end-of-file
SeekFromEnd. For simplicity, all positioning off-
sets are an integral number of bytes.

hSeek :: Handle -> SeekMode —> Integer

-> 10 O
Revisiting an I/O position

On some operating systems or devices, it is not
possible to seek to arbitrary locations, but only



to that point. Absolute seeking is not sensible in
this case. Functions hGetPosn and hSetPosn to-
gether provide the ability to revisit a previously
visited file position, using an abstract type to
represent the positioning information. To im-
prove portability, there is no standard way to
convert a handlePosn into an Integer offset or
to compare different file positions.

Handle -> I0 HandlePosn
HandlePosn -> I0 ()

hGetPosn ::
hSetPosn ::

For example, if both hSeek and hGetPosn are
supported, then the following function could be
written to append a string to a file, and return
the position where it was appended.

module Append where
import LibIO

append :: Handle —> String
—-> I0 HandlePosn
append h s =
hSeek h SeekFromEnd 0  >>
hGetPosn h >>= \pos ->
hPutStr h s

return pos

3.5 Handle Properties

There are several functions that query a han-
dle to determine its properties: hIsOpen,
hIsClosed, hIsReadable, hIsSeekable and so
on. These all have type Handle -> I0 Bool.
Originally we considered a single operation to
return all the properties of a handle. This
proved to be very unwieldy, and would also have
been difficult to extend to cover other properties
(since Haskell does not have named records).
The operation was therefore split into many
component operations, one for each property
that a handle must have. Determining the cur-
rent I/O position is treated as a separate oper-
ation.

While there are hIsOpen and hIsClosed op-
erations, there is no way to test whether a
handle is semi-closed. This was felt to be of
marginal utility for most programmers, and is
easy to define if necessary.

>>= \ho ->
>>= \hc ->
|l he))

hIsOpen h
hIsClosed
return (not (ho

3.6 Text Input

The function hReady determines whether input
is available on a handle. It is intended for writ-
ing interactive programs or ones which manage
multiple input streams. Because hReady is non-
blocking, beware that this could be extremely
inefficient if it is executed too frequently. The
function hLookAhead can be used to inspect the
next input character without removing it from
the buffer. This is useful when writing programs
such as lexical analysers that need to look ahead
in the input stream.

hReady :: Handle -> IO Bool
hLookAhead :: Handle -> I0 Char

3.7 Text Output

Most of the text output operations which are
provided have already been described. The
distinction between hPutStr and hPutText is
worth emphasising, however.

hPutStr
hPutText

:: Handle -> String -> I0 ()
: Text a => Handle -> a
-> I0 O

Function hPutText outputs any value whose
type is an instance of the Text class, quoting
strings and characters as necessary. Function
hPutStr, on the other hand, outputs an unfor-
matted stream of characters, so that tabs ap-
pear as literal tab characters in the output and
so on. For example, the following outputs the
two words Hello and World on a line, separated
by a tab character,

import LibIO

main = putStr stdout "Hello\tWorld\n"
whereas the following outputs the string
"Hello\tWorld\n".

import LibIO
main = putText stdout "Hello\tWorld\n"



retrieve the current working directory
(getCurrentDirectory);

set the current directory to a new directory
(setCurrentDirectory);

list the contents of
(getDirectoryContents);

a directory

delete files or directories (removeFile and
removeDirectory);

and to rename files or directories
(renameFile and renameDirectory).

getCurrentDirectory I0 FilePath
getDirectoryContents

:: FilePath -> IO [FilePath]
removeDirectory, removeFile

:: FilePath -> I0 O
renameDirectory, renameFile

:: FilePath -> FilePath -> I0 ()

4.2 LibSystem

The LibSystem library defines a set of func-
tions which are used to interact directly with
the Haskell program’s environment. The most
important of these are system, which introduces
a new operating system process and waits for
the result of that process, and getArgs which
returns the command-line arguments to the pro-
gram.

system
getArgs

:: String —-> IO ExitCode
I0 [String]

It is possible that neither of these functions is
available on a particular system; for example,
these commands do not generally make sense
under the Macintosh operating system. When
using system note that the commands which are
produced are operating system dependent. It is
entirely possible that these commands may not
be available on someone else’s system, so pro-
grams which use system may not be portable.
Here is how to create a soft-linked alias to a file
under Berkeley or similar Unixes.
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system ("ln -s "++old++" "++new)

Exit Codes

As described earlier, programs can terminate
immediately and return an exit code to the op-
erating system. In general this is done using the
exitWith operation.

I0 a
:: ExitCode -> I0 a

exitFailure
exitWith

The argument to exitWith is of type ExitCode,
whose only constructors are ExitSuccess and
ExitFailure. Haskell 1.3 assumes that
the operating system understands numeric
return codes. Function exitWith maps
ExitFailure exitfail to a computation that im-
mediately terminates the Haskell program and
sends the operating system the numeric code ex-
itfail. Likewise, exitWith ExitSuccess imme-
diately terminates Haskell and sends the code
for success, the number being dependent on the
operating system.

Environment Variables

Simple access to environment variables is sup-
ported through the getEnv computation, whose
type is String -> I0 String. Environment
variables are supported by many operating sys-
tems, and provide a useful way of communicat-
ing infrequently-changed information to a pro-
gram. When available, the use of environment
variables can significantly reduce the length of
textual command lines, or the options which
must be set in graphical user dialogues.

4.3 LibTime and LibCPUTime

The LibTime library provides operations that
access time and date information (useful for
timestamping or for timing purposes), including
simple date arithmetic and simple text output.
It codifies existing practice in the shape of the
Time library provided by hbc. Unlike that li-
brary it is not Unix-specific, and it provides sup-
port for international time standards, includ-
ing time-zone information. Time differences are
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:: ClockTime -> ClockTime -> TimeDiff

toCalendarTime, toUTCTime
:: ClockTime -> CalendarTime

toClockTime :: CalendarTime -> ClockTime

The LibCPUTime library defines exactly one
function to access the total CPU time that a
program has used to date, getCPUTime of type
I0 Integer.

4.4 LibUserInterrupt

User-produced interrupts are the most impor-
tant class of interrupt which programmers com-
monly want to handle. Almost all platforms,
including small systems such as Macintosh and
MS/DOS, provide some ability to generate user-
produced interrupts.

User interrupts can be handled in Haskell if a
handler is installed using setUserInterrupt.

:: Maybe (IO ())
-> I0 (Maybe (I0 O))

setUserInterrupt

Whenever a user interrupt occurs, the program
is stopped. If an interrupt handler is installed,
this is then executed in place of the program.
If no interrupt handler is installed, the pro-
gram is simply terminated with an operating
system failure code. For example, the following
program installs an interrupt handler ihandler
that prints “C on stdout and then continues
with some new computation.

import LibUserInterrupt

main = setUserInterrupt ihandler >>

ihandler = (putStr "~C") >> ...

4.5 LibPOSIX

A library (LibPOSIX) has been defined that
builds on the basic monadic I/O definition
to provide a complete interface to POSIX-
compliant operating systems. There is insuffi-
cient space to describe this library in detail here,

11
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In this section we illustrate monadic I/O in
Haskell by writing a lexer and parser for un-
typed lambda-calculus. Our parser recognises
strings of characters input from a handle. The
characters are first grouped into tokens by the
lexer. The parser acts on the sequence of tokens.

A Lexer

A token is either an alphanumeric identifier (be-
ginning with a letter), a special symbol from the
following list,

symbols = "()\\="

or else an illegal character. Tokens are repre-
sented by the following datatype.

= ALPHA String | SYMBOL Char
| ILLEGAL Char | EoF
deriving (Eq, Text)

data Token

The EoF token indicates end of file. Here is a

simple lexer.

hGetToken :: Handle -> I0 Token
hGetToken h =
hIsSEOF h >>= \eof ->
if eof then return EoF
else
hGetChar h >>= \¢ —>

if isSpace c¢ then hGetToken h else

if isAlpha ¢ then hGetAlpha h [c]

else if ¢ ‘elem‘ symbols then
return (SYMBOL c)

else
return (ILLEGAL c)

hGetAlpha :: Handle -> String

—> I0 Token

hGetAlpha h cs
hISEOF h
if eof then
return (ALPHA (reverse cs))
else
hlL.ookAhead h
if isAlphanum c¢ then
hGetChar h >> hGetAlpha h (c:cs)
else
return (ALPHA (reverse cs))

>>= \eof ->

>>= \¢ —>



We can write predictive recursive-descent
parsers [2] using combinators. In a predictive
parser the lookahead token unambiguously de-
termines the recursive function to be applied at
each point.

Our type of parsers is a parameterised state-
transformer monad built from the I0 monad.

type Parser a
Handle -> Token —> IO (a, Token)

Given a handle h and a lookahead token tok0,
a parser of type Parser a may do one of three
things.

Accept a phrase with result z :: a.
The parser consumes the tokens of the
phrase using hGetToken h and then returns
(z,tokl) where tokl is the new lookahead
token.

Fail with a lookahead error.
The parser consumes no tokens and imme-
diately fails with an error value of the form
UserError (’L’:msg), a lookahead error.

Fail with a parse error. The
parser consumes zero or more tokens and
then fails with an error value of the form
UserError (’P’:msg), a parse error.

Failure with a lookahead error is used to select
alternatives based on the lookahead token; fail-
ure with a parse error indicates an unparsable
input. The difference between parse and looka-
head errors is coded using the first character of
the error string. It would be better to use two
different constructors, but there is no way for
programs to extend IOError.

The top of Appendix B shows operations on
error values. Computation lookaheadError z y
immediately fails with a lookahead error indi-
cating that x was expected by y was found.
Predicate isLookahead determines whether an
error value is a lookahead error. Computa-
tion mkParseError e turns lookahead errors into
parse errors.

The middle of Appendix B shows the imple-
mentation of the Parser monad. Token match-
ing is performed by match. Its second argu-
ment is a predicate of type Token -> Maybe a.
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the parser’s result is y. Otherwise if the out-
come is Nothing, meaning that the lookahead
is rejected, the parser immediately fails with a
lookahead error.

If p and q are parsers, p ‘alt‘ qis the parser
that accepts all the phrases accepted by either
p or ¢, provided that the choice is determined
by the lookahead token. The parser first runs
parser p. If p either accepts a phrase or fails
with a parse error, then so does p ‘alt‘ ¢. But
if p fails with a lookahead error—in which case
the lookahead is unchanged but rejected—then
¢ is run instead.

Functions returnP and thenP are the two
standard monadic functions, analogous to
return and >>= on the I0 monad. Parser
returnP z accepts the empty phrase and returns
result z. If parser p accepts a phrase with result
x, then p ‘thenP‘ fconsumes that phrase and
then acts as parser f(z). Any lookahead error
from f(z) must be turned into a parse error be-
cause p may already have consumed tokens. If
parser p fails with a lookahead or parse error,
then so does p ‘thenP‘ f.

Finally, if p is a parser and h a handle, parse p
is the computation that runs p on the tokens
obtainable using hGetToken h.

The primitives in Appendix B are enough to
build arbitrary predictive parsers. The bottom
of the appendix shows some derived parser func-
tions. Parser theToken tok accepts the token tok
and returns it as its result. Parser ident accepts
any alphanumeric token, and returns its String
representation. On any other input, both these
parsers fail with a lookahead error.

Function seqP is an unparameterised form of
thenP, analogous to >>. Function >< runs two
parsers in sequence, and returns their results as
a pair. If p is a parser, repeatP p applies p
repeatedly until it fails with a lookahead error;
it returns the list of accepted results as its result.

A Parser

Suppose we want to parse untyped lambda-
calculus programs such as the following.

true \(x)\(yx
false = \(x)\(Py



decl
exp

{ident "=" exp} EOF
= ident

| ll\ll n (ll ident ") " eXp

| eXp n (ll eXp ll) n

The conventions are that X Y means X followed
by Y, X | Y means X or Y, and {X} means a
possibly empty sequence of X’s. The following
datatype represents lambda-terms.

data Exp = VAR String
| LAM String Exp
| APP Exp Exp
deriving Text

As usual, we must remove left-recursion to make
the grammar suitable for recursive descent pars-
ing.

decl0 = {decll} EoF

decll = ident "=" expO

exp0 = expl { exp2 }

expl = ident | "\" "(" ident ")" expO
eXp2 = u(u eXpo u)u

The following recursion equations represent this
transformed grammar as predictive parsers.

declO =
repeatP decll ‘thenP‘ \x ->
theToken EoF ‘seqP‘ returnP x

decl1l
ident ‘thenP‘ \x -> eq ‘seqPf

exp0 ‘thenP‘ \t -> returnP (x,t)
exp0 =
expl ‘thenP‘ \t ->

repeatP exp2 ‘thenP‘ \ts ->
returnP (foldl APP t ts)

expl =
(ident ‘thenP‘ (returnP . VAR))
‘altP’
(lambda ‘segP‘ 1p ‘seqP¢
ident ‘thenP‘ \x -> rp ‘seqPf
exp0 ‘thenP‘ \t ->

returnP (LAM x t))

exp2

13

map (theToken . SYMBOL) symbols

If our main program is

main :: I0 QO
main = parse declO stdin >>= \p ->
print p

here is its output on the declarations shown at
the beginning of this section.

[("true", LAM "x" (LAM "y" (VAR "x"))),
("false", LAM "x" (LAM "y" (VAR "y"))),
("cond", LAM "b" (LAM "t" ...)),
("zero", LAM "f" (LAM "x" ...)),
("succ", LAM "n" (LAM "f" ...))]

Discussion

Combinator parsers—Ilike any other recursive
descent parsers—are less efficient than bottom-
up table-driven parsers. But they can be quickly
and simply written, and for many purposes they
are fast enough. Some previous parsers rep-
resented their input as a list, and hence sup-
ported arbitrary lookahead [15]. In compar-
ison, our parsers manage their input directly
using hGetToken and are predictive—they use
only a single lookahead token. Managing ar-
bitrary lookahead would require significant re-
organisation of the program. Other parsers rep-
resented their output as a list of possible parses,
to cater for ambiguous grammars [3, 5, 12].
While our parsers only return a single success-
ful parse, this is sufficient for many computer
languages.

Of course, Haskell 1.3 continues to support
stream-style parsing via the interact function.
The standard prelude includes simple parsers of

type

type ReadS a = String -> [(a,String)]

and pretty-printers for types in the Text class.
Our monad is more flexible than the Reads$ style
because it allows parsing to be freely mixed with
other computations.
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Chapter 9 of Paulson’s book [15] is a good
starting point.

4adi v

Extend the lexer to recognise numerals.
Extend the grammar and parser with syn-
tax for numerals and binary arithmetic op-
erators.

Rewrite the lexer using a Haskell array to
dispatch on whether the next character is
whitespace, alphabetic, symbolic or illegal.

Find a grammar that can be parsed with
arbitrary lookahead but not by a predictive
parser.

Modify the Parser monad to admit arbi-
trary lookahead. Hint: use the following
definition of Parser, which explicitly rep-
resents lookahead errors rather than using
the builtin error-handling mechanism.

type Parser a
Handle —> [Token] ->
I0 ([Token], Maybe (a, [Tokenl))

If such a parser is run on a handle h with
lookahead toks, it returns pair (toksi,m)
where toksl is the new lookahead, and m
is either Nothing if the parse has failed or
Just (z,toks2) if the parse was successful.
In the latter case, xis the result of the parse
and toks2 is the list of tokens accepted.

6 History and Related Work

In 1989, Cupitt [4] built a functional operational
system (KAOS) in Miranda. He was the first to
make large-scale use of types, similar to I0 a,
for computations returning an answer of type
a. His work also uses a sequential composi-
tion operator, similar to (>>=). Independently,
about the same time, Gordon [6] proposed a
concurrent language called PFL+ with similar
constructs. 1989 was also the year Moggi first
published his theory of modular denotational se-
mantics [14] based on the categorical notion of a
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I/O in general, and monadic I/O in particular,
is surveyed in Gordon’s book [7]. The contri-
bution of Haskell 1.3 is a detailed standard for
portable monadic I/O in Haskell, using handles
to access the file system.

Returning an error value from a computation
is analogous to raising an exception in a lan-
guage like Standard ML, except that in Haskell
only expressions of I0 type may return an error
value. Hammond’s book [10] discusses the use
of error values in functional languages.

6.1 Computations and Effects

The type I0 a denotes computations in the
same sense as Integer denotes integers and
Bool denotes truth-values. To a first approxi-
mation, we can think of computations as func-
tions which take the state of the world as their
argument and return a pair of an updated world
and a result [17]. The main thread, defined by
Main.main, is a sequence of state-transforming
computations of type I0 a, which directly ex-
press effects on the environment, such as char-
acter I/0O, or reading and writing files. Each of
the sequence of computations is applied to an
implicit program state, to produce a new state
together with an intermediate result. The new
state and result is passed to the next computa-
tion in the sequence, and so on until the program
terminates.

Within the Haskell program, expressions of
type I0 a behave identically to other expres-
sions: they may appear evaluated or unevalu-
ated in lists, be freely copied, and so on. Haskell
expressions do not have side-effects unless they
are evaluated by the top-level thread of control.

6.2 Parallelism

The interaction of I/O with parallelism is impor-
tant, especially for extensions of Haskell such as
the pH language. Handled carelessly, I/O could
unnecessarily serialise computations and thus
reduce performance. Some thought has gone
into this. The semantics of 1/O is serialisable
in the sense that I/O operations interact with
the operating system in the order they are pre-



gated as defined by the serial semantics. This
may require a mechanism similar to that needed
for controlling other speculative computations.

7 Summary

We have presented a design for I/O which has
been adopted in the Haskell standard, describ-
ing some interesting aspects of the design and
providing a tutorial on how it can be used ef-
fectively. Being based on the use of monads,
the design is both flexible and extensible. Al-
though only a fairly conservative basic design
has been provided initially, we expect this to
form the basis for more radical research depar-
tures later, such as standard libraries for graph-
ical interaction. It already provides much useful
functionality that was not previously available
in Haskell 1.2.

No formal semantics for these I/O primitives
is possible at present, because there is no com-
plete formal semantics for Haskell itself. We
hope in future that such a semantics will be de-
veloped. One task of such a semantics would
be to show that the I0 type does indeed form a
monad in the categorical sense.

Haskell 1.3 allows programmers to write pro-
grams that can change the external or global
states in an imperative fashion, but only via ex-
pressions of some type I0 a, and only when they
are then interpreted by the top-level thread of
control. This contrasts with languages like LISP
or ML, where expressions of any type can have
side-effects. Our hope is that I/O in Haskell 1.3
will be no less expressive than in these lan-
guages, and that its type system can be ex-
ploited by programmers and compilers to yield
clear and efficient programs.
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type I0 a
type Handle
type FilePath = String
data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode
data BufferMode = NoBuffering | LineBuffering | BlockBuffering (Maybe Int)
type HandlePosn
data SeekMode = AbsoluteSeek | RelativeSeek | SeekFromEnd
data ExitCode = ExitSuccess | ExitFailure Int
data ClockTime
instance Ord ClockTime
instance Eq ClockTime
instance Text ClockTime
data CalendarTime = CalendarTime Int Int Int Int

Int Int Integer

Int Int String

Int Bool
data TimeDiff = TimeDiff Int Int

Int Int Int Int Integer
deriving (Eq,0rd)

stdin, stdout, stderr :: Handle
Operations

The set of I/O operations is ordered alphabetically.

(>>)

(>>=)
accumulate
addToClockTime
appendFile
catch
createDirectory
diffClockTimes
exitFailure
exitWith

fail

getArgs

getChar
getClockTime
getCPUTime
getCurrentDirectory
getDirectoryContents
getEnv
getProgName
hClose
hFileSize
hFlush
hGetBuffering

I0 a -> I0b ->

I0 a -> (a -> I0 b) ->
:: [I0 a] ->
:: TimeDiff -> ClockTime ->
:: FilePath -> String ->
:: I0 a -> (IOError -> I0 a) ->
:: FilePath ->
:: ClockTime -> ClockTime ->
:: ExitCode ->

IOError ->
: FilePath ->
: String ->
:: Handle ->
:: Handle ->
:: Handle ->
:: Handle ->
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IO
I0
IO

b
b
[al

ClockTime

I0
IO
IO

O
a

O

TimeDiff

I0
IO
I0
I0
IO
I0
I0
IO
I0
I0
IO
I0
I0
IO
IO

a
a

a

[String]

Char

ClockTime

Integer

FilePath
[FilePath]

String

String

O

Integer

O

(Maybe BufferMode)

e e

Prelude
LibIO
LibIO
LibIO
LibIO

LibI0
LibI0

LibSystem

LibTime
LibTime
LibTime
LibTime

LibTime

LibTime

LibI0

LibIO

LibIO

LibIO
LibTime
Prelude
LibIO
LibDirectory
LibTime
LibSystem
LibSystem
LibIO
LibSystem
LibIO
LibTime
LibCPUTime
LibDirectory
LibDirectory
LibSystem
LibSystem
LibIO

LibIO

LibIO

LibIO



hlsheadable
hIsSeekable
hIsWritable
hLookAhead
hPutChar

hPutStr

hPutText

hReady

hSeek
hSetBuffering
hSetPosn

interact
ioeGetFileName
ioeGetHandle
isAlreadyExistsError
isAlreadyInUseError
isEQF

isEOFError
isFullError
isIllegalOperation
isPermissionError
isUserError
openFile

print

putChar

putStr

putText

readFile
removeDirectory
removeFile
renameDirectory
renameFile

return

sequence
setCurrentDirectory
setUserInterrupt
system
toCalendarTime
toClockTime
toUTCTime

try

userError
writeFile

:: Char

a
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HIH -2
:: Handle ->
:: Handle ->
:: Handle ->
:: Handle -> Char ->
: Handle -> String ->
:: Text a => Handle -> a ->
: Handle ->
:: Handle -> SeekMode -> Integer ->
: Handle -> BufferMode ->
: HandlePosn ->
(String -> String) ->
IOError ->
IOError ->
IOError ->
IOError ->
IOError ->
IOError ->
IOError ->
IOError ->

:: IOError ->
:: FilePath -> IOMode ->
:: Text a => a ->
: ->
:: String ->
:: Text a => a ->
:: FilePath ->
:: FilePath ->
:: FilePath ->
:: FilePath -> FilePath ->
: FilePath -> FilePath ->
->

:: [I0 a] ->
:: FilePath ->
:: Maybe (IO O)) ->
:: String ->
:: ClockTime ->
:: CalendarTime ->
:: ClockTime ->
I0 a ->

:: String ->
:: FilePath -> String ->

U bool
I0 Bool
I0 Bool
I0 Char
I0 O
I0 O
10 O
I0 Bool
I0 O
10 O
I0 O
I0 O
Maybe FilePath
Maybe Handle
Bool
Bool
I0 Bool
Bool
Bool
Bool
Bool
Maybe String
I0 Handle
I0 O
10 O
10 O
I0 O
I0 String
I0 O
I0 O
I0 O
10 O
I0 a
I0 O
10 O
I0 (Maybe (ID ()))
I0 ExitCode
CalendarTime
ClockTime
CalendarTime
I0 (Either IOError a)
IOError
I0 O

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO
Prelude
LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO

LibIO
Prelude
LibIO

LibIO

LibIO
Prelude
LibDirectory
LibDirectory
LibDirectory
LibDirectory
LibIO

LibIO
LibDirectory

LibUserInterrupt

LibSystem
LibTime
LibTime
LibTime
LibIO
LibI0
Prelude



lookaheadError

isLookahead
mkParseError

String -> String -> I0 a
I0OError -> Bool
I0Error -> 10 a

lookaheadError exp fnd = fail (userError ("L: Expected "++exp++" but found "++fnd))

isLookahead e

mkParseError

e

case (isUserError e) of {Just (°L’:_) -> True; -> False}

case (isUserError e) of

Just (°L’:msg) -> fail (userError (’P’:msg))

_ —> fail e

—-- Implementation of the Parser Monad

match :: String -> (Token -> Maybe a) -> Parser a
altP :: Parser a -> Parser a -> Parser a

returnP :: a -> Parser a

thenP :: Parser a -> (a -> Parser b) -> Parser b
parse :: Parser a -> Handle -> I0 a

match e £ h tok0 =

case (f tokO) of
-> hGetToken h >>= \tokl -> return (x, tokl)
Nothing -> lookaheadError e (show tokO)

Just x

pl ‘altP® p2 =\ h s -> pl h s ‘catch’ \e ->

returnP a h s
p ‘thenP‘ £
parse p h

if isLookahead e then p2 h s else mkParseError e

return (a, s)
\hs ->phs >=\(a,s) > (f ahs ‘catch® mkParseError)
(hGetToken h >>= p h) >>= (return . fst)

—— Derived Parser Functions

theToken
ident
seqP
(><)
repeatP

theToken tok
ident

pl ‘seqP‘ p2
pl >< p2
repeatP p

:: Token -> Parser Token

:: Parser String

:: Parser a -> Parser b -> Parser b

:: Parser a -> Parser b -> Parser (a,b)

:: Parser a -> Parser [al]

match (show tok) (\tokO -> if tok==tokO then Just tok else Nothing)
match "<ident>"
(\tokO -> case tokO of {ALPHA x -> Just x; _ -> Nothing})
pl ‘thenP‘ const p2
pl ‘thenP‘ \x -> p2 ‘thenP‘ \y -> returnP (x,y)
(p >< repeatP p ‘thenP‘ (returnP . uncurry (:))) ‘altP‘ returnP []
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