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Abstract

Many compilers do some of their work by means of correctness-preserving, and hope-
fully performance-improving, program transformations. The Glasgow Haskell Compiler
(GHC) takes this idea of “compilation by transformation” as its war-cry, trying to express
as much as possible of the compilation process in the form of program transformations.

This paper reports on our practical experience of the transformational approach to
compilation, in the context of a substantial compiler.

The paper appears in the Proceedings of the European Symposium on Programming,
Linkoping, April 1996.

1 Introduction

Using correctness-preserving transformations as a compiler optimisation is a well-established
technique (Aho, Sethi & Ullman [1986]; Bacon, Graham & Sharp [1994]). In the functional
programming area especially, the idea of compilation by transformation has received quite
a bit of attention (Appel [1992]; Fradet & Metayer [1991]; Kelsey [1989]; Kelsey & Hudak
[1989]; Kranz [1988]; Steele [1978]).

A transformational approach to compiler construction is attractive for two reasons:

e Each transformation can be implemented, verified, and tested separately. This leads
to a more modular compiler design, in contrast to compilers that consist of a few huge
passes each of which accomplishes a great deal.

e In any framework (transformational or otherwise) each optimisation often exposes new
opportunities for other optimisations — the “cascade effect”. This makes it difficult
to decide a priori what the best order to apply them might be. In a transformational
setting it is easy to “plug and play”, by re-ordering transformations, applying them
more than once, or trading compilation time for code quality by omitting some. It
allows a late commitment to phase ordering.

This paper reports on our experience in applying transformational techniques in a particularly
thorough-going way to the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. [1993]), a
compiler for the non-strict functional language Haskell (Hudak et al. [1992]). Among other



things this paper may serve as a useful jumping-off point, and annotated bibliography, for
those interested in the compiler.

A pervasive theme is the close interplay between theory and practice, a particularly satisfying
aspect of functional-language research.

2 Overview

Haskell is a non-strict, purely functional language. It is a relatively large language, with a
rich syntax and type system, designed for full-scale application programming.

The overall structure of the compiler is conventional;

1. The front end parses the source, does scope analysis and type inference, and translates
the program into a small intermediate language called the Core language. This latter
stage is called de-sugaring.

2. The middle consists of a sequence of Core-to-Core transformations, and forms the sub-
ject of this paper.

3. The back end code-generates the resulting Core program into C, whence it is compiled
to machine code (Peyton Jones [1992]).

To exploit the advantages of compilation by transformation mentioned above, we have worked
particularly hard to move work out of the front and back ends — especially the latter — and
re-express it in the form of a transformation. We have taken the “plug and play” idea to
an extreme, allowing the sequence of transformation passes to be completely specified on the
command line.

In practice, we find that transformations fall into two groups:

1. A large set of simple, local transformations (e.g. constant folding, beta reduction).
These transformations are all implemented by a single relatively complex compiler pass
that we call the simplifier. The complexity arises from the fact that the simplifier tries
to perform as many transformations as possible during a single pass over the program,
exploiting the “cascade effect”. (It would be unreasonably inefficient to perform just one
at a time, starting from the beginning each time.) Despite these efforts, the result of one
simplifier pass often still contains opportunities for further simplifier transformations,
so we apply the simplifier repeatedly until no further transformations occur (with a set
maximum to avoid pathological behaviour).

2. A small set of complex, global transformations (e.g. strictness analysis, specialising
overloaded functions), each of which is implemented as a separate pass. Most consist
of an analysis phase, followed by a transformation pass that uses the analysis results
to identify appropriate sites for the transformation. Many also rely on a subsequent
pass of the simplifier to “clean up” the code they produce, thus avoiding the need to
duplicate transformations already embodied in the simplifier.

Rather than give a superficial overview of everything, we focus in this paper on three aspects
of our compiler that play a key role in compilation by transformation:



Program Prog — Bind; ; ... ; Bind, n>1

Binding Bind — war = Expr Non-recursive
| recwar; = Expry ; ... ; var, = Ezpr, Recursive n > 1
Expression Expr —  FExpr Atom Application
|  Exzpr ty Type application
| N\ wvary...var, => Expr Lambda abstraction
| /N tyvar; ... tyvar, => Expr Type abstraction
| case Fapr of { Alls } Case expression
| let Bind in Fupr Local definition
| con vary ...vary Constructor n > 0
| prim var; ... var, Primitive n >0
| Atom
Atoms Atom —  war Variable
|  Literal Unboxed Object
Literals Literal — integer | float | ...
Alternatives Alts —  Calty; ...; Calt,; Default n >0
|  Lalty;...; Lalt,; Default n>0
Constr. alt Calt — Con vary ...var, => Expr n>0
Literal alt Lalt —  Literal => Ezpr

Default alt  Default — NoDefault
|  wvar => Ezpr

Figure 1: Syntax of the Core language

e The Core language itself (Section 3).

e Two groups of transformations implemented by the simplifier, inlining and beta reduc-
tion (Section 4), and transformations involving case expressions (Section 5).

e One global transformation pass, the one that performs and exploits strictness analysis
(Section 6).

We conclude with a brief enumeration of the other main transformations incorporated in GHC
(Section 7), and a summary of the lessons we learned from our experience (Section 8).

3 The Core language

The Core language clearly plays a pivotal role. Its syntax is given in Figure 1, and consists
essentially of the lambda calculus augmented with let and case.



Though we do not give explicit syntax for them here, the Core language includes algebraic data
type declarations exactly as in any modern functional programming language. For example,
in Haskell one might declare the type of trees thus:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

This declaration implicitly defines constructors Leaf and Branch, that are used to construct
data values, and can be used in the pattern of a case alternative. Booleans, lists, and tuples
are simply pre-declared algebraic data types:

data Boolean False | True
data List a = Nil | Cons a (List a)
data Tuple3 a b ¢ = T3 a b ¢ -- One for each size of tuple

Throughout the paper we take a few liberties with the syntax: we allow ourselves infix
operators (e.g. E1 + E2), and special syntax for lists ([ for Nil and infix : for Cons), and
tuples (e.g. (a,b,c)). We allow multiple definitions in a single let expression to abbreviate
a sequence of nested let expressions, and often use layout instead of curly brackets and
semicolons to delimit case alternatives. We use an upper-case identifier, such as E, to denote
an arbitrary expression.

3.1 The operational reading

The Core language is of course a functional language, and can be given the usual denotational
semantics. However, a Core program also has a direct operational interpretation. If we are to
reason about the usefulness of a transformation we must have some model for how much it
costs to execute it, so an operational interpretation is very desirable.

The operational model for Core requires a garbage-collected heap. The heap contains:

o Data values, such as list cells, tuples, booleans, integers, and so on.
e [unction values, such as \x -> x+1 (the function that adds 1 to its argument).

e Thunks (or suspensions), that represent suspended (i.e. as yet unevaluated) values.

Thunks are the implementation mechanism for Haskell’s non-strict semantics. For example,
consider the Haskell expression £ (sin x) y. Translated to Core the expression would look

like this:

let v = sin x

in fvy
The let allocates a thunk in the heap for sin x and then, when it subsequently calls £, passes
a pointer to the thunk. The thunk records all the information needed to compute its body,
sin x in this case, but it is not evaluated before the call. If £ ever needs the value of v it
will force the thunk which provokes the computation of sin x. When the thunk’s evaluation
is complete the thunk itself is updated (i.e. overwritten) with the now-computed value. If £
needs the value of v again, the heap object now contains its value instead of the suspended
computation. If £ never needs v then the thunk is not evaluated at all.

The two most important operational intuitions about Core are as follows:



1. let bindings (and only let bindings) perform heap allocation. For example:

let v = sin x
in

let w = (p,q)
in

fvw

Operationally, the first let allocates a thunk for sin x, and then evaluates the let’s
body. This body consists of the second let expression, which allocates a pair (p,q) in
the heap, and then evaluates its body in turn. This body consists of the call £ v w, so
the call is now made, passing pointers to the two newly-allocated objects.

In our implementation, each allocated object (be it a thunk or a value) consists only
of a code pointer together with a slot for each free variable of the right-hand side of
the let binding. Only one object is allocated, regardless of the size of the right-hand
side (older implementations of graph reduction do not have this property). We do not
attempt to share environments between thunks (Appel [1992]; Kranz et al. [1986]).

2. case expressions (and only case expressions) perform evaluation. For example:

case x of
] ->0
(y:ys) =>y + g ys

The operational understanding is “evaluate x, and then scrutinise it to see whether
it is an empty list, [1, or a Cons cell of form (y:ys), continuing execution with the
appropriate alternative”.

case expressions subsume conditionals, of course. The Haskell expression if C E1 E2
is de-sugared to

case C of {True -> El1; False -> E2}

The syntax in Figure 1 requires that function arguments must be atoms? (that is, variables
or literals), and now we can see why. If the language allowed us to write

f (sin x) (p,q)

the operational behaviour would still be exactly as described in (1) above, with a thunk and
a pair allocated as before. The let form is simply more explicit. Furthermore, the let form
gives us the opportunity of moving the binding for v elsewhere, if that turns out to be desirable,
which the apparently-simpler form does not. Lastly, the let form is more economical, because
many transformations on let expressions (concerning strictness, for example) would have to
be duplicated for function arguments if the latter were non-atomic.

It is also important to note where atoms are not required. In particular, the scrutinee of a
case expression is an arbitrary expression, not just an atom. For example, the following is
quite legitimate:

! This syntax is becoming quite widely used (Ariola et al. [1995]; Flanagan et al. [1993]; Flanagan et al.
[1993]; Launchbury [1993]; Peyton Jones [1992]).



case (reverse xs) of { ... }

Operationally, there is no need to build a thunk for reverse xs and then evaluate it; rather,
we can simply save a return address and call reverse xs. Again, the operational model
determines the syntax.

3.2 Polymorphism

Like any compiler for a strongly-typed language, GHC infers the type of every expression
and variable. An obvious question is: can this type assignment be maintained through the
translation to the Core language, and through all the subsequent transformations that are
applied to the program? If so, both transformations and code generator might (and in GHC
sometimes do) take advantage of type information to generate better code.

In a monomorphic language the answer is a clear “yes”, but matters are not initially so
clear in a polymorphic setting. The trouble is that program transformation involves type
manipulation. Consider, for example, the usual composition function, compose, whose type
is

compose :: Vafy.(f —v) = (a = ) > a — vy

The function might be defined like this in an untyped Core language:
compose = \f gx ->let y=gxinfy

Now, suppose that we wished to unfold a particular call to compose, say
compose show double v

where v is an Int, double doubles it, and show converts the result to a String. The result
of unfolding the call to compose is an instance of the body of compose, thus:

let y = double v in show y

Now, we want to be able to identify the type of every variable and sub-expression, so we must
calculate the type of y. In this case, it has type Int, but in another application of compose
it may have a different type. All this is because its type in the body of compose itself is
just a type variable, . It is clear that in a polymorphic world it is insufficient merely to
tag every variable of the original program with its type, because this information does not
survive across program transformations.

What, then, is to be done? Clearly, the program must be decorated with type information in
some way, and every program transformation must be sure to preserve it. Deciding exactly
how to decorate the program, and how to maintain these decorations correctly during trans-
formation, seemed rather difficult at first. We finally realised that an off-the-shelf solution
was available, namely the second-order lambda calculus (Girard [1971]; Reynolds [1974]).

The idea is that every polymorphic function, such as compose has a type abstraction for each
universally-quantified polymorphic variable in its type («, 3, and v in the case of compose),
and whenever a polymorphic function is called, it is passed extra type arguments to indicate
the types to which its polymorphic type variables are to be instantiated. The definition of
compose now becomes:

compose = /\a b ¢ ->
\f::(b->c) g::(a->b) x::a >
let y::tb=gxinf y



The function takes three type parameters (a, b and c), as well as its value parameters £, g and
x. The types of the latter can now be given explicitly, as can the type of the local variable
y. A call of compose is now given three extra type arguments, which instantiate a, b and ¢
just as the “normal” arguments instantiate £, g and x. For example, the call of compose we
looked at earlier is now written like this:

compose Int Int String show double v

It is now simple to unfold this call, by instantiating the body of compose with the supplied
arguments, to give the expression

let y::Int = double v in show y
Notice that the let-bound variable y is now automatically attributed the correct type.

In short, the second-order lambda calculus provides us with a well-founded notation in which
to express and transform polymorphically-typed programs. It turns out to be easy to intro-
duce the extra type abstractions and applications as part of the type inference process.

Other compilers for polymorphic languages are beginning to carry type information through
to the back end, and use it to generate better code. Shao & Appel [1995] use type information
to improve data representation, though the system they describe is monomorphic after the
front end. Our implementation uses type abstractions and applications only to keep the
compiler’s types straight; no types are passed at runtime. It is possible to take the idea
further, however, and pass types at runtime to specialise data representations (Morrison et
al. [1991]), give fast access to polymorphic records (Ohori [1992]), guide garbage collection
(Tolmach [1994]). The most recent and sophisticated work is Harper & Morrisett [1995].

4 Inlining and beta reduction

Functional programs often consist of a myriad of small functions — functional programmers
treat functions the way C programmers treat macros — so good inlining is crucial. Compilers
for conventional languages get 10-15% performance improvement from inlining (Davidson
& Holler [1988]), while functional language compilers gain 20-40%° (Appel [1992]; Santos
[1995]). Inlining removes some function-call overhead, of course, but an equally important
factor is that inlining brings together code that was previously separated, and thereby often
exposes a cascade of new transformation opportunities. We therefore implement inlining in
the simplifier.

We have found it useful to identify three distinct transformations related to inlining;:

Inlining itself replaces an occurrence of a let-bound variable by (a copy of) the right-hand
side of its definition. Notice that inlining is not limited to function definitions; any
let-bound variable can potentially be inlined. (Remember, though, that occurrences
of a variable in an argument position are not candidates for inlining, because they are
constrained to be atomic.)

Dead code elimination discards let bindings that are no longer used; this usually occurs
when all occurrences of a variable have been inlined.

?This difference may soon decrease as the increased use of object-oriented languages leads to finer-gained
procedures (Calder, Grunwald & Zorn [1994]).



Beta reduction replaces (\x->E) A by E[A/x]. (An analogous transformation deals with
type applications.)

Beta reduction is particularly simple in our setting. Since the argument A is bound to be
atomic, there is no risk of duplicating a redex, and we can simply replace x by A throughout
E. There is a worry about name capture, however: what if A is also bound in E? We avoid this
problem by the simple expedient of renaming every identifier as we go, which costs little extra
since we have to construct a new, transformed expression anyway. Whilst beta reduction is
simple, inlining is more interesting.

4.1 Simple inlining
It is useful to distinguish two cases of inlining:

WHNFs. If the variable concerned is bound to a weak head normal form (WHNF) — that

is, an atom, lambda abstraction or constructor application — then it can be inlined
without risking the duplication of work. The only down-side might be an increase in
code size.

Non-WHNFs. Otherwise, inlining carries the risk of loss of sharing and hence the duplica-
tion of work. For example,

let x = £ 100 in ...x...X...

it might be be unwise to inline x, because then £ 100 would be evaluated twice instead
of once. Informally, we say that a transformation is W-safe if it guarantees not to
duplicate work.

In the case of WHNF's everything is as one would expect. The trade-off is between code size
and the benefit of inlining and, like any compiler, we have a variety of heuristics (but no
formal analysis) for deciding when a function is “small enough” to inline. Many functions are
“small”, though, and code size can actually decrease when they are inlined, both because the
calling code is eliminated, and also because of other consequential transformations that are
exposed.

The other sorts of WHNF, an atom or constructor application, is always small enough to
inline. (Recall that constructor applications must have atomic arguments.)

For non-WHNF's, attention focuses on how the variable is used. If the variable occurs just
once, then presumably it is safe to inline it. Our first approach was to perform a simple
occurrence analysis that records for each variable how many places it is used, and use this
information to guide the inlinings done by the simplifier. There are three complications with
this naive approach.

The first is practical. As mentioned earlier, the simplifier tries to perform as many transfor-
mations as possible during a single pass over the program. However, many transformations
(notably beta reduction and inlining itself) change the number of occurrences of a variable.
Our current solution to this problem is to do a great deal of book-keeping to keep occurrence
information up to date. (Appel & Jim [1996] does something similar.)



The second complication is that a variable may occur multiple times with no risk of duplicating
work, namely if the occurrences are in different alternatives of a case expression. In this case,
the only issue to consider is the tradeofl between code size and inlining benefit.

Lastly, inlining based on naive occurrence counting is not W-safe! Consider this expression:

let x = £ 100
g=\y > ...x...
in ... (g a)...(g b)...

If we replace the single occurrence of x by (£ 100) we will recompute the call to £ every time
g is called, rather than sharing it among all calls to g. Our current solution is conservative:
we never inline inside a lambda abstraction. It turns out, though, that this approach is
sometimes too conservative. In higher-order programs where lots of inlining is happening, it
is not unusual to find functions that are sure to be called only once, so it would be perfectly
safe to inline inside them.

4.2 Using linearity

Because of these complications, the book-keeping required to track occurrence information
has gradually grown into the most intricate and bug-prone part of the simplifier. Worse, work-
duplication bugs manifest themselves only as performance problems, and may go unnoticed
for a long time?. This complexity is especially irritating because we have a strong intuitive
notion of whether a variable can be “used more than once”, and that intuitive notion is
an invariant of W-safe transformations. That suggests that a linear type system would be
a good way to identify variables that can safely be inlined, even though they occur inside
lambdas, or that cannot safely be inlined even though they (currently) occur only once. Just
as all transformations preserve the ordinary typing of an expression (Section 3.2) so W-safe
transformations preserve the linear type information too, and hence guarantee not to duplicate
work.

Unfortunately, most linear type systems are inappropriate because they do not take account
of call-by-need evaluation. For example, consider the expression

let x = 3%4
y = x+1
iny +y
Under call by need evaluation, even though y is evaluated many times, x will be evaluated
only once. Most linear systems would be too conservative, and would attribute a non-linear
type to x as well as y, preventing x from being inlined.

Thus motivated, we have developed a linear type system that does take account of call by
need evaluation (Wadler & Turner [1995]). The type system assigns a type of Int“ to y in
the above example, the superscript w indicating that y might be evaluated more than once.
However, it assigns a type of Int’ to x, indicating that x can be evaluated at most once, and
hence can Wh-safely be inlined.

The type system is capable of dealing with “usage polymorphism”. For example, consider

?One such bug caused the compiler, which is of course written in Haskell, to rebuild its symbol table from
scratch every time a variable was looked up in the table. The compiler worked perfectly, albeit somewhat
slowly, and it was months before we noticed (Sansom [1994])!



this definition of apply:
apply £f x = f x

In a particular application (apply g y), whether or not y is used more than once depends
on whether g uses its argument more than once. So the type of apply is?

Vu, vV, f.(a" = ) = a" — (Y

The two occurrences of «* indicate that the usage u of g’s argument is the same as that of y.

Our implementation of this linear type system is incomplete, so we do not yet have practical
experience of its utility, but we are optimistic that it will provide a systematic way of ad-
dressing an area we have only dealt with informally to date, and which has bitten us badly
more than once.

5 Transforming conditionals

Most compilers have special rules to optimise conditionals. For example, consider the expres-
sion

if (not x) then E1 else E2

No decent compiler would actually negate the value of x at runtime! Let us see, then, what
happens if we simply turn the transformation handle. After de-sugaring the conditional, and
inlining the definition of not, we get

case (case x of {True -> False; False -> True}) of
True -> E1
False -> E2

Here, the outer case scrutinises the value returned by the inner case. This observation
suggests that we could move the outer case inside the the branches of the inner one, thus:

case x of
True -> case False of {True -> El1; False -> E2}
False -> case True of {True -> El1; False -> E2}

Notice that the originally-outer case expression has been duplicated, but each copy is now
scrutinising a known value, and so we can make the obvious simplification to get exactly what
we might originally have hoped:

case x of
True -> E2
False -> E1

Both of these transformations are generally applicable. The second, the case-of-known-
constructor transformation, eliminates a case expression that scrutinises a known value.
This is always a Good Thing, and many other transformations are aimed at exposing oppor-
tunities for such case elimination. We consider another useful variant of case elimination in
Section 5.3. The first, which we call the case-of-case transformation, is certainly correct in
general, but it appears to risk duplicating E1 and/or E2. We turn to this question next.

4In fact, for the purposes of this paper we have simplified the type a little.
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5.1 Join points

How can we gain the benefits of the case-of-case transformation without risking code dupli-
cation? A simple idea is to make local definitions for the right-hand sides of the outer case,

like this:

case (case S of {True -> R1; False -> R2}) of
True -> E1
False -> E2

=

let el = E1; e2 = E2

in case S of
True -> case R1 of {True -> el; False -> e2}
False -> case R2 of {True -> el; False -> e2}

Now E1 and E2 are not duplicated, though we incur instead the cost of implementing the
bindings for el and e2. In the not example, though, the two inner cases are eliminated,
leaving only a single occurrence of each of el and e2, so their definitions will be inlined
leaving exactly the same result as before.

We certainly cannot guarantee that the newly-introduced bindings will be eliminated, though.
Consider, for example, the expression:

if (x || y) then El1 else E2
Here, || is the boolean disjunction operation, defined thus:

] = \ab -> case a of {True -> True; False -> b}
De-sugaring the conditional and inlining || gives:

case (case x of {True -> True; False -> y}) of
True -> E1
False -> E2

Now applying the (new) case-of-case transformation:
let el = E1 ; e2 = E2
in case x of

True -> case True of {True -> el; False -> e2}
False -> case y of {True -> el; False -> e2}

Unlike the not example, only one of the two inner cases simplifies, so only e2 will certainly
be inlined, because el is still mentioned twice:

let el = E1
in case x of
True -> el
False -> case y of {True -> el; False -> E2}

The interesting thing here is that el plays exactly the role of a label in conventional compiler
technology. Given the original conditional, a C compiler will “short-circuit” the evaluation of
the condition if x turns out to be True generating code like:

if (x) {goto 11};

if (y) {goto 11};

11



goto 12;

11: ...code for El1...; goto 13
12: ...code for E2...
13:

Here, 11 is a label where two possible execution paths (if x is True or if x is False and y
is True) join up; we call it a “join point”. That suggests in turn that our code generator
should be able to implement the binding for el, not by allocating a thunk as it would usually
do, but rather by simply jumping to some common code (after perhaps adjusting the stack
pointer) wherever el is subsequently evaluated. Our compiler does exactly this. Rather than
somehow mark el as special, the code generator does a simple syntactic escape analysis to
identify variables whose evaluation is certain to take place before the stack retreats, and
implements their evaluation as a simple adjust-stack-and-jump. As a result we get essentially
the same code as a C compiler for our conditional.

Seen in this light, the act of inlining E2 is what a conventional compiler might call “jump
elimination”. A good C compiler would probably eliminate the jump to 12 thus:

if (x) {goto 11};

if (y) {goto 11};

12: ...code for E2...
13: ...
11: ...code for El1...; goto 13

Back in the functional world, if E1 is small then the inliner might decide to inline el at its
two occurrences regardless, thus eliminating a jump in favour of a slight increase in code size.
Conventional compilers do this too, notably in the case where the code at the destination of
a jump is just another jump, which would correspond in our setting to E1 being just a simple
variable.

The point is not that the transformations achieve anything that conventional compiler tech-
nology does not, but rather that a single mechanism (inlining), which is needed anyway, deals
uniformly with jump elimination as well as its more conventional effects.

5.2 Generalising join points

Does all this work generalise to data types other than booleans? At first one might think
the answer is “yes, of course”, but in fact the modified case-of-case transformation is simply
nonsense if the originally-outer case expression binds any variables. For example, consider
the expression

f (if b then Bl else B2)
where £ is defined thus:

f = \as -> case as of {[] -> E1; (b:bs) -> E2}
De-sugaring the if and inlining £ gives:

case (case b of {True -> B1; False -> B2}) of
O -> E1
(b:bs) -> E2

12



But now, since E2 may mention b and bs we cannot let-bind a new variable e2 as we did
before! The solution is simple, though: simply let-bind a function e2 that takes b and/or
bs as its arguments. Suppose, for example, that E2 mentions bs but not b. Then we can
perform a case-of-case transformation thus:
let el = E1; e2 = \bs -> E2
in case b of
True -> case Bl of {[] -> el1; (b:bs) -> e2 bs}
False -> case B2 of {[] -> el1; (b:bs) -> e2 bs}

All the inlining mechanism discussed above for eliminating the binding for €2 if possible works
just as before. Furthermore, even if e2 is not inlined, the code generator can still implement
e2 efficiently: a call to €2 is compiled to a code sequence that loads bs into a register, adjusts
the stack pointer, and jumps to the join point.

This goes beyond what conventional compiler technology achieves. Our join points can now
be parameterised by arguments that embody the differences between the execution paths that
led to that point. Better still, the whole setup works for arbitrary user-defined data types,
not simply for booleans and lists.

5.3 Generalising case elimination

Earlier, we discussed the case-of-known-constructor transformation that eliminates a case
expression. There is a useful variant of this transformation that also eliminates a case
expression. Consider the expression:

if null xs then r else tail xs
where null and tail are defined as you might expect:

null = \as -> case as of {[] -> True; (b:bs) -> False}
tail = \cs -> case cs of {[] -> error "tail"; (d:ds) -> ds}

After the usual inlining we get:

case (case xs of {[] -> True; (b:bs) -> False}) of
True ->r
False -> case xs of
[l -> error "tail"
(d:ds) -> ds
Now we can do the case-of-case transformation as usual, giving after a few extra steps:

case xs of

(1 =>r

(b:bs) -> case xs of
] -> error "tail"
(d:ds) -> ds

Now, it is obvious that the inner evaluation of xs is redundant, because in the (b:bs) branch
of the outer case we know that xs is certainly of the form (b:bs)! Hence we can eliminate
the inner case, selecting the (d:ds) alternative, but substituting b for d and bs for ds:

case xs of

] ->r

13



(b:bs) -> bs

We will see another application of this form of case elimination in Section 6.1.

5.4 Summary

We have described a few of the most important transformations involving case expressions,
but there are quite a few more, including case merging, dead alternative elimination, and
default elimination. They are described in more detail by Santos [1995] who also provides
measurements of their frequency.

Like many good ideas, the case-of-case transformation — limited to booleans, but including
the idea of using let-bound variables as join points — was incorporated in Steele’s Rabbit
compiler for Scheme (Steele [1978]). We re-invented it, and generalised it for case expressions
and parameterised join points. let-bound join points are also extremely useful when desug-
aring complex pattern matching. Lacking join points, most of the standard descriptions are
complicated by a special FAIL value, along with special semantics and compilation rules, to
express the “joining up” of several execution paths when a pattern fails to match (Augustsson
[1987]; Peyton Jones [1987]).

6 Unboxed data types and strictness analysis

Consider the expression x+y, where x and y have type Int. Because Core is non-strict, x and
y must each be represented by a pointer to a possibly-unevaluated object. Even if x, say, is
already evaluated, it will still therefore be represented by a pointer to a “boxed” value in the
heap. The addition operation must evaluate x and y as necessary, unbox them, add them,
and box the result.

Where arithmetic operations are cascaded we would like to avoid boxing the result of one
operation only to unbox it immediately in the next. Similarly, in the expression x+x we
would like to avoid evaluating and unboxing x twice.

6.1 Exposing boxing to transformation

Such boxing/unboxing optimisations are usually carried out by the code generator, but it
would be better to find a way to express them as program transformations. We have achieved
this goal as follows. Instead of regarding the data types Int, Float and so on as primitive,
we define them using algebraic data type declarations:

I# Int#
F# Float#

data Int
data Float

Here, Int# is the truly-primitive type of unboxed integers, and Float# is the type of unboxed
floats. The constructors I# and F# are, in effect, the boxing operations. (The # characters
are merely cues to the human reader; the compiler treats # as part of a name, like any other
letter.) Now we can express the previously-primitive + operation thus:

+ =\ab -> case a of
I# a# -> case b of
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I# b# -> case a#t +# b# of
rt -> I# r#t

where +# is the primitive addition operation on unboxed values. You can read this definition
as “evaluate and unbox a, do the same to y, add the unboxed values giving r#, and return a
boxed version thereof”.

Now, simple transformations do the Right Thing to x+x. We begin by inlining + to give:

case x of
I# a# -> case x of
I# b# -> case a# +# b# of
r# -> I# r#

But now the inner case can be eliminated (Section 5.3), since it is scrutinising a known value,
x, giving the desired outcome:

case x of
I# a# -> case a#t +# a# of
r#t -> I# r#

Similar transformations (this time involving case-of-case) ensure that in expressions such as
(x+y)*z the intermediate result is never boxed. The details are given by Peyton Jones &
Launchbury [1991], but the important points are these:

e By making the Core language somewhat more expressive (i.e. adding unboxed data
types) we can expose many new evaluation and boxing operations to program transfor-
mation.

e Rather than a few ad hoc optimisations in the code generator, the full range of trans-
formations can now be applied to the newly-exposed code.

e Optimising evaluation and unboxing may itself expose new transformation opportuni-
ties; for example, a function body may become small enough to inline.

6.2 Strictness analysis

Strictness analysers attempt to figure out whether a function is sure to evaluate its argument,
giving the opportunity for the compiler to evaluate the argument before the call, instead of
building a thunk that is forced later on. There is an enormous literature on strictness analysis
itself, but virtually none explaining how to exploit its results, apart from general remarks that
the code generator can use it. Our approach is to express the results of strictness analysis
as a program transformation, for exactly the reasons mentioned at the end of the previous
section.

As an example, consider the factorial function with an accumulating parameter, which in

Haskell might look like this:

afac :: Int -> Int -> Int
afac a 0 = a
afac a n = afac (n*a) (n-1)

Translated into the Core language, it would take the following form:
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one = I# 1#
afac = \an -> case n of
I# n# -> case n# of
o# -> a
n#’ -> let a’ = n*a; n’ = n-one
in afac a’ n’

In a naive implementation this function sadly uses linear space to hold a growing chain of
unevaluated thunks for a’.

Now, suppose that the strictness analyser discovers that afac is strict in both its arguments.
Based on this information we split it into two functions, a wrapper and a worker thus:

afac = \a n -> case a of I# a# -> case n of I# n# -> afac# a# n#

one = I# 1#
afac# = \a#t n# -> let n = I# n#; a = I# a#
in case n of
I# n# -> case n# of
o# -> a
n#’ -> let a’ = n*a; n’ = n-one
in afac a’ n’

The wrapper, afac, implements the original function by evaluating the strict arguments and
passing them unboxed to the worker, afac#. The wrapper is also marked as “always-inline-
me”, which makes the simplifier extremely keen to inline it at every call site, thereby effectively
moving the argument evaluation to the call site.

The code for the worker starts by reconstructing the original arguments in boxed form, and
then concludes with the original unchanged code for afac. Re-boxing the arguments may be
correct, but it looks like a weird thing to do because the whole point was to avoid boxing the
arguments at all! Nevertheless, let us see what happens when the simplifier goes to work on
afac#. It just inlines the definitions of *, -, and afac itself, and applies the transformations
described earlier. A few moments work should convince you that the result is this:

afac# = \a# n# -> case n# of
o -> I# att
n’# -> case (n# *# a#) of
al# -> case (n# -# 1#) of
nl# -> afac# al# ni#

Bingo! afac# is just what we hoped for: a strict, constant-space, efficient factorial function.
The reboxing bindings have vanished, because a case elimination transformation has left
them as dead code. Even the recursive call is made directly to afac#, rather than going
via afac — it is worth noticing the importance of inlining the wrapper in the body of the
worker, even though the two are mutually recursive. Meanwhile, the wrapper afac acts as
an “impedance-matcher” to provide a boxed interface to afac#.
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6.3 Data structures

We have found it very worthwhile to extend the strictness analyser a bit further. Suppose we
have the following function definition:

f :: (Int,Int) -> Int

f=\p->E
It is relatively easy for the strictness analyser to discover not only f’s strictness in the pair
p, but also f’s strictness in the two components of the pair. For example, suppose that the
strictness analyser discovers that £ is strict both in p and in the first component of p, but not
in the second. Given this information we can transform the definition of £ into a worker and
a wrapper like this,

f = \p -> case p of (x,y) -> case x of I# x# -> f# x#¢ y

f# = \x#t y -> let x = I# x#; p = (x,y)
in E
The pair is passed to the worker unboxed (i.e. the two components are passed separately),
and so is the first component of the pair.

We soon learned that looking inside (non-recursive) data structures in this way exposed a new
opportunity: absence analysis. What if £ does not use the second component of the pair at all?
Then it is a complete waste of time to pass y to £# at all. Whilst it is unusual for programmers
to write functions with arguments that are completely unused, it is rather common for them
to write functions that do not use some parts of their arguments. We therefore perform
both strictness analysis and absence analysis, and use the combined information to guide the
worker /wrapper split.

Matters are more complicated if the argument type is recursive or has more than one con-
structor. In these cases we are content simply to evaluate the argument before the call, as
described in the next section.

Notice the importance of type information to the whole endeavour. The type of a function
guides the “resolution” of the strictness analysis, and the worker/wrapper splitting.

6.4 Strict let bindings

An important, but less commonly discussed, outcome of strictness analysis is that it is possible
to tell whether a let binding is strict; that is, whether the variable bound by the let is sure
to be evaluated in the body. If so there is no need to build a thunk. Consider the expression:

let x = R in E

where x has type Int, and E is strict in x. Using a similar strategy to the worker/wrapper
scheme, we can transform to

case R of { I# x# -> let x = I# x# in E }

As before, the reboxing binding for x will be eliminated by subsequent transformation. If x
has a recursive or multi-constructor type then we transform instead to this:

case Rof { x > E }
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This expression simply generates code to evaluate R, bind the (boxed) result to x and then
evaluate E. This is still an improvement over the original 1let expression because no thunk is
built.

6.5 Summary

Strictness analysis, exploited via unboxed data types, is a very worth while analysis and
transformation. Even the relatively simple analyser we use improves execution time by 10—
20% averaged across a wide range of programs (Peyton Jones & Partain [1993]).

7 Other GHC transformations

We have focused so far on three particular aspects of GHC’s transformation system. This
section briefly summarises the other main transformations performed by GHC:

The simplifier contains many more transformations than those described in Sections 4 and
5. A full list can be found in Peyton Jones & Santos [1994] and Santos [1995]; the latter
also contains measurements of the frequency and usefulness of each transformation.

The specialiser uses partial evaluation to create specialised versions of overloaded functions.

Let-floating is a group of transformations that concern the placement of let bindings, and
hence determine where allocation occurs. There are three main let-floating transforma-
tions:

e Floating inwards moves bindings as near their site of use as possible.

e The full laziness transformation floats constant sub-expressions out of lambda ab-
stractions (Hughes [1983]; Peyton Jones & Lester [1991]); it generalises the stan-
dard idea of loop-invariant code motion (Aho, Sethi & Ullman [1986]).

o Local let-floating fine-tunes the location of each let binding.

Details of all three are given by Peyton Jones, Partain & Santos [1996], along with
detailed measurements. Let-floating alone gives an average improvement in execution
time of around 15%.

Eta expansion is an unexpectedly-useful transformation (Gill [1996, Chapter 4]). We found
that other transformations sometimes produce expressions of the form:

let £ = \x => let ... in \y => E
in B

If £ is always applied to two arguments in B, then we can W-safely — that is, without
risk of duplicating work — transform the expression to:

let £ = \xy -> let ... in E
in B
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(It turns out that a lambda abstraction that binds multiple arguments can be imple-
mented much more efficiently than a nested series of lambdas.) The most elegant way
to achieve the transformation is to perform an eta-expansion — the opposite of eta
reduction — on f’s right hand side:

\x -> R — \x a ->R a

Once that is done, normal beta reduction will make the application to a “cancel” with
the \y, to give the desired overall effect.

The crucial question is this: when is eta expansion guaranteed to be W-safe? Unsur-
prisingly, this turns out to be another fruitful application for the linear type system
sketched in Section 4.2.

Deforestation is a transformation that removes intermediate lists (Wadler [1990]). For ex-
ample, in the expression sum (map double xs) an intermediate list (map double xs)
is created, only to be consumed immediately by sum. Successful deforestation removes
this intermediate list, giving a single pass algorithm that traverses the list xs, doubling
each element before adding it to the total.

Full-blown Wadler-style deforestation for higher-order programs is difficult; the only ex-
ample we know of is described by Marlow [1996] and even that does not work for large
programs. Instead, we developed a new, more practical, technique called short cut de-
forestation (Gill, Launchbury & Peyton Jones [1993]). As the name implies, our method
does not remove all intermediate lists, but in exchange it is relatively easy to implement.
Gill [1996] describes the technique in detail, and gives measurements of its effectiveness.
Even on programs written without deforestation in mind the transformation reduces
execution time by some 3% averaged over a range of programs.

Lambda lifting is a well-known transformation that replaces local function declarations
with global ones, by adding their free variables as extra parameters (Johnsson [1985]).
For example, consider the definition

f =\x -> letrec g=\y > ...x...y...8...
in ...g...

Here, x is free in the definition of g. By adding x as an extra argument to g we can
transform the definition to:

£
g)

\x > ...(g> x)...
\x y > ...x.oy... (g7 %)L

Some back ends require lambda-lifted programs. Our code generator can handle local
functions directly, so lambda lifting is not required. Even so, it turns out that lambda
lifting is sometimes beneficial, but on other occasions the reverse is the case. That is, the
exact opposite of lambda lifting — lambda dropping, also known as the static argument
transformation — sometimes improves performance. Santos [1995, Chapter 7] discusses
the tradeoff in detail. GHC implements both lambda lifting and the static argument
transformation. Each buys only a small performance gain (a percentage point or two)
on average.
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The “average” performance improvements mentioned in this paper are geometric means taken
over the large nofib suite of benchmark programs, many of which are real applications (Par-
tain [1993]). They are emphatically not best-case results on toy programs! Nevertheless, they
should be taken only as a crude summary of the general scale of the effect; the papers cited
give much more detail.

8 Lessons and conclusions

What general lessons about compilation by transformation have we learned from our experi-
ence?

The interaction of theory and practice is genuine, not simply window dressing. Apart
from aspects already mentioned — second order lambda calculus, linear type systems,
strictness and absence analysis — here are three other examples described elsewhere:

e We make extensive use of monads (Wadler [1992]), particularly to express in-
put/output (Peyton Jones & Wadler [1993]) and stateful computation (Launchbury
& Peyton Jones [1994]).

e Parametricity, a deep semantic consequence of polymorphism, turns out to be
crucial in establishing the correctness of cheap deforestation (Gill, Launchbury &
Peyton Jones [1993]), and secure encapsulation of stateful computation (Launch-
bury & Peyton Jones [1994]).

e GHC’s time and space profiler is based on a formal model of cost attribution
(Sansom [1994]; Sansom & Peyton Jones [1995]), an unusual property for a highly
operational activity such as profiling. In this case the implementation came first,
but the subtleties caused by non-strictness and higher-order functions practically
drove us to despair, and forced us to develop a formal foundation.

Plug and play really works. The modular nature of a transformational compiler, and its
late commitment to the order of transformation, is a big win. The ability to run a
transformation pass twice (at least when going for maximum optimisation) is sometimes
very useful.

The “cascade effect” is important. One transformation really does expose opportunities
for another. Transformational passes are easier to write in the knowledge that subse-
quent transformations can be relied on to “clean up” the result of a transformation.
For example, a transformation that wants to substitute x for y in an expression E can
simply produce (\y->E) x, leaving the simplifier to perform the substitution later.

The compiler needs a lot of bullets in its gun. It is common for one particular trans-
formation to have a dramatic effect on a few programs, and a very modest effect on
most others. There is no substitute for applying a large number of transformations,
each of which will “hit” some programs.

Some non-obvious transformations are important. We found that it was important to
add a significant number of obviously-correct transformations that would never apply
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directly to any reasonable source program. For example:
case (error "Wurble") of { ... } = error "Wurble"

(error is a function that prints its argument string and halts execution. Semantically
its value is just bottom.) No programmer would write a case expression that scrutinises
a call to error, but such case expressions certainly show up after transformation. For
example, consider the expression

if head xs then E1 else E2
After de-sugaring, and inlining head we get:

case (case xs of { [] -> error "head"; p:ps -> p } of
True -> E1l
False -> E2

Applying the case-of-case transformation (Section 5) makes (one copy of) the outer
case scrutinise the call to error.

Other examples of non-obvious transformations include eta expansion (Section 7) and
absence analysis (Section 6.3). We identified these extra transformations by eye-balling
the code produced by the transformation system, looking for code that could be im-
proved.

Elegant generalisations of traditional optimisations have often cropped up, that either ex-
tend the “reach” of the optimisation, or express it as a special case of some other trans-
formation that is already required. Examples include jump elimination, copy propaga-
tion, boolean short-circuiting, and loop-invariant code motion. Similar generalisations
are discussed by Steele [1978].

Maintaining types is a big win. It is sometimes tiresome, but never difficult, for each
transformation to maintain type correctness. On the other hand it is sometimes indis-
pensable to know the type of an expression, notably during strictness analysis.

Perhaps the largest single benefit came from an unexpected quarter: it is very easy to
check a Core program for type correctness. While developing the compiler we run “Core
Lint” (the Core type-checker) after every transformation pass, which turns out to be
an outstandingly good way to detect incorrect transformations. Before we used Core
Lint, bogus transformations usually led to a core dump when running the transformed
program, followed by a long gdb hunt to isolate the cause. Now most bogus transforma-
tions are identified much earlier, and much more precisely. One of the dumbest things
we did was to delay writing Core Lint.

Cross-module optimisation is important. Functional programmers make heavy use of
libraries, abstract data types, and modules. It is essential that inlining, strictness
analysis, specialisation, and so on, work between modules. So far we have achieved this
goal by generating increasingly baroque textual “interface files” to convey information
from the exporting module to the importing one. As the information becomes more
elaborate this approach is less and less attractive. Like the object-oriented community
(Chambers, Dean & Grove [1995]), we regard a serious assault on global (cross-module)
optimisation as the most plausible next “big win”.
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