
To appear in the proceedings of the 1996 International Confer-ence on Theorem Proving in Higher Order Logics, 27{30 August1996, Turku, Finland.Five Axioms of Alpha-ConversionAndrew D. Gordon1 and Tom Melham2Abstract. We present �ve axioms of name-carrying lambda-terms iden-ti�ed up to alpha-conversion|that is, up to renaming of bound variables.We assume constructors for constants, variables, application and lambda-abstraction. Other constants represent a function Fv that returns theset of free variables in a term and a function that substitutes a termfor a variable free in another term. Our axioms are (1) equations relat-ing Fv and each constructor, (2) equations relating substitution and eachconstructor, (3) alpha-conversion itself, (4) unique existence of functionson lambda-terms de�ned by structural iteration, and (5) construction oflambda-abstractions given certain functions from variables to terms. Bybuilding a model from de Bruijn's nameless lambda-terms, we show thatour �ve axioms are a conservative extension of HOL. Theorems provablefrom the axioms include distinctness, injectivity and an exhaustion prin-ciple for the constructors, principles of structural induction and primitiverecursion on lambda-terms, Hindley and Seldin's substitution lemmas andthe existence of their length function. These theorems and the model havebeen mechanically checked in the Cambridge HOL system.The axioms presented in this paper are intended to give a simple, abstractcharacterisation of untyped lambda-terms, with constants, identi�ed up to alpha-conversion, that is, renaming of bound variables. We were led to develop theseaxioms because we are interested in representing the syntax of programminglanguages with binding operators within a theorem prover. The di�culty ofcorrectly de�ning substitution on lambda-terms is notorious. Previous experi-ence with the pi-calculus (Milner, Parrow, and Walker 1992) in HOL (Melham1994) suggests that developing substitution and binding operators directly isa tedious and error-prone business. Instead, to avoid error and repetition, weadvocate �rst developing a metatheory of untyped lambda-terms, and secondlyderiving syntax for a particular programming language as abbreviations for un-typed lambda-terms. We will show in section 4 how to do this for a �nitarypi-calculus.Given higher-order logic, as implemented in the Cambridge HOL system (Gor-don and Melham 1993), what we are after is a logical type (�)term that standsfor the set of lambda-terms, where � is the type of constants. Terms are gener-ated by the four constructors:1University of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,Cambridge CB2 3QG, UK. adg@cl.cam.ac.uk2Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland.tfm@dcs.gla.ac.uk



Con : �! (�)term (constants)Var : string! (�)term (variables)App : (�)term ! (�)term ! (�)term (applications)Lam : string! (�)term! (�)term (lambda-abstractions)Consider the concrete recursive type|the free algebra|generated by theseconstructors. Concrete recursive types are implemented in HOL using Melham'stype de�nition package (Gordon and Melham 1993, Chapter 20). Given theseconstructors, the package proves the existence of a type characterized by thesingle axiom:` 8con : �! �:8var : string! �:8app : � ! � ! (�)term ! (�)term ! �:8lam : � ! string! (�)term ! �:9!hom : (�)term ! �:8k: hom(Con k) = con k ^8x: hom(Var x) = var x ^8t u: hom(App t u) = app (hom t) (hom u) t u ^8xu: hom(Lam x u) = lam (hom u) x uThe axiom allows for the de�nition of functions by primitive recursion, wherefunctions con, var, app and lam determine the outcome of the function whenapplied to each constructor, given access to the outcome of recursive calls and tothe arguments of the constructor. In fact Melham's tool derives this axiom froma simpler iteration axiom. Iteration also allows for the de�nition of functions byrecursion, but the functions con, var, app and lam have no direct access to theconstructor arguments, only to the outcomes of recursive calls.Here the type (�)term is a free algebra; all the constructors are injective. Twolambda-abstractions are equal just if their bound variables and their bodies areequal. Instead we are after a type in which terms are identi�ed up to alpha-conversion, that is, in which two lambda-abstractions are equal just if theirbodies are equal when the bound variables are renamed to a fresh variable.1 The AxiomsThe main contribution of this paper is to present �ve axioms for untyped lambda-terms identi�ed up to alpha-conversion, to show how various reasoning principlesderive from these axioms, and to show that the axioms are sound. The �rst threeaxioms are well-known (Curry and Feys 1958; Barendregt 1984); the fourth and�fth are new. The model we present in section 2 is based on earlier work (Gordon1994) which showed how untyped lambda-terms could be modelled by de Bruijnterms.Gordon was not concerned to specify axioms characterising the type of un-typed lambda-terms, and did not consider how to de�ne functions by recursionon these terms. Instead our new work shows the importance of an axiom for



iteration. In section 3 it allows us to derive primitive recursion (analogous to theaxiom displayed above), structural induction, �niteness of free variables, and thefunction returning the length of a lambda-term, which were all taken straightfrom the model in Gordon's earlier work. It also allows functions to be de�nedby recursion on lambda-terms, which was not previously considered.In addition to the constructors introduced above, our axioms employ threefurther functions:Fv : (�)term ! (string)set[ = ] : (�)term ! ((�)term � string)! (�)termAbs : (string! (�)term)! (�)termFv(u) returns the set of free variables in the term u and u[t=x] produces the resultof substituting the term t for the free occurrences of the variable x in the termu. (The partially curried type is needed to make substitution an in�x operatorin Cambridge HOL.) The function Abs , discussed in detail later, maps certainlogical (meta) functions, namely those which carry out a variable-for-variablesubstitution on terms, to corresponding lambda-abstractions in (�)term.1.1 Free VariablesAxiom one de�nes the free variables of each constructor:` 8k: Fv(Con k) = fg ^8x: Fv(Var x) = fxg ^8t u: Fv(App t u) = Fv(t) [ Fv(u) ^8xu: Fv(Lam x u) = Fv(u)� fxg (Axiom 1)We have expressed this axiom using set-theoretic notation and the type (�)setof sets whose elements are all of type �. This type is an abbreviation for thetype of characteristic functions, � ! bool. All the set-theoretic operators weuse can easily be de�ned as operations on this type.Our axioms need not assert that Fv(u) is always a �nite set, for this follows asa theorem from the �ve axioms.1.2 SubstitutionAxiom two de�nes the interaction of substitution with each constructor:` 8k u x: (Con k)[u=x] = Con k ^8ux: (Var x)[u=x] = u ^8ux y: (x6=y) � (Var y)[u=x] = Var y ^8t u v x: (App t u)[v=x] = App (t[v=x]) (u[v=x]) ^8x t u: (Lam x t)[u=x] = Lam x t ^8x y u: (x6=y) ^ y 62 (Fv u) � 8t: (Lam y t)[u=x] = Lam y (t[u=x])(Axiom 2)
Consider the situation of trying to push a substitution [u=x] into Lam y t whenthe bound variable y occurs free in u. It is necessary to avoid the capture of any



free occurrences of y in u. Our axiom two does not immediately apply in thissituation. But since we identify lambda-terms up to alpha-conversion, we canuse axiom three|alpha-conversion|to rename the bound variable y so that thelast part of axiom two does apply.In contrast, Curry and Feys (1958) incorporate this renaming into their de�-nition of substitution|at the cost of an arbitrary choice of renamed variable|because they de�ne substitution directly on the free algebra of lambda-termsand derive alpha-conversion later. On the other hand, Barendregt (1984) avoidsthis situation via his variable convention, which here permits us to assume thatthe bound variable y is di�erent from any variable occurring free in u. Stoughton(1988) presents a de�nition of substitution by structural recursion|the de�ni-tion by Curry and Feys is by recursion on the length of the term|which alwaysrenames bound variables.1.3 Alpha-ConversionAxiom three asserts the arbitrariness of bound variables:` 8y u x: y 62 Fv(Lam x u) � (Lam x u = Lam y (u[Var y=x])) (Axiom 3)This is alpha-conversion; two lambda-abstractions may be equal but have dis-tinct bound variables. A consequence is that no logical function is de�nable thatdistinguishes such terms.There is a weaker version of the alpha-conversion axiom,` 8y u: y 62 Fv(u) � 8x: Lam x u = Lam y (u[Var y=x])which in fact follows from the stronger axiom above. We adopt the strongerform because it immediately tells us that` 8xu: Lam x u = Lam x (u[Var x=x])which turns out to be important in later proofs.1.4 Unique IterationAxiom four asserts the unique existence of functions de�ned by iteration overthe structure of terms:` 8con : �! �:8var : string! �:8app : � ! � ! �:8abs : (string! �)! �:9!hom : (�)term ! �:8k: hom(Con k) = con k ^8x: hom(Var x) = var x ^8t u: hom(App t u) = app (hom t) (hom u) ^8xu: hom(Lam x u) = abs (�y: hom(u[Var y=x]))
(Axiom 4)



Suppose we want to de�ne a function hom of type (�)term ! � on lambda-terms by recursion. Given functions con, var, app and abs that specify how homtreats each of the four constructors, the axiom asserts that such a hom exists andmoreover is unique. It is analogous to the iteration axiom characterizing concreterecursive types, mentioned in the introduction. As we discuss in section 3 manyproperties, such as the fact that constructors yield distinct terms, follow fromthis axiom, in much the same way as analogous properties follow from the singleaxiom of concrete recursive types.The di�erence between this axiom and the ones for concrete recursive types isin the recursion equation for lambda-abstractions. The value of hom(Lam x u)is determined (by the parameter abs) to be abs(�y: hom(u[Var y=x])) but notabs(hom u). It cannot be the latter because that would �x the arbitrary boundvariable to be x and allow us to distinguish alpha-equivalent terms. Instead thefunction abs is supplied with a function that will yield hom(u[Var y=x]) for anyVar y to be substituted for x in u. This function, rather than just u, should beregarded as the `body' of the original lambda-term Lam x u. So abs can work onhom(u[Var y=x]) provided it chooses a name y for the arbitrary bound variablex. To employ this principle of iteration in practice, we appear to need one �nalaxiom.1.5 AbstractionAxiom �ve asserts that from any function of type string ! (�)term that rep-resents the body of a lambda-abstraction one can reconstruct `the' lambda-abstraction itself:` 8xu: Abs(�y: u[Var y=x]) = Lam x u (Axiom 5)where the constant Abs has the type (string! (�)term)! (�)term. (Rememberthat � signi�es lambda-abstraction in the HOL logic itself, and that Lam signi�esthe lambda-abstraction of the type (�)term of untyped lambda-terms embeddedin HOL.)This axiom could, of course, be taken as a de�nition of the Lam construc-tor. Our axiom set is therefore redundant (Lam is eliminable). But we retainLam because it clari�es the presentation and serves to highlight the correspon-dence between lambda-abstractions in (�)term and certain meta-level functionsin string! (�)term.The existence of Abs is of importance primarily because it lets us build lambda-abstractions from lambda-bodies. Consider, for example, the problem of de�ninga function that uses structural iteration to build a copy of any given lambda-term. We take� : = (�)termcon : = Convar : = Varapp : = Appabs : = Abs



in the unique iteration axiom. This gives` 9!hom : (�)term!(�)term:8k: hom(Con k) = Con k ^8x: hom(Var x) = Var x ^8t u: hom(App t u) = App (hom t) (hom u) ^8xu: hom(Lam x u) = Abs(�y: hom(u[Var y=x]))In the Lam equation we use Abs to reconstruct the abstraction. In the others,we can simply employ the appropriate constructor.It is easy to see that this gives us a function that copies terms. The theoremstates the unique existence of any function hom satisfying these equations. Butthe identity on terms, �u: u, is just such a function (the actual proof makes useof the Abs axiom). Hence the function whose existence is asserted is itself theidentity.As will be seen in later sections, the Abs function may also be used moregenerally for getting fresh variables (`genvars') to supply to bodies of lambda-abstractions.2 A Model of the AxiomsIn this section we briey recall the construction used by Gordon (1994), anddiscuss in some detail how to model axioms four and �ve. We begin with thefree algebra of de Bruijn's nameless lambda-terms (de Bruijn 1972).dCon : �! (�)db (constants)dVar : string! (�)db (free variables)dBound : num! (�)db (bound variables)dApp : (�)db ! (�)db ! (�)db (applications)dAbs : (�)db ! (�)db (lambda-abstractions)Consider an occurrence of dBound i enclosed by j dAbs's in a term. If i < jthen it refers to the (i+1)'th enclosing dAbs. If i � j then we say it is dangling,and that it is a reference to parameter i� j of the term. We model (�)term bythe proper de Bruijn terms, that is, those with no dangling indexes. Sometimesdangling indexes are used to represent free variables, but here we use the dVarconstructor instead.We can de�ne dFv(d), the free variables of term d, by primitive recursion.Name-carrying lambda-abstraction and substitution can be de�ned as follows,` dLam x d = dAbs(Abst 0 x d)` d[d0=x] = Inst 0 (Abst 0 x d) d0where the term Abst i x d is obtained by turning each occurrence of dVar x in dinto a reference to parameter i, and the term Inst i d d0 is obtained by instanti-ating each reference to parameter i in d to the term d0. An important propertyis that the set inductively de�ned from the constructors dCon, dVar, dApp and



dLam is exactly the set of proper de Bruijn terms. Given these de�nitions it isstraightforward to model axioms one, two and three. See Gordon (1994) for afuller discussion.2.1 Soundness of the Iteration AxiomFirst �x functions of the following types.con : �! �var : string! �app : � ! � ! �abs : (string! �)! �To model axiom four, iteration, it su�ces to construct a function hom such that8k: hom(dCon k) = con k ^8x: hom(dVar x) = var x ^8d d0: hom(dApp d d0) = app (hom d) (hom d0) ^8x d: hom(dLam x d) = abs (�y: hom (d[dVar y=x]))and moreover to show that hom is the unique function on proper de Bruijn termsto satisfy these equations. We shall refer to these equations as (Hom Spec).The substitution in the last part of (Hom Spec) prevents us from de�ning homby primitive recursion. Instead we de�ne hom indirectly in terms of anotherfunction, chom, which uses Landin's idea (1964) of a closure to represent thesubstitution in the last part of (Hom Spec). Let the degree of a term be 0 if itcontains no dangling index, and otherwise one more than the greatest parameterreferred to by a dangling index. Let a closure be a pair (ys; d) with d a possiblyimproper de Bruijn term, and ys:(string)list a list of variable names of lengthno less than the degree of d. We can think of a closure ([y0; : : : ; yn�1]; d) asstanding for d with each reference to parameter i instantiated to dVar yi. Wenow de�ne chom ys d, where (ys; d) is intended to be a closure, by primitiverecursion on de Bruijn terms.8k: chom ys (dCon k) = con k ^8x: chom ys (dVar x) = var x ^8i: chom ys (dBound i) = var (i < Length ys) El i ys j Arb) ^8d d0: chom ys (dApp d d0) = app (chom ys d) (chom ys d0) ^8x d: chom ys (dAbs d) = abs (�y: chom (Cons y ys) d)The constant Arb has an arbitrary value, but provided that (ys; d) is a closure,chom ys d will not depend on Arb. We take hom to be chom[ ]. It is easy tosee that this de�nition satis�es the �rst three equations in (Hom Spec). Forthe fourth, concerning dLam, we need a lemma that if any two closures (ys; d)and (ys0; d0) stand for the same lambda-term, in the sense given above, then



chom ys d = chom ys0 d0. This is proved by structural induction on d, andallows us to calculate the following, for any d.hom(dAbs d) = chom [ ] (dAbs d)= abs (�y: chom [y] d)= abs (�y: chom [ ] (Inst 0 d (dVar y)))= abs (�y: hom (Inst 0 d (dVar y)))By this, and the de�nitions of substitution and dLam the �nal part of (HomSpec) follows.hom(dLam x d) = hom(dAbs(Abst 0 x d))= abs (�y: hom (Inst 0 (Abst 0 x d) (dVar y)))= abs (�y: hom (d[dVar y=x]))There does exist, then, a function hom satisfying (Hom Spec). Uniquenessfollows by an induction on the length of the term, where the length of a deBruijn term is the number of constructors it contains. (Length is de�nable byprimitive recursion on de Bruijn terms.)2.2 Soundness of the Abs AxiomHere is a sketch of how to de�ne a model for axiom �ve, concerning the Absfunction. The essence of the proof is that Abs can be modelled by the functionabs : (string! (�)db)! (�)db de�ned byabs(f) = let Y = \y: dFv(f y) inlet z = New Y indLam z (f z)where New chooses a fresh string not in a given �nite set of strings. The ideais that abs will be supplied with a function of the form �y: u[dVar y=x] (that is,the body of a lambda-term). It then �nds a fresh variable z and reconstructsthe original lambda-term by building an alpha-equivalent one by substituting zinto the body and abstracting over it using dLam.The details are as follows. One can show that the free variables of dLam x uare a subset of the free variables of u[dVar y=x] for any choice of y:` 8x y u: Proper(u) � (dFv(dLam x u) � dFv(u[dVar y=x]))The proof is by induction on length of the term u. Hence the free variablesof dLam x u are contained in the intersection of the whole y-indexed family offree-variable sets:` 8u: Proper(u) � (dFv(dLam x u) � \y: dFv(u[dVar y=x]))Moreover, one can show that the containing set is �nite, since it is the intersectionof a family of �nite sets. (The function dFv always produces �nite sets.) Hence



one can �nd a fresh variable, avoiding any variable free in dLam x u, by choosinga variable outside this �nite set:` 8u: Proper(u) � New(\y: dFv(u[dVar y=x])) 62 dFv(dLam x u)Call this fresh variable z. But then by alpha conversion, we know that` dLam z (u[dVar z=x]) = dLam x ugiving us the required lambda term.3 Theorems Provable from the AxiomsThis section discusses some of the theorems derivable from our �ve axioms. Webegin by deriving a recursion scheme for de�ning functions over lambda-termsand then use it to prove a new principle of structural induction for terms. Wethen illustrate the utility of these results by de�ning a length function on terms.Also provable from our axioms are the theorems of Gordon (1994) statingdistinctness, injectivity and an exhaustion principle for the constructors. Thesubstitution lemmas 1.14 and 1.15 of Hindley and Seldin (1986) are also provable.Discussion of these theorems is omitted here.3.1 Recursion SchemeThe unique iteration axiom allows us to de�ne functions only by structural iter-ation over terms. A more general de�nition pattern is supplied by the recursionscheme theorem:` 8con : �! �:8var : string! �:8app : � ! � ! (�)term ! (�)term ! �:8abs : (string! �)! (string! (�)term)! �:9!hom : (�)term ! �:8k: hom(Con k) = con k ^8x: hom(Var x) = var x ^8t u: hom(App t u) = app (hom t) (hom u) t u ^8xu: hom(Lam x u) = abs (�y: hom(u[Var y=x])) (�y: u[Var y=x])Here, hom is de�ned not only in terms of its values on the subterms of each kindof constructor, but also in terms of the subterms themselves. In the de�ningequation for hom(App t u), the parameter app has access not just to hom t andhom u but also to t and u. Likewise, in the de�ning equation for hom(Lam x u)the parameter abs may use the body.



The recursion scheme follows from axioms four and �ve. Suppose we havearbitrary parameter functions similar to those in the recursion except that theyare (in part) paired:con : �! �var : string! �app : (� � (�)term)! (� � (�)term)! �abs : (string! (� � (�)term))! �Then instantiate the unique iteration axiom with� : = (�)term � �con : = �k: (Con k; con k)var : = �x: (Var x; var k)app : = �p q: (App (Fst p) (Fst q); app p q)abs : = �f :string!((�)term� �): (Abs(Fst � f); abs f)to get a unique function hom of type(�)term ! ((�)term � �)that produces a pair consisting of a rebuilt copy of its input, together with arecursively calculated result of type �. At each stage in the recursion, a copy ofthe `lower' structures is available, having been delivered by the recursive call.Now hom produces a pair, and so can be split into unique pair of functions:` 9!(f; g) : ((�)term!(�)term)� ((�)term!�):8k: f(Con k) = Con k ^8x: f(Var x) = Var x ^8t u: f(App t u) = App (f t) (f u) ^8xu: f(Lam x u) = Abs(�y: f(u[Var y=x])) ^8k: g(Con k) = con k ^8x: g(Var x) = var x ^8t u: g(App t u) = app (f t; g t) (f u; g u) ^8xu: g(Lam x u) = abs (�y: f(u[Var y=x]); g(u[Var y=x]))From these equations, one can easily see that f is copying the term by rebuildingit and g is computing the result using the copies produced by f along the way.The next step is to observe that f must be the identity. As section 1.5 showed,any function satisfying the �rst four equations in this theorem equals �u: u. Wecan therefore replace f by the identity in the de�ning equations for g, giving:` 9!g : (�)term!�:8k: g(Con k) = con k ^8x: g(Var x) = var x ^8t u: g(App t u) = app (t; g t) (u; g u) ^8xu: g(Lam x u) = abs (�y: (u[Var y=x]); g(u[Var y=x]))



But this is just the recursion scheme theorem, up to a little currying of thefunctions app and abs.This construction resembles Church's de�nition of the predecessor on naturalnumbers in the lambda-calculus (Church 1941). The actual construction usedhere was inspired, in part, by the derivation in Lambek and Scott (1986) of arecursion scheme for a natural numbers object in a cartesian closed category.3.2 Deriving InductionGordon's previous work produced two principles of induction for lambda-terms.The �rst involves the standard notion of the length of a term, and the secondinvolves speci�cation of �nite sets of variables from which one may assume cer-tain bound variables are distinct. Both principles are derivable in the presentsetting from a more primitive notion of induction, which itself follows from therecursion scheme as usual.The derivation of this induction principle proceeds as follows. We supposehere that P is a �xed but arbitrary predicate on lambda-terms. Then take� : = boolcon : = �k: Tvar : = �x: Tapp : = �p q: �t u: (p ^ q) _ P (App t u)abs : = �f :string!bool: �g:string!(�)term: (8y: f y) _ P (Abs g)in the recursion theorem to get` 9!hom : (�)term ! bool:8k: hom(Con k) ^8x: hom(Var x) ^8t u: hom(App t u) = ((hom t) ^ (hom u)) _ P (App t u) ^8xu: hom(Lam x u) = (8y: hom(u[Var y=x])) _ P (Abs �y: u[Var y=x])Now, observe that �u: T is just such a hom as is asserted to exist uniquelyhere. Hence any other function satisfying the above equations is constant trueon the set of all lambda terms. In particular, the predicate P has this property,and so we have:` 8k: P (Con k) ^8x: P (Var x) ^8t u: P (App t u) = ((P t) ^ (P u)) _ P (App t u) ^8xu: P (Lam x u) = (8y: P (u[Var y=x])) _ P (Abs(�y: u[Var y=x]))�8u: P (u)



The Abs axiom lets us simplify this to` 8k: P (Con k) ^8x: P (Var x) ^8t u: P (App t u) = ((P t) ^ (P u)) _ P (App t u) ^8xu: P (Lam x u) = (8y: P (u[Var y=x])) _ P (Lam x u)�8u: P (u)Finally, using the fact that (A = B _ A) = (B � A), we get our inductionprinciple:` 8P : (�)term ! bool:8k: P (Con k) ^8x: P (Var x) ^8tu: P (t) ^ P (u) � P (App t u) ^8x u:(8y: P (u[Var y=x])) � P (Lam x u)�8u: P (u)For the Con, Var and App constructors, the proof obligations are just the sameas ordinary structural induction. But in the Lam case, we may assume theinduction hypothesis that P holds under all substitutions of a variable for thespeci�c bound variable involved.ExamplesWe can illustrate the induction principle just derived by using it to prove thatthe identity substitution has no e�ect:` 8u z: u[Var z=z] = uThis was an early lemma in Gordon's development and is part of one of Hindleyand Seldin's substitution theorems.The proof proceeds by induction on u. Only the Lam case is of any interest.The induction hypothesis is` 8y z: (u[Var y=x])[Var z=z] = u[Var y=x]and we need to show(Lam x u)[Var z=z] = Lam x uThe case where z = x is trivial, so let us suppose z 6= x. Now, specialise theinduction hypothesis to get` (u[Var x=x])[Var z=z] = u[Var x=x]



and apply Lam x to both sides:` Lam x (u[Var x=x][Var z=z]) = Lam x (u[Var x=x])Since z 6= x we can draw the substitution for z outwards:` (Lam x (u[Var x=x]))[Var z=z] = Lam x (u[Var x=x])But, as observed in section 1.3, our alpha-conversion axiom tells us immediatelythat Lam x (u[Var x=x]) is just Lam x u, and so we are �nished.The identity substitution theorem allows us to proceed to an inductive proofthat free variables of a term are �nite:` 8u: Finite(Fv u)This key theorem, whose actual proof we omit, lets us choose fresh variables notfree in a given term u, since we know that there is always a string outside any�nite set of strings (for example take a primed variant).3.3 De�nition of a Length FunctionWe now turn our attention to the problem of de�ning the standard notion of thelength of a term in our theory. The length of a term is a count of the number ofsyntactic constructors in it. The concept is usually formalised by a functionLgh : (�)term ! numwith the property` 8k: Lgh(Con k) = 1 ^8x: Lgh(Var x) = 1 ^8t u: Lgh(App t u) = (Lgh t) + (Lgh u) ^8xu: Lgh(Lam x u) = (Lgh u) + 1But the equation for Lam in this recursive `de�nition' does not conform to thepattern of our recursion scheme. We must therefore make a somewhat indirectde�nition, from which the above theorem is derivable. First, we need somemachinery for handling sequences of variable renamings. This turns out to haverather general utility, and so is presented in some detail.General RenamingsWe are interested in arbitrary �nite sequences of substitutions, which we mayrepresent formally by an in�x functionISub : (�)term ! ((�)term � string)list ! (�)termde�ned by primitive recursion on lists as follows:` 8u: u ISub [ ] = u ^ 8u t x �: u ISub (Cons (t; x) �) = (u[t=x]) ISub �



The function takes a term and a list of term-variable substitution pairs andapplies all the substitutions in sequence. We call this an iterated substitution, aname which incidentally serves to distinguish it from the simultaneous parallelsubstitution commonly seen in other contexts.An iterated renaming is an iterated substitution of variables for variables. Wede�ne the predicate Renaming inductively as follows:` Renaming [ ] always` Renaming(Cons (Var x; y) �) if Renaming �As usual, the de�nition gives us rules (and HOL tactics) for the Renaming pred-icate, together with the corresponding rule induction principle.Derivation of LengthWe may now proceed to derive the desired length function. Begin by taking� : = numcon : = �k: 1var : = �x: 1app : = �nm: �t u: n+mabs : = �f: �g: let v = New(Fv(Abs g)) in f(v) + 1in the recursion scheme theorem. Applying the Abs axiom gives us:` 9!hom : (�)term ! num:8k: hom(Con k) = 1 ^8x: hom(Var x) = 1 ^8t u: hom(App t u) = (hom t) + (hom u) ^8xu: hom(Lam x u) = let v = New(Fv(Lam x u)) in hom(u[Var v=x]) + 1The key idea is that in the last equation, we have used Abs to reconstruct theterm Lam x u. We can then generate a fresh variable Var v not free in this term,substitute this variable into the body, and then take the length of the result.The next step is to show that the choice of variable to substitute into the bodycan, in fact, be made arbitrarily. We prove that if hom is as de�ned above, then` 8u�: Renaming � � (hom (u ISub �) = hom u)So hom is invariant under iterated variable renaming. The proof is a straight-forward induction on u, using alpha conversion to avoid variable name clashesin the Lam case.Since a single substitution is also a renaming, we can replace hom(u[Var v=x])in our indirect de�nition with hom u. The fresh variable v then no longer playsa role and can be eliminated, giving equations for the length function in exactlythe desired form.



4 An Application of the AxiomsThis section shows how we can derive syntax for a particular programming lan-guage as a set of abbreviations of untyped lambda-terms. Our particular exampleis pi-calculus. The syntax of pi-calculus is built up from a denumerable set ofnames, x, y or z, and the set of processes, p or q, given by the following syntax.p ::= processesxy:p (send)x(y):p (receive, y bound)p j q (parallel composition)(�x)p (restriction, x bound)0 (zero process)By convention binding occurrences are parenthesised. This is a particularlysimple, �nitary pi-calculus, but its syntax su�ces to make our point, which is todemonstrate how this syntax can be encoded using lambda-terms. We shall notdiscuss the operational semantics of pi-calculus, though it too can be representedwithin HOL.We shall encode pi-calculus by introducing a new syntactic constructor foreach kind of process. We introduce a syntactic constructor k of arity n by thefollowing de�nition scheme, where k is a string constant representing k:` k t1 t2 � � � tn = App (� � �App (App k t1) t2 � � �) tnString constants and binary applications su�ce to encode syntactic constructorsof arbitrary arity. We wrote a simple tool to automate this scheme. Axioms oneand two generalise to such constructors as follows.` Fv(k t1 � � � tn) = Fv t1 [ � � � [ Fv tn` (k t1 � � � tn)[u=x] = k (t1[u=x]) � � � (tn[u=x])To encode pi-calculus we introduce syntactic constructors Send, Recv, Par, Resand Zero, with arities 3, 2, 2, 1 and 0 respectively. We represent a free occurrenceof a name x by the lambda-term Var x, and binding occurrences by Lam x. Giventhis preparation we can represent the syntax above by the following inductivede�nition of a predicate, Proc, on lambda-terms of type (string)term.` Proc(Send (Var x) (Var y) p) if Proc p (xy:p)` Proc(Recv (Var x) (Lam y p)) if Proc p (x(y):p)` Proc(Par p q) if Proc p and Proc q (p j q)` Proc(Res (Lam x p)) if Proc p ((�x)p)` Proc(Zero) always (0)Our axiomatised type of lambda-terms allows us to formalise the syntax givenat the beginning of the section by this inductive de�nition within HOL. Rule



induction on the Proc predicate formalises structural induction on pi-calculusprocesses.For instance, to prove that the set of processes is closed under substitution ofa name for a name,` 8p: Proc p � 8x y: Proc (p[Var x=y])we prove the more general hypothesis that the set of processes is closed underiterated variable renaming,` 8p: Proc p � 8�: Renaming � � Proc (p ISub �)by rule induction on Proc, that is, structural induction.5 Related WorkThe idea of a metatheory of syntax has a long history, going back at leastto Church's encoding of higher-order logic within simply-typed lambda-calculus.Martin-L�of's theory of arities is essentially the same idea (Nordstr�om, Petersson,and Smith 1990). The idea is now widely used to represent syntax in theorem-provers such as Paulson's Isabelle (1994). Church, Martin-L�of and Paulson allencode syntax using simply-typed lambda-terms, identi�ed up to alpha-beta-conversion. Types are needed to avoid meaningless divergent terms. We encodesyntax using untyped lambda-terms, identi�ed only up to alpha-conversion. Weneed to represent substitution as a separate function; in a system with beta-conversion it is represented simply as application of an abstraction to a term. Onthe other hand, our metatheory based on alpha-conversion supports structuralinduction more directly than one based on alpha-beta-conversion, where onewould need to perform induction on the size of the normal-form of a term.We have advocated representing syntax as a type within a mechanised logic.This is sometimes known as `deep embedding' (Boulton, Gordon, Gordon, Har-rison, Herbert, and Van Tassel 1992). Embeddings based either on de Bruijnterms or a free algebra of name-carrying terms are now quite common (see Gor-don (1994) for a survey). We are aware of several recent strands of work on deepembedding that focus on the interaction between substitution and bound vari-ables. Talcott (1993) proposed a generic theory of binding structures, now imple-mented in Isabelle by Matthews (1995). McKinna and Pollack (1993) proposed ascheme of binding based on two kinds of variables, that allows a straightforwardde�nition of substitution and yet avoids the possibility of variable capture. Theyimplemented it in Lego (Pollack 1994), and it has recently been re-implementedin Isabelle (Owens 1995). Our axiom �ve, which relates logical and embeddedabstractions, is reminiscent of higher-order abstract syntax (Pfenning and El-liott 1988; Despeyroux and Hirschowitz 1994), in which variable binding in theembedded syntax is implemented via the lambda-abstraction in the logic itself.
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