
Monadic I/O in Haskell 1.3Andrew D. Gordon� and Kevin HammondyJune 5, 1995AbstractWe describe the design and use of monadicI/O in Haskell 1.3, the latest revision of thelazy functional programming language Haskell.Haskell 1.3 standardises the monadic I/O mech-anisms now available in many Haskell sys-tems. The new facilities allow more sophis-ticated text-based application programs to bewritten portably in Haskell. Apart from theuse of monads, the main advances over stan-dard Haskell 1.2 are: character I/O based onhandles (analogous to ANSI C �le pointers), anerror handling mechanism, terminal interrupthandling and a POSIX interface. The stan-dard also provides implementors with a
exibleframework for extending Haskell to incorporatenew language features. In addition to a tuto-rial description of the new facilities this paperincludes a worked example: a monad for com-binator parsing which is based on the standardI/O monad.1 IntroductionHaskell 1.3 improves on previous versions ofHaskell [11] by adopting an I/O mechanismbased on monads [18]. This paper explains thestructure of this monadic I/O mechanism, jus-ti�es some of the design decisions, and explainshow to program with the new facilities. This pa-per provides a more in-depth treatment of I/Othan is possible in the Haskell 1.3 report [8] andlibrary documentation [9].Previous versions of Haskell used synchro-nised streams or dialogues for I/O. In practice,many Haskell programmers found it cumber-some to use these constructs directly. Awkward�University of Cambridge Computer Laboratory, NewMuseums Site, Cambridge, CB2 3QG, UK.yDepartment of Computing Science, University ofGlasgow, 17 Lilybank Gdns., Glasgow, G12 8QQ, UK.

main ~(Str input : ~ (Success : _)) =[ReadChan stdin,AppendChan stdout input]Figure 1: Dialogue I/O in Haskell 1.2pattern matching against the input stream wasnecessary, as illustrated by the program in Fig-ure 1, which simply copies its standard input toits standard output. Instead, it was commonpractice to program at a higher level using li-braries of derived functions. One such library(for continuation-passing I/O [13, 16]) used tobe part of the Haskell standard prelude.Recently, researchers have experimented withnew I/O combinators based on monads [7, 17].These combinators are capable of capturing allthe I/O operations that could be provided us-ing the previous stream-based approach, andprovide the same type security as the contin-uation library. The monadic approach is sig-ni�cantly more
exible than the other two ap-proaches, however, in the ease with which newI/O primitives can be introduced or existing I/Oprimitives combined to create new combinators.Monadic I/O has proved su�ciently attractivethat several Haskell systems already supportat least a basic implementation, and some alsosupport more sophisticated mechanisms such asinter-language working, concurrency, or directstate-manipulation.One of the main purposes of Haskell 1.3 is tostandardise primitives for monadic I/O. The de-sign provides a basic (but \industrial-strength"and extensible) interface to common operatingsystems such as Unix, DOS, VMS, or the Macin-tosh. The design has been in
uenced by the I/Ooperations found in imperative languages. Ex-perimental features with which the Haskell com-1

munity has little experience, such as graphicalinterfaces or mutable variables, are beyond thescope of the standard. To aid backwards com-patibility, the design provides a monadic inter-face to the majority of operations which existedin previous versions of Haskell. Some rarely-used features, such as Binary �les, have beenremoved, pending better designs.The de�nition of Haskell 1.3 consists of twodocuments. The report proper [8] de�nes theHaskell language and the standard prelude. Thestandard libraries are de�ned in a separate doc-ument [9]. Sections 2, 3 and 4 of this paperdescribe the contents of the I/O libraries. Sec-tion 5 shows how to write combinator parsers interms Haskell 1.3 I/O primitives. Section 6 out-lines previous work on functional I/O and Sec-tion 7 summarises. Appendix A summarises thetypes of all the I/O and operating system oper-ations provided by Haskell 1.3 and Appendix Bcontains code for combinator parsing.2 Elements of Monadic I/OMonadic I/O depends on the builtin type con-structor, IO. An expression of some type IO a de-notes a computation, that may perform I/O andthen returns a result of type a. The main pro-gram (function main from module Main, whichwe write Main.main) has type IO (), that is,it is a computation which performs some I/Oand returns an uninteresting result. The \triv-ial" type () has only one value, the unit value,which is also written (). When a Haskell pro-gram runs, there is a single top-level thread ofcontrol that executes the computation denotedby Main.main. Only this thread of control actu-ally executes the computations denoted by I/Oexpressions.The type constructor IO is a major exten-sion to Haskell in that it allows many impera-tive commands to be expressed within a higher-order type-secure language. Unlike languageslike Lisp or ML, however, in which arbitrary ex-pressions may have side-e�ects, only expressionsof type IO a may do so in Haskell, and onlythen when interpreted as computations by thetop-level thread of control. The meaning of ex-pressions is therefore the same as in Haskell 1.2.Section 2.1 introduces monadic I/O using thehandful of I/O operations present in the stan-dard prelude. The majority of operations are in

libraries that need to be explicitly imported bythe programmer. LibIO, the main library, con-tains basic monadic functions and �le handlingoperations. We consider simple �le processingoperations from LibIO in Section 2.2 and ex-plain control
ow and error signalling operationson the IO monad in Section 2.3.2.1 Simple programsThe simplest possible programs just outputtheir result to the standard output device (thiswill normally be the user's terminal). This isdone in Haskell using the print function, whosetype is given below.print :: Text a => a -> IO ()If x has some type a which is in the Text class,then print x is the computation that printsshow x, a textual representation of x, on thestandard output. The Text class contains typessuch as Int, Bool and Char, lists and tuplesformed from them, and certain programmer-declared algebraic types. The libraries docu-ment [8] de�nes the show function and the Textclass. Here, for example, is a program to outputthe �rst nine natural numbers and their powersof two.main :: IO ()main = print [(n, 2^n) | n <- [0..8]]The output of the program is:[(0, 1), (1, 2), (2, 4), (3, 8), (4, 16),(5, 32), (6, 64), (7, 128), (8, 256)]The show function, and hence also print, for-mats its output in a standard way, as in sourceHaskell programs, so strings and characters arequoted (for example, "Haskell B. Curry"),special characters are output symbolically (thatis, '\n' rather than a newline), lists are en-closed in square brackets, and so on. Thereare other, more primitive functions which canbe used to output literal characters or stringswithout quoting when this is needed (putChar,putStr). These are described in the followingsections.Interacting with the UserHaskell 1.3 continues to support Landin-streamstyle interaction with standard input and out-put, using interact. (The type String belowis a synonym for [Char].)2

interact :: (String -> String) -> IO()If f is a stream processing function, computationinteract f proceeds by evaluating f applied toa lazy stream representing the characters avail-able from the standard input, and printing thecharacters produced to standard output. Forexample, the following program simply removesall non-upper-case characters from its standardinput and echoes the result on its standard out-put.main = interact (filter isUpper)The functions filter and isUpper come fromthe Haskell prelude. They have the followingtypes.filter :: (a -> Bool) -> [a] -> [a]isUpper :: Char -> BoolWhen run on the following input,Now is the time for all Good Men to cometo the aid of the Party.this program would output the following.NGMPSince interact only blocks on input when de-mand arises for the lazy input stream, it sup-ports simple interactive programs; see Frost andLaunchbury [5], for instance.Basic File I/OwriteFile, appendFile:: FilePath -> String -> IO ()readFile :: FilePath -> IO StringThe writeFile and appendFile functions writeor append their second argument, a string, tothe �le named by their �rst argument. TypeFilePath is a synonym for String. To writea value of any printable type, as with print,use the show function to convert the value to astring �rst. For example,main =appendFile "ascii-chars"(show [(x,chr (x)) | x <- [0..127]])writes the following to the �le ascii-chars:[(0, '\NUL'), (1, '\SOH'), (2, '\STX'), (126, '~'), (127, '\DEL')]The readFile function reads the �le named byits argument and returns the contents of the �leas a string. The �le is read lazily, on demand,as with interact.

Composing I/O OperationsTo illustrate readFile, we need to composecomputations in sequence. We use the in�xfunction (>>=) of type IO a -> (a -> IO b)-> IO b. Computation comp1 >>= \x -> comp2begins by running comp1. When it returns aresult x, computation comp2 is run, which maydepend on x. For example, the following pro-gram reads the �le infile, turns all upper-casecharacters into lower-case ones, and then writesthe result to the �le outfile.import LibIOmain =readFile "infile" >>= \input ->let output = map toLower inputin writeFile "outfile" outputThe notation \ p -> e is a Haskell lambda-expression, denoting a function whose argumentis the pattern p and whose body is the expres-sion e.This level of programming (treating �les asStrings) was roughly all that could be donewith Haskell 1.2, and in fact programs at thissimple level can be used almost without changein Haskell 1.3. To write more sophisticated pro-grams than these in Haskell 1.3, one or more I/Olibraries need to be explicitly imported. Thereare seven such libraries: LibIO, for basic I/Ooperations; LibSystem for interaction with thesystem; LibDirectory for operations on �le di-rectories; LibUserInterrupt to handle user in-terrupts; LibTime for operations on clock times;LibCPUTime for CPU timing operations; and alibrary for POSIX-compliant implementationsLibPOSIX. Most programs will only need to useLibIO.2.2 Character-Based I/OStream-based operations, working on complete�les or devices, such as writeFile or interact,are in fact de�ned in terms of character-basedprimitives. The two simplest functions aregetChar and putChar.getChar :: IO CharputChar :: Char -> IO ()The getChar computation reads a characterc from the standard input device and returns3

c as its result. The putChar c computationwrites character c to the standard output de-vice, and returns the unit value, () as its re-sult. For example, here is a program that copiesits standard input character-by-character to itsstandard output (equivalently to, but somewhatmore verbosely than interact id!)import LibIOmain =isEOF >>= \eof ->if eof then return ()elsegetChar >>= \c ->putChar c >>mainThis program uses several new functions. Thereturn function simply returns its argument asthe result of the monadic computation. Thefunction (>>) is identical to (>>=) except thatits continuation takes no argument: the result, ifany, of the �rst computation is simply discarded.The function isEOF returns returns True whenthe end-of-�le is reached, and False otherwise.2.3 Results and ErrorsI/O operations need to indicate errors withoutterminating the program, and implementationsneed to handle these errors. Hence, as well asterminating successfully with a result (for exam-ple using return), I/O computations may ter-minate in failure, returning an error value of thebuiltin type IOError. For instance, input oper-ations fail with the error value eofIOError toindicate end of �le. Programmers can generatefailures directly via the fail function, of typeIOError -> IO (). The parsing combinatorsof Section 5 illustrate fail.So that error values may propagate as in-tended, the (>>=) function needs to take ac-count of the possibility of failure. If the �rstcomputation fails with some error value e, thenthe entire computation also fails with e.Here is a simple parity checker to computethe parity of an input consisting of just Ts andFs. The function userError yields a program-speci�c error value which is distinct from thosegenerated by the I/O primitives.module Parity whereimport LibIO

parityError :: IOErrorparityError = userError "Parity"isParityError err =case isUserError err ofJust "Parity" -> True_ -> Falseparity :: Bool -> IO Boolparity b =isEOF >>= \eof ->if eof then return belse getChar >>= \c ->if c=='T' then(if b then parity Falseelse parity True)else if c=='F' || isSpace c thenparity belse fail parityErrorThe computation parity True returns True ifthe number of Ts is even, and False if the num-ber is odd. But if any character other than T, For white-space is in the input, the computationfails with the programmer-de�ned error valueparityError.Catching ErrorsFailures can be handled by the programmer us-ing the catch function, whose type iscatch :: IO a -> (IOError->IO a) -> IO aComputation catch comp f performs computa-tion comp. If comp returns a result x, this is theresult of the entire computation. Otherwise, ifcomp returns an error value x, the computationcontinues with f x. For example, the followingprogram handles errors which are detected inthe parity function, but not those which aregenerated by the I/O primitives.import LibIOimport LibSystemimport Paritymain = (parity True >>= \p -> print p)`catch` handlerhandler err =4

if isParityError err thenprint "Unexpected input character" >>exitFailureelsefail errIf the parity function returns parityError,a message is printed and the program is ter-minated immediately with a failure exit codeusing the exitFailure operation from libraryLibSystem (see Section 4.2. Otherwise, thehandler function simply propagates the errorvalue using fail. If an error value is not caughtand handled then the program eventually ter-minates with a failure code.There is also an operation try which canbe used to expose error values in computa-tions that fail, turning the failures into success-ful computations. The type of try is IO a ->IO (Either IOError a), where Either is aprelude type de�ned by the following.data Either a b = Left a | Right bThe computation try comp runs the computa-tion comp, and if it returns the successful resultx, returns result Right x (the \right" answer).Otherwise if comp returns an error value x it re-turns the result Left x. Hence try comp neverfails with an error value. Of course it may loopif comp loops. The try operation can be de�nedin terms of the catch primitive as follows.try p =(p >>= (return . Right)) `catch`(return . Left)Haskell also de�nes a type Maybe which is sim-ilar to Either. We will use this type to indi-cate optional results from functions and compu-tations.data Maybe a = Nothing | Just aFor example,isUserError :: IOError -> Maybe Stringdetermines whether its argument (an IOError)is a programmer-de�ned error. If so it returnsJust err, where err is a programmer-speci�cstring. Otherwise it returns Nothing.The Error FunctionHaskell 1.3 continues to support the error func-tion. An expression error msg can be of ar-bitrary type. It has the same semantics as a

divergent expression (unde�ned, or ?). Opera-tionally, if such an expression is ever evaluated,the program should halt, and perhaps outputthe string msg.While the error function is still useful inHaskell 1.3 as a way of indicating program bugs,for instance, it is better to use error values incomputations, since these can be caught andhandled appropriately. There is no way to catchan error indicated by the error function.3 The LibIO LibraryHaving explained the basic operations on theIO monad, the objective of this section is tocover the I/O operations provided by the LibIOlibrary. We begin in Section 3.1 by de�ningHaskell �les and handles. Section 3.2 explainshow �les are opened and closed. Section 3.3 ex-plains how to control the bu�ering of handle I/Oand Section 3.4 explains how handles may be re-positioned in a �le. Operations in Sections 3.5,3.6 and 3.7 cover querying handle properties,input and output respectively. The types of allthese functions are in Appendix A.3.1 Files and HandlesHaskell interfaces to the external world throughan abstract �le system. This �le system is a col-lection of named �le system objects, which maybe organised in directories (see Section 4.1). Wecall any �le system object that isn't a directory a�le, even though it could actually be a terminal,a disk, a communication channel, or indeed anyother object recognised by the operating system.File and directory names are strings. Files canbe opened, yielding a handle which can then beused to operate on the contents of that �le. Di-rectories can be searched to determine whetherthey contain a �le system object. Files (andnormally also directories) can be added to ordeleted from directories.To process �les character-by-character,Haskell 1.3 introduces handles, which are anal-ogous to ANSI C's �le descriptors. A handle isa value of type Handle which has at least thefollowing properties:� whether the handle manages input or out-put or both;� whether the handle is open, closed or semi-closed (see Section 3.2);5

� whether the �le is seekable (see Section 3.4);� whether bu�ering on the handle is disabled,or enabled on a line or block basis (see Sec-tion 3.3);� a bu�er (whose length may be zero).Most handles will also have a current I/O posi-tion indicating where the next input or outputoperation will occur.Standard HandlesThere are three standard handles which managethe standard input (stdin), standard output,(stdout), and standard error devices (stderr),respectively. The �rst two are normally con-nected to the user's keyboard and screen, re-spectively. The third, stderr, is often also con-nected to the user's screen|a separate handle isprovided because it is frequently useful to sep-arate error output from the normal user out-put which appears on stdout. In operating sys-tems which support this separation, one or theother is often directed into a �le. If an operatingsystem doesn't distinguish between normal useroutput and error output, a sensible default is forthe two names to refer to the same handle. Itis common for the standard error handle to beunbu�ered (see Section 3.3) so that error outputappears immediately on the user's terminal, butthis is not always the case.3.2 Opening and Closing FilesThe openFile function is used to obtain a newhandle for a �le.openFile :: FilePath -> IOMode -> IO HandleIt takes a mode parameter of type IOMode, thatcontrols whether the handle can be used forinput-only (ReadMode), output-only (WriteModeor AppendMode), or both input and output(ReadWriteMode). ReadWriteMode allows pro-grammers to make small incremental changes totext �les|this can be much more e�cient thanreading a complete �le as a stream and writingthis back to a new �le. When a �le is openedfor output, it's created if it doesn't already exist.If, however, the �le does exist and it is openedusing WriteMode, it is �rst truncated to zerolength before any characters are written to it.

There are I/O operations on handles similarto those provided for standard input and out-put. Handle operations are distinguished by thepre�x h, as in hGetChar. For instance, the copyprogram given earlier can be rewritten to workon �les as follows.import LibIOimport LibSystemmain =getArgs >>= \args ->let (inf:outf:_) = args inopenFile inf ReadMode >>= \ih ->openFile outf WriteMode >>= \oh ->copyFile ih oh >>hClose ih >>hClose ohcopyFile :: Handle -> Handle -> IO ()copyFile ih oh =hIsEof ih >>= \eof ->if eof then return ()elsehGetChar ih >>= \c ->hPutChar oh c >>copyFile ih ohThe getArgs computation (whose type is IO[String]) returns a list of strings which are thearguments to the program. The hClose func-tion closes a previously opened handle. Onceclosed, no further I/O can be performed on ahandle. In this particular program, the two usesof hClose are super
uous, since all open handlesare automatically closed when the program ter-minates. It is generally good practice to closeopen handles once they are �nished with. Manyoperating systems allow a program only a lim-ited number of live references to �le system ob-jects.Lazy Input StreamsThe hGetContents function (whose type isHandle -> IO String) is used to emulatestream I/O by reading the contents of a handlelazily on demand. For example, the standardinteract function described earlier can be de-�ned like this:interact f =hGetContents stdin >>= \s ->hPutStr stdout (f s)6

A handle becomes semi-closed as soon as it isread lazily using an hGetContents operation. Inthis situation, the handle is e�ectively closed forall purposes except lazy reading of the contentsof its �le, or closing the handle explicitly. If anerror occurs on a semi-closed handle it is sim-ply discarded. This is because it is not possibleto inject error values into the stream of results:hGetContents returns a lazy list of characters,and only computations of type IO a can fail!Normally semi-closed handles will be closedautomatically when the contents of the associ-ated stream have been read completely. Occa-sionally, however, the programmer may want toforce a semi-closed handle to be closed beforethis happens, by using hClose (for instance ifan error occurs when reading a handle, or if theentire contents is not needed but the �le mustbe overwritten with a new value). In such a casethe contents of the lazy input list are implemen-tation dependent.File LockingA frequent problem with Haskell 1.2 was thatimplementations were not required to lock �leswhen they were opened. Consequently, if a pro-gram opened a �le again for writing while it wasstill being read, the results returned from theread could be garbled. Because of lazy evalua-tion and implicit bu�ering (also not speci�ed byHaskell 1.2), it was possible for this to happenon some but not all program executions. Thisproblem only occurs with languages which im-plement lazy stream input (�a la hGetContents)and also have non-strict semantics.In general it is hard for programmers toavoid opening a �le when it has already beenopened in an incompatible way. Almost all non-trivial programs open user-supplied �lenames,and there is often no way of telling from thenames whether two �lenames refer to the same�le. The only safe thing to do is implement �lelocks whenever a �le is opened. This could bedone by the programmer if a suitable locking op-eration was provided, but to be secure such lock-ing would need to be done on every openFileoperation, and might also require knowledge ofthe operating system.The de�nition of Haskell 1.3 therefore requiresthat identical �les are locked against acciden-tal overwriting within a single Haskell program(single-writer, multiple-reader). Two physical

�les are certainly identical if they have the same�lename, but may be identical in other cir-cumstances. A good implementation will useoperating-system level locking (mandatory oradvisory), if they are appropriate, to protect theuser's data �les. Even so, the de�nition onlyrequires an implementation to take precautionsto avoid obvious and persistent problems due tolazy �le I/O (a language feature): it does notrequire the implementation to protect againstinterference by other applications or the operat-ing system itself.File Size and ExtentFor a handle hdl which attached to a physical�le, computation hFileSize hdl returns the to-tal size of that �le as an integral number ofbytes.hFileSize :: Handle -> IO IntegerOn some operating systems it is possible thatthis will not be an accurate indication of thenumber of characters that can be read from the�le.On some systems, such as the Macintosh, itis much more e�cient to de�ne the maximumsize of a �le (or extent) when it is created, andto modify this extent if the �le changes. Thismay allow a �le to be laid out contiguously ondisk, for example, and therefore accessed moree�ciently. In any case, the actual �le size willbe no greater than the extent. While e�cient�le access is a desirable characteristic, we feltthat dealing with �le extents was over-complexfor the normal programmer.3.3 Bu�eringExplicit control of bu�ering is important inmany applications, including ones that need todeal with raw devices (such as disks), ones whichneed instantaneous input from the user, or oneswhich are involved in communication. Examplesmight be interactive multimedia applications, orprograms such as telnet. In the absence of suchstrict bu�ering semantics, it can also be di�cultto reason (even informally) about the contentsof a �le following a series of interacting I/O op-erations.Three kinds of bu�ering are supported byHaskell 1.3: line-bu�ering, block-bu�ering orno-bu�ering. These modes have the following7

e�ects. For output, items are written out fromthe internal bu�er according to the bu�er mode:� line-bu�ering: the entire bu�er is writtenout whenever a newline is output, the bu�erover
ows, a
ush is issued, or the handle isclosed.� block-bu�ering: the entire bu�er is writ-ten out whenever it over
ows, a
ush is is-sued, or the handle is closed.� no-bu�ering: output is written immedi-ately, and never stored in the bu�er.The bu�er is emptied as soon as it has beenwritten out.Similarly, input occurs according to the bu�ermode for handle hdl.� line-bu�ering: when the bu�er for hdl isnot empty, the next item is obtained fromthe bu�er; otherwise, when the bu�er isempty, characters up to and including thenext newline character are read into thebu�er. No characters are available until thenewline character is available.� block-bu�ering: when the bu�er for hdlbecomes empty, the next block of data isread into the bu�er.� no-bu�ering: the next input item is readand returned.For most implementations, physical �les willnormally be block-bu�ered and terminals willnormally be line-bu�ered.The computation hSetBuffering hdl mode(whose type is Handle -> BufferMode -> IO()) sets the mode of bu�ering for handle hdl onsubsequent reads and writes as follows.� If mode is LineBuffering, then line-bu�ering is enabled if possible.� If mode is BlockBuffering m, then block-bu�ering is enabled if possible. The size ofthe bu�er is n items if m is Just n and isotherwise implementation-dependent.� If mode is NoBuffering, then bu�ering isdisabled if possible.If the mode is changed from BlockBuffering orLineBuffering to NoBuffering, then

� if hdl is writable, the bu�er is
ushed as forhFlush (described below);� if hdl is not writable, the contents of thebu�er is discarded.The default bu�ering mode when a handle isopened is implementation-dependent and maydepend on the object which is attached to thathandle. The three bu�er modes mirror thoseprovided by ANSI C.Flushing Bu�ersSometimes implicit bu�ering is inadequate, andbu�ers must be
ushed explicitly. The com-putation hFlush hdl (whose type is Handle ->IO ()) causes any items bu�ered for output inhandle hdl to be sent immediately to the oper-ating system. While it would, in principle, besu�cient to provide only hFlush and so avoidthe complexity of explicit bu�er setting, thiswould be tedious to use for any kind of bu�eringother than BlockBuffering, and would make itharder to write library functions that worked fordi�erent kinds of bu�ering.3.4 Re-positioning HandlesMany applications need direct access to �lesif they are to be implemented e�ciently. Ex-amples are text editors, or database applica-tions. These applications often work on read-write handles. The design given here drawsheavily on the ANSI C standard.Seeking to a new I/O positionMany operating systems, including Unix andthe Macintosh, allow I/O at any position ina �le. The hSeek operation allows threekinds of �le positioning: absolute position-ing AbsoluteSeek, positioning relative to thecurrent I/O position RelativeSeek, and po-sitioning relative to the current end-of-�leSeekFromEnd. For simplicity, all positioning o�-sets are an integral number of bytes.hSeek :: Handle -> SeekMode -> Integer-> IO ()Revisiting an I/O positionOn some operating systems or devices, it is notpossible to seek to arbitrary locations, but only8

to ones which have previously been visited. Forexample, if newlines in text �les are representedby pairs of characters (as in DOS), then the I/Oposition will not be the same as the number ofcharacters which have been read from the �le upto that point. Absolute seeking is not sensible inthis case. Functions hGetPosn and hSetPosn to-gether provide the ability to revisit a previouslyvisited �le position, using an abstract type torepresent the positioning information. To im-prove portability, there is no standard way toconvert a handlePosn into an Integer o�set orto compare di�erent �le positions.hGetPosn :: Handle -> IO HandlePosnhSetPosn :: HandlePosn -> IO ()For example, if both hSeek and hGetPosn aresupported, then the following function could bewritten to append a string to a �le, and returnthe position where it was appended.module Append whereimport LibIOappend :: Handle -> String-> IO HandlePosnappend h s =hSeek h SeekFromEnd 0 >>hGetPosn h >>= \pos ->hPutStr h sreturn pos3.5 Handle PropertiesThere are several functions that query a han-dle to determine its properties: hIsOpen,hIsClosed, hIsReadable, hIsSeekable and soon. These all have type Handle -> IO Bool.Originally we considered a single operation toreturn all the properties of a handle. Thisproved to be very unwieldy, and would also havebeen di�cult to extend to cover other properties(since Haskell does not have named records).The operation was therefore split into manycomponent operations, one for each propertythat a handle must have. Determining the cur-rent I/O position is treated as a separate oper-ation.While there are hIsOpen and hIsClosed op-erations, there is no way to test whether ahandle is semi-closed. This was felt to be ofmarginal utility for most programmers, and iseasy to de�ne if necessary.

module SemiClosed whereimport LibIOhIsSemiClosed :: Handle -> IO BoolhIsSemiClosed h =hIsOpen h >>= \ho ->hIsClosed >>= \hc ->return (not (ho || hc))3.6 Text InputThe function hReady determines whether inputis available on a handle. It is intended for writ-ing interactive programs or ones which managemultiple input streams. Because hReady is non-blocking, beware that this could be extremelyine�cient if it is executed too frequently. Thefunction hLookAhead can be used to inspect thenext input character without removing it fromthe bu�er. This is useful when writing programssuch as lexical analysers that need to look aheadin the input stream.hReady :: Handle -> IO BoolhLookAhead :: Handle -> IO Char3.7 Text OutputMost of the text output operations which areprovided have already been described. Thedistinction between hPutStr and hPutText isworth emphasising, however.hPutStr :: Handle -> String -> IO ()hPutText :: Text a => Handle -> a-> IO ()Function hPutText outputs any value whosetype is an instance of the Text class, quotingstrings and characters as necessary. FunctionhPutStr, on the other hand, outputs an unfor-matted stream of characters, so that tabs ap-pear as literal tab characters in the output andso on. For example, the following outputs thetwo words Hello and World on a line, separatedby a tab character,import LibIOmain = putStr stdout "Hello\tWorld\n"whereas the following outputs the string"Hello\tWorld\n".import LibIOmain = putText stdout "Hello\tWorld\n"9

4 The Other Libraries4.1 LibDirectoryOperations are provided in LibDirectory to� retrieve the current working directory(getCurrentDirectory);� set the current directory to a new directory(setCurrentDirectory);� list the contents of a directory(getDirectoryContents);� delete �les or directories (removeFile andremoveDirectory);� and to rename �les or directories(renameFile and renameDirectory).getCurrentDirectory :: IO FilePathgetDirectoryContents:: FilePath -> IO [FilePath]removeDirectory, removeFile:: FilePath -> IO ()renameDirectory, renameFile:: FilePath -> FilePath -> IO ()4.2 LibSystemThe LibSystem library de�nes a set of func-tions which are used to interact directly withthe Haskell program's environment. The mostimportant of these are system, which introducesa new operating system process and waits forthe result of that process, and getArgs whichreturns the command-line arguments to the pro-gram.system :: String -> IO ExitCodegetArgs :: IO [String]It is possible that neither of these functions isavailable on a particular system; for example,these commands do not generally make senseunder the Macintosh operating system. Whenusing system note that the commands which areproduced are operating system dependent. It isentirely possible that these commands may notbe available on someone else's system, so pro-grams which use system may not be portable.Here is how to create a soft-linked alias to a �leunder Berkeley or similar Unixes.

module Link whereimport LibSystemlink :: FilePath -> FilePath -> IO ()link old new =system ("ln -s "++old++" "++new)Exit CodesAs described earlier, programs can terminateimmediately and return an exit code to the op-erating system. In general this is done using theexitWith operation.exitFailure :: IO aexitWith :: ExitCode -> IO aThe argument to exitWith is of type ExitCode,whose only constructors are ExitSuccess andExitFailure. Haskell 1.3 assumes thatthe operating system understands numericreturn codes. Function exitWith mapsExitFailure exitfail to a computation that im-mediately terminates the Haskell program andsends the operating system the numeric code ex-itfail. Likewise, exitWith ExitSuccess imme-diately terminates Haskell and sends the codefor success, the number being dependent on theoperating system.Environment VariablesSimple access to environment variables is sup-ported through the getEnv computation, whosetype is String -> IO String. Environmentvariables are supported by many operating sys-tems, and provide a useful way of communicat-ing infrequently-changed information to a pro-gram. When available, the use of environmentvariables can signi�cantly reduce the length oftextual command lines, or the options whichmust be set in graphical user dialogues.4.3 LibTime and LibCPUTimeThe LibTime library provides operations thataccess time and date information (useful fortimestamping or for timing purposes), includingsimple date arithmetic and simple text output.It codi�es existing practice in the shape of theTime library provided by hbc. Unlike that li-brary it is not Unix-speci�c, and it provides sup-port for international time standards, includ-ing time-zone information. Time di�erences are10

recorded in a meaningful datatype rather thanas a double-precision number.getClockTime :: IO ClockTimediffClockTimes:: ClockTime -> ClockTime -> TimeDifftoCalendarTime, toUTCTime:: ClockTime -> CalendarTimetoClockTime :: CalendarTime -> ClockTimeThe LibCPUTime library de�nes exactly onefunction to access the total CPU time that aprogram has used to date, getCPUTime of typeIO Integer.4.4 LibUserInterruptUser-produced interrupts are the most impor-tant class of interrupt which programmers com-monly want to handle. Almost all platforms,including small systems such as Macintosh andMS/DOS, provide some ability to generate user-produced interrupts.User interrupts can be handled in Haskell if ahandler is installed using setUserInterrupt.setUserInterrupt :: Maybe (IO ())-> IO (Maybe (IO ()))Whenever a user interrupt occurs, the programis stopped. If an interrupt handler is installed,this is then executed in place of the program.If no interrupt handler is installed, the pro-gram is simply terminated with an operatingsystem failure code. For example, the followingprogram installs an interrupt handler ihandlerthat prints ^C on stdout and then continueswith some new computation.import LibUserInterruptmain = setUserInterrupt ihandler >>...ihandler = (putStr "^C") >> ...4.5 LibPOSIXA library (LibPOSIX) has been de�ned thatbuilds on the basic monadic I/O de�nitionto provide a complete interface to POSIX-compliant operating systems. There is insu�-cient space to describe this library in detail here,

but the library includes facilities to manipulate�le protections, control processes, handle morekinds of interrupt than userInterrupt etc.5 Combinator ParsingIn this section we illustrate monadic I/O inHaskell by writing a lexer and parser for un-typed lambda-calculus. Our parser recognisesstrings of characters input from a handle. Thecharacters are �rst grouped into tokens by thelexer. The parser acts on the sequence of tokens.A LexerA token is either an alphanumeric identi�er (be-ginning with a letter), a special symbol from thefollowing list,symbols = "()\\="or else an illegal character. Tokens are repre-sented by the following datatype.data Token = ALPHA String | SYMBOL Char| ILLEGAL Char | EoFderiving (Eq, Text)The EoF token indicates end of �le. Here is asimple lexer.hGetToken :: Handle -> IO TokenhGetToken h =hIsEOF h >>= \eof ->if eof then return EoFelsehGetChar h >>= \c ->if isSpace c then hGetToken h elseif isAlpha c then hGetAlpha h [c]else if c `elem` symbols thenreturn (SYMBOL c)elsereturn (ILLEGAL c)hGetAlpha :: Handle -> String-> IO TokenhGetAlpha h cs =hIsEOF h >>= \eof ->if eof thenreturn (ALPHA (reverse cs))elsehLookAhead h >>= \c ->if isAlphanum c thenhGetChar h >> hGetAlpha h (c:cs)elsereturn (ALPHA (reverse cs))11

If h is a handle, hGetToken h returns tok, thenext token readable from handle h. The lexerignores whitespace when forming tokens.Parser CombinatorsWe can write predictive recursive-descentparsers [2] using combinators. In a predictiveparser the lookahead token unambiguously de-termines the recursive function to be applied ateach point.Our type of parsers is a parameterised state-transformer monad built from the IO monad.type Parser a =Handle -> Token -> IO (a, Token)Given a handle h and a lookahead token tok0,a parser of type Parser a may do one of threethings.Accept a phrase with result x :: a.The parser consumes the tokens of thephrase using hGetToken h and then returns(x,tok1) where tok1 is the new lookaheadtoken.Fail with a lookahead error.The parser consumes no tokens and imme-diately fails with an error value of the formUserError ('L':msg), a lookahead error.Fail with a parse error. Theparser consumes zero or more tokens andthen fails with an error value of the formUserError ('P':msg), a parse error.Failure with a lookahead error is used to selectalternatives based on the lookahead token; fail-ure with a parse error indicates an unparsableinput. The di�erence between parse and looka-head errors is coded using the �rst character ofthe error string. It would be better to use twodi�erent constructors, but there is no way forprograms to extend IOError.The top of Appendix B shows operations onerror values. Computation lookaheadError x yimmediately fails with a lookahead error indi-cating that x was expected by y was found.Predicate isLookahead determines whether anerror value is a lookahead error. Computa-tion mkParseError e turns lookahead errors intoparse errors.The middle of Appendix B shows the imple-mentation of the Parser monad. Token match-ing is performed by match. Its second argu-ment is a predicate of type Token -> Maybe a.

Given an error string e and a predicate f, parsermatch e f applies the predicate to the looka-head token. If the outcome is Just y, mean-ing that the lookahead token is accepted, thenanother one is obtained using hGetToken, andthe parser's result is y. Otherwise if the out-come is Nothing, meaning that the lookaheadis rejected, the parser immediately fails with alookahead error.If p and q are parsers, p `alt` q is the parserthat accepts all the phrases accepted by eitherp or q, provided that the choice is determinedby the lookahead token. The parser �rst runsparser p. If p either accepts a phrase or failswith a parse error, then so does p `alt` q. Butif p fails with a lookahead error|in which casethe lookahead is unchanged but rejected|thenq is run instead.Functions returnP and thenP are the twostandard monadic functions, analogous toreturn and >>= on the IO monad. ParserreturnP x accepts the empty phrase and returnsresult x. If parser p accepts a phrase with resultx, then p `thenP` f consumes that phrase andthen acts as parser f(x). Any lookahead errorfrom f(x) must be turned into a parse error be-cause p may already have consumed tokens. Ifparser p fails with a lookahead or parse error,then so does p `thenP` f.Finally, if p is a parser and h a handle, parse pis the computation that runs p on the tokensobtainable using hGetToken h.The primitives in Appendix B are enough tobuild arbitrary predictive parsers. The bottomof the appendix shows some derived parser func-tions. Parser theToken tok accepts the token tokand returns it as its result. Parser ident acceptsany alphanumeric token, and returns its Stringrepresentation. On any other input, both theseparsers fail with a lookahead error.Function seqP is an unparameterised form ofthenP, analogous to >>. Function >< runs twoparsers in sequence, and returns their results asa pair. If p is a parser, repeatP p applies prepeatedly until it fails with a lookahead error;it returns the list of accepted results as its result.A ParserSuppose we want to parse untyped lambda-calculus programs such as the following.true = \(x)\(y)xfalse = \(x)\(y)y12

zero = \(f)\(x)xsucc = \(n)\(f)\(x)n(f)(f(x))Here is a suitable grammar.decl = {ident "=" exp} EOFexp = ident| "\" "(" ident ")" exp| exp "(" exp ")"The conventions are that X Y means X followedby Y, X | Y means X or Y, and fXg means apossibly empty sequence of X's. The followingdatatype represents lambda-terms.data Exp = VAR String| LAM String Exp| APP Exp Expderiving TextAs usual, we must remove left-recursion to makethe grammar suitable for recursive descent pars-ing.decl0 = {decl1} EoFdecl1 = ident "=" exp0exp0 = exp1 { exp2 }exp1 = ident | "\" "(" ident ")" exp0exp2 = "(" exp0 ")"The following recursion equations represent thistransformed grammar as predictive parsers.decl0 =repeatP decl1 `thenP` \x ->theToken EoF `seqP` returnP xdecl1 =ident `thenP` \x -> eq `seqP`exp0 `thenP` \t -> returnP (x,t)exp0 =exp1 `thenP` \t ->repeatP exp2 `thenP` \ts ->returnP (foldl APP t ts)exp1 =(ident `thenP` (returnP . VAR))`altP`(lambda `seqP` lp `seqP`ident `thenP` \x -> rp `seqP`exp0 `thenP` \t ->returnP (LAM x t))exp2 =

lp `seqP` exp0 `thenP` \t ->rp `seqP` returnP twhere[lp,rp,lambda,eq] =map (theToken . SYMBOL) symbolsIf our main program ismain :: IO ()main = parse decl0 stdin >>= \p ->print phere is its output on the declarations shown atthe beginning of this section.[("true", LAM "x" (LAM "y" (VAR "x"))),("false", LAM "x" (LAM "y" (VAR "y"))),("cond", LAM "b" (LAM "t" ...)),("zero", LAM "f" (LAM "x" ...)),("succ", LAM "n" (LAM "f" ...))]DiscussionCombinator parsers|like any other recursivedescent parsers|are less e�cient than bottom-up table-driven parsers. But they can be quicklyand simply written, and for many purposes theyare fast enough. Some previous parsers rep-resented their input as a list, and hence sup-ported arbitrary lookahead [15]. In compar-ison, our parsers manage their input directlyusing hGetToken and are predictive|they useonly a single lookahead token. Managing ar-bitrary lookahead would require signi�cant re-organisation of the program. Other parsers rep-resented their output as a list of possible parses,to cater for ambiguous grammars [3, 5, 12].While our parsers only return a single success-ful parse, this is su�cient for many computerlanguages.Of course, Haskell 1.3 continues to supportstream-style parsing via the interact function.The standard prelude includes simple parsers oftypetype ReadS a = String -> [(a,String)]and pretty-printers for types in the Text class.Our monad is more
exible than the ReadS stylebecause it allows parsing to be freely mixed withother computations.
13

Exercises(1) Extend the program with an evaluator forlambda-calculus terms. Use de Bruijn'sname-free representation of lambda-terms,instead of the naive datatype used here.Chapter 9 of Paulson's book [15] is a goodstarting point.(2) Extend the lexer to recognise numerals.Extend the grammar and parser with syn-tax for numerals and binary arithmetic op-erators.(3) Rewrite the lexer using a Haskell array todispatch on whether the next character iswhitespace, alphabetic, symbolic or illegal.(4) Find a grammar that can be parsed witharbitrary lookahead but not by a predictiveparser.(5) Modify the Parser monad to admit arbi-trary lookahead. Hint: use the followingde�nition of Parser, which explicitly rep-resents lookahead errors rather than usingthe builtin error-handling mechanism.type Parser a =Handle -> [Token] ->IO ([Token], Maybe (a, [Token]))If such a parser is run on a handle h withlookahead toks, it returns pair (toks1,m)where toks1 is the new lookahead, and mis either Nothing if the parse has failed orJust (x,toks2) if the parse was successful.In the latter case, x is the result of the parseand toks2 is the list of tokens accepted.6 History and RelatedWorkIn 1989, Cupitt [4] built a functional operationalsystem (KAOS) in Miranda. He was the �rst tomake large-scale use of types, similar to IO a,for computations returning an answer of typea. His work also uses a sequential composi-tion operator, similar to (>>=). Independently,about the same time, Gordon [6] proposed aconcurrent language called PFL+ with similarconstructs. 1989 was also the year Moggi �rstpublished his theory of modular denotational se-mantics [14] based on the categorical notion of a

strong monad. Inspired by Moggi, Wadler pop-ularised monads as a functional programmingtechnique for dealing with state [18] and, withothers, proposed an IO monad, similar to thatdescribed here [17]. Other work on functionalI/O in general, and monadic I/O in particular,is surveyed in Gordon's book [7]. The contri-bution of Haskell 1.3 is a detailed standard forportable monadic I/O in Haskell, using handlesto access the �le system.Returning an error value from a computationis analogous to raising an exception in a lan-guage like Standard ML, except that in Haskellonly expressions of IO type may return an errorvalue. Hammond's book [10] discusses the useof error values in functional languages.6.1 Computations and E�ectsThe type IO a denotes computations in thesame sense as Integer denotes integers andBool denotes truth-values. To a �rst approxi-mation, we can think of computations as func-tions which take the state of the world as theirargument and return a pair of an updated worldand a result [17]. The main thread, de�ned byMain.main, is a sequence of state-transformingcomputations of type IO a, which directly ex-press e�ects on the environment, such as char-acter I/O, or reading and writing �les. Each ofthe sequence of computations is applied to animplicit program state, to produce a new statetogether with an intermediate result. The newstate and result is passed to the next computa-tion in the sequence, and so on until the programterminates.Within the Haskell program, expressions oftype IO a behave identically to other expres-sions: they may appear evaluated or unevalu-ated in lists, be freely copied, and so on. Haskellexpressions do not have side-e�ects unless theyare evaluated by the top-level thread of control.6.2 ParallelismThe interaction of I/O with parallelism is impor-tant, especially for extensions of Haskell such asthe pH language. Handled carelessly, I/O couldunnecessarily serialise computations and thusreduce performance. Some thought has goneinto this. The semantics of I/O is serialisablein the sense that I/O operations interact withthe operating system in the order they are pre-14

sented at the top-level. If, however, two I/Ooperations do not con
ict (for example, readingtwo di�erent �les), then it is entirely possible forthem to proceed in parallel. It is still necessary,however, to ensure that error values are propa-gated as de�ned by the serial semantics. Thismay require a mechanism similar to that neededfor controlling other speculative computations.7 SummaryWe have presented a design for I/O which hasbeen adopted in the Haskell standard, describ-ing some interesting aspects of the design andproviding a tutorial on how it can be used ef-fectively. Being based on the use of monads,the design is both
exible and extensible. Al-though only a fairly conservative basic designhas been provided initially, we expect this toform the basis for more radical research depar-tures later, such as standard libraries for graph-ical interaction. It already provides much usefulfunctionality that was not previously availablein Haskell 1.2.No formal semantics for these I/O primitivesis possible at present, because there is no com-plete formal semantics for Haskell itself. Wehope in future that such a semantics will be de-veloped. One task of such a semantics wouldbe to show that the IO type does indeed form amonad in the categorical sense.Haskell 1.3 allows programmers to write pro-grams that can change the external or globalstates in an imperative fashion, but only via ex-pressions of some type IO a, and only when theyare then interpreted by the top-level thread ofcontrol. This contrasts with languages like LISPor ML, where expressions of any type can haveside-e�ects. Our hope is that I/O in Haskell 1.3will be no less expressive than in these lan-guages, and that its type system can be ex-ploited by programmers and compilers to yieldclear and e�cient programs.AcknowledgementsWe are grateful to the other members of Haskellcommittee who have made many constructivecomments on the I/O design during its periodof incubation. We would also like to thank thosepeople who have either contributed directly tothe I/O design, or whose comments have had

a signi�cant impact on the design. These haveincluded Andy Gill and Ian Poole (who bothworked on previous versions of the Haskell de-sign), Jim Mattson (who designed LibPOSIX),Jon Fairbairn, Ian Holyer, Kent Karlsson, San-dra Loosemoore, and Alastair Reid. We are alsograteful to Will Partain and Hans Loidl for com-menting on draft versions of this paper and tothe anonymous referees who reviewed this pa-per. We are also grateful to our sponsors. Gor-don began this work while a member of theProgramming Methodology Group at ChalmersUniversity. At Cambridge, he was supportedby the TYPES BRA and a University ResearchFellowship from the Royal Society. Hammondwas supported at Glasgow by an SOED personalResearch Fellowship from the Royal Society ofEdinburgh.References[1] P. Achten and M. J. Plasmeijer. The insand outs of Concurrent Clean I/O. Jour-nal of Functional Programming, 5(1):81{110, 1995.[2] A. V. Aho, R. Sethi, and J. D. Ull-man. Compilers: Principles, Techniquesand Tools. Addison-Wesley, 1986.[3] W. H. Burge. Recursive ProgrammingTechniques. Addison Wesley, 1975.[4] J. Cupitt. A brief walk through KAOS.Technical Report 58, Computing Labora-tory, University of Kent at Canterbury,February 1989.[5] R. Frost and J. Launchbury. Construct-ing natural language interpreters in a lazyfunctional language. The Computer Jour-nal, 32(2):108{121, April 1989.[6] A. D. Gordon. PFL+ : A kernel schemefor functional I/O. Technical Report 160,University of Cambridge Computer Labo-ratory, February 1989.[7] A. D. Gordon. Functional Programmingand Input/Output. Cambridge UniversityPress, 1994.[8] K. Hammond et al. Report on the func-tional programming language Haskell: Ver-sion 1.3. Yale University Technical Report,to appear, June 1995.15

[9] K. Hammond, J. W. Peterson, et al. Stan-dard libraries for the programming lan-guage Haskell: Version 1.3. Yale UniversityTechnical Report, to appear, June 1995.[10] K. Hammond. PSML: A Functional Lan-guage and its Implementation in Dactl. Pit-man Press, 1991.[11] P. Hudak, S.L. Peyton Jones, P. L. Wadler,et al. Report on the functional program-ming language Haskell: Version 1.2. ACMSIGPLAN Notices, 27(5), May 1992.[12] G. J. Hutton. Higher-order functions forparsing. Journal of Functional Program-ming, 2(3):323{343, July 1992.[13] K. Karlsson. Nebula: A functional oper-ating system. Programming MethodologyGroup, Chalmers University of Technologyand University of Gothenburg, 1981.[14] E. Moggi. Computational lambda calcu-lus and monads. In Proceedings of the 4thIEEE Symposium on Logic in ComputerScience, June 1989.[15] L. C. Paulson. ML for the Working Pro-grammer. Cambridge University Press,1991.[16] N. Perry. The Implementation of PracticalFunctional Programming Languages. PhDthesis, Department of Computing, ImperialCollege, London, June 1991.[17] S. L. Peyton Jones and P. L. Wadler.Imperative functional programming. InProceedings of the 20th ACM Symposiumon Principles of Programming Languages,pages 71{84. ACM Press, 1993.[18] P. L. Wadler. The essence of functional pro-gramming. In Proceedings of the 19th ACMSymposium on Principles of ProgrammingLanguages. ACM Press, 1992.

16

A Summary of I/O OperationsThis is an unstructured list of the �xities, types, instances, and values supported by the Haskell 1.3I/O libraries.infixr 1 >>, >>= -- Preludetype IO a -- Preludetype Handle -- LibIOtype FilePath = String -- LibIOdata IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode -- LibIOdata BufferMode = NoBuffering | LineBuffering | BlockBuffering (Maybe Int) -- LibIOtype HandlePosn -- LibIOdata SeekMode = AbsoluteSeek | RelativeSeek | SeekFromEnd -- LibIOdata ExitCode = ExitSuccess | ExitFailure Int -- LibSystemdata ClockTime -- LibTimeinstance Ord ClockTime -- LibTimeinstance Eq ClockTime -- LibTimeinstance Text ClockTime -- LibTimedata CalendarTime = CalendarTime Int Int Int Int -- LibTimeInt Int IntegerInt Int StringInt Booldata TimeDiff = TimeDiff Int Int -- LibTimeInt Int Int Int Integerderiving (Eq,Ord)stdin, stdout, stderr :: Handle -- LibIOOperationsThe set of I/O operations is ordered alphabetically.(>>) :: IO a -> IO b -> IO b -- LibIO(>>=) :: IO a -> (a -> IO b) -> IO b -- LibIOaccumulate :: [IO a] -> IO [a] -- LibIOaddToClockTime :: TimeDiff -> ClockTime -> ClockTime -- LibTimeappendFile :: FilePath -> String -> IO () -- Preludecatch :: IO a -> (IOError -> IO a) -> IO a -- LibIOcreateDirectory :: FilePath -> IO () -- LibDirectorydiffClockTimes :: ClockTime -> ClockTime -> TimeDiff -- LibTimeexitFailure :: IO a -- LibSystemexitWith :: ExitCode -> IO a -- LibSystemfail :: IOError -> IO a -- LibIOgetArgs :: IO [String] -- LibSystemgetChar :: IO Char -- LibIOgetClockTime :: IO ClockTime -- LibTimegetCPUTime :: IO Integer -- LibCPUTimegetCurrentDirectory :: IO FilePath -- LibDirectorygetDirectoryContents :: FilePath -> IO [FilePath] -- LibDirectorygetEnv :: String -> IO String -- LibSystemgetProgName :: IO String -- LibSystemhClose :: Handle -> IO () -- LibIOhFileSize :: Handle -> IO Integer -- LibIOhFlush :: Handle -> IO () -- LibIOhGetBuffering :: Handle -> IO (Maybe BufferMode) -- LibIO17

hGetChar :: Handle -> IO Char -- LibIOhGetContents :: Handle -> IO String -- LibIOhGetPosn :: Handle -> IO HandlePosn -- LibIOhIsClosed :: Handle -> IO Bool -- LibIOhIsEOF :: Handle -> IO Bool -- LibIOhIsOpen :: Handle -> IO Bool -- LibIOhIsReadable :: Handle -> IO Bool -- LibIOhIsSeekable :: Handle -> IO Bool -- LibIOhIsWritable :: Handle -> IO Bool -- LibIOhLookAhead :: Handle -> IO Char -- LibIOhPutChar :: Handle -> Char -> IO () -- LibIOhPutStr :: Handle -> String -> IO () -- LibIOhPutText :: Text a => Handle -> a -> IO () -- LibIOhReady :: Handle -> IO Bool -- LibIOhSeek :: Handle -> SeekMode -> Integer -> IO () -- LibIOhSetBuffering :: Handle -> BufferMode -> IO () -- LibIOhSetPosn :: HandlePosn -> IO () -- LibIOinteract :: (String -> String) -> IO () -- PreludeioeGetFileName :: IOError -> Maybe FilePath -- LibIOioeGetHandle :: IOError -> Maybe Handle -- LibIOisAlreadyExistsError :: IOError -> Bool -- LibIOisAlreadyInUseError :: IOError -> Bool -- LibIOisEOF :: IO Bool -- LibIOisEOFError :: IOError -> Bool -- LibIOisFullError :: IOError -> Bool -- LibIOisIllegalOperation :: IOError -> Bool -- LibIOisPermissionError :: IOError -> Bool -- LibIOisUserError :: IOError -> Maybe String -- LibIOopenFile :: FilePath -> IOMode -> IO Handle -- LibIOprint :: Text a => a -> IO () -- PreludeputChar :: Char -> IO () -- LibIOputStr :: String -> IO () -- LibIOputText :: Text a => a -> IO () -- LibIOreadFile :: FilePath -> IO String -- PreluderemoveDirectory :: FilePath -> IO () -- LibDirectoryremoveFile :: FilePath -> IO () -- LibDirectoryrenameDirectory :: FilePath -> FilePath -> IO () -- LibDirectoryrenameFile :: FilePath -> FilePath -> IO () -- LibDirectoryreturn :: a -> IO a -- LibIOsequence :: [IO a] -> IO () -- LibIOsetCurrentDirectory :: FilePath -> IO () -- LibDirectorysetUserInterrupt :: Maybe (IO ()) -> IO (Maybe (IO ())) -- LibUserInterruptsystem :: String -> IO ExitCode -- LibSystemtoCalendarTime :: ClockTime -> CalendarTime -- LibTimetoClockTime :: CalendarTime -> ClockTime -- LibTimetoUTCTime :: ClockTime -> CalendarTime -- LibTimetry :: IO a -> IO (Either IOError a) -- LibIOuserError :: String -> IOError -- LibIOwriteFile :: FilePath -> String -> IO () -- Prelude

18

B Example: Parsing Routines-- ==-- Operations on Errors-- ==lookaheadError :: String -> String -> IO aisLookahead :: IOError -> BoolmkParseError :: IOError -> IO alookaheadError exp fnd = fail (userError ("L: Expected "++exp++" but found "++fnd))isLookahead e = case (isUserError e) of {Just ('L':_) -> True; _ -> False}mkParseError e = case (isUserError e) ofJust ('L':msg) -> fail (userError ('P':msg))_ -> fail e-- ==-- Implementation of the Parser Monad-- ==match :: String -> (Token -> Maybe a) -> Parser aaltP :: Parser a -> Parser a -> Parser areturnP :: a -> Parser athenP :: Parser a -> (a -> Parser b) -> Parser bparse :: Parser a -> Handle -> IO amatch e f h tok0 =case (f tok0) ofJust x -> hGetToken h >>= \tok1 -> return (x, tok1)Nothing -> lookaheadError e (show tok0)p1 `altP` p2 = \ h s -> p1 h s `catch` \e ->if isLookahead e then p2 h s else mkParseError ereturnP a h s = return (a, s)p `thenP` f = \ h s -> p h s >>= \(a,s) -> (f a h s `catch` mkParseError)parse p h = (hGetToken h >>= p h) >>= (return . fst)-- ==-- Derived Parser Functions-- ==theToken :: Token -> Parser Tokenident :: Parser StringseqP :: Parser a -> Parser b -> Parser b(><) :: Parser a -> Parser b -> Parser (a,b)repeatP :: Parser a -> Parser [a]theToken tok = match (show tok) (\tok0 -> if tok==tok0 then Just tok else Nothing)ident = match "<ident>"(\tok0 -> case tok0 of {ALPHA x -> Just x; _ -> Nothing})p1 `seqP` p2 = p1 `thenP` const p2p1 >< p2 = p1 `thenP` \x -> p2 `thenP` \y -> returnP (x,y)repeatP p = (p >< repeatP p `thenP` (returnP . uncurry (:))) `altP` returnP []
19

