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Abstract

Many compilers do some of their work by means of correctness-preserving, and hope-

fully performance-improving, program transformations. The Glasgow Haskell Compiler

(GHC) takes this idea of \compilation by transformation" as its war-cry, trying to express

as much as possible of the compilation process in the form of program transformations.

This paper reports on our practical experience of the transformational approach to

compilation, in the context of a substantial compiler.

The paper appears in the Proceedings of the European Symposium on Programming,

Linkoping, April 1996.

1 Introduction

Using correctness-preserving transformations as a compiler optimisation is a well-established

technique (Aho, Sethi & Ullman [1986]; Bacon, Graham & Sharp [1994]). In the functional

programming area especially, the idea of compilation by transformation has received quite

a bit of attention (Appel [1992]; Fradet & Metayer [1991]; Kelsey [1989]; Kelsey & Hudak

[1989]; Kranz [1988]; Steele [1978]).

A transformational approach to compiler construction is attractive for two reasons:

� Each transformation can be implemented, veri�ed, and tested separately. This leads

to a more modular compiler design, in contrast to compilers that consist of a few huge

passes each of which accomplishes a great deal.

� In any framework (transformational or otherwise) each optimisation often exposes new

opportunities for other optimisations | the \cascade e�ect". This makes it di�cult

to decide a priori what the best order to apply them might be. In a transformational

setting it is easy to \plug and play", by re-ordering transformations, applying them

more than once, or trading compilation time for code quality by omitting some. It

allows a late commitment to phase ordering.

This paper reports on our experience in applying transformational techniques in a particularly

thorough-going way to the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. [1993]), a

compiler for the non-strict functional language Haskell (Hudak et al. [1992]). Among other
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things this paper may serve as a useful jumping-o� point, and annotated bibliography, for

those interested in the compiler.

A pervasive theme is the close interplay between theory and practice, a particularly satisfying

aspect of functional-language research.

2 Overview

Haskell is a non-strict, purely functional language. It is a relatively large language, with a

rich syntax and type system, designed for full-scale application programming.

The overall structure of the compiler is conventional;

1. The front end parses the source, does scope analysis and type inference, and translates

the program into a small intermediate language called the Core language. This latter

stage is called de-sugaring.

2. The middle consists of a sequence of Core-to-Core transformations, and forms the sub-

ject of this paper.

3. The back end code-generates the resulting Core program into C, whence it is compiled

to machine code (Peyton Jones [1992]).

To exploit the advantages of compilation by transformation mentioned above, we have worked

particularly hard to move work out of the front and back ends | especially the latter | and

re-express it in the form of a transformation. We have taken the \plug and play" idea to

an extreme, allowing the sequence of transformation passes to be completely speci�ed on the

command line.

In practice, we �nd that transformations fall into two groups:

1. A large set of simple, local transformations (e.g. constant folding, beta reduction).

These transformations are all implemented by a single relatively complex compiler pass

that we call the simpli�er. The complexity arises from the fact that the simpli�er tries

to perform as many transformations as possible during a single pass over the program,

exploiting the \cascade e�ect". (It would be unreasonably ine�cient to perform just one

at a time, starting from the beginning each time.) Despite these e�orts, the result of one

simpli�er pass often still contains opportunities for further simpli�er transformations,

so we apply the simpli�er repeatedly until no further transformations occur (with a set

maximum to avoid pathological behaviour).

2. A small set of complex, global transformations (e.g. strictness analysis, specialising

overloaded functions), each of which is implemented as a separate pass. Most consist

of an analysis phase, followed by a transformation pass that uses the analysis results

to identify appropriate sites for the transformation. Many also rely on a subsequent

pass of the simpli�er to \clean up" the code they produce, thus avoiding the need to

duplicate transformations already embodied in the simpli�er.

Rather than give a super�cial overview of everything, we focus in this paper on three aspects

of our compiler that play a key role in compilation by transformation:
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Program Prog ! Bind

1

; : : : ; Bind

n

n � 1

Binding Bind ! var = Expr Non-recursive

j rec var

1

= Expr

1

; : : : ; var

n

= Expr

n

Recursive n � 1

Expression Expr ! Expr Atom Application

j Expr ty Type application

j \ var

1

: : :var

n

-> Expr Lambda abstraction

j /\ tyvar

1

: : : tyvar

n

-> Expr Type abstraction

j case Expr of { Alts } Case expression

j let Bind in Expr Local de�nition

j con var

1

: : :var

n

Constructor n � 0

j prim var

1

: : :var

n

Primitive n � 0

j Atom

Atoms Atom ! var Variable

j Literal Unboxed Object

Literals Literal ! integer j 
oat j : : :

Alternatives Alts ! Calt

1

; : : :; Calt

n

; Default n � 0

j Lalt

1

; : : :; Lalt

n

; Default n � 0

Constr. alt Calt ! Con var

1

: : :var

n

-> Expr n � 0

Literal alt Lalt ! Literal -> Expr

Default alt Default ! NoDefault

j var -> Expr

Figure 1: Syntax of the Core language

� The Core language itself (Section 3).

� Two groups of transformations implemented by the simpli�er, inlining and beta reduc-

tion (Section 4), and transformations involving case expressions (Section 5).

� One global transformation pass, the one that performs and exploits strictness analysis

(Section 6).

We conclude with a brief enumeration of the other main transformations incorporated in GHC

(Section 7), and a summary of the lessons we learned from our experience (Section 8).

3 The Core language

The Core language clearly plays a pivotal role. Its syntax is given in Figure 1, and consists

essentially of the lambda calculus augmented with let and case.

3



Though we do not give explicit syntax for them here, the Core language includes algebraic data

type declarations exactly as in any modern functional programming language. For example,

in Haskell one might declare the type of trees thus:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

This declaration implicitly de�nes constructors Leaf and Branch, that are used to construct

data values, and can be used in the pattern of a case alternative. Booleans, lists, and tuples

are simply pre-declared algebraic data types:

data Boolean = False | True

data List a = Nil | Cons a (List a)

data Tuple3 a b c = T3 a b c -- One for each size of tuple

Throughout the paper we take a few liberties with the syntax: we allow ourselves in�x

operators (e.g. E1 + E2), and special syntax for lists ([] for Nil and in�x : for Cons), and

tuples (e.g. (a,b,c)). We allow multiple de�nitions in a single let expression to abbreviate

a sequence of nested let expressions, and often use layout instead of curly brackets and

semicolons to delimit case alternatives. We use an upper-case identi�er, such as E, to denote

an arbitrary expression.

3.1 The operational reading

The Core language is of course a functional language, and can be given the usual denotational

semantics. However, a Core program also has a direct operational interpretation. If we are to

reason about the usefulness of a transformation we must have some model for how much it

costs to execute it, so an operational interpretation is very desirable.

The operational model for Core requires a garbage-collected heap. The heap contains:

� Data values, such as list cells, tuples, booleans, integers, and so on.

� Function values, such as \x -> x+1 (the function that adds 1 to its argument).

� Thunks (or suspensions), that represent suspended (i.e. as yet unevaluated) values.

Thunks are the implementation mechanism for Haskell's non-strict semantics. For example,

consider the Haskell expression f (sin x) y. Translated to Core the expression would look

like this:

let v = sin x

in f v y

The let allocates a thunk in the heap for sin x and then, when it subsequently calls f, passes

a pointer to the thunk. The thunk records all the information needed to compute its body,

sin x in this case, but it is not evaluated before the call. If f ever needs the value of v it

will force the thunk which provokes the computation of sin x. When the thunk's evaluation

is complete the thunk itself is updated (i.e. overwritten) with the now-computed value. If f

needs the value of v again, the heap object now contains its value instead of the suspended

computation. If f never needs v then the thunk is not evaluated at all.

The two most important operational intuitions about Core are as follows:
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1. let bindings (and only let bindings) perform heap allocation. For example:

let v = sin x

in

let w = (p,q)

in

f v w

Operationally, the �rst let allocates a thunk for sin x, and then evaluates the let's

body. This body consists of the second let expression, which allocates a pair (p,q) in

the heap, and then evaluates its body in turn. This body consists of the call f v w, so

the call is now made, passing pointers to the two newly-allocated objects.

In our implementation, each allocated object (be it a thunk or a value) consists only

of a code pointer together with a slot for each free variable of the right-hand side of

the let binding. Only one object is allocated, regardless of the size of the right-hand

side (older implementations of graph reduction do not have this property). We do not

attempt to share environments between thunks (Appel [1992]; Kranz et al. [1986]).

2. case expressions (and only case expressions) perform evaluation. For example:

case x of

[] -> 0

(y:ys) -> y + g ys

The operational understanding is \evaluate x, and then scrutinise it to see whether

it is an empty list, [], or a Cons cell of form (y:ys), continuing execution with the

appropriate alternative".

case expressions subsume conditionals, of course. The Haskell expression if C E1 E2

is de-sugared to

case C of {True -> E1; False -> E2}

The syntax in Figure 1 requires that function arguments must be atoms

1

(that is, variables

or literals), and now we can see why. If the language allowed us to write

f (sin x) (p,q)

the operational behaviour would still be exactly as described in (1) above, with a thunk and

a pair allocated as before. The let form is simply more explicit. Furthermore, the let form

gives us the opportunity of moving the binding for v elsewhere, if that turns out to be desirable,

which the apparently-simpler form does not. Lastly, the let form is more economical, because

many transformations on let expressions (concerning strictness, for example) would have to

be duplicated for function arguments if the latter were non-atomic.

It is also important to note where atoms are not required. In particular, the scrutinee of a

case expression is an arbitrary expression, not just an atom. For example, the following is

quite legitimate:

1

This syntax is becoming quite widely used (Ariola et al. [1995]; Flanagan et al. [1993]; Flanagan et al.

[1993]; Launchbury [1993]; Peyton Jones [1992]).
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case (reverse xs) of { ... }

Operationally, there is no need to build a thunk for reverse xs and then evaluate it; rather,

we can simply save a return address and call reverse xs. Again, the operational model

determines the syntax.

3.2 Polymorphism

Like any compiler for a strongly-typed language, GHC infers the type of every expression

and variable. An obvious question is: can this type assignment be maintained through the

translation to the Core language, and through all the subsequent transformations that are

applied to the program? If so, both transformations and code generator might (and in GHC

sometimes do) take advantage of type information to generate better code.

In a monomorphic language the answer is a clear \yes", but matters are not initially so

clear in a polymorphic setting. The trouble is that program transformation involves type

manipulation. Consider, for example, the usual composition function, compose, whose type

is

compose :: 8��
:(� ! 
)! (�! �)! �! 


The function might be de�ned like this in an untyped Core language:

compose = \f g x -> let y = g x in f y

Now, suppose that we wished to unfold a particular call to compose, say

compose show double v

where v is an Int, double doubles it, and show converts the result to a String. The result

of unfolding the call to compose is an instance of the body of compose, thus:

let y = double v in show y

Now, we want to be able to identify the type of every variable and sub-expression, so we must

calculate the type of y. In this case, it has type Int, but in another application of compose

it may have a di�erent type. All this is because its type in the body of compose itself is

just a type variable, �. It is clear that in a polymorphic world it is insu�cient merely to

tag every variable of the original program with its type, because this information does not

survive across program transformations.

What, then, is to be done? Clearly, the program must be decorated with type information in

some way, and every program transformation must be sure to preserve it. Deciding exactly

how to decorate the program, and how to maintain these decorations correctly during trans-

formation, seemed rather di�cult at �rst. We �nally realised that an o�-the-shelf solution

was available, namely the second-order lambda calculus (Girard [1971]; Reynolds [1974]).

The idea is that every polymorphic function, such as compose has a type abstraction for each

universally-quanti�ed polymorphic variable in its type (�; �; and 
 in the case of compose),

and whenever a polymorphic function is called, it is passed extra type arguments to indicate

the types to which its polymorphic type variables are to be instantiated. The de�nition of

compose now becomes:

compose = /\a b c ->

\f::(b->c) g::(a->b) x::a ->

let y::b = g x in f y
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The function takes three type parameters (a, b and c), as well as its value parameters f, g and

x. The types of the latter can now be given explicitly, as can the type of the local variable

y. A call of compose is now given three extra type arguments, which instantiate a, b and c

just as the \normal" arguments instantiate f, g and x. For example, the call of compose we

looked at earlier is now written like this:

compose Int Int String show double v

It is now simple to unfold this call, by instantiating the body of compose with the supplied

arguments, to give the expression

let y::Int = double v in show y

Notice that the let-bound variable y is now automatically attributed the correct type.

In short, the second-order lambda calculus provides us with a well-founded notation in which

to express and transform polymorphically-typed programs. It turns out to be easy to intro-

duce the extra type abstractions and applications as part of the type inference process.

Other compilers for polymorphic languages are beginning to carry type information through

to the back end, and use it to generate better code. Shao & Appel [1995] use type information

to improve data representation, though the system they describe is monomorphic after the

front end. Our implementation uses type abstractions and applications only to keep the

compiler's types straight; no types are passed at runtime. It is possible to take the idea

further, however, and pass types at runtime to specialise data representations (Morrison et

al. [1991]), give fast access to polymorphic records (Ohori [1992]), guide garbage collection

(Tolmach [1994]). The most recent and sophisticated work is Harper & Morrisett [1995].

4 Inlining and beta reduction

Functional programs often consist of a myriad of small functions | functional programmers

treat functions the way C programmers treat macros | so good inlining is crucial. Compilers

for conventional languages get 10-15% performance improvement from inlining (Davidson

& Holler [1988]), while functional language compilers gain 20-40%

2

(Appel [1992]; Santos

[1995]). Inlining removes some function-call overhead, of course, but an equally important

factor is that inlining brings together code that was previously separated, and thereby often

exposes a cascade of new transformation opportunities. We therefore implement inlining in

the simpli�er.

We have found it useful to identify three distinct transformations related to inlining:

Inlining itself replaces an occurrence of a let-bound variable by (a copy of) the right-hand

side of its de�nition. Notice that inlining is not limited to function de�nitions; any

let-bound variable can potentially be inlined. (Remember, though, that occurrences

of a variable in an argument position are not candidates for inlining, because they are

constrained to be atomic.)

Dead code elimination discards let bindings that are no longer used; this usually occurs

when all occurrences of a variable have been inlined.

2

This di�erence may soon decrease as the increased use of object-oriented languages leads to �ner-gained

procedures (Calder, Grunwald & Zorn [1994]).
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Beta reduction replaces (\x->E) A by E[A/x]. (An analogous transformation deals with

type applications.)

Beta reduction is particularly simple in our setting. Since the argument A is bound to be

atomic, there is no risk of duplicating a redex, and we can simply replace x by A throughout

E. There is a worry about name capture, however: what if A is also bound in E? We avoid this

problem by the simple expedient of renaming every identi�er as we go, which costs little extra

since we have to construct a new, transformed expression anyway. Whilst beta reduction is

simple, inlining is more interesting.

4.1 Simple inlining

It is useful to distinguish two cases of inlining:

WHNFs. If the variable concerned is bound to a weak head normal form (WHNF) | that

is, an atom, lambda abstraction or constructor application | then it can be inlined

without risking the duplication of work. The only down-side might be an increase in

code size.

Non-WHNFs. Otherwise, inlining carries the risk of loss of sharing and hence the duplica-

tion of work. For example,

let x = f 100 in ...x...x...

it might be be unwise to inline x, because then f 100 would be evaluated twice instead

of once. Informally, we say that a transformation is W-safe if it guarantees not to

duplicate work.

In the case of WHNFs everything is as one would expect. The trade-o� is between code size

and the bene�t of inlining and, like any compiler, we have a variety of heuristics (but no

formal analysis) for deciding when a function is \small enough" to inline. Many functions are

\small", though, and code size can actually decrease when they are inlined, both because the

calling code is eliminated, and also because of other consequential transformations that are

exposed.

The other sorts of WHNF, an atom or constructor application, is always small enough to

inline. (Recall that constructor applications must have atomic arguments.)

For non-WHNFs, attention focuses on how the variable is used. If the variable occurs just

once, then presumably it is safe to inline it. Our �rst approach was to perform a simple

occurrence analysis that records for each variable how many places it is used, and use this

information to guide the inlinings done by the simpli�er. There are three complications with

this naive approach.

The �rst is practical. As mentioned earlier, the simpli�er tries to perform as many transfor-

mations as possible during a single pass over the program. However, many transformations

(notably beta reduction and inlining itself) change the number of occurrences of a variable.

Our current solution to this problem is to do a great deal of book-keeping to keep occurrence

information up to date. (Appel & Jim [1996] does something similar.)
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The second complication is that a variable may occur multiple times with no risk of duplicating

work, namely if the occurrences are in di�erent alternatives of a case expression. In this case,

the only issue to consider is the tradeo� between code size and inlining bene�t.

Lastly, inlining based on naive occurrence counting is not W-safe! Consider this expression:

let x = f 100

g = \y -> ...x...

in ...(g a)...(g b)...

If we replace the single occurrence of x by (f 100) we will recompute the call to f every time

g is called, rather than sharing it among all calls to g. Our current solution is conservative:

we never inline inside a lambda abstraction. It turns out, though, that this approach is

sometimes too conservative. In higher-order programs where lots of inlining is happening, it

is not unusual to �nd functions that are sure to be called only once, so it would be perfectly

safe to inline inside them.

4.2 Using linearity

Because of these complications, the book-keeping required to track occurrence information

has gradually grown into the most intricate and bug-prone part of the simpli�er. Worse, work-

duplication bugs manifest themselves only as performance problems, and may go unnoticed

for a long time

3

. This complexity is especially irritating because we have a strong intuitive

notion of whether a variable can be \used more than once", and that intuitive notion is

an invariant of W-safe transformations. That suggests that a linear type system would be

a good way to identify variables that can safely be inlined, even though they occur inside

lambdas, or that cannot safely be inlined even though they (currently) occur only once. Just

as all transformations preserve the ordinary typing of an expression (Section 3.2) so W-safe

transformations preserve the linear type information too, and hence guarantee not to duplicate

work.

Unfortunately, most linear type systems are inappropriate because they do not take account

of call-by-need evaluation. For example, consider the expression

let x = 3*4

y = x+1

in y + y

Under call by need evaluation, even though y is evaluated many times, x will be evaluated

only once. Most linear systems would be too conservative, and would attribute a non-linear

type to x as well as y, preventing x from being inlined.

Thus motivated, we have developed a linear type system that does take account of call by

need evaluation (Wadler & Turner [1995]). The type system assigns a type of Int

!

to y in

the above example, the superscript ! indicating that y might be evaluated more than once.

However, it assigns a type of Int

1

to x, indicating that x can be evaluated at most once, and

hence can W-safely be inlined.

The type system is capable of dealing with \usage polymorphism". For example, consider

3

One such bug caused the compiler, which is of course written in Haskell, to rebuild its symbol table from

scratch every time a variable was looked up in the table. The compiler worked perfectly, albeit somewhat

slowly, and it was months before we noticed (Sansom [1994])!
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this de�nition of apply:

apply f x = f x

In a particular application (apply g y), whether or not y is used more than once depends

on whether g uses its argument more than once. So the type of apply is

4

8u; v :8�; �:(�

u

! �

v

)! �

u

! �

v

The two occurrences of �

u

indicate that the usage u of g's argument is the same as that of y.

Our implementation of this linear type system is incomplete, so we do not yet have practical

experience of its utility, but we are optimistic that it will provide a systematic way of ad-

dressing an area we have only dealt with informally to date, and which has bitten us badly

more than once.

5 Transforming conditionals

Most compilers have special rules to optimise conditionals. For example, consider the expres-

sion

if (not x) then E1 else E2

No decent compiler would actually negate the value of x at runtime! Let us see, then, what

happens if we simply turn the transformation handle. After de-sugaring the conditional, and

inlining the de�nition of not, we get

case (case x of {True -> False; False -> True}) of

True -> E1

False -> E2

Here, the outer case scrutinises the value returned by the inner case. This observation

suggests that we could move the outer case inside the the branches of the inner one, thus:

case x of

True -> case False of {True -> E1; False -> E2}

False -> case True of {True -> E1; False -> E2}

Notice that the originally-outer case expression has been duplicated, but each copy is now

scrutinising a known value, and so we can make the obvious simpli�cation to get exactly what

we might originally have hoped:

case x of

True -> E2

False -> E1

Both of these transformations are generally applicable. The second, the case-of-known-

constructor transformation, eliminates a case expression that scrutinises a known value.

This is always a Good Thing, and many other transformations are aimed at exposing oppor-

tunities for such case elimination. We consider another useful variant of case elimination in

Section 5.3. The �rst, which we call the case-of-case transformation, is certainly correct in

general, but it appears to risk duplicating E1 and/or E2. We turn to this question next.

4

In fact, for the purposes of this paper we have simpli�ed the type a little.
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5.1 Join points

How can we gain the bene�ts of the case-of-case transformation without risking code dupli-

cation? A simple idea is to make local de�nitions for the right-hand sides of the outer case,

like this:

case (case S of {True -> R1; False -> R2}) of

True -> E1

False -> E2

=)

let e1 = E1; e2 = E2

in case S of

True -> case R1 of {True -> e1; False -> e2}

False -> case R2 of {True -> e1; False -> e2}

Now E1 and E2 are not duplicated, though we incur instead the cost of implementing the

bindings for e1 and e2. In the not example, though, the two inner cases are eliminated,

leaving only a single occurrence of each of e1 and e2, so their de�nitions will be inlined

leaving exactly the same result as before.

We certainly cannot guarantee that the newly-introduced bindings will be eliminated, though.

Consider, for example, the expression:

if (x || y) then E1 else E2

Here, || is the boolean disjunction operation, de�ned thus:

|| = \a b -> case a of {True -> True; False -> b}

De-sugaring the conditional and inlining || gives:

case (case x of {True -> True; False -> y}) of

True -> E1

False -> E2

Now applying the (new) case-of-case transformation:

let e1 = E1 ; e2 = E2

in case x of

True -> case True of {True -> e1; False -> e2}

False -> case y of {True -> e1; False -> e2}

Unlike the not example, only one of the two inner cases simpli�es, so only e2 will certainly

be inlined, because e1 is still mentioned twice:

let e1 = E1

in case x of

True -> e1

False -> case y of {True -> e1; False -> E2}

The interesting thing here is that e1 plays exactly the role of a label in conventional compiler

technology. Given the original conditional, a C compiler will \short-circuit" the evaluation of

the condition if x turns out to be True generating code like:

if (x) {goto l1};

if (y) {goto l1};
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goto l2;

l1: ...code for E1...; goto l3

l2: ...code for E2...

l3: ...

Here, l1 is a label where two possible execution paths (if x is True or if x is False and y

is True) join up; we call it a \join point". That suggests in turn that our code generator

should be able to implement the binding for e1, not by allocating a thunk as it would usually

do, but rather by simply jumping to some common code (after perhaps adjusting the stack

pointer) wherever e1 is subsequently evaluated. Our compiler does exactly this. Rather than

somehow mark e1 as special, the code generator does a simple syntactic escape analysis to

identify variables whose evaluation is certain to take place before the stack retreats, and

implements their evaluation as a simple adjust-stack-and-jump. As a result we get essentially

the same code as a C compiler for our conditional.

Seen in this light, the act of inlining E2 is what a conventional compiler might call \jump

elimination". A good C compiler would probably eliminate the jump to l2 thus:

if (x) {goto l1};

if (y) {goto l1};

l2: ...code for E2...

l3: ...

l1: ...code for E1...; goto l3

Back in the functional world, if E1 is small then the inliner might decide to inline e1 at its

two occurrences regardless, thus eliminating a jump in favour of a slight increase in code size.

Conventional compilers do this too, notably in the case where the code at the destination of

a jump is just another jump, which would correspond in our setting to E1 being just a simple

variable.

The point is not that the transformations achieve anything that conventional compiler tech-

nology does not, but rather that a single mechanism (inlining), which is needed anyway, deals

uniformly with jump elimination as well as its more conventional e�ects.

5.2 Generalising join points

Does all this work generalise to data types other than booleans? At �rst one might think

the answer is \yes, of course", but in fact the modi�ed case-of-case transformation is simply

nonsense if the originally-outer case expression binds any variables. For example, consider

the expression

f (if b then B1 else B2)

where f is de�ned thus:

f = \as -> case as of {[] -> E1; (b:bs) -> E2}

De-sugaring the if and inlining f gives:

case (case b of {True -> B1; False -> B2}) of

[] -> E1

(b:bs) -> E2
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But now, since E2 may mention b and bs we cannot let-bind a new variable e2 as we did

before! The solution is simple, though: simply let-bind a function e2 that takes b and/or

bs as its arguments. Suppose, for example, that E2 mentions bs but not b. Then we can

perform a case-of-case transformation thus:

let e1 = E1; e2 = \bs -> E2

in case b of

True -> case B1 of {[] -> e1; (b:bs) -> e2 bs}

False -> case B2 of {[] -> e1; (b:bs) -> e2 bs}

All the inlining mechanism discussed above for eliminating the binding for e2 if possible works

just as before. Furthermore, even if e2 is not inlined, the code generator can still implement

e2 e�ciently: a call to e2 is compiled to a code sequence that loads bs into a register, adjusts

the stack pointer, and jumps to the join point.

This goes beyond what conventional compiler technology achieves. Our join points can now

be parameterised by arguments that embody the di�erences between the execution paths that

led to that point. Better still, the whole setup works for arbitrary user-de�ned data types,

not simply for booleans and lists.

5.3 Generalising case elimination

Earlier, we discussed the case-of-known-constructor transformation that eliminates a case

expression. There is a useful variant of this transformation that also eliminates a case

expression. Consider the expression:

if null xs then r else tail xs

where null and tail are de�ned as you might expect:

null = \as -> case as of {[] -> True; (b:bs) -> False}

tail = \cs -> case cs of {[] -> error "tail"; (d:ds) -> ds}

After the usual inlining we get:

case (case xs of {[] -> True; (b:bs) -> False}) of

True -> r

False -> case xs of

[] -> error "tail"

(d:ds) -> ds

Now we can do the case-of-case transformation as usual, giving after a few extra steps:

case xs of

[] -> r

(b:bs) -> case xs of

[] -> error "tail"

(d:ds) -> ds

Now, it is obvious that the inner evaluation of xs is redundant, because in the (b:bs) branch

of the outer case we know that xs is certainly of the form (b:bs)! Hence we can eliminate

the inner case, selecting the (d:ds) alternative, but substituting b for d and bs for ds:

case xs of

[] -> r

13



(b:bs) -> bs

We will see another application of this form of case elimination in Section 6.1.

5.4 Summary

We have described a few of the most important transformations involving case expressions,

but there are quite a few more, including case merging, dead alternative elimination, and

default elimination. They are described in more detail by Santos [1995] who also provides

measurements of their frequency.

Like many good ideas, the case-of-case transformation | limited to booleans, but including

the idea of using let-bound variables as join points | was incorporated in Steele's Rabbit

compiler for Scheme (Steele [1978]). We re-invented it, and generalised it for case expressions

and parameterised join points. let-bound join points are also extremely useful when desug-

aring complex pattern matching. Lacking join points, most of the standard descriptions are

complicated by a special FAIL value, along with special semantics and compilation rules, to

express the \joining up" of several execution paths when a pattern fails to match (Augustsson

[1987]; Peyton Jones [1987]).

6 Unboxed data types and strictness analysis

Consider the expression x+y, where x and y have type Int. Because Core is non-strict, x and

y must each be represented by a pointer to a possibly-unevaluated object. Even if x, say, is

already evaluated, it will still therefore be represented by a pointer to a \boxed" value in the

heap. The addition operation must evaluate x and y as necessary, unbox them, add them,

and box the result.

Where arithmetic operations are cascaded we would like to avoid boxing the result of one

operation only to unbox it immediately in the next. Similarly, in the expression x+x we

would like to avoid evaluating and unboxing x twice.

6.1 Exposing boxing to transformation

Such boxing/unboxing optimisations are usually carried out by the code generator, but it

would be better to �nd a way to express them as program transformations. We have achieved

this goal as follows. Instead of regarding the data types Int, Float and so on as primitive,

we de�ne them using algebraic data type declarations:

data Int = I# Int#

data Float = F# Float#

Here, Int# is the truly-primitive type of unboxed integers, and Float# is the type of unboxed


oats. The constructors I# and F# are, in e�ect, the boxing operations. (The # characters

are merely cues to the human reader; the compiler treats # as part of a name, like any other

letter.) Now we can express the previously-primitive + operation thus:

+ = \a b -> case a of

I# a# -> case b of

14



I# b# -> case a# +# b# of

r# -> I# r#

where +# is the primitive addition operation on unboxed values. You can read this de�nition

as \evaluate and unbox a, do the same to y, add the unboxed values giving r#, and return a

boxed version thereof".

Now, simple transformations do the Right Thing to x+x. We begin by inlining + to give:

case x of

I# a# -> case x of

I# b# -> case a# +# b# of

r# -> I# r#

But now the inner case can be eliminated (Section 5.3), since it is scrutinising a known value,

x, giving the desired outcome:

case x of

I# a# -> case a# +# a# of

r# -> I# r#

Similar transformations (this time involving case-of-case) ensure that in expressions such as

(x+y)*z the intermediate result is never boxed. The details are given by Peyton Jones &

Launchbury [1991], but the important points are these:

� By making the Core language somewhat more expressive (i.e. adding unboxed data

types) we can expose many new evaluation and boxing operations to program transfor-

mation.

� Rather than a few ad hoc optimisations in the code generator, the full range of trans-

formations can now be applied to the newly-exposed code.

� Optimising evaluation and unboxing may itself expose new transformation opportuni-

ties; for example, a function body may become small enough to inline.

6.2 Strictness analysis

Strictness analysers attempt to �gure out whether a function is sure to evaluate its argument,

giving the opportunity for the compiler to evaluate the argument before the call, instead of

building a thunk that is forced later on. There is an enormous literature on strictness analysis

itself, but virtually none explaining how to exploit its results, apart from general remarks that

the code generator can use it. Our approach is to express the results of strictness analysis

as a program transformation, for exactly the reasons mentioned at the end of the previous

section.

As an example, consider the factorial function with an accumulating parameter, which in

Haskell might look like this:

afac :: Int -> Int -> Int

afac a 0 = a

afac a n = afac (n*a) (n-1)

Translated into the Core language, it would take the following form:

15



one = I# 1#

afac = \a n -> case n of

I# n# -> case n# of

0# -> a

n#' -> let a' = n*a; n' = n-one

in afac a' n'

In a naive implementation this function sadly uses linear space to hold a growing chain of

unevaluated thunks for a'.

Now, suppose that the strictness analyser discovers that afac is strict in both its arguments.

Based on this information we split it into two functions, a wrapper and a worker thus:

afac = \a n -> case a of I# a# -> case n of I# n# -> afac# a# n#

one = I# 1#

afac# = \a# n# -> let n = I# n#; a = I# a#

in case n of

I# n# -> case n# of

0# -> a

n#' -> let a' = n*a; n' = n-one

in afac a' n'

The wrapper, afac, implements the original function by evaluating the strict arguments and

passing them unboxed to the worker, afac#. The wrapper is also marked as \always-inline-

me", which makes the simpli�er extremely keen to inline it at every call site, thereby e�ectively

moving the argument evaluation to the call site.

The code for the worker starts by reconstructing the original arguments in boxed form, and

then concludes with the original unchanged code for afac. Re-boxing the arguments may be

correct, but it looks like a weird thing to do because the whole point was to avoid boxing the

arguments at all! Nevertheless, let us see what happens when the simpli�er goes to work on

afac#. It just inlines the de�nitions of *, -, and afac itself; and applies the transformations

described earlier. A few moments work should convince you that the result is this:

afac# = \a# n# -> case n# of

0# -> I# a#

n'# -> case (n# *# a#) of

a1# -> case (n# -# 1#) of

n1# -> afac# a1# n1#

Bingo! afac# is just what we hoped for: a strict, constant-space, e�cient factorial function.

The reboxing bindings have vanished, because a case elimination transformation has left

them as dead code. Even the recursive call is made directly to afac#, rather than going

via afac | it is worth noticing the importance of inlining the wrapper in the body of the

worker, even though the two are mutually recursive. Meanwhile, the wrapper afac acts as

an \impedance-matcher" to provide a boxed interface to afac#.
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6.3 Data structures

We have found it very worthwhile to extend the strictness analyser a bit further. Suppose we

have the following function de�nition:

f :: (Int,Int) -> Int

f = \p -> E

It is relatively easy for the strictness analyser to discover not only f's strictness in the pair

p, but also f's strictness in the two components of the pair. For example, suppose that the

strictness analyser discovers that f is strict both in p and in the �rst component of p, but not

in the second. Given this information we can transform the de�nition of f into a worker and

a wrapper like this,

f = \p -> case p of (x,y) -> case x of I# x# -> f# x# y

f# = \x# y -> let x = I# x#; p = (x,y)

in E

The pair is passed to the worker unboxed (i.e. the two components are passed separately),

and so is the �rst component of the pair.

We soon learned that looking inside (non-recursive) data structures in this way exposed a new

opportunity: absence analysis. What if f does not use the second component of the pair at all?

Then it is a complete waste of time to pass y to f# at all. Whilst it is unusual for programmers

to write functions with arguments that are completely unused, it is rather common for them

to write functions that do not use some parts of their arguments. We therefore perform

both strictness analysis and absence analysis, and use the combined information to guide the

worker/wrapper split.

Matters are more complicated if the argument type is recursive or has more than one con-

structor. In these cases we are content simply to evaluate the argument before the call, as

described in the next section.

Notice the importance of type information to the whole endeavour. The type of a function

guides the \resolution" of the strictness analysis, and the worker/wrapper splitting.

6.4 Strict let bindings

An important, but less commonly discussed, outcome of strictness analysis is that it is possible

to tell whether a let binding is strict; that is, whether the variable bound by the let is sure

to be evaluated in the body. If so there is no need to build a thunk. Consider the expression:

let x = R in E

where x has type Int, and E is strict in x. Using a similar strategy to the worker/wrapper

scheme, we can transform to

case R of { I# x# -> let x = I# x# in E }

As before, the reboxing binding for x will be eliminated by subsequent transformation. If x

has a recursive or multi-constructor type then we transform instead to this:

case R of { x -> E }
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This expression simply generates code to evaluate R, bind the (boxed) result to x and then

evaluate E. This is still an improvement over the original let expression because no thunk is

built.

6.5 Summary

Strictness analysis, exploited via unboxed data types, is a very worth while analysis and

transformation. Even the relatively simple analyser we use improves execution time by 10{

20% averaged across a wide range of programs (Peyton Jones & Partain [1993]).

7 Other GHC transformations

We have focused so far on three particular aspects of GHC's transformation system. This

section brie
y summarises the other main transformations performed by GHC:

The simpli�er contains many more transformations than those described in Sections 4 and

5. A full list can be found in Peyton Jones & Santos [1994] and Santos [1995]; the latter

also contains measurements of the frequency and usefulness of each transformation.

The specialiser uses partial evaluation to create specialised versions of overloaded functions.

Let-
oating is a group of transformations that concern the placement of let bindings, and

hence determine where allocation occurs. There are three main let-
oating transforma-

tions:

� Floating inwards moves bindings as near their site of use as possible.

� The full laziness transformation 
oats constant sub-expressions out of lambda ab-

stractions (Hughes [1983]; Peyton Jones & Lester [1991]); it generalises the stan-

dard idea of loop-invariant code motion (Aho, Sethi & Ullman [1986]).

� Local let-
oating �ne-tunes the location of each let binding.

Details of all three are given by Peyton Jones, Partain & Santos [1996], along with

detailed measurements. Let-
oating alone gives an average improvement in execution

time of around 15%.

Eta expansion is an unexpectedly-useful transformation (Gill [1996, Chapter 4]). We found

that other transformations sometimes produce expressions of the form:

let f = \x -> let ... in \y -> E

in B

If f is always applied to two arguments in B, then we can W-safely { that is, without

risk of duplicating work | transform the expression to:

let f = \x y -> let ... in E

in B
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(It turns out that a lambda abstraction that binds multiple arguments can be imple-

mented much more e�ciently than a nested series of lambdas.) The most elegant way

to achieve the transformation is to perform an eta-expansion | the opposite of eta

reduction | on f's right hand side:

\x -> R =) \x a -> R a

Once that is done, normal beta reduction will make the application to a \cancel" with

the \y, to give the desired overall e�ect.

The crucial question is this: when is eta expansion guaranteed to be W-safe? Unsur-

prisingly, this turns out to be another fruitful application for the linear type system

sketched in Section 4.2.

Deforestation is a transformation that removes intermediate lists (Wadler [1990]). For ex-

ample, in the expression sum (map double xs) an intermediate list (map double xs)

is created, only to be consumed immediately by sum. Successful deforestation removes

this intermediate list, giving a single pass algorithm that traverses the list xs, doubling

each element before adding it to the total.

Full-blown Wadler-style deforestation for higher-order programs is di�cult; the only ex-

ample we know of is described by Marlow [1996] and even that does not work for large

programs. Instead, we developed a new, more practical, technique called short cut de-

forestation (Gill, Launchbury & Peyton Jones [1993]). As the name implies, our method

does not remove all intermediate lists, but in exchange it is relatively easy to implement.

Gill [1996] describes the technique in detail, and gives measurements of its e�ectiveness.

Even on programs written without deforestation in mind the transformation reduces

execution time by some 3% averaged over a range of programs.

Lambda lifting is a well-known transformation that replaces local function declarations

with global ones, by adding their free variables as extra parameters (Johnsson [1985]).

For example, consider the de�nition

f = \x -> letrec g = \y -> ...x...y...g...

in ...g...

Here, x is free in the de�nition of g. By adding x as an extra argument to g we can

transform the de�nition to:

f = \x -> ...(g' x)...

g' = \x y -> ...x...y...(g' x)...

Some back ends require lambda-lifted programs. Our code generator can handle local

functions directly, so lambda lifting is not required. Even so, it turns out that lambda

lifting is sometimes bene�cial, but on other occasions the reverse is the case. That is, the

exact opposite of lambda lifting | lambda dropping, also known as the static argument

transformation | sometimes improves performance. Santos [1995, Chapter 7] discusses

the tradeo� in detail. GHC implements both lambda lifting and the static argument

transformation. Each buys only a small performance gain (a percentage point or two)

on average.
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The \average" performance improvements mentioned in this paper are geometric means taken

over the large nofib suite of benchmark programs, many of which are real applications (Par-

tain [1993]). They are emphatically not best-case results on toy programs! Nevertheless, they

should be taken only as a crude summary of the general scale of the e�ect; the papers cited

give much more detail.

8 Lessons and conclusions

What general lessons about compilation by transformation have we learned from our experi-

ence?

The interaction of theory and practice is genuine, not simply window dressing. Apart

from aspects already mentioned | second order lambda calculus, linear type systems,

strictness and absence analysis | here are three other examples described elsewhere:

� We make extensive use of monads (Wadler [1992]), particularly to express in-

put/output (Peyton Jones &Wadler [1993]) and stateful computation (Launchbury

& Peyton Jones [1994]).

� Parametricity, a deep semantic consequence of polymorphism, turns out to be

crucial in establishing the correctness of cheap deforestation (Gill, Launchbury &

Peyton Jones [1993]), and secure encapsulation of stateful computation (Launch-

bury & Peyton Jones [1994]).

� GHC's time and space pro�ler is based on a formal model of cost attribution

(Sansom [1994]; Sansom & Peyton Jones [1995]), an unusual property for a highly

operational activity such as pro�ling. In this case the implementation came �rst,

but the subtleties caused by non-strictness and higher-order functions practically

drove us to despair, and forced us to develop a formal foundation.

Plug and play really works. The modular nature of a transformational compiler, and its

late commitment to the order of transformation, is a big win. The ability to run a

transformation pass twice (at least when going for maximum optimisation) is sometimes

very useful.

The \cascade e�ect" is important. One transformation really does expose opportunities

for another. Transformational passes are easier to write in the knowledge that subse-

quent transformations can be relied on to \clean up" the result of a transformation.

For example, a transformation that wants to substitute x for y in an expression E can

simply produce (\y->E) x, leaving the simpli�er to perform the substitution later.

The compiler needs a lot of bullets in its gun. It is common for one particular trans-

formation to have a dramatic e�ect on a few programs, and a very modest e�ect on

most others. There is no substitute for applying a large number of transformations,

each of which will \hit" some programs.

Some non-obvious transformations are important. We found that it was important to

add a signi�cant number of obviously-correct transformations that would never apply
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directly to any reasonable source program. For example:

case (error "Wurble") of { ... } =) error "Wurble"

(error is a function that prints its argument string and halts execution. Semantically

its value is just bottom.) No programmer would write a case expression that scrutinises

a call to error, but such case expressions certainly show up after transformation. For

example, consider the expression

if head xs then E1 else E2

After de-sugaring, and inlining head we get:

case (case xs of { [] -> error "head"; p:ps -> p } of

True -> E1

False -> E2

Applying the case-of-case transformation (Section 5) makes (one copy of) the outer

case scrutinise the call to error.

Other examples of non-obvious transformations include eta expansion (Section 7) and

absence analysis (Section 6.3). We identi�ed these extra transformations by eye-balling

the code produced by the transformation system, looking for code that could be im-

proved.

Elegant generalisations of traditional optimisations have often cropped up, that either ex-

tend the \reach" of the optimisation, or express it as a special case of some other trans-

formation that is already required. Examples include jump elimination, copy propaga-

tion, boolean short-circuiting, and loop-invariant code motion. Similar generalisations

are discussed by Steele [1978].

Maintaining types is a big win. It is sometimes tiresome, but never di�cult, for each

transformation to maintain type correctness. On the other hand it is sometimes indis-

pensable to know the type of an expression, notably during strictness analysis.

Perhaps the largest single bene�t came from an unexpected quarter: it is very easy to

check a Core program for type correctness. While developing the compiler we run \Core

Lint" (the Core type-checker) after every transformation pass, which turns out to be

an outstandingly good way to detect incorrect transformations. Before we used Core

Lint, bogus transformations usually led to a core dump when running the transformed

program, followed by a long gdb hunt to isolate the cause. Now most bogus transforma-

tions are identi�ed much earlier, and much more precisely. One of the dumbest things

we did was to delay writing Core Lint.

Cross-module optimisation is important. Functional programmers make heavy use of

libraries, abstract data types, and modules. It is essential that inlining, strictness

analysis, specialisation, and so on, work between modules. So far we have achieved this

goal by generating increasingly baroque textual \interface �les" to convey information

from the exporting module to the importing one. As the information becomes more

elaborate this approach is less and less attractive. Like the object-oriented community

(Chambers, Dean & Grove [1995]), we regard a serious assault on global (cross-module)

optimisation as the most plausible next \big win".
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