
Composing Haggis

Sigbjørn Finne�and Simon Peyton Jones

Department of Computing Science, University of Glasgow,

Glasgow G12 8QQ, United Kingdom.

E-mail: fsof,simonpjg@dcs.glasgow.ac.uk

Abstract Haggis is a purely-functional, multi-threaded user interface framework

for composing interactive applications. It provides a compositional view of the

world of user interface applications, applying to all aspects of the interface the

principle of building a component from parts. Interactive components are viewed

as virtual I/O devices that are composed together to make up complete applications.

To fully support this style of programming, Haggis makes good use of the integral

features of Haskell, a lazy, purely-functional language. The resulting system offers

an extensible, modular and simple programming model for writing user interface

applications at a high level of abstraction.

Two key ingredients that Haggis relies on to provide its compositional style

are concurrency and monads, making it possible to write multi-threaded functional

programs that interact with the Real World comfortably.

1 Introduction

Writing and maintaining user interface software can be a trying experience. Established

software engineering habits such as the modularization of code into different parts and

the composition of these to make up a complete system, do not currently carry over to the

user interface domain [14]. The servitude that the non-user interface parts has to endure

under the tyranny of the event-loop is well known, but the frameworks provided for

programming the user interface are also lacking. Instantiating and fitting together pre-

fabricated user interface objects is in most cases not too hard, but constructing new first-

class abstractions within these user interface frameworks is not well supported. Rather

than building new components by composing existing ones together, the programmer

is forced to adopt a completely different and lower level model of programming. The

result of having to violate the black box properties of an interactive component is that

extending the range of interactive components becomes hard, and programmers stick

to the predefined set rather than try to build a component that best fit the interaction at

hand.

This paper presents and explores the compositional mechanisms of Haggis (permu-

tation of: A Glasgow Haskell Graphical user Interface System), a functional, multi-

threaded user interface framework being developed at the University of Glasgow. Its

salient features are:

� It is based on a functional language. The framework is implemented in Haskell

[9], a lazy, purely-functional language. Working in the context of a high level,

�Supported by Research Scholarship from the Norwegian Research Council

declarative language allow us to make full use of features such as composition,

higher-order functions, automatic storage management, static type checking, and

the use of monads to structure I/O (Section 2)

� It is compositional. The central idea in Haggis is to view the construction of

a user interface as a composition from parts. This compositional approach is

similar to the object-oriented approaches of Interviews [12], and more recently

Fresco [11], but differs in that Haggis provides a unified programming model

for writing both applications and new first-class interactive components. The

compositional mechanisms are described in detail in Section 3, and a discussion

of the relationship to other systems can be found in Section 6.

� It is extensible. One consequence of using a functional language to provide a

compositional style of programming is that writing an user interface application

becomes indistinguishable from creating a new user interface abstraction. User

defined abstractions are first-class and enjoy the same status as the primitive or

predefined components that Haggis happens to already have. Section 4 looks at

some of the standard ‘devices’, while Section 3 deals with the different techniques

for extending existing components.

� It is concurrent. To be able to treat user interface components as black boxes

that can be composed together, Haggis relies on the use of concurrency. It

is implemented in Concurrent Haskell [16], an extension of standard Haskell

with support for the dynamic creation of lightweight threads and, at the lowest

level, shared memory synchronization primitives. Section 3.3 looks at where

concurrency is required to maintain a compositional style, and briefly discusses

the powerful abstraction technique that the separation of a program into several

concurrently running threads offers for user interface applications in particular.

� Virtual I/O devices. Interactive objects are the medium by which application and

user interact. Haggis extends the metaphor of devices and device handles to such

objects, treating interactive components as virtual I/O devices where the user and

application can exchange information (Section 2.3)

2 Overview

Haskell [9] is the standard non-strict, purely-functional programming language, and

several high quality, freely available compilers already exist for it. It differs from mostly-

functional languages such as Lisp and SML, in that non-strict languages deliberately do

not specify evaluation order, and side-effecting constructs are outlawed.

2.1 Functional Input/Output

Avoiding side-effecting constructs in a functional language is attractive from a seman-

tical point of view, but until recently, at the cost of making the expression of stateful,

I/O-intensive programs complex and inefficient. The discovery of the applicability of

monads to functional programming [22] has, amongst other things, provided a frame-

work for writing interactive programs in a non-strict, purely-functional language. For

the purposes of this paper, a monad provides a functional framework for expressing

computations that side-effect without compromising features such as equational reason-

ing.

A monad introduces computations or actions as values, which can manipulated just

like any other value in the language. The fact that a value represents a monadic action

is reflected in its type. In the case of the monad used for I/O, such values have type IO

a. A value of type IO a represents an action that, when it is performed, may perform

some I/O operations before returning a value of type a (lower-case identifiers in type

expressions represent polymorphic type variables in Haskell.) So, in the case of simple

character I/O operations we have:

putc :: Char -> IO ()

getc :: IO Char

putc ’a’ is an action that, when performed, writes its argument to the standard

output. Similarly for getc, it reads a character from standard input and returns it.

Single actions are combined together to make up bigger ones using the following set of

basic combinators:

thenIO :: IO a -> (a -> IO b) -> IO b

seqIO :: IO a -> IO b -> IO b

returnIO :: a -> IO a

thenIO a1 (n x -> a2) joins up two actions in such a way that when performed,

the action a1 is executed first, binding its result to x before executing a2. seqIO is

similar, differing only in that the value returned by a1 is simply thrown away before

executing a2. returnIO is the simplest possible I/O action, as it performs none, just

returning the value it was passed!

Armed with these combining forms, I/O ‘scripts’ can be constructed by stringing

actions together. To illustrate, here is the functiongetLineIOwhich reads a line from

standard input (back quoting is the Haskell syntax for infix operators):

getLineIO :: IO String

getLineIO =

getc ‘thenIO‘ \ ch ->

if (ch==EOF) || (ch==’\n’) then

returnIO []

else

getLineIO ‘thenIO‘ \ ls ->

returnIO (ch:ls)

The standard input is read until either the end of file marker or a newline character is

encountered, at which point the list of characters on the line is returned. These scripts

of actions can be executed using the following two mechanisms:

� Through main :: IO (), which is the function that is first evaluated when a

Haskell program is run. It can be thought of as given the state of the Real World,

which it then proceeds to side-effect by executing a sequence of actions on it.

� In Concurrent Haskell [16], processes can be created dynamically using the

forkIO construct (forkIO :: IO () -> IO ().) It eagerly starts to

evaluate the action it is passed, concurrently with the context that executed the

forkIO action.

The key point of the IO monad is that the combinators thenIO and seqIO serialize

I/O operations. The evaluation order of the (side-effecting) actions becomes thus

fixed, admitting not only an efficient implementation [17], but allows I/O performing,

purely-functional programs to be expressed withoutsacrificing vital underlying language

properties. Monadic techniques are used when we really want to be explicit the order

that we want to perform actions on the outside world.

2.2 Monadic syntax

To aid a monadic style of programming, Haskell 1.3 introduces syntactic support that

provides a more familiar style than the Haskell infix notation used above. The syntactic

sugar is:

exp ! do f stmt g

stmt ! expr

j pat expr ; stmt

j expr ; stmt

j let decls ; stmt

where exp and pat belong to the syntactic classes of expressions and patterns, respec-

tively. The ‘thenIO‘ and ‘seqIO‘s are replaced by semicolons, and backarrows

are used to bind result values of I/O actions to patterns. As an example, consider this

‘sugared’ version of getLineIO:1

getLineIO :: IO String

getLineIO =

do

ch <- getc

if (ch==EOF) || (ch==’\n’) then

return []

else

ls <- getLineIO

return (ch:ls)

2.3 User interface devices

The monadic I/O model allows the Haskell programmer to express simple file I/O in

much the same way as you can in imperative languages, where it is the application

1Haskell’s layout rules is used here to actually avoid using semicolons and braces to disambiguate the

sequence of actions.

that drives the I/O. For example, a program that counts the number of characters in a

file would use a loop to read characters from the file one by one until the end of file

was reached. A useful advance introduced by UNIX was to present an interface to the

program that hid whether the input came from a file, another program or the keyboard.

Haggis extends this device abstraction to include user interface components. This

is not new and unique to Haggis [18], but this perspective differs distinctly from an

event-driven system. Changing the input of the character counting program in an

event-driven system to use a ‘virtual keyboard’ displayed on the screen would require

the program structure to be turned inside out. The interface drives the application.

Virtual key presses cause the invocation of action procedures/callbacks to increment

the counter; the callback for end of file has to induce whatever actions are meant to

follow the counting exercise. Not only is this structure undesirably different from the

‘conventional’ model, but it is non-compositional; how is a general-purpose counting

program supposed to know what to do when a end of file is reached ?

In Haggis user interface components are instead regarded as typed, virtual I/O

devices that can be queried, read, written, and closed, just like more conventional

ones. Each type of device supports the common set of operations plus a set of device-

specific operators, for example a label device supports the setting of a new string label.

Representing the interactive components as devices have some advantages:2

� Concrete representation. In the same way as opening a file returns a file descriptor

for the program to subsequently use to access a file, creating user interface

components return a handle to that virtual device. The handles to virtual devices

can be manipulated just like any other value, and new virtual devices can be

created by composing existing ones. As a result of the uniform representation,

a general-pirpose counting program can now easily be written, just passing it a

handle to a device where it can read characters from.

� Use of application control flow. The application is in control of the interaction

with the virtual devices, meaning that the application flow of control is used to

encode the state of the application. This is not the case in an event-driven system,

where the application state has to be explicitly updated and maintained between

different event handlers.

For each type of user interface device there is a function for creating an instance of

it; in the case of a push button:

mkButton :: String -> a -> Widget (Button a)

disable :: Button a -> Widget ()

pushB :: Widget (Button Bool)

pushB =

do

btn <- mkButton "On" True

disable btn

return btn

2We take the word ‘device’ to encompass both ‘normal’ devices and interactive components from here on.

mkButton "On" True creates a button device labelled On that will report the

boolean value True each time it has been selected. The handle that mkButton

returns, is used by the application to interact with it. In pushB, the button handle is

used immediately to disable interaction.

To hide the low level interaction with the underlying window system from the

programmer, a monadic abstraction, Widget, is introduced. A value of type Widget

a represents an action that when it is performed, may interact with the underlying

window system to create an interactive component, before returning a value of type a.

Hiding the idiosyncrasies of the window system from the programmer cleans up the

code, and avoids accidental ‘plumbing’ errors.

To make the metaphor of user interface components as virtual I/O devices work

in all but the simplest of cases, Haggis and the underlying language has to provide a

number of services:

� Asynchronous forwarding of events to the correct device. The character counting

program does not have to be built around an event-loop, as Haggis takes care of

forwarding events such as key presses to the virtual keyboard device. A program

operates concurrently, interacting with user interface devices only when it needs

to.

� Support for multi-threaded programming. The user normally interleaves interac-

tion between different parts of an interface. If the application has to repeatedly

check which device was last interacted with and then execute some appropriate

action in response, event-loops at the level of devices have effectively been in-

troduced. In Haggis, Concurrent Haskell’s [16] lightweight processes are used to

dynamically create processes to handle interaction with parts of the user interface.

In the character counting example, a separate process can be created to handle

interaction with the virtual keyboard, allowing other parts of the application to

continue independently.

2.4 Realizing interfaces

To use a device, a program first has to open it. Virtual, interactive devices are realized

or opened with wopen:

wopen :: Widget a -> IO (Window, a)

wopen (mkButton "On" True) creates a new top-level window containing a

button labelled On, and returns a handle to the button device. The Widget value can be

seen as a template, which wopen uses to create an instance inside a separate top-level

window.

The handle for the window returned by wopen is used to reconfigure or close the

top-level window, and as an example of how a virtual device can be incorporated into

an application, consider the definition of a dialogue box in Figure 1. The message box

alert consists of two buttons together with a label displaying a message (the operators

used to compose the dialogue box are presented at length in Section 3.) To use this alert

box abstraction in an application:

mkLabel :: String -> Widget Label

hBox :: Widget a -> Widget a

mkButton:: String -> a -> Widget (Button a)

space :: Int -> Widget ()

combineButtons :: [Button a] -> IO (Button a)

getValue :: Button a -> IO a

warning str = "Do you want to delete "++str++" ?"

alert :: String -> Widget (Button Bool)

alert str =

vBox (

do

space 5

mkLabel (warning str)

space 10

hBox (

do

space 10

yes <- mkButton "Yes" True

space 20

no <- mkButton "No" False

space 10

answer <- ioW (combineButtons [yes,no])

return answer))

Fig. 1: Alert dialogue box

safe_delete :: String -> IO ()

safe_delete fname =

do

(w,d) <- wopen (alert fname)

cfirm <- getValue d

closeWindow w

if cfirm then

deleteFile fname

else

return ()

Executing wopen causes the dialogue box on the right to appear on the screen.

The application then tries to read the user’s response to the delete request, demanding

a confirmation before possibly going ahead with the operation.3 This trivial example

3The example code shown here does not create a modal interaction. Other windows on the screen can still

be interacted with.

Fig. 2: Gas simulation chamber

highlights some features of Haggis:

� The dialogue box is built by composing together its constituent parts.

� Hiding window system details inside values of type Widget avoids esoterica at

the level of use, hence there is no need to plumb window system details through

the safe delete function.

� Since the delivery of events is performed behind the scenes by Haggis, the program

does not hand over control to a centralized run-time system like the event-loop

after creating the dialogue box. The safe delete action is free to continue to

execute its thread of actions, interacting with the dialogue box only when it has

to.

3 Composing the interface

Consider the user interface application in Figure 2, a toy simulation laboratory for

visualizing the interaction between atoms in a chamber. Selecting an item in the radio

group causes an atom of that type to be inserted into the chamber at a random location

with an arbitrary velocity vector. The user can interact with the atoms by grabbing

them and throwing them in a different direction, and the chamber can be cleared by

pressing a command button. This toy interface is constructed using three separate types

of composition:

� At the presentation level, the laboratory is composed out of two parts arranged

horizontally, the chamber and the control area. The control area is again con-

structed out of two separate units, each of which have further internal structure.

Physical composition and how Haggis supports the composition of the visual

aspects of a user interface is discussed in Section 3.1.

� The command button for clearing the chamber consist of a graphical output view

and a controller that attaches interactive behaviour to that view. The controller

catches mouse clicks and inverts the button view output and signals the comple-

tion of the button press by emitting a value via its device handle. Behavioural

composition deals with interactive behaviour and how it can be attached to virtual

I/O devices to augment or modify their existing behaviour (Section 3.2.)

� At an even deeper level than attributing interactive behaviour to graphical ele-

ments, the one-from-many choice provided by the radio group is also a compo-

sition. A set of buttons laid out in an arbitrary manner are combined to make

up a ‘bigger’ component that allows only one of them to be selected at a time.

Semantic composition is concerned with how handles to virtual devices can be

combined together, and how application semantic properties such as the exclusive

choice of the radio group can be attached to a device (Section 3.3.)

These three types of composition constitute the mechanisms that Haggis offers for

building complete user interface applications. We consider each in turn.

3.1 Physical composition

How might we go about describing the visual layout of a collection of components?

One way of describing it would be to have operators like:

beside :: [Widget a] -> Widget [a]

beside takes a list of components, and aligns them all horizontally. The value returned

by each component are collected into a list and returned. Unfortunately, this forces all

the components laid out withbeside to have uniform type. Haskell is a statically typed

language, so even if beside does not inspect the values returned by its components,

elements of the list have to be uniformly typed. The result is too tight a binding between

interface and application, the physical layout demanding that only components of same

type can be arranged. Instead of forcing the programmer to manually coerce the values

of the widgets into a common type, we make Widget a a monadic type. Operations

similar to those provided for gluing I/O actions are provided, this time working on

Widget actions:

thenW :: Widget a -> (a -> Widget b) -> Widget b

seqW :: Widget a -> Widget b -> Widget b

returnW :: a -> Widget a

thenW w1 (n x -> w2) combines two widget values together to create a larger

component, such that when it is realized, w1 is created first, binding its returning value

to x before creating w2. The default appearance of this composite component is w1

stacked on top of w2 in a pile:4

4Adopting the syntactic sugar of Section 2.2 to describe actions of type Widget from here on.

pile :: Widget ()

pile =

do

mkDiamond 50

mkCircle 25

row :: Widget ()

row = hBox pile

When pile is realized, a window with a diamond on top of a circle is created, as shown

in the left figure. The combinators thenW and seqW allow arbitrary components to

be piled on top of each other, including, of course, other piles. To get different visual

layouts, a pile of components can be constrained by encapsulating it in a container. A

container spreads the pile out flat, rearranging the components according to the layout

scheme it is implementing. The row widget applies the hBox container to the pile,

pulling the circle out from underneath the rectangle in the original pile and aligns them

horizontally, as seen on the right. Upon resize of the box, the hBox container will

calculate the new sizes for its children and resize them accordingly, so whatever internal

layout the container has, is hidden from the outside.

What about the coupling between interface and application? The drawback with an

operator likebeside is avoided because the combining together of widgets is separated

from attaching a particular layout scheme. Components of different type can be put

together in a pile using thenW and seqW, and if required, later be encapsulated with a

container like hBox.

Arbitrary layout schemes can be enforced via the encapsulation of Widgets inside

containers, but by far the most common class of such layout schemes are the tiling

operators. Haggis provides a set of tiling combinators based on the TEX model of boxes

and glue:

hBox, vBox :: Widget a -> Widget a

pHBox, pVBox :: Length -> Widget a -> Widget a

A pile of widgets is aligned vertically by vBox to construct a box which externally

appears as one component. Resizing the VBox causes the components to be resized,

distributing the change in size between them. The combinators pHBox and pVBox

provide the equivalent of the nparbox construct in TEX, constraining the length of a

box along its axis.

Inter-component void is captured through the componentspacewhich has no func-

tionality except from laying claim to some screen real estate. The relative willingness

of components to both stretch and shrink is finely adjustable through the setting of

attributes similar to TEX’. A more substantial example of physical composition is the

alert dialogue shown in Figure 1, having the layout structure shown in Figure 3.

For the buttons, an HBox is used to place them on a horizontal line, taking care to

space them properly. This box is treated as a single component by VBox, using only

the overall geometry of the line to compute the layout and size of the dialogue box. The

structure of the code in Figure 1 reflects quite closely the layout of the realized dialogue

HBoxSpaceSpace Label

VBox

SpaceButtonSpace Button Space

Fig. 3: Layout hierarchy of dialogue box

box, and a good estimate of how a component will be laid out can often be derived

simply by looking at the code.

The construction of the physical presentation of a complete interface is achieved in

Haggis by repeatedly encapsulating piles of widgets inside containers. A composite

component is first-class as seen in the dialogue box example, where an HBox was used

on equal terms with a primitive label inside a VBox.

3.2 Behavioural composition

To make the interface come alive, we need to be able to attach interactive behaviour to

the components that were composed physically in the previous Section. Behavioural

composition is concerned with building new components by adding to or modifying

the interactive behaviour of an existing component. The push button of the example

in Section 3 was constructed by encapsulating a basic output view inside a controller

that catches and translates a mouse click into commands to highlight the output view.

A user action such as a key press is ignored by the button controller and just passed

on to the view. The basic construct for adding interactive behaviour to a component is

encapsulate:

encapsulate :: (a -> Controller b)

-> Widget a

-> Widget b

mkGlyph :: Picture -> Widget Glyph

button :: String -> a -> Widget (Button a)

button str val =

encapsulate (bCtrl)

(mkGlyph (frame str))

where

bCtrl :: Glyph -> Controller (Button a)

View

bCtrl

Button

encapsulate (ctrl) comp constructs a new component where the control-

ling function ctrl is put on top of component comp, intercepting all external actions

performed on it. The command button is the encapsulation of a view inside the controller

bCtrl, as shown on the right. The controller is passed the handle to the view, so that

upon seeing mouse clicks it uses the handle to ask the view to change its current output.

Note that the type of encapsulate is general in that any value of type Widget a

can be encapsulated, not just simple views. As an example of this, a controller that

interprets mouse clicks could also be attached to a general text editing device, so as to

allow the mouse to be used for operations such as cursor movement and cutting and

pasting.

The controller is also responsible for providing and maintaining an application view

of the constructed device. Normally, the encapsulation of a device creates not just a

device with modified or augmented interactive behaviour, but also returns a new type of

device handle back. bCtrl returns a handle to a button device handle that provides the

application interface to the new component, i.e. the application can change the button

label or listen for button clicks via this handle.

The basic encapsulation or delegation mechanism does not specify how to express

the controller itself. Different approaches to specifying interactive behaviour can be

accommodated, such as the generic interactors used by [8, 13], where default behaviour

can be overridden and adapted to fit context of use, or higher level notations such as

the UAN [6]. Haggis does not dictate the manner in which the controllers should

be expressed, but we are currently experimenting with an approach similar to that

of Interactors[13], where the different types of interactions possible using mouse and

keyboard are enumerated. As an example, a simple push button is an instance of a

trigger, an abstract interaction object that will emit a value when some condition is met.

3.3 Semantic composition

Using the techniques of the previous two sections, hierarchies describing the behaviour

and physical layout of interactive devices can easily be constructed. However, the story

does not by any means end there. The motivating example in Section 3 used a radio

group to provide the selection of an atom type. To express this one-from-many choice

externally as a device, the hierarchical, top-down techniques of previous sections do not

suffice. Using a controller to encapsulate the items in a one-from-many group wouldn’t

be a very good solution, for a couple of reasons. Firstly, the controller would have

to fix the layout of the items of the group in order to be able to map events such as

mouse clicks to individual items. Secondly, it would have to impose the same selection

mechanism across all items, making it hard to combine items with different interaction

behaviours together in a group. While these restrictions would not be such a high price

to pay for a radio group, this top-down solution forces the controller to deal with issues

of layout, behaviour and semantics all at once.

Picking an item from many is an operation at the semantic level of devices. The

radio group will in response to output reported on any of the item handles, update its

current selection and turn off the highlighting of the previous selection. In the case

of button devices, this composition or merging of devices to create a composite one is

performed by combineButtons:

combineButtons :: [Button a] -> IO (Button a)

radio:: [Button Int]

-> IO (Button Int)

radio ds =

do

cdev <- combineButtons ds

forkIO (rCtrl Nothing ds cdev)

return cdev

rCtrl :: Maybe Int

-> [Button Int]

-> Button Int

-> IO ()

rCtrl state ds cdev =

do

val <- getValue cdev

case state of

Nothing ->

rCtrl (Just v) ds cdev

Just v ->

if val==v then

rCtrl (Just v) ds cdev

else

do

deactivate (devs!v)

rCtrl (Just val) ds cdev

dev1 dev2 dev3

t1t1 t2 t3

cdev

radio

rCtrl

Fig. 4: Exclusive choice group

combineButtons takes a list of button device handles and returns a single one. This

new device operates by echoing the values that the individual devices output, and is

implemented by attaching a separate thread to each device. Each thread is a simple

loop that runs independently, reading values from a button device using getValue and

forwards them to the combined one. The combined device does not implement a radio

group though, as the output from a device does not cause the previously selected item

in the group to become de-selected. The exclusive semantics of the group can readily

be attached though, the code implementing it can be seen in Figure 4.

radio takes a list of button devices which have been laid out in some manner,

and for simplicity let us assume the numbers which the items output correspond to

their position in the list (The restriction in type and value is made here to simplify the

code somewhat, more expressive types would normally be used.) radio creates a

combined device and a process to keep track of the current selection in the radio group,

deactivating the previous selection whenever it sees a new one. This is illustrated on the

right hand side, where devices are represented as squares and the threads that operate

on them are pictured as circles. This example of an exclusive choice shows up some

interesting points about Haggis:

� The representation of user interface components as virtual I/O devices was used

to compose, using Haskell, a new device by combining existing ones (The imple-

mentation for combineButtons is not shown here, but it is of the same length

and complexity to that of the exclusive definition above.)

� The construction of the radio group is not coupled to the user interface at all, as

the radio function is just an I/O action. The one-from-many choice is now just

the merging of input from a set of sources, taking care of notifying input devices

that they have become unselected.

� Attaching the exclusive function to the combined device is an example of how

application semantics can be linked into the user interface. By having a separate

process executing exclusive, the invariant of only allowing one item to be

selected is actively and independently maintained. Constructing an application in

Haggis can be seen as the repeated use of such semantic composition to link larger

and larger pieces of the application into the user interface. Using concurrency, the

large and perhaps complex structure of these components can be hidden, as the

computation required in response to user interaction will be handled independently

to the rest of the application. The result is a modular and extensible application

that is not centred around a single event loop.

4 Standard devices

Using the compositional mechanisms just presented, a number of common user inter-

face abstractions have been constructed. To give a flavour of how they appear to the

programmer, here are some of the type signatures:

mkSlider :: Widget (Slider Float)

mkHScrollbar :: Float -> Widget (Scrollbar)

mkField :: String -> Widget Field

mkViewport :: Size -> Widget a -> Widget (a, Viewport)

catchMouseEv :: Widget a -> Widget (a, Mouse)

scaleW :: (Float,Float) -> Widget a -> Widget a

mkPopup :: Widget a -> Widget (a, Popup)

printerW :: Widget a -> Widget (a, Printer)

The combinator printerW encapsulates an arbitrary component for printing, so

that when the action printW printer "dump.ps"

printW :: Printer -> String -> IO ()

is executed, a PostScript5 [1] representation of the current graphical output for the

encapsulated component is generated. This is made possible by the device-independent

2D graphics model used to describe graphical output [4], where pictures are described

by composing parts, similar to that of [7, 20].

5PostScript is trademark of Adobe Systems Incorporated.

5 Implementation

Haggis is operational and currently only available for internal use at Glasgow. It

will eventually be released as part of the Glasgow Haskell Compiler(ghc), which is

available on a wide range of UNIX platforms.6 Haggis runs under the X Window system

(interfaces with Xlib), and uses the concurrency features supported by ghc.

Internally, concurrency is used to structure tasks such as the delivery of events,

redisplay and the provision of servers to manage resources such as fonts and colours to

provide a more convenient and declarative interface to the underlying window system.

The windowing model is similar to Fresco’s [11], and heavy use is made of lightweight

display objects based on glyphs [2], which, in X terms, do not have a window associated

with them. A consequence of having such a ‘windowless’ windowing model is that

updates cannot be done by issuing drawing requests to X asynchronously, since a

widget could be obscured by others. Rather than having a global redisplay thread which

takes care of damage repair, Haggis distributes clipping regions to each component, so

that asynchronous redisplay becomes possible.

6 Related Work

Haggis’ use of composition as the main programming glue is to some degree used by

Fresco [11]. Built on top of class-based, object oriented languages, Fresco provides a

set of common user interface abstractions together with a fixed collection of operators

for combining them. Composition and delegation is used to construct the graphical

parts of a user interface, so building new abstractions by composing existing ones is

possible. However, the model of composition does not extend to the interactive domain,

creating new objects requires the abstraction that interactive components represents to

be broken and the class hierarchy to be manually extended. Haggis differs in that it tries

to provide a uniform programming model where the construction of a user interface

is inseparable from the construction of new components. This uniform representation

of the world is similar to LiveWorld [21], a prototype-based graphical programming

system for experimenting with active objects. It has a uniform object model based on

recursive containment, so the hierarchies constructed are similar to what Haggis creates.

Although the two systems explore largely different issues, Haggis extends the use of

hierarchical composition beyond the interface, providing semantic operations such as

combineButtons.

The extension of the device abstraction to incorporate interactive components is also

used by Acme [18], a concurrent window system that provide access to its windows via a

file system interface. The resulting system has a simple, uniform application interface to

the windowing capabilities, making its presence almost transparent to the programmer.

Haggis is most closely related to eXene [5], a multi-threaded framework written in

Concurrent ML(CML) [19]. The use of concurrency to structure both the underlying

implementation and application is common for both systems, but the current implemen-

tation of Haggis has a less fine-grained use of processes.

6Available by anonymous ftp from ftp://ftp.dcs.glasgow.ac.uk/pub/haskell/

Other functional approaches (notably Fudgets [3]) have been evaluated well else-

where [15]; Haggis differs from these in its use of concurrency and monads to structure

interaction with the outside world. Representing user interface components as virtual

I/O devices is also a distinguishingfeature, and the result is a cleaner separation between

interface and application.

7 Conclusions and Future Work

We have in this paper presented Haggis, a compositional approach to user interface

construction, describing the various forms of programmer glue that Haggis provides.

Interactive components are treated like virtual I/O devices, and three different ways of

composing them together were presented:

� Physical composition. - the presentational side of an application is described by

arranging components in a layout hierarchy.

� Behavioural composition. - augmenting the interactive behaviour by encapsulat-

ing components inside a controlling layer.

� Semantic composition. - building larger semantic units by composing handles of

different interactive components. Requires support for concurrency.

One area of further work is to look into ways of defining relationships between

different types of interactive devices and operations over them. Haskell’s type classes

[9] are not expressive enough for defining these relationships, and we are currently

investigating how the more powerful type system of constructor classes [10] can be put

to use. Alas, it is out of the scope of this paper to go into detail here.

Haggis is operational and one near term goal is to release the system for others to try

and evaluate. Although the emphasis is on providing a framework which is extensible

through composition of parts, we recognize that a common set of interaction objects has

to be provided, and a set of such abstractions is under development.

Currently, Haggis is being used in a compiler environment, and one natural direction

of further work would be to integrate Haggis into an interpreter for Haskell, offering

a more powerful environment for quickly prototyping and developing user interface

applications by combining components together to make up complete applications.

References

[1] Adobe Systems Inc. PostScript languagereferencemanual. Addison Wesley, secondedition,

1990.

[2] Paul R. Calder and Mark A. Linton. Glyphs: Flyweight objects for user interfaces. In ACM

Symposium on User Interface Software and Technology, pages 92–101, 1990.

[3] Magnus Carlsson and Thomas Hallgren. FUDGETS – a graphical user interface in a lazy

functional language. In Proceedings of the 6th ACM Conference on Functional Programming

and Computer Architecture, pages 321 – 330. ACM Press, 1993.

[4] Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple structured graphics model. In

Glasgow Functional Programming Workshop, Ullapool, July 1995.

[5] Emden W. Gansner and John H. Reppy. eXene. In Proceedings of the 1991 CMU Workshop

on SML, October 31 1991.

[6] H. R. Hartson, A. Siochi, and D. Hix. The UAN: A user-oriented representation for direct

manipulation interface designs. ACM Transactions on Information Systems, 8(3):181–203,

June 1990.

[7] Peter Henderson. Functional geometry. In ACM Symposium on LISP and Functional

Programming, pages 179–187, 1982.

[8] Tyson R. Henry, Scott E. Hudson, and Gary L. Newell. Integrating gesture and snapping

into a user interface toolkit. In Proceedings of UIST’90, pages 112–121, 1990.

[9] Paul Hudak et al. Report on the programming language haskell version 1.2. ACM SIGPLAN

Notices, 27(5), May 1992.

[10] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order

polymorphism. In Proceedings of the 6th ACM Conference on Functional Programming

and Computer Architecture, Copenhagen, June 1993. ACM Press.

[11] Mark Linton and Chuck Price. Building distributed user interfaces with fresco. In Proceed-

ings of the Seventh X Technical Conference, pages 77–87, Boston, MA, January 1993.

[12] Mark A. Linton, J.M. Vlissides, and P.R. Calder. Composing user interfaces with InterViews.

IEEE Computer, 22(2):8–22, February 1989.

[13] Brad A. Myers. A new model for handling input. ACM Transactionson Information Systems,

8(2):289–320, July 1990.

[14] Brad A. Myers. Why are human-computer interfaces difficult to design and implement?

Technical Report CMU-CS-93-183, School of Computer Science, Carnegie-Mellon Univer-

sity, July 1993.

[15] Rob Noble and Colin Runciman. Functional languages and graphical user interfaces -

a review and a case study. Technical Report 94-223, Department of Computer Science,

University of York, February 1994.

[16] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In ACM

Symposium on the Principles of Programming Languages, St. Petersburg Beach, Florida,

January 1996.

[17] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In ACM

Conference on the Principles of Programming Languages, pages 71 – 84. ACM Press,

January 1993.

[18] Rob Pike. Acme: A user interface for programmers. In Proceedings of the Winter 1994

USENIX Conference, pages 223–234, San Fransisco, 1994.

[19] John H. Reppy. CML: A higher-order concurrent language. Proceedings of the ACM

SIGPLAN’91 Conference on Programming Language Design and Implementation, pages

293–305, 1991.

[20] Roger Took. Surface interaction: A paradigm and model for separating application and

interface. In Proceedings of the CHI’90, pages 35–42, April 1990.

[21] Michael Travers. Recursive interfaces for reactive objects. In Proceedingsof CHI’94, pages

379–385, Boston, MA, April 24-28 1994.

[22] Philip Wadler. The essence of functional programming. In Proceedings of the ACM SIG-

PLAN 19th Annual Symposium on Principles of Programming Languages, January 1992.

Invited talk.

