
Dynamic Typing and Subtype Inference

Alexander Aiken Manuel Fähndrich

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720-1776faiken,manuelg@cs.berkeley.eduAbstract
Dynamic typing is a program analysis targeted at removing runtime
tagging and untagging operations from programs written in dynam-
ically typed languages. This paper compares dynamic typing with
a subtyping system based on set constraints. The purpose is both to
make precise the relationship between two superficially unrelated
type systems and to illustrate how the advantages of dynamic typ-
ing and subtype inference can be combined. The central result is
a theorem showing that a typing discipline at least as powerful as
dynamic typing can be expressed using set constraints.1 Introduction
This paper presents a study of Henglein’s dynamic typing discipline
[Hen92a, Hen92b]. Dynamic typing extends conventional static
types with a single new type Dynamic. Special functions called
coercions inject values into and project values from type Dynamic.
Currently, the main application of dynamic typing is the optimiza-
tion of programs written in dynamically typed languages (such as
Lisp and Scheme) by removing runtime tests of type tags where they
are provably unnecessary (so-called soft typing [CF91, WC94]). A
remarkable, and to our knowledge unique, aspect of dynamic typing
is that it not only permits the removal of dynamic type tag tests, but
also allows the elimination of type tagging operations themselves.

The purpose and results of our study are two-fold. First, while
dynamic typing is a very interesting system, it cannot remove as
many type checks as other recently proposed algorithms based on
inclusion subtyping [AWL94, WC94]. By inclusion subtyping, we
mean systems where type t1 is a subtype of t2 if t2 includes every
value of t1; we will refer to this simply as subtyping.

As noted above, dynamic typing has the singular ability to re-
move type tagging operations as well as dynamic type checks. Thus,
the power of dynamic typing is incomparable to the subtyping ap-
proaches. One of our goals is to investigate whether the strengths of
dynamic typing can be combined with the strengths of subtyping.
Our results are positive: We present a generalization of dynamic
typing that incorporates an expressive subtyping discipline. Type
inference for the system has time complexity O(n3) and appears
amenable to a practical implementation.

Our second interest is with dynamic typing itself, irrespective
of any applications. Many contemporary program analysis algo-
rithms are based on constraint resolution, including the algorithms

for dynamic typing. In constraint-based analysis, constraints are
generated from the program text and solving the constraints yields
the analysis of the program. It is our thesis that many constraint-
based analyses can be expressed using a particular constraint theory
known as set constraints. Set constraints are a simple, general,
and well-studied theory that is powerful enough to express many
program analyses [HJ90, AW92, Hei92, Aik94].

In testing our thesis on a variety of program analyses, it became
apparent that dynamic typing is in some ways fundamentally dif-
ferent from other examples of constraint theories used in program
analysis. The main technical challenge, and our central result, is
establishing that set constraints can encode dynamic typing. This
characterization facilitates direct comparison of dynamic typing
with other constraint-based analyses. However, the set constraint
formulation does not naturally suggest the very efficient resolution
algorithms known for dynamic typing [Hen92b]; in this respect,
dynamic typing appears to stand apart.

The rest of this section presents an overview of the paper. Some
basic definitions are needed. Following [Hen92a], our results are
presented using a small, paradigmatic language called dynamically
typed lambda calculus. The expressions of the language are:e ::= x j�x:e j e e0 jif e e0 e00 jtrue jfalse jC e

The dynamically typed lambda calculus is a call-by-value lan-
guage with two important features. First, a term C e is a coercionC applied to the value of e. Intuitively, coercions model the runtime
type checks implicit in dynamically typed programs. Formally, co-
ercions are primitive functions that perform tagging and untagging
operations. The semantic domain D contains four distinct kinds of
elements: tagged functions, untagged functions, tagged booleans,
and untagged booleans:D = ((D ! D) + Bool)� (notag + tag)
For example, the coercion FUNC! tags its (function) argument as
a function; FUNC! has signature (D ! D) � notag ! (D !D) � tag. The coercion FUNC? checks that its argument is a
function and returns the untagged function value or an exception;
it has signature ((D ! D) + Bool)� tag ! (D ! D)� notag.
Thus, FUNC? (FUNC! �x:x) = h�x:x; notagi, but the expression
FUNC? (BOOL! true) is an exception. Similarly, BOOL! tags its
(boolean) argument as a boolean and BOOL? performs a check-and-
untag operation. The second important aspect of the language is
that the semantic domain contains both functions and booleans. The
pure lambda calculus would be uninteresting for dynamic typing
because no type checking is required—no runtime errors can arise
without a data type distinct from functions. The results we present
are easily extended to a language with arbitrary data types.

original term (�x:x) (�y:y)
canonical completion (FUNC? (FUNC! �x:x)) (FUNC! �y:y)
minimal d.t. completion (�x:x) (FUNC! �y:y)
original term (if true (�x:true) false) false
canonical completion (FUNC? if (BOOL? (BOOL! true))(FUNC! �x:(BOOL! true)) (BOOL! false)) (BOOL! false)
minimal d.t. completion (FUNC? if true (FUNC! �x:(BOOL! true)) (BOOL! false)) (BOOL! false)
minimal s.c. completion (FUNC? if true (FUNC! �x:(BOOL! true)) (BOOL! false)) false

Figure 1: Example completions of dynamically typed lambda terms.

The use of a notag label to denote untagged values in the domain
is non-standard, but no additional runtime overhead is implied; no-
tag values would not carry any decoration at runtime. Rather, this
representation of the domain is chosen to make clear the correspon-
dence with a type system presented in Section 3.1

Let erase(e) be e with all coercions deleted. We say e is a
completion of e0 if erase(e) = e0. Implementations of dynami-
cally typed languages complete user programs by inserting tagging
operations where values are created and inserting type checking
operations where values are used. Thus, the semantics of a dynam-
ically typed lambda term can be defined to be the meaning of the
completion that performs all possible type operations.

Definition 1.1 Let e = erase(e). The canonical completion of e is
defined by the following table. Each subexpression of e matching
an entry on the left is modified according to the corresponding entry
on the right:

Before Afterx x�x:e FUNC! �x:ee e0 (FUNC? e) e0
if e e0 e00 if (BOOL? e) e0 e00

true BOOL! true
false BOOL! false

Let e be a term with no coercions. A completion e0 of e is correct
if it is semantically equivalent to the canonical completion of e. We
are free to choose among correct completions, though completions
with fewer coercions are preferred for efficiency reasons. Thus, the
goal of dynamic typing is to compute a correct completion with as
few coercions as possible.

Dynamic typing, as formulated in [Hen92a], has computable
minimal completions. A completion e0 of e is minimal if every
derivable completion of e includes all the coercions of e0. Two
examples are given in Figure 1. The first example shows two com-
pletions of the term (�x:x)(�y:y). Note that even in the minimal
completion the value �y:y is tagged; this is necessary because �y:y
is the result of evaluation, which is a tagged value in the canonical
completion.

The second example is contrived to illustrate several points
about the dynamic typing discipline. Consider the minimal com-
pletion under dynamic typing (labelled d.t.). Note that the boolean
in the predicate position of the conditional is untagged. Dynamic
typing infers that a boolean is used in a position where a boolean is
expected, so no check is required to ensure the value is a boolean
and, in fact, the value need not be tagged as a boolean at all. How-
ever, both branches of the conditional are tagged and a FUNC? test

1Furthermore, a rigorous presentation must include a wrong value in the domain
to denote exceptions. We gloss over this well-known construction to save notation in
later definitions.

is applied to the result of the conditional. Dynamic typing cannot
infer what type results from the conditional, so all values that can
be produced have identifying tags to enable types to be determined
at runtime by FUNC?. The value true returned by the constant
function �x:true on the true branch must be tagged because it is
the result of the expression.

Finally, the argument false to the function result of the con-
ditional is also tagged. This is peculiar, because the value is not
even used by the constant function �x:true. In fact, this example
illustrates a weakness of dynamic typing. The completion arises be-
cause dynamic typing assigns a single type Dynamic to all tagged
values. That is, the type of the conditional is just Dynamic—no
structural information about what values can result from the con-
ditional is expressed. When FUNC? is applied, nothing is known
about the type of the function that results, so it must have type
FUNC? : Dynamic ; (Dynamic ! Dynamic), which forces
the components of the function type to also be tagged and tested at
runtime. (The use of; instead of ! in the type is for consistency
with notation in [Hen92b, Hen92a] and emphasizes the special role
of coercions.) In dynamic typing, if a value has type Dynamic,
then all of its components must have type Dynamic.

The system we present, based on set constraints, allows com-
ponents of a type to be untagged even if the type itself represents
a tagged value. Figure 1 shows the minimal set constraint comple-
tion (labelled s.c.) for the second example. Note that the function
argument is untagged. The example is admittedly contrived; it is
difficult to construct realistic examples in the dynamically typed
lambda calculus! However, the practical effect is easy to under-
stand. In dynamic typing, if any component of a data structure
is tagged (has type Dynamic), then all subcomponents must be
tagged (have type Dynamic), and all associated type checking
operations must be performed. Thus, the need to introduce type
operations on a single component of a large data type may result in
the introduction of type operations on many other components.

It is not obvious how to generalize dynamic typing to avoid
this phenomenon, but it can be done. Set constraints provide one
natural solution. Dynamic typing also can be modified directly to
avoid the extra tagging; the resulting system is no longer dynamic
typing and is closer than dynamic typing to the system we present.2

Known results on set constraints also admit immediate general-
izations in other, orthogonal ways, including adding polymorphic
types [AW93] and analysis of conditional branches [AWL94].

The formal development proceeds as follows. Section 2 presents
a type inference system for dynamic typing. This system proves
facts of the form A `D e : �
Section 3 presents an alternative formulation of dynamic typing
using set constraints. It turns out that the “obvious” encoding of

2Fritz Henglein, private communication, January 1995

dynamic typing fails in a inclusion subtyping system; the explana-
tion why highlights some interesting technical aspects of dynamic
typing. We also state a soundness theorem for our system. The set
constraint system proves facts of the formA; S `S e : �
whereS is a system of set constraints. The meaning of the derivation
is that under assumptions A, expression e has type s(�) for every
substitution s that is a solution of the constraints S.

Section 4 is the heart of the paper. We prove a theorem showing
that the set constraint system is at least as powerful as dynamic
typing. More formally, we first define a mapping T from types � to
types �. We then proveA `D e : �) T (A); S `S e : �
where � � T (�) and S is a consistent system of constraints. Be-
cause of the nature of the mapping T , a corollary of this theorem is
that every completion that is `D derivable is also `S derivable. The
example in Figure 1 shows that some completions are `S derivable
but not `D derivable.

Section 5 presents an algorithm for computing completions in
the set constraint system. Analysis of the algorithm shows that
the set constraint system has unique minimal completions and that
the completions can be computed in O(n3) time in the size of the
original expression.

Section 6 briefly outlines extensions and restrictions of the main
result. We show that the set constraint system can be restricted to
have exactly the same power as dynamic typing, thereby precisely
characterizing its power with respect to other analyses based on
set constraints. We also consider a variation of dynamic typing
where coercions may appear at points other than value creations
and uses. (We do not consider induced coercions, another variation
on dynamic typing in Henglein’s original work [Hen92a].) Finally,
we report that the set constraint system can be incorporated into the
most expressive system known for removing type tags, although in
this case there are no longer minimal completions and constraint
resolution becomes inherently exponential.

Section 7 presents discussion of related work and a few con-
cluding remarks.2 Dynamic Typing
The types of dynamic typing are generated by the following gram-
mar: � ::= � jBool j Dynamic j � ! � 0 j fix�:�

In this grammar, � is a type variable and fix�:� denotes a
regular recursive type that is the solution of the equation � = � .

Figure 2 gives the inference rules for dynamic typing as well as
signatures for each of the primitive coercions. Each inference rule
allows for appropriate coercions at value creation and usage points.
For example, the hypothesis of [TRUE1] requires a coercion with
signature Bool; � . The coercion BOOL! : Bool; Dynamic
satisfies this hypothesis. However, we also wish to allow a value
to remain untagged if possible. We introduce a new, improper
coercion NOOP with signature � ; � . Semantically, NOOP is the
identity function. It is easy to verify that every use of coercions
in an inference rule admits NOOP and the one proper coercion
appropriate to that rule.

We briefly describe the function of each rule in Figure 3. The
[ASSUME1] rule is standard. The [ABS1] rule constructs a lambda
abstraction and possibly tags it. The coercions NOOP and FUNC!
can satisfy the hypothesis of [ABS1].

The [APP1] rule is interesting. The coercions NOOP and
FUNC? can satisfy the rule’s hypothesis. These two possible coer-
cions dictate the possible types for the function expression e. If the
coercion NOOP is used, then e has a function type � ! � 0. If the
coercion FUNC? is used, then e has type Dynamic. In other words,
the system allows the check-and-untag operation to be omitted only
in the case that e is known to be an untagged function value. As
discussed in Section 1, if the function has type Dynamic then the
argument and result must also have type Dynamic.

The coercions NOOP and BOOL? can satisfy the hypothesis of
the [COND1] rule. The check-and-untag operation on the predicate
is only omitted in the case that the predicate is provably an untagged
boolean value. Note that the two branches of the conditional are
required to have the same type; this restriction guarantees that the
values produced by the branches are either both tagged or both
untagged.

There is a final minor issue. According to our definition of
correctness, the final result of evaluation of an expression must
yield a tagged value, just as the canonical completion does. Thus,
we require that the conclusion of a complete derivation be A `De : Dynamic. Figure 3 gives a complete derivation of one of the
minimal completions in Figure 1.A;x : � `D x : � [ASSUME1]A;x : � `D e : � 0C : (� ! � 0); � 00A `D C (�x:e) : � 00 [ABS1]A `D e : �A `D e0 : � 0C : � ; (� 0 ! � 00)A `D (C e) e0 : � 00 [APP1]A `D e : �A `D e0 : � 0A `D e00 : � 0C : � ; BoolA `D (if (C e) e0 e00) : � 0 [COND1]C : Bool; �A `D C true : � [TRUE1]C : Bool; �A `D C false : � [FALSE1]

FUNC! : (Dynamic! Dynamic); Dynamic
FUNC? : Dynamic; (Dynamic! Dynamic)
BOOL! : Bool; Dynamic
BOOL? : Dynamic; Bool
NOOP : � ; �

Figure 2: Type rules for the dynamically typed lambda calculus.

NOOP : Bool; Bool`D NOOP true : Bool

BOOL! : Bool; Dynamicx : Dynamic `D BOOL! true : Dynamic
FUNC! : Dynamic! Dynamic; Dynamic`D FUNC! (�x:BOOL! true) : Dynamic

BOOL! : Bool; Dynamic`D BOOL! false : Dynamic

NOOP : Bool; Bool`D if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false) : Dynamic
FUNC? : Dynamic; Dynamic! Dynamic

BOOL! : Bool; Dynamic`D BOOL! false : Dynamic`D (FUNC? if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false)) (BOOL! false) : Dynamic

Figure 3: `D derivation of an example in Figure 13 A Subtyping System
Our goal is to explain dynamic typing using subtyping. At first
glance, there appears to be no problem. The type Dynamic clearly
plays a rule akin to a universal type—a type of all values. Thus,
one expects that � � Dynamic

for all types � .
However, there is a serious difficulty. Consider a conditional

if e e0 e00 and let e0 : Bool ! Bool and e00 : Dynamic !
Dynamic. Now, by subtyping Bool ! Bool � Dynamic and
Dynamic ! Dynamic � Dynamic, and so we can conclude
that

if e e0 e00 : Dynamic

assuming e has type Bool. Unfortunately, this conclusion is un-
sound, because the two expressions e0 and e00 have different be-
havior and cannot be used in the same context (e.g., e0 expects
an untagged argument and e00 expects a tagged argument). Thus,
Bool ! Bool � Dynamic and Dynamic ! Dynamic �
Dynamic cannot both hold, so Dynamic is anything but a uni-
versal type. In dynamic typing, Bool ! Bool � Dynamic
does not hold; in this example, e0 must be coerced to have type
Dynamic! Dynamic.

A different approach is needed to encode dynamic typing in a
subtyping system. The intuition behind our solution follows from
the definition of the semantic domain D:D = ((D ! D) + Bool)� (notag + tag)
A semantic value consists of two parts: the “real” value and a tag,
which is possibly absent. Thus, we represent types as pairs [�; �],
where � is the structural part of the type and � represents the tag.
Formally, the types of our system are generated by the following
grammar:� ::= [�; �]� ::= � j� ! � jBool j� [�0 j � \ �0 j 0� ::= � jtag jnotag j � [�0

Types denote sets of values. For example, � ! �0 denotes the
set of functions mapping arguments of type � to results of type �0.
The expressions � [�0 and � \ �0 denote set-theoretic union and
intersection of types. The expression 0 represents non-termination
(formally, it is the set f?g) and is the least type; i.e., 0\� = 0 and
0[� = � for any �. For brevity, we skip the development of ideal
models needed to formalize types as sets of values; the construction
is well-known (e.g., see [MPS84, AW93]).

We work with systems of set constraints of the following forms:X � YQ 6= 0Q 6= tag [notagT 6= 0) Q � R
Here X , Y stand for any expressions drawn from the grammar
above. Q and R refer to tag expressions (grammar symbol �), T
refers to type expressions (grammar symbol �). The interpretation
of these constraints is conventional. Given a set S of constraints a
solution of S is a mapping of variables to types such that all of the
constraints are simultaneously satisfied.

We do not include an explicit fixed point operator because re-
cursive constraints have equivalent power. Let X = Y denote the
pair of constraints X � Y and Y � X . For example, the set
of fully tagged values can be defined as the unique solution of the
recursive equation:[�; �] = [([�; �]! [�; �]) [Bool;tag]
We use � to denote the set of fully tagged values. Similarly, the set
of all values (tagged and untagged) is the unique solution of:[�; �] = [([�; �]! [�; �]) [Bool;tag [notag]
We use 1 to denote the set of all values.

Before presenting the inference rules, there are further details
meriting discussion. In the grammar for types, the intent is that a
variable � ranges over types of kind � and that a variable � ranges
over types of kind �. A standard mechanism for enforcing such
restrictions is to use a many-sorted algebra. However, it is possible
to avoid the extra notational burden of many-sorted algebras by
using constraints. Variables of kind � and � have the following
associated constraints:� � (1 ! 1) [Bool� � tag [notag� 6= 0

Thus, an � variable always denotes the structural part of a type and
a � variable always denotes tag, notag, or both. For conciseness,
these constraints are left implicit in inference rules and examples.

The inference rules and coercions for the set constraint system
are given in Figure 4. The system infers facts of the form A; S `Se : �. Informally, the meaning of this derivation is that e has the
type s(�) for every mapping s that is a solution of the constraintsS. The following lemma makes this precise.

A;x : [�; �]; S `S x : [�; �] [ASSUME2]A;x : [�; �]; S `S e : [�0; �0]S0 = S [f�00 6= tag [notaggC : [�;notag]; [�; �00] where � = [�; �]! [�0; �0]A;S0 `S C (�x:e) : [�; �00] [ABS2]A; S `S e : [�; �]A; S `S e0 : [�0; �0]S0 = S [(� � ([�0; �0]! [�00; �00]) [(� \ Bool)(� \ Bool) 6= 0) � = tag� 6= tag [notag)C : [� [(� \ Bool); �]; [�; notag] where � = [�0; �0]! [�00; �00]A; S0 `S (C e) e0 : [�00; �00] [APP2]
A;S `S e : [�; �]A;S `S e0 : [�0; �0]A;S `S e00 : [�00; �00]S0 = S [(� � Bool [(� \ (1 ! 1))� \ (1 ! 1) 6= 0) � = tag� 6= tag [notag)C : [Bool [(� \ (1 ! 1)); �]; [Bool;notag]A; S0 `S (if (C e) e0 e00) : [�0 [�00; �0 [�00] [COND2]

C : [Bool;notag]; [Bool; �]S � f� 6= tag [notaggA;S `S C true : [Bool; �] [TRUE2]C : [Bool;notag]; [Bool; �]S � f� 6= tag [notaggA; S `S C false : [Bool; �] [FALSE2]
FUNC! : [� ! �0;notag]; [� ! �0;tag]
FUNC? : [(� ! �0) [Bool;tag]; [� ! �0;notag]
BOOL! : [Bool; notag]; [Bool;tag]
BOOL? : [Bool [(1 ! 1); tag]; [Bool;notag]
NOOP : � ; �

Figure 4: Type rules using set constraints.

BOOL! : [Bool;notag]; [Bool;tag]`S BOOL! false : [Bool;tag]
NOOP : [Bool;notag]; [Bool; notag]`S NOOP true : [Bool;notag] BOOL! : [Bool;notag]; [Bool;tag]x : [Bool;notag] `S BOOL! true : [Bool; tag]

FUNC! : [�; notag]; [�; tag]
where � = [Bool;notag]! [Bool;tag]`S FUNC! (�x:BOOL! true) : [�; tag]

NOOP : [Bool;notag]; [Bool;notag]`S if (NOOP (NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false) : [� [Bool;tag]
FUNC? : [([Bool;notag]! [Bool;tag]) [Bool;tag]; [[Bool; notag]! [Bool;tag];notag]
NOOP : [Bool;notag]; [Bool;notag]`S NOOP false : [Bool;notag]`S (FUNC? if (NOOP(NOOP true)) (FUNC! (�x:BOOL! true)) (BOOL! false)) (NOOP false) : [Bool;tag]

Figure 5: `S derivation of an example in Figure 1

Lemma 3.1 (Soundness) Let A;S `S e : �, let s be any solution
of the constraints S, and let v be the semantic value denoted by e in
some environment E. If E(x) 2 s(A(x)) for every free variable x
of e, then v 2 s(�).

We will not prove this lemma, but instead briefly discuss each
rule. Note that coercions in this system affect the tag component
of a type. For example, the tagging coercions FUNC! and BOOL!
simply change a tag from notag to tag. The inverse coercions
FUNC? and BOOL? both change the tag component from tag
to notag (reflecting the untagging of the value) and restrict the
structural component of the type (reflecting the possible values
after a successful type test).

The [ASSUME2] rule is straightforward. The [ABS2] rule is
the standard lambda abstraction rule, except that the tag �00 depends
on the type of the coercionC. IfC is an improper coercion NOOP :[�; notag] ; [�; notag] then �00 = notag. If C is the proper
coercion FUNC! : [�; notag] ; [�; tag] then �00 = tag. For
the coercion C to be well-defined, the variable � must stand for
either tag or notag but not both. In all coercions, a constraint� 6= tag [notag is associated with �.

The rule [APP2] illustrates the crux of our system. Consider an
application (C e) e0 and let e : [�; �] and e0 : [�0; �0]. Now, there
is no requirement that e be provably a function—that is, � need not
be a function type. We want to know two things: (1) whether � is
guaranteed to be a function type and (2) what function types are in�. The constraint� � ([�0; �0]! [�00; �00]) [(� \ Bool)
accomplishes both goals. Any solution of this constraint divides
the type � into its function values [�0; �0] ! [�00; �00] and non-
function values �\ Bool. If �\ Bool = 0 in any solution of the
constraints, then the constraint simplifies to� � [�0; �0]! [�00; �00]
and thus � contains only functions, implying e can only evaluate to
function values by Lemma 3.1. However, if �\ (Bool) 6= 0 in all
solutions of the constraints, then we cannot guarantee statically that� is a function and it is necessary to test at runtime. The constraint(� \ Bool) 6= 0) � = tag

forces the value to be tagged and the coercion in the application to
be FUNC? whenever � may contain non-functions.

The [COND2] rule works analogously to the [APP2] rule. The
constraint � � Bool [(� \ (1 ! 1)) forces any non-boolean
values to be assigned to� in any solution. Thus, if�\(1 ! 1) = 0,
the predicate is guaranteed to be a boolean. However, if � \ (1 !
1) 6= 0, then the predicate may not be a boolean and dynamic type
checking is required. The constraint �\(1 ! 1) 6= 0) � = tag
forces the value of the predicate to be tagged in this case.

There is another aspect of the [COND2] rule worth noting.
The inferred type [�0 [�00; �0[�00] potentially has both tagged and
untagged values (e.g., if �0 = tag and�00 = notag). In contrast to
the situation with dynamic typing (see the beginning of the section),
this is sound. Only the [APP2] and [COND2] rules inspect tags and
both rules require the tag component to be exactly tag. Values of
type [�;tag [notag] can never satisfy the constraints. Thus, a
value of type [�;tag [notag] can be created, but never used.

A remaining detail is guaranteeing that the result of evaluation
produces a value in which all components of the type are tagged.
Recall that the type of fully tagged values is �. If the final type of
a program is �, then adding the constraint � � � forces the result
to be completely tagged. We can now state that the system infers
correct completions.

Lemma 3.2 Let ;; S `S e : � where the system of constraintsS = S0 [f� � �g is consistent. Let e0 = erase(e). Then e is a
correct completion of e0.
Proof: [sketch] The previous discussion presents the proof infor-
mally. The formal argument uses soundness (Lemma 3.1) and the
form of the constraints to show that the completion has the same
meaning as the canonical completion. 2

Figure 5 gives an example of a derivation in the set constraint
system of a term from Figure 1. The constraints are elided for
readability. The most interesting step in the derivation is at the
function abstraction, which creates a tagged function taking an
untagged argument.4 Comparison
This section presents our main result: every completion derivable in
the dynamic typing system is derivable in the set constraint system.
The converse does not hold (see Figure 1), although we show in
Section 6 that the set constraint system can be restricted to have
exactly the same power as dynamic typing.

Because the two systems use different domains of types, we
require a translation function. The function T maps types � to
types �: T (� ! � 0) = [T (�)! T (� 0);notag]T (Bool) = [Bool;notag]T (Dynamic) = �T (fix�:�) = solution of [��; ��] = T (�)T (�) = [��; ��]
A type variable � is translated to a pair [��; ��], where �� and ��
are set variables uniquely associated with �. We extend T to type
environments in the obvious way:T (A;x : �) = T (A);x : T (�)T (;) = ;

Note that T preserves tags; that is, T maps tagged types to
tagged types and untagged types to untagged types.

Theorem 4.1 Let e be an expression of the dynamically typed
lambda calculus and let A be a type environment. ThenA `D e : �) T (A); S `S e : �
for some � � T (�) and consistent system S of constraints.

Proof: The proof is by induction on the structure of the derivation
showing A `D e : � . We present this proof in detail.

1. Assume A;x : � `D x : � . Using rule [ASSUME2], it
follows immediately thatT (A);x : T (�); S `S x : T (�)
By the definition of T , we haveT (A;x : �); S `D x : T (�)
for any consistent system S of constraints.

2. Assume A `D C (�x:e) : � 00. Then A;x : � `D e : � 0
and C : (� ! � 0) ; � 00. By induction, we know T (A;x :�); S `S e : � where � � T (� 0), from which it follows thatT (A);x : T (�); S `S e : �

To prove the result, we must show thatT (A); S `S C �x:e : [T (�)! �; �00]
for some choice of �00 where the coercion C has an appro-
priate type and [T (�) ! �; �00] � T (� 00). The constraints�00 6= 0^ �00 6= tag[notag imply that �00 = tag_ �00 =
notag. Thus there are two subcases.

The first subcase is C = FUNC!, in which case � = � 0 =� 00 = Dynamic. The tag �00 in the [ABS2] inference rule
is not constrained to be either tag or notag. Therefore,
letting �00 = tag we have

FUNC! : [T (�)! �;notag]; [T (�)! �;tag]
Since all premises of the [ABS2] rule are satisfied, we con-
clude T (A); S `S FUNC! �x:e : [T (�)! �; tag]
To complete this case, note that[T (�)! �;tag]� [T (�)! T (� 0);tag] since � � T (� 0)= [�! �;tag] definition of T� � definition of �= T (Dynamic) definition of T= T (� 00)
The second subcase is C = NOOP, where � 00 = � ! � 0.
Letting �00 = notag we have

NOOP : [T (�)! �;notag]; [T (�)! �; notag]
and, since the premises of [ABS2] are satisfied,T (A); S `S NOOP �x:e : [T (�)! �;notag]
To complete this subcase, note that[T (�)! �;notag]� [T (�)! T (� 0);notag] since � � T (� 0)= T (� ! � 0) definition of T= T (� 00)

3. Assume that A `D (C e) e0 : � 00. By the premises of the
[APP1] rule, we knowA `D e : �A `D e0 : � 0C : � ; (� 0 ! � 00)
By induction, it follows thatT (A); S `S e : [�; �] where [�; �] � T (�)T (A); S `S e0 : [�0; �0] where [�0; �0] � T (� 0)
To prove the theorem, we must show thatT (A); S0 `S (C e) e0 : [�00; �00]
where [�00; �00] � T (� 00), the coercion C has an appropriate
type, andS0 = S [(� � ([�0; �0]! [�00; �00]) [(� \ Bool)(� \ Bool) 6= 0) � = tag� 6= tag [notag)

for some �00; �00; and � where the constraints are satisfied.
As before, there are two subcases.

The first subcase isC = FUNC?. Therefore � = � 0 = � 00 =
Dynamic. Let [�00; �00] = T (� 00) = � and let � = Bool.
Furthermore, � = tag since [�; �] � T (�) = �. Since� \ Bool = Bool we have

FUNC? : [� [(� \ Bool);tag]; [�; notag]
where � = [�0; �0]! [�00; �00]

In addition, because � = tag, the second constraint is satis-
fied. To finish the subcase, we show that the first constraint is
satisfied. The following argument uses the fact that function
types are anti-monotonic in the argument position; that is,x � y implies y ! z � x! z.� � ([�0; �0]! [�00; �00]) [(� \ Bool), � � ([�0; �0]! �) [(Bool \ Bool) substitution, � � ([�0; �0]! �) [Bool simplification((�! �) [Bool�([�0; �0]! �) [Bool

since [�; �] � �((�! �) [Bool � (�! �) [Bool
since [�0; �0] � �

It follows that A; S0 `S (FUNC? e) e0 : [�00; �00].
The second subcase isC = NOOP. Therefore � = � 0 ! � 00.
Let [�00; �00] = T (� 00) and let� = 0. Since [�; �] � T (� 0 !� 00) it follows that � = notag. Because �\ Bool = 0, we
have

NOOP : [�; notag]; [�; notag]
where � = [�0; �0]! [�00; �00]

The second constraint is satisfied, also because � \ Bool =
0. To see that the first constraint is satisfied, note that� � ([�0; �0]! [�00; �00]) [(� \ Bool), � � ([�0; �0]! T (� 00)) [(0 \ Bool) substitution, � � [�0; �0]! T (� 00) simplification(� � T (� 0)! T (� 00) [�0; �0] � T (� 0), [�; �] � [T (� 0)! T (� 00);notag] � = notag, [�; �] � T (� 0 ! � 00) definition of T, [�; �] � T (�) assumption, true by induction

It follows that A; S0 `S (NOOP e) e0 : [�00; �00].
4. Assume A `D (if (C e) e0 e00) : � 0. From the premises of

the [COND1] rule, we knowA `D e : �A `D e0 : � 0A `D e00 : � 0C : � ; Bool

By induction, it follows thatT (A); S `S e : [�; �] � T (�)T (A); S `S e0 : [�0; �0] � T (� 0)T (A); S `S e00 : [�00; �00] � T (� 0)
Thus, to prove the result it suffices to show thatT (A); S0 `S if (C e) e0 e00 : [�0 [�00; �0 [�00]
where [�0 [�00; �0 [�00] � T (� 0), the coercion C has an
appropriate type, andS0 = S [(� � Bool [(� \ 1 ! 1)(� \ (1 ! 1)) 6= 0) � = tag� 6= tag [notag)

for some � that satisfies the constraints.

First note that �0 = �00, because [�0; �0] � T (� 0) and[�00; �00] � T (� 0) and T (� 0) has the form [x;tag] or[x;notag]. Therefore,[�0 [�00; �0 [�00] = [�0; �0] [[�00; �00] � T (� 0)
The rest of the argument breaks into the usual two cases.
Assume C = BOOL?. Then � = Dynamic. Let � = 1 !
1. Because [�; �] � T (�), it follows that [�; �] � �, so� = tag. Since � \ (1 ! 1) = 1 ! 1, we have

BOOL? : [Bool [(1 ! 1);tag]; [Bool;notag]
Showing the constraints are satisfied is very similar to the
corresponding subcase for application.

Now assume C = NOOP. Then � = Bool. Let � = 0.
Because [�; �] � T (�), it follows that � � Bool and � =
notag. Since � \ (1 ! 1) = 0, we have

NOOP : [Bool;notag]; [Bool;notag]
Again, showing the constraints are satisfied is very similar to
the corresponding subcase for application.

5. Assume A `D C true : � . If C = BOOL!, thenT (A); S `S true : [Bool;tag]
satisfies the theorem for any consistent system of constraintsS. If C = NOOP, thenT (A); S `S true : [Bool;notag]
satisfies the theorem.

6. Assume A `D C false : � . This case is the same as the
case for true.2

From the theorem, we immediately have the following corollary.

Corollary 4.2 Let e be any closed term without coercions. If e0 is
a completion of e derivable in `D , then e0 is also derivable in `S .

Proof: Follows from Theorem 4.1 and the fact that T preserves
tags. 25 Computing Minimal Completions
Type inference for the system in Figure 4 can be implemented in
timeO(n3) in the size of the expression. The bound is the worst case
and, in fact, we expect the algorithm performs significantly better
in practice, although it cannot be as efficient as the algorithms for
dynamic typing.

The algorithm is divided into four phases:

1. Constraint generation.

2. Constraint resolution.

3. Tag variable instantiation.

4. Program completion.

The first phase is straightforward. The proof system in Figure 4
is run, but the coercions are left as unknowns. For the result of
each potential coercion, fresh variables (unknowns) are inserted.
The constraints are generated using fresh variables in every rule.
The solutions of the resulting system S of constraints for the entire
expression characterize all possible completions. This phase is
linear in the size of the expression.

To discover which completions are possible, it is necessary to
solve the constraints. Figure 6 gives a set of rewrite rules that, when
applied until closure (until no new constraints can be generated),
reduce a system of constraints to solved form. These constraint
resolution rules are essentially those of [MR85, Hei92, AW93]
specialized to our application. The soundness of these rules can
be proven using standard techniques (e.g., see [AW92, AW93]). In
Figure 6, � stands for an arbitrary type expression and
 stands for
an arbitrary variable.

Rules 10 and 11 of Figure 6 appear non-constructive, but are
actually easy to implement. For Rule 10, in the process of rewriting
the constraint system it may be discovered that � 6= 0 —due to
non-zero lower bounds on variables in �—in which case the rule
can be applied. Once no constraints can be added, any remaining
implication constraints can be deleted using Rule 11. A detailed
justification is presented in [Hei92].

Rules 12 and 13 take advantage of the special structure of con-
straints involving tag variables. Rule 12 expresses the fact that if
a tag variable � is known to be a subset of tag, then � = tag,
since no tag variable can be 0. Rule 13 says that if � includes at
least tag but not both tag and notag, then � = tag. Note that
these special-purpose rules could be factored into a separate phase,
but it is convenient to present them as part of the overall constraint
resolution.

Constraint resolution is the most expensive phase. The rewrite
rules work only with pairs of subexpressions of the original con-
straint system. Thus, the rules can produce at most O(n2) con-
straints, where original system has size O(n). Each rule requires
constant time to apply, with the exception of Rule 9, which may
require O(n) time to examine all the upper and lower bounds of a
variable. Thus, the entire resolution process requires at mostO(n3)
time.

Constraint resolution does not necessarily yield a unique com-
pletion, as some tag variables may be unconstrained. However, all
upper and lower bounds on variables in the resolved system are
explicit, so it is easy to discern the possible solutions by inspection
of the constraints. Let S be the system of resolved constraints. The
third phase adds constraints to tag variables to produce a minimal
completion using the following rule:

If � � tag is not in S, then add notag � � to S (14)

This rule adds a lower-bound of notag to all tag variables that
are not constrained to be equal to tag. It is easy to see that if
notag � � in any completion permitted by the constraints, then
notag � � according to this rule. This observation proves the
existence of minimal completions for the set constraint system.
The tag instantiation phase requires inspection of the upper bound
of all tag variables, which takes time O(n).

Constructing the completion of the program is easy. Each co-
ercion has a single tag variable �. Now, from the original con-
straints we know � 6= 0 (a constraint on all tag variables) and� 6= tag [notag (a constraint on all tag variables in coercions).
Thus, either � = tag or � = notag in every solution. Iftag � �,
then tag = � (Rule 13). If tag 6� �, then notag � � (Rule 14).
Thus, each coercion is determined by the lower bound of its tag
variable.

S [f0 � �g) S (1)S [f[�; �] � [�0; �0]g) S [f� � �0; � � �0g (2)S [f�1 ! �2 � �0
1 ! �0

2g) S[f�0
1 � �1; �2 � �0

2g (3)S [f� [�0 � �00g) S [f� � �00; �0 � �00g (4)S [f� � �0 \ �00g) S [f� � �0; � � �00g (5)S [f� ! �0 � � [(� \ Bool)g) S [f� ! �0 � �g (6)S [fBool � � [(� \ 1 ! 1)g) S [fBool � �g (7)S [f� � �g) S (8)S [f� �
;
 � �0g) S [f� �
;
 � �0; � � �0g (9)S [f� 6= 0) � � �0g and S) � 6= 0) S [f� � �0g (10)S [f� 6= 0) � � �0g and S 6) � 6= 0) S (11)S [f� 6= 0; � � tagg) S [ftag � �; � � tagg (12)S [f� 6= tag [notag;tag � �g) S [ftag � �; � � tagg (13)

Figure 6: Rules for simplifying constraints.

Finally, it is important to note that the constraints always have
at least one solution, namely �1 = �2 = : : : = � and �1 = �2 =: : : = tag. This solution produces the canonical completion—all
values are tagged.6 Variations
Set constraints are a very expressive and flexible framework for
specifying program analyses, making it quite easy to extend analy-
ses in various ways. This section discusses a number of variations
on the basic system we have presented. For space reasons, each
modification is described only briefly.6.1 Dynamic Typing Revisited
As discussed in Section 4, the set constraint system is strictly more
powerful than dynamic typing. To achieve exactly dynamic typing,
we must guarantee that whenever a tagged type arises, all compo-
nents of the type are also tagged. This condition is easy to express
with additional constraints. For each type [�; �] used in a derivation,
add a constraint: (� \ tag) 6= 0) [�; �] = �
When applied to the type in the conclusion of [COND2], this con-
straint also guarantees that the branches of a conditional are con-
sistently tagged. We state without proof that under these additional
constraints, a completion is `S derivable if and only if it is `D
derivable.

While this observation gives an alternative characterization of
dynamic typing, it appears no more efficient to implement than the
more accurate version. Thus, while set constraints are expressive
enough to encode dynamic typing, one apparently cannot derive the
most efficient algorithms known for dynamic typing directly from
this encoding.6.2 Coercions at Arbitrary Points
So far we have considered only coercions at value creation and
use points. Allowing coercions at arbitrary program points can

sometimes result in better completions. To permit coercions to
appear anywhere, the inference system must be altered to allow any
of the four proper coercions to be applied to any expression. That
is, the possible completions of each subexpression e are expressed
by CFUNC! (CBOOL! (CFUNC? (CBOOL? e)))
where Cx is potentially either the coercion named x or NOOP.
For dynamic typing, where all components of tagged values are
tagged, it is possible to modify the inference rules and the constraint
resolution algorithm to handle coercions at arbitrary points.6.3 Polymorphism
The semantics of polymorphic types based on set constraints has
been developed in [AWL94]. A polymorphic type has the form8
1; : : : ;
n:(� where S). Intuitively, this type expresses bounded
quantification, with the set of constraints S acting as bounds on the
quantified variables. More formally, the meaning is the intersection
of all types s(�) where s is a solution of the constraints S for some
choice of
1; : : : ;
n.

Polymorphism in the style of [AWL94] can be added to our
system without modifying any other aspect. When tag variables are
quantified, the meaning of coercions is parameterized in the type.
In other words, types with quantified tag variables denote functions
polymorphic in their coercions.6.4 Adding Control-Flow Information
The simple idea of modelling a type as a pair consisting of a value
part and a tag part leads to a system where tag inference is largely
orthogonal to the inference of the structural part of the type. Thus,
the same technique should integrate easily into other systems for
analyzing dynamically typed programs. The system in [AWL94] is
probably the most expressive and accurate such inference system
known. Besides polymorphism, the most significant difference
between [AWL94] and the system we have described is that types
in [AWL94] can express control-flow through runtime tests. That is,
given a conditional if e e0 e00, the types of e0 and e00 are constrained
to reflect the values for which e is true and false respectively.

We can report that it is in fact straightforward to adapt the
techniques reported in this paper to the system of [AWL94], yielding
a system that can both remove as many dynamic type checks as
[AWL94] and as many runtime tags as dynamic typing. We omit
all details for lack of space. In this extended system, however, the
system no longer has minimal completions and constraint resolution
requires exponential time in the worst case.7 Conclusions and Related Work
This work is part of a longer-term effort to investigate the principles
underlying constraint-based program analyses. We believe that set
constraints are a particularly useful formalism for expressing pro-
gram analyses, but our interest was first aroused because it appeared
that dynamic typing could not be expressed using set constraints or
any other discipline using inclusion-based subtyping.

We have shown, however, that set constraints can encode dy-
namic typing, and in fact a substantial generalization of dynamic
typing is naturally expressed using set constraints. Our system also
has an efficient inference procedure. The flexibility and generality
of set constraints allows our system to be extended in a variety of
ways outlined in Section 6.

Based on our previous experience with constraint-based pro-
gram analysis, we believe the algorithm we have presented could
serve as the core of a practical analysis system for dynamically
typed programs. However, the prime candidates for this kind of
analysis are programs written in Lisp and Scheme. Analyzing such
programs requires proper handling of side effects, an issue we have
not considered.

Besides previous work on program analysis using set con-
straints, Henglein’s work on dynamic typing is the most closely
related to our own. Henglein’s work is based, in turn, on earlier
works of Thatte and Gomard [Gom90] . Thatte originally worked
with a system called partial types [Tha88], in which types could
be coerced to a universal type, but not vice versa—a pure subtyp-
ing system. Coercions from type Dynamic were introduced in a
subsequent paper [Tha90].

A large number of analysis algorithms for dynamically typed
languages have been proposed in recent years [Gom90, AM91,
CF91, Hen92b, WH92, WC94]. With the exception of the works of
Henglein, Thatte, and Gomard, it is fair to characterize all of these
as (inclusion-based) subtyping systems; none treat tag inference.
In this paper, we have shown how to combine expressive subtyp-
ing with the ability to infer minimal completions of tagging and
untagging operations.8 Acknowledgements
Fritz Henglein’s insights on constraint-based program analysis in
general and dynamic typing in particular were most helpful.References
[Aik94] A. Aiken. Set constraints: Results, applications, and

future directions. In Second Workshop on the Principles
and Practice of Constraint Programming, pages 171–
179, Orcas Island, Washingtion, May 1994. Springer-
Verlag LNCS no. 874.

[AM91] A. Aiken and B. Murphy. Static type inference in a
dynamically typed language. In Eighteenth Annual ACM
Symposium on Principles of Programming Languages,
pages 279–290, January 1991.

[AW92] A. Aiken and E. Wimmers. Solving systems of set con-
straints. In Symposium on Logic in Computer Science,
pages 329–340, June 1992.

[AW93] A. Aiken and E. Wimmers. Type inclusion constraints
and type inference. In Proceedings of the 1993 Con-
ference on Functional Programming Languages and
Computer Architecture, pages 31–41, Copenhagen, Den-
mark, June 1993.

[AWL94] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing
with conditional types. In Twenty-First Annual ACM
Symposium on Principles of Programming Languages,
pages 163–173, Portland, Oregon, January 1994.

[CF91] R. Cartwright and M. Fagan. Soft typing. In Proceedings
of the ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, pages 278–292,
June 1991.

[Gom90] C. Gomard. Partial type inference for untyped functional
programs (extended abstract). In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming,
pages 282–287, 1990.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis,
Carnegie Mellon University, 1992.

[Hen92a] F. Henglein. Dynamic typing. In Proceedings of the
Eurpean Symposium on Programming, February 1992.

[Hen92b] F. Henglein. Global tagging optimization by type infer-
ence. In Proceedings of the 1992 ACM Conference on
Lisp and Functional Programming, pages 205–215, July
1992.

[HJ90] N. Heintze and J. Jaffar. A decision procedure for a class
of Herbrand set constraints. In Symposium on Logic in
Computer Science, pages 42–51, June 1990.

[MPS84] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model
for recursive polymophic types. In Eleventh Annual ACM
Symposium on Principles of Programming Languages,
pages 165–174, January 1984.

[MR85] P. Mishra and U. Reddy. Declaration-free type checking.
In Proceedings of the Twelfth Annual ACM Symposium
on the Principles of Programming Languages, pages 7–
21, 1985.

[Tha88] S. Thatte. Type inference with partial types. In Automata,
Languages and Programming: 15th International Col-
loquium, pages 615–629. Springer-Verlag Lecture Notes
in Computer Science, vol. 317, July 1988.

[Tha90] S. Thatte. Quasi-static typing. In Seventeenth Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 367–381, January 1990.

[WC94] A. Wright and R. Cartwright. A practical soft typing
system for Scheme. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming, pages
250–262, June 1994.

[WH92] E. Wang and P. N. Hilfinger. Analysis of recursive types
in Lisp-like languages. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, pages
216–225, June 1992.

