Dynamic Typing and Subtype Inference

Alexander Aiken

Manuel Fahndrich

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776
{aken,manuel } @cs.berkeley.edu

Abstract

Dynamic typing isaprogram analysistargeted at removing runtime
tagging and untagging operations from programs written in dynam-
ically typed languages. This paper compares dynamic typing with
asubtyping system based on set constraints. The purpose isboth to
make precise the relationship between two superficially unrelated
type systems and to illustrate how the advantages of dynamic typ-
ing and subtype inference can be combined. The central result is
a theorem showing that a typing discipline at least as powerful as
dynamic typing can be expressed using set constraints.

1 Introduction

Thispaper presents astudy of Henglein's dynamic typing discipline
[Hen92a, Hen92b]. Dynamic typing extends conventional static
types with a single new type Dynarmi c. Specia functions called
coercionsinject valuesinto and project valuesfromtypeDynani c.
Currently, the main application of dynamic typing is the optimiza-
tion of programs written in dynamically typed languages (such as
Lisp and Scheme) by removing runtimetests of typetagswherethey
are provably unnecessary (so-called soft typing [CF91, WC94]). A
remarkable, and to our knowledge unique, aspect of dynamic typing
isthat it not only permitsthe removal of dynamic typetag tests, but
also alows the elimination of type tagging operations themsel ves.

The purpose and results of our study are two-fold. First, while
dynamic typing is a very interesting system, it cannot remove as
many type checks as other recently proposed agorithms based on
inclusion subtyping [AWL94, WC94]. By inclusion subtyping, we
mean systems where type ¢1 is a subtype of ¢, if ¢, includes every
value of ¢1; we will refer to this simply as subtyping.

As noted above, dynamic typing has the singular ability to re-
movetypetagging operationsaswell asdynamictypechecks. Thus,
the power of dynamic typing is incomparable to the subtyping ap-
proaches. One of our goalsisto investigate whether the strengths of
dynamic typing can be combined with the strengths of subtyping.
Our results are positive: We present a generalization of dynamic
typing that incorporates an expressive subtyping discipline. Type
inference for the system has time complexity O(n®) and appears
amenable to apractical implementation.

Our second interest is with dynamic typing itself, irrespective
of any applications. Many contemporary program analysis algo-
rithms are based on constraint resolution, including the algorithms

for dynamic typing. In constraint-based analysis, constraints are
generated from the program text and solving the constraints yields
the analysis of the program. It is our thesis that many constraint-
based analyses can be expressed using aparticular constraint theory
known as set constraints. Set constraints are a smple, general,
and well-studied theory that is powerful enough to express many
program analyses [HJ90, AW92, Hei 92, Aik94].

In testing our thesis on avariety of program analyses, it became
apparent that dynamic typing is in some ways fundamentally dif-
ferent from other examples of constraint theories used in program
andysis. The main technical challenge, and our central result, is
establishing that set constraints can encode dynamic typing. This
characterization facilitates direct comparison of dynamic typing
with other constraint-based analyses. However, the set constraint
formulation does not naturally suggest the very efficient resolution
algorithms known for dynamic typing [Hen92b]; in this respect,
dynamic typing appears to stand apart.

Therest of this section presents an overview of the paper. Some
basic definitions are needed. Following [Hen92a], our results are
presented using a small, paradigmatic language called dynamically
typed lambda calculus. The expressions of the language are:

! "

er=z|lrelee |ifee e |true|false|Ce

The dynamically typed lambda calculus is a call-by-value lan-
guage with two important festures. First, aterm C e is a coercion
C appliedtothevalueof e. Intuitively, coercions mode theruntime
type checksimplicit in dynamically typed programs. Formally, co-
ercions are primitive functions that perform tagging and untagging
operations. The semantic domain D contains four distinct kinds of
elements: tagged functions, untagged functions, tagged booleans,
and untagged booleans:

D = ((D — D) + Boal) x (notag + tag)

For example, the coercion FUNC! tags its (function) argument as
a function; FUNC! has signature (D — D) x notag — (D —
D) x tag. The coercion FUNC? checks that its argument is a
function and returns the untagged function value or an exception;
it has signature ((D — D) + Bool) x tag — (D — D) x notag.
Thus, FUNC? (FUNC! Az.z) = (Az.z, notag), but the expression
FUNC? (BOOL! t r ue) isan exception. Similarly, BOOL! tagsits
(boolean) argument as abool ean and BOOL ?performs acheck-and-
untag operation. The second important aspect of the language is
that the semantic domain contains both functions and booleans. The
pure lambda calculus would be uninteresting for dynamic typing
because no type checking is required—no runtime errors can arise
without a data type distinct from functions. The results we present
are easily extended to alanguage with arbitrary data types.

original term
canonical completion
minimal d.t. completion (Az.z) (FUNC! Ay.y)

(Az.z) (Ay.y)

original term

canonical completion
minimal d.t. completion
minimal s.c. completion

PR

(FUNC? (FUNC! Az.z)) (FUNC! Ay.y)

iftrue(Ax.true)fal se)fal se

FUNC?i f (BOOL?(BOOL!t r ue))(FUNC! Az.(BOOL! t r ue)) (BOOL! f al se)) (BOOL! f al se)
FUNC?i f t rue (FUNC! Az.(BOOL! true)) (BOOL! f al se)) (BOOL! f al se)

FUNC?i f true (FUNC! A\z.(BOOL!true)) (BOOL! f al se)) f al se

Figure 1. Example completions of dynamically typed lambda terms.

The use of anotag label to denote untagged valuesin the domain
is non-standard, but no additional runtime overhead isimplied; no-
tag values would not carry any decoration at runtime. Rather, this
representation of the domain is chosen to make clear the correspon-
dence with atype system presented in Section 3.

Let erase(e) be e with al coercions deleted. We say e isa
completion of e’ if erase(e) = e'. Implementations of dynami-
cally typed languages complete user programs by inserting tagging
operations where values are created and inserting type checking
operations where values are used. Thus, the semantics of a dynam-
ically typed lambda term can be defined to be the meaning of the
completion that performs all possible type operations.

Definition 1.1 Lete = erase(e). Thecanonical completion of e is
defined by the following table. Each subexpression of e matching
an entry on the left ismodified according to the corresponding entry
on theright:

Before | After
Az.e | FUNC! \z.e
ee’ | (FUNC?e) ¢’
ifeee |if (BOOL?e)e e”
true | BOOL!true
fal se | BOOL! fal se

Lete beatermwithnocoercions. A completione’ of e iscorrect
if itissemantically equivalent to the canonical completion of e. We
are free to choose among correct completions, though completions
with fewer coercions are preferred for efficiency reasons. Thus, the
goa of dynamic typing isto compute a correct completion with as
few coercions as possible.

Dynamic typing, as formulated in [Hen92a], has computable
minimal completions. A completion e’ of e is minimal if every
derivable completion of e includes all the coercions of e'. Two
examples are given in Figure 1. Thefirst example shows two com-
pletions of the term (Az.z)(\y.y). Note that even in the minimal
completion thevalue Ay.y istagged; thisis necessary because Ay.y
isthe result of evaluation, which is atagged value in the canonical
completion.

The second example is contrived to illustrate several points
about the dynamic typing discipline. Consider the minima com-
pletion under dynamic typing (labelled d.t.). Note that the boolean
in the predicate position of the conditional is untagged. Dynamic
typing infers that aboolean is used in aposition where aboolean is
expected, so no check is required to ensure the value is a boolean
and, in fact, the value need not be tagged as aboolean at al. How-
ever, both branches of the conditional are tagged and a FUNC? test

Furthermore, a rigorous presentation must include a wrong value in the domain
to denote exceptions. We gloss over this well-known construction to save notation in
later definitions.

is applied to the result of the conditional. Dynamic typing cannot
infer what type results from the conditional, so all values that can
be produced have identifying tags to enable types to be determined
at runtime by FUNC?. The value t r ue returned by the constant
function Az.t r ue on the true branch must be tagged because it is
the result of the expression.

Finally, the argument f al se to the function result of the con-
ditiona is also tagged. This is peculiar, because the value is not
even used by the constant function Az.t r ue. Infact, this example
illustrates aweakness of dynamic typing. The completion arisesbe-
cause dynamic typing assigns asingle type Dynani c to al tagged
values. That is, the type of the conditional is just Dynam c—no
structural information about what values can result from the con-
ditiona is expressed. When FUNC? s applied, nothing is known
about the type of the function that results, so it must have type
FUNC?: Dynam ¢ ~ (Dynam ¢ — Dynanmi c), which forces
the components of the function type to also be tagged and tested at
runtime. (The use of ~ instead of — inthetypeisfor consistency
with notation in [Hen92b, Hen92a] and emphasizes the special role
of coercions.) In dynamic typing, if a value has type Dynami c,
then all of its components must have type Dynarmi c.

The system we present, based on set constraints, allows com-
ponents of a type to be untagged even if the type itself represents
atagged value. Figure 1 shows the minimal set constraint comple-
tion (labelled s.c.) for the second example. Note that the function
argument is untagged. The example is admittedly contrived; it is
difficult to construct realistic examples in the dynamically typed
lambda calculus! However, the practica effect is easy to under-
stand. In dynamic typing, if any component of a data structure
is tagged (has type Dynanmi c), then all subcomponents must be
tagged (have type Dynanmi c), and all associated type checking
operations must be performed. Thus, the need to introduce type
operations on a single component of alarge data type may resultin
the introduction of type operations on many other components.

It is not obvious how to generalize dynamic typing to avoid
this phenomenon, but it can be done. Set constraints provide one
natural solution. Dynamic typing also can be modified directly to
avoid the extra tagging; the resulting system is no longer dynamic
typing and is closer than dynamic typing to the system we present.?
Known results on set constraints also admit immediate general-
izations in other, orthogonal ways, including adding polymorphic
types [AW93] and analysis of conditional branches [AWL 94].

Theformal development proceedsasfollows. Section 2 presents
a type inference system for dynamic typing. This system proves
facts of the form

Abpe:T

Section 3 presents an dternative formulation of dynamic typing
using set constraints. It turns out that the “obvious’ encoding of

2Fritz Henglein, private communication, January 1995

dynamic typing failsin ainclusion subtyping system; the explana
tion why highlights some interesting technical aspects of dynamic
typing. We also state a soundness theorem for our system. The set
constraint system proves facts of the form

AStse:o

where S isasystem of set constraints. Themeaning of thederivation
is that under assumptions A, expression e has type s(o) for every
substitution s that is a solution of the constraints S.

Section 4 isthe heart of the paper. We prove atheorem showing
that the set constraint system is at least as powerful as dynamic
typing. More formally, wefirst define amapping 7' from types 7 to
types o. We then prove

Atpe:T = T(A),Skse:o

where s C T'(7) and S is a consistent system of constraints. Be-
cause of the nature of the mapping 7', acorollary of thistheoremis
that every completionthat isp derivableisalso s derivable. The
example in Figure 1 shows that some completions aret-s derivable
but not +p derivable.

Section 5 presents an agorithm for computing completions in
the set constraint system. Analysis of the algorithm shows that
the set constraint system has unique minimal completions and that
the completions can be computed in O(n?) time in the size of the
original expression.

Section 6 briefly outlines extensions and restrictions of themain
result. We show that the set constraint system can be restricted to
have exactly the same power as dynamic typing, thereby precisely
characterizing its power with respect to other analyses based on
set constraints. We also consider a variation of dynamic typing
where coercions may appear at points other than value creations
and uses. (Wedo not consider induced coercions, another variation
on dynamic typing in Henglein's original work [Hen92a].) Finally,
we report that the set constraint system can beincorporated into the
most expressive system known for removing type tags, although in
this case there are no longer minimal completions and constraint
resol ution becomes inherently exponential.

Section 7 presents discussion of related work and a few con-
cluding remarks.

2 Dynamic Typing

The types of dynamic typing are generated by the following gram-
mar:
7= «a|Bool |Dynam c|r — 7' |fixa.T

In this grammar, « is a type variable and fix .7 denotes a
regular recursive type that is the solution of the equation a = 7.

Figure 2 gives the inference rules for dynamic typing aswell as
signatures for each of the primitive coercions. Each inference rule
allowsfor appropriate coercions at val ue creation and usage points.
For example, the hypothesis of [TRUE1] requires a coercion with
signature Bool ~» 7. The coercion BOOL! : Bool ~» Dynani c
satisfies this hypothesis. However, we also wish to alow a value
to remain untagged if possible. We introduce a new, improper
coercion NOOP with signature = ~» 7. Semantically, NOOP isthe
identity function. It is easy to verify that every use of coercions
in an inference rule admits NOOP and the one proper coercion
appropriate to that rule.

We briefly describe the function of each rule in Figure 3. The
[ASSUME]] ruleisstandard. The[ABS1] rule constructs alambda
abstraction and possibly tagsit. The coercions NOOP and FUNC!
can satisfy the hypothesis of [ABS1].

The [APP1] rule is interesting. The coercions NOOP and
FUNC? can satisfy the rule’s hypothesis. These two possible coer-
cions dictate the possible types for the function expression e. If the
coercion NOOP is used, then e has a function type — 7'. If the
coercion FUNC?isused, then e hastype Dynami c. Incther words,
the system all ows the check-and-untag operation to be omitted only
in the case that e is known to be an untagged function vaue. As
discussed in Section 1, if the function has type Dynami ¢ then the
argument and result must also have type Dynami c.

The coercions NOOP and BOOL ? can satisfy the hypothesis of
the[COND1] rule. The check-and-untag operation on the predicate
isonly omitted in the case that the predicateis provably an untagged
boolean value. Note that the two branches of the conditional are
required to have the same type; this restriction guarantees that the
values produced by the branches are either both tagged or both
untagged.

There is a final minor issue. According to our definition of
correctness, the fina result of evaluation of an expression must
yield atagged value, just as the canonical completion does. Thus,
we require that the conclusion of a complete derivation be A +p
e : Dynami c. Figure 3 gives a complete derivation of one of the
minimal completionsin Figure 1.

Az rfoair [ASSUME]
Aix:tkpe:t

C:i(r=1)~1"
AFp C (Aze): 1"

[ABS1]

AbFpe:T
A"]’)GIZT,
C:itr~ (1= 1")
AFp (Ce)e 7"

[APP1]

A"]’)EZT

Al—r)el:’r/

AFpe' 7

C : 7~ Bool
AFp (if (Ce)e' ") 7

[COND1]

C :Bool ~» 1

AFpCtrue:r [TRUE1]

C :Bool ~ 1
ArFp Cfalse:r

[FALSE1]

FUNC! (Dynam ¢ — Dynani ¢) ~ Dynami c
FUNC? Dynani ¢ ~ (Dynam ¢ — Dynami c)
BOOL! Bool ~» Dynami c

BOOL? Dynami ¢ ~» Bool

NOOP T~ T

Figure 2: Type rulesfor the dynamically typed lambda calculus.

BOOL! : Bool ~ Dynami c

z :Dynam c Fp BOOL!true : Dynani ¢

NOOP : Bool ~» Bool

FUNC! : Dynami ¢ — Dynamni ¢ ~ Dynami ¢

BOOL! : Bool ~ Dynami ¢

Fp» NOOPt r ue : Bool

Fp FUNC! (Az.BOOL!t rue) : Dynami c

Fp BOOL!fal se: Dynam c

NOOP : Bool ~» Bool

Fpif (NOOP (NOOPtr ue)) (FUNC! (Az.BOOL!true)) (BOOL! f al se): Dynam c

FUNC?: Dynani ¢ ~» Dynami ¢ — Dynani c

BOOL! : Bool ~ Dynani ¢
Fp BOOLIfal se: Dynam ¢

Fp (FUNC?i f (NOOP (NOOPt rue)) (FUNC! (Az.BOOL! t rue)) (BOOL! f al se)) (BOOL! f al se) : Dynamni ¢

Figure 3: -, derivation of an examplein Figure 1

3 A Subtyping System

Our goal is to explain dynamic typing using subtyping. At first
glance, there appears to be no problem. Thetype Dynami c clearly
plays arule akin to a universal type—a type of al values. Thus,
one expects that

7 < Dynami c

for al types 7.

However, there is a serious difficulty. Consider a conditional
if ee e andlete’ : Bool — Bool ande” : Dynamic —
Dynami c¢. Now, by subtyping Bool — Bool < Dynani ¢ and
Dynami ¢ — Dynami ¢ < Dynanmi ¢, and so we can conclude
that

ifee e :Dynanic

assuming e has type Bool . Unfortunately, this conclusion is un-
sound, because the two expressions e’ and e” have different be-
havior and cannot be used in the same context (e.g., e’ expects
an untagged argument and e” expects a tagged argument). Thus,
Bool — Bool < Dynanic and Dynanmi ¢ — Dynamic <
Dynami ¢ cannot both hold, so Dynami ¢ is anything but a uni-
versa type. In dynamic typing, Bool — Bool < Dynami c
does not hold; in this example, ¢/ must be coerced to have type
Dynani ¢ — Dynami c.

A different approach is needed to encode dynamic typing in a
subtyping system. The intuition behind our solution follows from
the definition of the semantic domain D:

D = ((D — D) + Bool) x (notag + tag)

A semantic value consists of two parts: the “rea” value and atag,
which is possibly absent. Thus, we represent types as pairs [, p],
where 7 is the structura part of the type and p represents the tag.
Formally, the types of our system are generated by the following
grammar:

o u= [mp]
m = al|o—o|Bool |[rUr [7N'|0
p u= pB|tag|notag|pup’

Types denote sets of values. For example, o — o' denotes the
set of functions mapping arguments of type o to results of typeo’.
The expressions = U " and = N = denote set-theoretic union and
intersection of types. The expression 0 represents non-termination
(formally, itistheset { L }) and istheleast type; i.e, 0N 7 = O and
0Um = = for any . For brevity, we skip the development of ideal
models needed to formalize types as sets of values; the construction
iswell-known (e.g., see [MPS84, AW93]).

Wework with systems of set constraints of thefollowing forms:

X C Y
Q # 0
Q # tagunotag

T#0 = QCR

Here X, Y stand for any expressions drawn from the grammar
above. @@ and R refer to tag expressions (grammar symbol p), T'
refers to type expressions (grammar symbol 7). The interpretation
of these constraints is conventional. Given aset S of constraints a
solution of S isamapping of variables to types such that all of the
constraints are simultaneously satisfied.

We do not include an explicit fixed point operator because re-
cursive constraints have equivalent power. Let X = Y denote the
pair of constraints X C Y and Y C X. For example, the set
of fully tagged values can be defined as the unique solution of the
recursive equation:

[, 8] = [([a; B] = [ex, B]) U Bool , t ag]

We use x to denote the set of fully tagged values. Similarly, the set
of al values (tagged and untagged) is the unique solution of:

[, B] = [([ev, B] = [, B]) U Bool ,t ag U not ag]

We use 1 to denote the set of all values.

Before presenting the inference rules, there are further details
meriting discussion. In the grammar for types, the intent is that a
variable o ranges over types of kind = and that a variable 3 ranges
over types of kind p. A standard mechanism for enforcing such
restrictions is to use a many-sorted algebra. However, it ispossible
to avoid the extra notational burden of many-sorted algebras by
using congtraints. Variables of kind « and 8 have the following
associated constraints:

a C (1-1)uUBool
s C tagunotag
B # 0

Thus, an o variable always denotes the structural part of atype and
af variable alwaysdenotest ag, not ag, or both. For conciseness,
these constraints are left implicit in inference rules and examples.

The inference rules and coercions for the set constraint system
are given in Figure 4. The system infers facts of theform A4, S 5
e : o. Informaly, the meaning of this derivation is that ¢ has the
type s(o) for every mapping s that is a solution of the constraints
S. The following lemma makes this precise.

z:[mpl, Sksa:[m,p [ASSUME?]

Az t[mpl, Skset[n', pf]
S'=Su{p’ £AtaguUnotag}
C:

k,not ag| ~ [, o] where k = [, p] = [x', ¢/} [AB52
A S Fs C (Are): [k p]
A/ Skse:|[m p]
A Skge i n,p']
x C ([«',p'] = [, ")) U (a 1 Bool)
§'=5s (anBool)#0=p=tag [APP2)
p #tagunotag
C : [k U (anBool), p] ~ [k,not ag] wherex = [7', p'] — [7", p"]
A S Fs (Ce)e :[x",p"]
A, Stse:n,p

A Stse :n,p']

A’ S l_S e/l [7['”,[)”]
m CBool U(an(1—1))

S=S5SU{l an(1—-1)#0=>p=tag [COND2]
p #tagunotag

C :[Bool U(an(1—1)),p]~ [Bool,notag]

A S Fs(if (Ce)ee):[run",p up’]

C : [Bool ,not ag] ~ [Bool , p]
S D {p#£taguUnotag} [TRUEZ]
A,SFs Ctrue:[Bool,p]

C : [Bool ,not ag] ~ [Bool , p]

S D {p#tagunotag} [FALSEZ2]
A,SFs Cfal se:[Bool,p]

FUNC! : [o — o',notag]~ [c = o', tag]

FUNC? : [(¢ — ¢')UBool ,tag]~ [0 — o¢',not ag]
BOOL! : [Bool,notag]~ [Bool ,tag]

BOOL? : [Bool U(1— 1),tag]~ [Bool ,notag]
NOOP : o~o

Figure 4: Type rules using set constraints.

BOOL! : [Bool , not ag] ~ [Bool ,t ag] BOOL! : [Bool , not ag] ~ [Bool ,t ag]
Fs BOOL!f al se : [Bool ,t ag] z : [Bool ,not ag] Fs BOOL!tr ue : [Bool ,t ag]
FUNC! : [k, not ag] ~ [r,t ag]
NOOP : [Bool , not ag] ~ [Bool , not ag] where k = [Bool , not ag] — [Bool ,t ag]
Fs NOOPt rue : [Bool , not ag] Fs FUNC! (Az.BOOL!tr ue) : [s,t ag]

NOORP : [Bool ,not ag] ~ [Bool ,not ag]
Fsif (NOOP(NOOPtrue)) (FUNC! (Az.BOOL!true)) (BOOL!fal se) : [« UBool ,t ag]
FUNC?: [([Bool ,not ag] — [Bool ,t ag]) U Bool ,t ag] ~» [[Bool ,not ag] — [Bool ,t ag], not ag]

NOORP : [Bool , not ag] ~ [Bool ,not ag]
Fs NOOPf al se : [Bool , not ag]

Fs (FUNC?i f (NOOP(NOOPt rue)) (FUNC! (Az.BOOL!true)) (BOOL! f al se)) (NOOPf al se) : [Bool ,t ag]

Figure5: s derivation of an examplein Figure 1

Lemma 3.1 (Soundness) Let A, S Fs e : o, let s be any solution
of the constraints S, and let v be the semantic value denoted by ¢ in
some environment E. If E(z) € s(A(z)) for every freevariable z
of e, thenv € s(o).

We will not prove this lemma, but instead briefly discuss each
rule. Note that coercions in this system affect the tag component
of atype. For example, the tagging coercions FUNC! and BOOL!
simply change atag from not ag tot ag. The inverse coercions
FUNC? and BOOL? both change the tag component from t ag
to not ag (reflecting the untagging of the value) and restrict the
structural component of the type (reflecting the possible values
after a successful type test).

The [ASSUMEZ] rule is straightforward. The [ABS2] rule is
the standard lambda abstraction rule, except that thetag p" depends
on thetype of thecoercion C'. If C isanimproper coercion NOOP :
[, not ag] ~ [k, not ag] then p" = not ag. If C isthe proper
coercion FUNC! : [k, not ag] ~ [«,t ag] then p” = tag. For
the coercion C' to be well-defined, the variable p must stand for
either t ag or not ag but not both. In all coercions, a constraint
p # tag U not ag isassociated with p.

The rule [APP2] illustrates the crux of our system. Consider an
application (C e) ¢’ andlete : [m,p] and e’ : [7', p']. Now, there
isno requirement that e be provably afunction—that is, = need not
be a function type. We want to know two things: (1) whether = is
guaranteed to be afunction type and (2) what function typesarein
«. The constraint

7 C (7', p'] = [7",p"]) U(anBool)

accomplishes both goals. Any solution of this constraint divides
the type = into its function values [r', p'] — [x"',p"] and non-
function valuesa N Bool . If a N Bool = 0inany solution of the
constraints, then the constraint simplifiesto

7 C [ﬂ_l’pl} N [7_‘_//“0//]

and thus 7 contains only functions, implying e can only evaluate to
function values by Lemma 3.1. However, if &N (Bool) # Oinall
solutions of the constraints, then we cannot guarantee statically that
m isafunction and it is necessary to test a runtime. The constraint

(enBool)#0=p=tag

forces the value to be tagged and the coercion in the application to
be FUNC? whenever m may contain non-functions.

The [COND?2] rule works analogoudly to the [APP2] rule. The
constraint # C Bool U (a N (1 — 1)) forces any non-boolean
valuestobeassigned to « inany solution. Thus, if aN(1 — 1) = 0,
the predicate is guaranteed to be aboolean. However, if a N (1 —
1) # 0, then the predicate may not be a boolean and dynamic type
checking isrequired. TheconstraintanN(1— 1) #0= p=tag
forces the value of the predicate to be tagged in this case.

There is another aspect of the [CONDZ2] rule worth noting.
Theinferred type [’ Un", p’ U p"'] potentially has both tagged and
untagged vaues(e.g., if p’ =t agandp” = not ag). Incontrastto
the situation with dynamic typing (see the beginning of the section),
thisissound. Only the [APP2] and [COND?2] rulesinspect tags and
both rules require the tag component to be exactly t ag. Values of
type [, t ag U not ag] can never satisfy the constraints. Thus, a
value of type [7,t ag U not ag] can be created, but never used.

A remaining detail is guaranteeing that the result of evaluation
produces a value in which all components of the type are tagged.
Recall that the type of fully tagged valuesis x. If thefinal type of
aprogram is o, then adding the constraint o C y forces the result
to be completely tagged. We can now state that the system infers
correct completions.

Lemma3.2 Let §,S s e : o where the system of constraints
S =8"U{o C x}isconsistent. Lete’ = erase(e). Thene isa
correct completion of e’.

Proof: [sketch] The previous discussion presents the proof infor-
mally. The forma argument uses soundness (Lemma 3.1) and the
form of the constraints to show that the completion has the same
meaning as the canonical completion. O

Figure 5 gives an example of a derivation in the set constraint
system of a term from Figure 1. The constraints are elided for
readability. The most interesting step in the derivation is at the
function abstraction, which creates a tagged function taking an
untagged argument.

4 Comparison

This section presents our main result: every completion derivablein
the dynamic typing system is derivable in the set constraint system.
The converse does not hold (see Figure 1), although we show in
Section 6 that the set constraint system can be restricted to have
exactly the same power as dynamic typing.

Because the two systems use different domains of types, we
reguire a trandation function. The function 7" maps types 7 to
typeso:

T(r—7) = [T(r)— T(r"),not ag]
T(Bool) = |[Bool ,notag]
T(Dynamic) = x
T(fixa.r) = solutionof [ma,pa] =T(7)
T(a) = [Ta,pal

A typevariable o istrandated to apair [, pa], Where o, and pa
are set variables uniquely associated with «.. We extend T to type
environments in the obvious way:

T(A;z:1) = T(A);z:T(1)
TWO) = 0

Note that T preserves tags; that is, 7' maps tagged types to
tagged types and untagged types to untagged types.

Theorem 4.1 Let e be an expression of the dynamicaly typed
lambda calculus and let A be atype environment. Then

Atpe:T = T(A),Skse:o
for some s C T'(7) and consistent system S of constraints.

Proof: Theproof isby induction onthestructure of thederivation
showing A Fp e : 7. We present this proof in detail.

1 Assume A;z : 7 Fp z : 7. Using rule [ASSUMEZ], it
follows immediately that

T(A),z:T(r),Sksz:T(r)
By the definition of T', we have
T(A;z:71),Skpx:T(1)
for any consistent system S of constraints.

2. Assume A bFp C (Aze) i 7. ThenAd;z 7 Fpe: 7
andC : (1 = 7') ~ 7". By induction, we know T'(A; z :
7),S ks e:owheres C T(r'), fromwhichit follows that

T(A);xz:T(r),Skse:o

To prove the result, we must show that
T(A),Sts CAz.e:[T(1) = a,p"]

for some choice of p” where the coercion C' has an appro-
priate type and [T'(1) — o, p"] C T(r"). The congtraints
p" #0Ap" #taguUnot agimplythat p” =tagVvyp”’ =
not ag. Thusthere are two subcases.
The first subcase is C = FUNC!, inwhichcase r = 7' =
= Dynani c. Thetag p" inthe [ABS2] inference rule
is not constrained to be either t ag or not ag. Therefore,
letting p" =t ag we have

FUNC! : [T(7) — o,not ag] ~ [T'(7) — o,t ag]

Since dl premises of the [ABS2] rule are satisfied, we con-
clude

T(A),S Fs FUNC! Az.e : [T(T) — o,t ag]

To complete this case, note that

[T(r) = o.tag]
C [T(r) — T(r"),tag] sinceo C T(7')
= [x — x.tag] definition of T
c x definition of x
= T(Dynam c) definition of T’
= T(")

The second subcase is C = NOOP, where "’ = 7 — .
Letting p” = not ag we have

NOOP: [T'(T) — a,not ag] ~ [T'(7) — o,not ag]
and, since the premises of [ABS2] are satisfied,
T(A),SFs NOOP Az.e : [T'(7) — o,not ag]
To complete this subcase, note that

[T(T) — o,not ag]

C [T(r) > T(r'),notag] sinces C T(7')
= T(r—1T1) definition of T
= T(r")

. Assumethat A -p (C e) e : 7''. By the premises of the
[APP1] rule, we know

AbFpe:T
Abpe 7
C:irt~ (=1

By induction, it follows that

T(A),Stse:[mp] where[m p] CT(r)
T(A),Skse :[n',p'] where[r' p] CT(r)

To prove the theorem, we must show that
T(A),S ks (Ce)e :[x",p"]

where [, p"] C T(r"), the coercion C' has an appropriate
type, and

7w C ([«',p'] = [x",p"]) U (a N Bool)
S'=85 (anBool)#0= p=tag
p #tagunotag

for some p", 7", and a where the constraints are satisfied.
As before, there are two subcases.

Thefirst subcaseisC = FUNC?. Thereforer = 7' = 7"/ =
Dynami c. Let [z, p"] = T(r") = x and let @ = Bool .
Furthermore, p = tag since [r,p] C T(7) = x. Since
a N Bool = Bool wehave

FUNC?: [x U (e N Bool),t ag] ~ [, not ag]
wherex = [7',p'] — [7", p"]

In addition, because p =t ag, the second constraint is satis-
fied. Tofinish the subcase, we show that the first constraint is
satisfied. The following argument uses the fact that function
types are anti-monotonic in the argument position; that is,
x Cyimpliesy -z Cxz — z.

w C ([0, p'] = [7", p"]) U (N Bool) o
< 7w C ([, p'] = x)U(Bool NBool) substitution
& 7mC ([2 ,p'] = x) UBool simplification
< (x) Bool C([«', p'] = x) U Bool

since[, p] C x
< (x = x)UBool C (x — x)UBool

since [7', p'] C x

Itfollowsthat A, S’ Fs (FUNC?e) &' : [n", p"].
Thesecond subcaseisC = NOOP. Thereforer = 7/ — 7.
Let[n",p"] = T(r")andleta = 0. Since[r, p] C T (7' —
7'") it followsthat p = not ag. Becausea N Bool = 0, we
have

NOORP: [k, not ag] ~ [k, not ag]

where s = [, p'] = [z, p""]

The second constraint is satisfied, also because o N Bool =
0. To seethat thefirst constraint is satisfied, note that

€ ([, p] = [, p"]) U (a1 Bool)

& 7 C ([0, p'] = T(r"))U(0NBool) substitution
& wClr,p - T(") simplification
< 7CT(r)—>T(") [#',p'] C T(r)
& [mp] C[T(r") = T(r"),not ag] p = not ag
< [mp|CT(r = 1") definition of T
& [mp] CT(7) assumption
& true by induction

It followsthat A, S’ ks (NOOPe) €' : [, p"].

4. Assume Abp (i f (Ce)e' e’): 1. Fromthe premises of

the [COND1] rule, we know
A l—n e.T
A l—n 6’ . Tl
AFpe 7
C : 7~ Bool
By induction, it follows that

T(A),Skse:[mp] CT(r)
T(A),Skse [n,p]CT(r)
T(A),Skse” [p"] CT(r")

Thus, to prove the result it suffices to show that
T(A),S Fsif (Ce)e e [ur",p up”

where [« U ©",p' U p""] C T(7"), the coercion C has an
appropriate type, and

w CBool U(anl—1)
S’—SU{ (eN(1—=1)#0=p=tag }

p #tagunotag

for some o that satisfies the constraints.

First note that p' = p”, because [',p'] C T(r') and
[#",p"] € T(r") and T(7') has the form [z,tag] or
[z, not ag]. Therefore,

[7'[" U 7T”7pl U pll] — [7'l'l7p/] U [ﬂ'”’p”} g T(T’)

The rest of the argument breaks into the usual two cases.
Assume C = BOOL?. ThenT =Dynami c. Leta =1 —
1. Because [, p] C T(7), it follows that [7, p] C x, SO
p=tag. Sincean(l1—1)=1— 1, wehave

BOOL?: [Bool U (1— 1),tag]~ [Bool ,not ag]

Showing the constraints are satisfied is very similar to the
corresponding subcase for application.

Now assume C = NOOP. Then r = Bool . Leta = 0.
Because [, p] C T'(7), it follows that = C Bool and p =
not ag. Sincea N (1 — 1) = 0, we have

NOORP : [Bool , not ag] ~ [Bool , not ag]

Again, showing the constraints are satisfied isvery similar to
the corresponding subcase for application.

5. Assume AtFp Ctrue: 7. If C =BOOL!, then
T(A),S ks true:[Bool ,tag]

satisfies the theorem for any consistent system of constraints
S. If C = NOOP, then

T(A),S ks true:[Bool ,not ag]

satisfies the theorem.

6. Assume A Fp C fal se : 7. Thiscase isthe same as the
casefortrue.

|
From thetheorem, weimmediately have thefollowing corollary.

Corollary 4.2 Let e be any closed term without coercions. If e’ is
acompletion of e derivablein-p, then e’ isalso derivableintg.

Proof: Follows from Theorem 4.1 and the fact that T preserves
tags. O

5 Computing Minimal Completions

Type inference for the system in Figure 4 can be implemented in
time®(n®) inthesizeof theexpression. Thebound istheworst case
and, in fact, we expect the algorithm performs significantly better
in practice, although it cannot be as efficient as the agorithms for
dynamic typing.

The algorithm is divided into four phases:

1. Constraint generation.
2. Constraint resolution.
3. Tag variable instantiation.

4. Program completion.

Thefirst phaseis straightforward. The proof systemin Figure 4
is run, but the coercions are left as unknowns. For the result of
each potential coercion, fresh variables (unknowns) are inserted.
The constraints are generated using fresh variables in every rule.
The solutions of the resulting system S of constraints for the entire
expression characterize al possible completions. This phase is
linear in the size of the expression.

To discover which completions are possible, it is necessary to
solvethe constraints. Figure 6 givesaset of rewriterulesthat, when
applied until closure (until no new constraints can be generated),
reduce a system of constraints to solved form. These constraint
resolution rules are essentially those of [MR85, Hei92, AW93]
specialized to our application. The soundness of these rules can
be proven using standard techniques (e.g., see [AW92, AW93]). In
Figure 6, x stands for an arbitrary type expression and -y stands for
an arbitrary variable.

Rules 10 and 11 of Figure 6 appear non-constructive, but are
actually easy to implement. For Rule 10, inthe process of rewriting
the constraint system it may be discovered that # # 0—due to
non-zero lower bounds on variables in 7—in which case the rule
can be applied. Once no constraints can be added, any remaining
implication constraints can be deleted using Rule 11. A detailed
justification is presented in [Hei92].

Rules 12 and 13 take advantage of the specia structure of con-
straints involving tag variables. Rule 12 expresses the fact that if
atag variable 3 is known to be a subset of t ag, then 3 = t ag,
since no tag variable can be 0. Rule 13 says that if 8 includes at
least t ag but not both t ag and not ag, then 3 =t ag. Note that
these special-purpose rules could be factored into a separate phase,
but it is convenient to present them as part of the overall constraint
resolution.

Constraint resolution is the most expensive phase. The rewrite
rules work only with pairs of subexpressions of the original con-
straint system. Thus, the rules can produce a most @ (n?) con-
straints, where origina system has size O(n). Each rule requires
constant time to apply, with the exception of Rule 9, which may
require O(n) time to examine dl the upper and lower bounds of a
variable. Thus, the entire resol ution process requires at most O (n®)
time.

Constraint resolution does not necessarily yield a unique com-
pletion, as some tag variables may be unconstrained. However, al
upper and lower bounds on variables in the resolved system are
explicit, soit is easy to discern the possible solutions by inspection
of the constraints. Let S bethe system of resolved constraints. The
third phase adds constraints to tag variables to produce a minimal
completion using the following rule:

If 3 CtagisnotinS,thenaddnotag C fto S (14)

This rule adds a lower-bound of not ag to al tag variables that
are not constrained to be equal to t ag. It is easy to see that if
not ag C A in any completion permitted by the constraints, then
not ag C A according to this rule. This observation proves the
existence of minimal completions for the set constraint system.
The tag instantiation phase requires inspection of the upper bound
of dl tag variables, which takestime O(n).

Constructing the completion of the program is easy. Each co-
ercion has a single tag variable p. Now, from the original con-
straints we know p # 0 (a constraint on al tag variables) and
p # tag unot ag (aconstraint on all tag variables in coercions).
Thus, either p =t ag or p = not aginevery solution. Ift ag C p,
thent ag = p (Rule 13). If t ag Z p, thennot ag C p (Rule 14).
Thus, each coercion is determined by the lower bound of its tag
variable.

SuU{0C o}

SU{[mpl C . 0T}

S U {o1— 02 C oy — 03}
Su{kUr' CxK"}

SU{sCr Nk}

SU{oc = o CmU(xNBool)}
Su{Bool CrU(kN1—1)}
SU{k Ck}

SU{k Cv,7Ck'}
SU{r#20=>kCk'}adS=>7#0
SU{rn#0=>rkCr'ladS# 7 #0
SU{B#0,4Ctag)

Su{B #tagunotag,tag C 5}

Figure 6: Rules for simplifying constraints.

= S)
= Su{rCx,pCyp} @
= SU{o1 Co1,02C o3} (3
= Su{kCk' K Ck"} 4)
= SU{kCx,kCk"} (5)
= SuU{o—o Cr} (6)
= SU{Bool C=})
= S (8)
= SU{sCrvCw . kCrk'} ©)
= SU{kC&k'} (20)
= S (11
= Suf{tag c g B Ctag} (12
= Suf{tagc g B Ctag} (13

Finaly, it is important to note that the constraints always have
at least one solution, namely mp = mp = ... =y and p1 = p2 =
... = tag. Thissolution produces the canonical completion—all
values are tagged.

6 Variations

Set congtraints are a very expressive and flexible framework for
specifying program analyses, making it quite easy to extend analy-
sesin various ways. This section discusses a number of variations
on the basic system we have presented. For space reasons, each
modification is described only briefly.

6.1 Dynamic Typing Revisited

Asdiscussed in Section 4, the set constraint system is strictly more
powerful than dynamic typing. To achieve exactly dynamic typing,
we must guarantee that whenever a tagged type arises, al compo-
nents of the type are also tagged. This condition is easy to express
with additional constraints. For eachtype [, p] usedinaderivation,
add a constraint:

(pNtag) #0=[m,p] =x

When applied to the type in the conclusion of [COND?2], this con-
straint also guarantees that the branches of a conditional are con-
sistently tagged. We state without proof that under these additional
constraints, a completion is s derivable if and only if it iskp
derivable.

While this observation gives an aternative characterization of
dynamic typing, it appears no more efficient to implement than the
more accurate version. Thus, while set constraints are expressive
enough to encode dynamic typing, one apparently cannot derive the
most efficient algorithms known for dynamic typing directly from
this encoding.

6.2 Coercions at Arbitrary Points

So far we have considered only coercions at value creation and
use points. Allowing coercions at arbitrary program points can

sometimes result in better completions. To permit coercions to
appear anywhere, theinference system must be altered to allow any
of the four proper coercions to be applied to any expression. That
is, the possible completions of each subexpression e are expressed
by
Crunc! (CBooL! (Crunc? (CBooL?¢)))

where C, is potentially either the coercion named = or NOOP.
For dynamic typing, where al components of tagged values are
tagged, it ispossibleto modify theinference rules and the constraint
resolution algorithm to handle coercions at arbitrary points.

6.3 Polymorphism

The semantics of polymorphic types based on set constraints has
been developed in [AWL94]. A polymorphic type has the form
V71, ..., 7n.(0 where S). Intuitively, thistype expresses bounded
quantification, with the set of constraints S acting as bounds on the
quantified variables. Moreformally, the meaning istheintersection
of all types s(o) where s isasolution of the constraints S for some
choice of v1,. .., Vn.

Polymorphism in the style of [AWL94] can be added to our
system without modifying any other aspect. Whentag variables are
quantified, the meaning of coercions is parameterized in the type.
In other words, types with quantified tag variables denote functions
polymorphic in their coercions.

6.4 Adding Control-Flow Information

The simple idea of modelling atype as a pair consisting of avalue
part and a tag part leads to a system where tag inference is largely
orthogonal to the inference of the structural part of the type. Thus,
the same technique should integrate easily into other systems for
anayzing dynamically typed programs. The systemin [AWL94] is
probably the most expressive and accurate such inference system
known. Besides polymorphism, the most significant difference
between [AWL94] and the system we have described is that types
in[AWL 94] can express control-flow through runtimetests. Thatis,
givenaconditional i f ee’ ¢”’, thetypesof e’ and e’ are constrained
to reflect the values for which e istrue and fal se respectively.

We can report that it is in fact straightforward to adapt the
techniquesreportedinthis paper to the system of [AWL94], yielding
a system that can both remove as many dynamic type checks as
[AWL94] and as many runtime tags as dynamic typing. We omit
all detailsfor lack of space. In this extended system, however, the
system nolonger has minimal compl etionsand constraint resolution
requires exponential timein the worst case.

7 Conclusions and Related Work

Thiswork ispart of alonger-term effort to investigate the principles
underlying constraint-based program analyses. We believe that set
constraints are a particularly useful formalism for expressing pro-
gram analyses, but our interest wasfirst aroused because it appeared
that dynamic typing could not be expressed using set constraints or
any other discipline using inclusion-based subtyping.

We have shown, however, that set constraints can encode dy-
namic typing, and in fact a substantial generalization of dynamic
typing is naturally expressed using set constraints. Our system also
has an efficient inference procedure. The flexibility and generality
of set constraints alows our system to be extended in a variety of
ways outlined in Section 6.

Based on our previous experience with constraint-based pro-
gram analysis, we believe the agorithm we have presented could
serve as the core of a practical analysis system for dynamically
typed programs. However, the prime candidates for this kind of
anadysis are programs written in Lisp and Scheme. Analyzing such
programs requires proper handling of side effects, an issue we have
not considered.

Besides previous work on program analysis using set con-
straints, Henglein’s work on dynamic typing is the most closely
related to our own. Henglein’s work is based, in turn, on earlier
works of Thatte and Gomard [Gom90] . Thatte originally worked
with a system called partial types [Tha38], in which types could
be coerced to a universal type, but not vice versa—a pure subtyp-
ing system. Coercions from type Dynami ¢ were introduced in a
subsequent paper [Tha90].

A large number of analysis algorithms for dynamically typed
languages have been proposed in recent years [Gom90, AM91,
CF91, Hen92b, WH92, WC94]. With the exception of the works of
Henglein, Thatte, and Gomard, it isfair to characterize all of these
as (inclusion-based) subtyping systems; none treat tag inference.
In this paper, we have shown how to combine expressive subtyp-
ing with the ability to infer minimal completions of tagging and
untagging operations.

8 Acknowledgements

Fritz Henglein's insights on constraint-based program analysis in
general and dynamic typing in particular were most helpful.

References
[Aik94] A. Aiken. Set congtraints: Results, applications, and
future directions. In Second Werkshop on the Principles
and Practice of Constraint Programming, pages 171—
179, Orcas Island, Washingtion, May 1994. Springer-
Verlag LNCS no. 874.

[AM91] A. Aiken and B. Murphy. Static type inference in a
dynamically typed language. |n Eighteenth Annhual ACM
Symposium on Principles of Programming Languages,

pages 279-290, January 1991.

[AW92]

[AW93]

[AWL94]

[CFo1]

[Gom90]

[Hei92]

[Hen924q]

[Hena2b]

[HJI90]

[MPS84]

[MR85]

[Thass]

[Thag0]

[WC94]

[WH92]

A. Aiken and E. Wimmers. Solving systems of set con-
straints. In Symposium on Logic in Computer Science,
pages 329-340, June 1992.

A. Aiken and E. Wimmers. Type inclusion constraints
and type inference. In Proceedings of the 1993 Con-
ference on Functional Programming Languages and
Computer Architecture, pages31-41, Copenhagen, Den-
mark, June 1993.

A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing
with conditional types. In Twenty-First Annual ACM
Symposium on Principles of Programming Languages,
pages 163-173, Portland, Oregon, January 1994.

R. Cartwright and M. Fagan. Soft typing. In Proceedings
of the ACM SSGPLAN ' 91 Conference on Programming
Language Design and Implementation, pages 278-292,
June 1991.

C. Gomard. Partial typeinference for untyped functional
programs (extended abstract). In Proceedingsof the 1990
ACM Conference on Lisp and Functional Programming,
pages 282—287, 1990.

N. Heintze. Set Based Program Analysis. PhD thesis,
Carnegie Mellon University, 1992.

F. Henglein. Dynamic typing. In Proceedings of the
Eurpean Symposium on Programming, February 1992.

F. Henglein. Global tagging optimization by type infer-
ence. In Proceedings of the 1992 ACM Conference on
Lisp and Functional Programming, pages 205-215, July
1992.

N. Heintze and J. Jaffar. A decision procedurefor aclass
of Herbrand set constraints. In Symposium on Logic in
Computer Science, pages 42-51, June 1990.

D. MacQueen, G. Plotkin, and R. Sethi. Anideal model
for recursive polymaophictypes. In Eleventh Annual ACM
Symposium on Principles of Programming Languages,
pages 165-174, January 1984.

P. Mishraand U. Reddy. Declaration-freetype checking.
In Proceedings of the Twelfth Annual ACM Symposium
on the Principles of Programming Languages, pages 7—
21, 1985.

S. Thatte. Typeinferencewith partial types. In Automata,
Languages and Programming: 15th International Col-
loquium, pages 615-629. Springer-Verlag Lecture Notes
in Computer Science, vol. 317, July 1988.

S. Thatte. Quasi-static typing. In Seventeenth Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 367-381, January 1990.

A. Wright and R. Cartwright. A practica soft typing
system for Scheme. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming, pages
250262, June 1994.

E. Wang and P. N. Hilfinger. Analysis of recursive types
in Lisp-likelanguages. In Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, pages
216-225, June 1992.

