
Bisimilarity for a First-Order Calculus ofObjects with Subtyping�Andrew D. Gordon and Gareth D. ReesUniversity of Cambridge Computer Laboratoryhttp://www.cl.cam.ac.uk/users/fadg,gdr11g/October 1995AbstractBisimilarity (also known as `applicative bisimula-tion') has attracted a good deal of attention as anoperational equivalence for �-calculi. It approxi-mates or even equals Morris-style contextual equiv-alence and admits proofs of program equivalencevia co-induction. It has an elementary construc-tion from the operational de�nition of a language.We consider bisimilarity for one of the typed ob-ject calculi of Abadi and Cardelli. By de�ning alabelled transition system for the calculus in thestyle of Crole and Gordon and using a variationof Howe's method we establish two central results:that bisimilarity is a congruence, and that it equalscontextual equivalence. So two objects are bisim-ilar i� no amount of programming can tell themapart. Our third contribution is to show thatbisimilarity soundly models the equational theoryof Abadi and Cardelli. This is the �rst study ofcontextual equivalence for an object calculus andthe �rst application of Howe's method to subtyp-ing. By these results, we intend to demonstrate�To appear in Proceedings of the Twenty-Third AnnualACM Symposium on Principles of Programming Languages,St. Petersburg Beach, Florida, January 1996. Copyright c1995 by the Association for Computing Machinery, Inc. Per-mission to make digital or hard copies of part or all of thiswork for personal or classroom use is granted without feeprovided that copies are not made or distributed for pro�tor commercial advantage and that new copies bear this no-tice and the full citation on the �rst page. Copyrights forcomponents of this work owned by others than ACM mustbe honoured. Abstracting with credit is permitted. To copyotherwise, to republish, to post on servers or to redistributeto lists, requires prior speci�c permission and/or a fee. Re-quest Permissions from Publications Dept., ACM Inc., Fax+1 (212) 869-0481, or hpermissions@acm.orgi.

that operational methods are a promising new di-rection for the foundations of object-oriented pro-gramming.1 MotivationAbadi and Cardelli (1994a, 1994b, 1994c) presenta number of related calculi that formalise aspectsof object-oriented programming languages, includ-ing method update (the ability to modify the be-haviour of an object by altering one of its meth-ods) and object subsumption (the ability to emu-late an object with an object that has more meth-ods). They give equational theories for their calculi,present a denotational semantics based on partialequivalence relations for the largest calculus andshow that the equational theory is sound. Theirobject calculi form an extremely simple yet clearlyobject-oriented setting in which to seek type sys-tems that support styles of object-oriented pro-gramming found in full-blown languages. Hencethey are an important subject of research.Abadi and Cardelli's goal was to study type sys-tems for objects by abandoning complex encodingsof objects as �-terms and to study primitive ob-jects in their own right. Our goal here is to studyoperational equivalence of objects in its own right,instead of via denotational semantics, another kindof encoding.We work with Ob1<:� (Abadi and Cardelli1994c), a �rst-order stateless object calculus includ-ing objects, recursive types and a ground type ofBooleans. We take Morris-style contextual equiv-alence (Morris 1968) to be the natural operationalequivalence on objects: two programs are equiv-1

alent unless there is a distinguishing context ofground type such that when each program is placedin the context, one converges but the other di-verges. Following earlier work on functional lan-guages (Crole and Gordon 1995; Gordon 1995),we de�ne a CCS-style labelled transition systemfor the object calculus and replay the de�nitionof (strong) bisimilarity from CCS. Our bisimilaritydescends from a line of work on operational equiva-lence for functional calculi beginning with Abram-sky's applicative bisimulation (Abramsky and Ong1993). The new elements here are subtyping andobjects. Using an extension of the method of Howe(1989) we prove Theorem 1, that bisimilarity is acongruence. Theorem 2, that bisimilarity equalscontextual equivalence, then follows easily. Thequanti�cation over all contexts makes contextualequivalence hard to establish directly. The purposeof the labelled transition system, justi�ed by Theo-rem 2, is to admit CCS-style bisimulation proofs ofcontextual equivalence. We use this style of proof|a form of co-induction|for our �nal result, Theo-rem 3, that bisimilarity soundly models all of Abadiand Cardelli's equational theory.We briey examine equivalences between two ex-ample objects suggested by Abadi and Cardelli.One of the equivalences follows by co-induction butnot from their equational theory.Our framework appears to be robust. Our mainresults continue to hold when we extend the pureobject calculus with functions, records, variantsand dynamic types. We leave a study of polymor-phic types as future work, but see Rees (1994).2 An object calculusThe expressions of the Ob1<:� are object for-mation, [`1 = ς(x1:A1)e1; : : : ; `n = ς(xn:An)en](where an expression of the form ς(xi:Ai)ei is amethod), method selection, a:`, and method up-date, a:` (ς(x:A)e, together with constructs forBooleans and conditionals. We use the metavari-ables x and X for variables and type variables, ande and E for possibly open expressions and typesrespectively. Let I stand for �nite indexing setsand ` for labels, drawn from some countably in�-nite set. Formally, the grammars of types, E, andexpressions, e, are given as follows.

E ::= X j Top j Bool j [`i:Ei]i2I j �(X)Ee ::= x j [`i = ς(xi:Ei)ei]i2I j e:`j e:`(ς(x:E)e j fold(E; e)j unfold(e) j true j false j if(e; e; e)We identify expressions and types up to �-conversion, denoted by �. We write �[=x] for theoutcome of substituting phrase for each occur-rence of (type or expression) variable x in phrase�.An environment, �, is a �nite list of assignmentsof closed types to variables, x:A, followed by a �nitelist of type variable bounds, X <: E. Let �; X;�0be short for �; X <:Top;�0. Let Dom(�) be the setof variables and type variables bound or assignedin �. The static semantics of the calculus consistsof �ve inductively de�ned judgments: � ` � (theenvironment � is well-formed), E � Y (the type Eis formally contractive in variable Y), � ` E (thetype expression E is well-formed), � ` E<:E0 (thetype E is a subtype of E0), and � ` e:A (the expres-sion e has the closed type A). These judgments aregiven inductively by the rules in Tables 3, 4, 5, 6and 7. We follow a metavariable convention basedon the following sets.A;B 2 Type def= fE j ? ` Ega; b 2 Prog(A) def= fe j ? ` e :AgBy program we speci�cally mean closed expressionscontained in Prog(A) for some A, respectively. Asusual we write a:A to mean ? ` a : A and A <: Bfor ? ` A<:B.Abadi and Cardelli discuss the Ob1<:� type sys-tem at length. A few points are worth noting here.Numbers, functions, lists and so on can be encoded.Although the grammar allows the type annotationson ς-bound variables in an object to be distinct,if an object [`i = ς(xi:Ai)ei]i2I has type B, theneach Ai <: B and in fact all the Ai are identical.The contractivity constraint on recursive types im-plies that any closed type can be decomposed intothe form �(X1) : : : �(Xn)E where E is one of Top,Bool or [`i:Ei]i2I . Whenever A <: B and both Aand B are object types, they must have the forms[`i:Ai]i2I and [`j :Aj]j2J , respectively, with J � I .In other words, an object type is invariant in its2

component types, that is, neither covariant nor con-travariant. This is necessary because methods havea contravariant dependence on self, and becausethey support both selection and update. Abadi andCardelli (1994b, 1995) develop richer type systemsthat address this limitation, but we do not considerthem here.We need the following substitution and boundweakening lemmas, which are standard.Lemma 1 If �; x:A;�0 ` e :B and � ` e0 :A, then�;�0 ` e[e0=x] : B.Lemma 2 If �; x:A;�0 ` e : B and A0 <: A then�; x:A0;�0 ` e :B too.Abadi and Cardelli present a many-step deter-ministic evaluation relation, , for Ob1<:�. Forour purposes, it is more convenient to reformulateit as a single-step reduction relation. To specify theevaluation strategy we need the following notion ofa context. Let `�' be a distinguished variable usedto stand for a hole in a program. Let a context bean expression e such that the only free variable, ifany, is �. If e is a context and a is a program, wewrite e[a] short for the program e[a=�]. These arenot variable-capturing contexts.For each type A de�ne the set Value(A) �Prog(A) (with typical members u, v) of values ofthe following forms.[`i = ς(xi:B)ei]i2I fold(B; v) true falseLet Value be the set of values at any type, that is,Value =[fValue(A) j A 2 Typeg:The notation a 7! b means that a reduces to b ina single step of reduction; it is de�ned inductivelyby the following axiom schemes(Red Select) a:`j 7! ej [a=xj]where a � [`i = ς(xi:Ai)ei]i2I and j 2 I .(Red Update) a:`j (ς(x:B)e 7! a0where a � [`i = ς(xi:Ai)ei]i2I ,a0 � [`j = ς(x:Aj)e; `i = ς(xi:Ai)ei]i2I�fjgand j 2 I .(Red Unfold) unfold(fold(A; v)) 7! v(Red If True) if(true; a1; a2) 7! a1

(Red If False) if(false; a1; a2) 7! a2with an evaluation strategy given bya 7! b (Red Experiment)E [a] 7! E [b]where an experiment, E , is a context with one hole,of one of the following forms.�:` � :`(ς(x:A)eunfold(�) fold(A;�) if(�; a1; a2)The relation 7! is weak in the sense that it isclosed only under experiments, not arbitrary con-texts. There is no experiment to allow reductionunder ς-binders. (Red Update) preserves the prop-erty that whenever an object [`i = ς(xi:Ai)ei]i2Ihas type A, each Ai <: A and indeed all the Ai'sare identical.Experiments are just atomic evaluation contexts(Felleisen and Friedman 1986); every program canbe decomposed uniquely as follows.Lemma 3 If a:A there is a unique list of exper-iments E1; : : : ; En, n � 0, and value v such thata � E1[: : : En[v] : : :].Lemma 4 The values are the normal forms of 7!,that is, whenever a is a program, a 2 Value i�:9b(a 7! b).The reduction rules are deliberately type inde-pendent, in the sense that although they manipu-late type information contained in programs, theyare not contingent on the form of the types theymanipulate. For instance, (Red Update) allows forthe type bounds, Ai, to be distinct although weknow them to be identical. Hence ill-typed expres-sions can be reduced. This is a redundancy in thedynamic semantics, but is harmless because we areonly interested in statically typable programs.We can easily prove determinacy and subject re-duction.Lemma 5 If a 7! b and a 7! c, then b � c.Lemma 6 If a:A and a 7! b then b:A.As usual, let the relation 7!� be the reexiveand transitive closure of 7!. We now recover a3

many-step evaluation relation, +, and three stan-dard predicates as follows.a 7! def= 9b(a 7! b) `a reduces'a + b def= a 7!� b & :(b 7!) `a evaluates to b'a+ def= 9b(a + b) `a converges'a* def= 8b(a 7!� b) b 7!) `a diverges'We have a+ i� not a*. We have recovered themany-step evaluation relation ; a + b i� ` a b.The proof is standard.We introduced Ob1<:� without recursive pro-grams, but we can de�ne them using objects;for example, let �(x:A)e abbreviate the expres-sion [` = ς(s:[`:A])e[s: =̀x]]:`. We have �(x:A)e 7!e[�(x:A)e=x]. Hence there is a divergent program atevery type. Let
A be �(x:A)x;
A 7!
A so
A*.The de�nability of
A and the contractivity condi-tion on recursive types imply the following lemma.Lemma 7 8A 2 Type 9a1; a2:A (a1+ & a2*).The results of this paper would hold for the lan-guage without contractivity, but its presence sim-pli�es the statement of certain results, because con-tractivity rules out types with no values, such as�(X)X .3 Contextual equivalenceWe take Morris' contextual equivalence (Morris1968; Plotkin 1977), also known as `observationalcongruence' (Meyer and Cosmadakis 1988), to bethe natural operational equivalence on objects.First we introduce the idea of a relation betweenexpressions of matching types. Let a proved pro-gram be a pair aA such that a:A. Let P and Qrange over proved programs. Let Rel be the univer-sal relation on proved programs of the same type,given as follows.Rel def= f(aA; bA) j a:A & b:AgWe useR and S for subsets of Rel, that is, relationson proved programs that respect typing. If R �Rel, then for any type A, de�ne RA = f(a; b) j(aA; bA) 2 Rg. So the notation `aRA b' means that(aA; bA) 2 R.Instead of using relations on proved programs,we could have used binary relations on expressions

indexed by types. We use proved programs becausewhen de�ning bisimilarity we can work simply inthe complete lattice of subsets of Rel ordered by �,rather than of indexed sets.For each closed type A, let A-contextual equiva-lence, A' � Rel, be the relation on proved programsgiven by the following.a A'B b i� whenever �:B ` e : A, e[a] + i� e[b] +.In other words, two programs are A-contextuallyequivalent i� their termination behaviour is thesame whenever they are placed in a larger program,e, of type A.Proposition 8(1) Suppose there exists a context e such that�:A ` e :B and for all programs a:A, we havea+ i� e[a]+. Then B' � A'.(2) If A<:B then B' � A'.(3) For all A, Top' � A'.(4) For all B, B' � Bool' .(5) Top' 6= Bool' .Proof(1) Suppose for some some type C and programsa and b, we have a B'C b. We must provethat a A'C b. Suppose for some context e0 that�:C ` e0:A. By symmetry, it is enough to showthat if e0[a]+ then e0[b]+. Consider the con-text e[e0=�] satisfying �:C ` e[e0=�] : B, wheree is as given in the statement of the proposi-tion. Then e[e0[a]]+, and since a B'C b, we havee[e0[b]]+; hence e0[b]+ as required.(2) A corollary of part (1), taking e � � and usingsubsumption.(3) A corollary of part (2), since A<: Top.(4) A corollary of part (1), taking e � if(�; vB ;vB) for some value vB of type B (we know sucha value must exist by Lemma 7).4

(5) We have :(true Top' Top
Top) but true Bool' Top
Top. The former is immediate; the latter istrivial once we have Theorem 2. �Of this family of equivalence relations, Top' makesthe most distinctions between programs, and Bool'the fewest. The only substantial di�erence amongthe relations is the set of types at which terminationis distinguishable from non-termination.In a language with call-by-value functions, wecan construct a context satisfying part (1) forany two types A and B, namely the application((�(x:A)vB)�) where vB is some value of type B.Hence, in a call-by-value language, all the A''s areequal.We choose to take Bool' as our notion of opera-tional equivalence for this study for three reasons.First, it is the notion of contextual equivalence usedby Plotkin (1977) and is standard in studies of thelanguage PCF. Second, it is the most generous ofthe A-contextual equivalences. Third, since one ofour motivations is to validate the equational the-ory of Ob1<:�, we must choose a contextual equiv-alence in which their equations are sound. In par-ticular, the rule� ` e :A � ` e0 :B (Eq Top)� ` e$ e0 : Topmust hold, so Top' is inappropriate, because it al-lows the observation of termination behaviour attype Top. Hence it distinguishes true and
 attype Top, because the former converges but the lat-ter diverges. We will see later that (Eq Top) holdsfor Bool' .Another candidate was []', which does satisfy(Eq Top) and would be the most natural choice inOb1<:� without Booleans. It is �ner-grained thanBool' ; it distinguishes [] and
[] whereas Bool' identi-�es them.We will de�ne contextual equivalence, ' � Rel,to stand for Bool' , and de�ne contextual order, @� �Rel, as follows.a@�A b i� whenever �:A ` e : Bool,e[a] + implies e[b] + too.Note that a 'A b i� a@�A b and b@�A a.

It is easy to show two programs are contextu-ally distinct: just exhibit a single context that tellsthem apart. But to show equivalence requires aquanti�cation over all contexts. The point of thenext section is to characterise contextual equiva-lence co-inductively as a kind of bisimilarity, andhence to admit CCS-style bisimulation proofs ofequivalence. Contextual equivalence is de�ned interms of one-o� tests consisting of composite con-texts; bisimilarity is de�ned in terms of multipleatomic observations on objects. When proving pro-grams equal it is often easier to consider a series ofatomic observations rather than all possible con-texts.4 Bisimilarity4.1 Labelled transitionsWe de�ne a labelled transition system that char-acterises the atomic observations one can make ofa proved program. The notation P ��! Q meansthat the proved program P does an action � to be-come another proved programQ. As usual we writeP ��! mean that there is some Q with P ��! Q.The simplest labelled transition system to char-acterise contextual equivalence co-inductively is thefollowing. �:A ` E : B (Trans Exper)aA E�! E [a]Ba+ (Trans Val)aBool val�! 0where an action is either an experiment, E , or val,and 0 is disjoint from the set of programs. We couldprove that CCS-style bisimilarity according to thislabelled transition system equals contextual equiv-alence. This is a direct generalisation of Milner'scontext lemma for PCF (Milner 1977). We can dobetter than this by describing a labelled transitionsystem in which there are fewer transitions avail-able to proved programs: this reduction in size willsimplify some of our proofs.We divide the types of Ob1<:� into two classes,active and passive. Only Bool is active. Recur-sive types, object types and Top are passive. Atactive types a program must converge to a value5

a + v 2 ftrue; falseg (Trans Bool)aBool v�! 0 A � [`i:Ai]i2I j 2 I (Trans Select)aA `j�! a:`jAjA � [`i:Ai]i2I j 2 I x:A ` e :Aj (Trans Update)aA `j(ς(x)e�! a:`j (ς(x:A)eA A � �(X)E B � E[A=X] (Trans Unfold)aA unfold�! unfold(a)BTable 1: Rules of the labelled transition systembefore it can be observed; at passive types a pro-gram does actions unconditionally, whether or notit converges. The observable actions, � 2 Act, takethe following forms.true false ` `(ς(x)e unfoldThese actions correspond to the actions of the la-belled transition system based on (Trans Exper)and (Trans Val), except that true and false re-place actions of the form if(�; a; b). We haveerased type annotations from the update actionsbecause they contain redundant information thatwill in any case be erased by the (Red Update)rule.The labelled transition system we shall work withis the family of relations (��! j � 2 Act) given bythe rules in Table 1, such that whenever P ��! Q,each of P and Q is a proved program. Let 0 be aTop,for some arbitrary program a:Top. The purpose of0 is that it has no actions; after observing grounddata there is nothing more to observe.We can characterise the observable actions ateach type. For each type A, de�ne the set Act(A) �Act as follows.Act(Top) = fgAct(Bool) = ftrue; falsegAct(�(X)E) = funfoldgAct([`i:Ai]i2I) = f`i; `i (ς(x)e j i 2 I& x:[`i:Ai]i2I ` e :AigLemma 9 � 2 Act(A) i� 9a:A(aA ��!).We can make more observations at a subtypethan a supertype.Lemma 10 If A<: B then Act(B) � Act(A).

The following is a trivial fact forOb1<:�, as Bool isthe only active type, but it holds in the extensionsof Ob1<:� we have considered, in which more typesare active.Lemma 11 If A is active then aA ��! bB i� 9v 2Value(a + v & vA ��! bB).Our labelled transition system is image-singular, inthe following sense.Lemma 12 If P ��! Q and P ��! Q0, then Q �Q0.Because of subsumption, the system based on(Trans Exper) and (Trans Val) is not image-singular. For example, the following two transitionsare derivable from (Trans Exper).a[`:Bool] �:`�! a:`Boola[`:Bool] �:`�! a:`Top4.2 De�nition of bisimilarityThe derivation tree of a proved program P is thepotentially in�nite tree whose nodes are provedprograms, whose arcs are labelled transitions, andwhich is rooted at P . Following Milner (1989),we wish to regard two proved programs as be-haviourally equivalent i� their derivation trees arethe same when we ignore the syntactic structureof the programs labelling the nodes and the order-ing of the arcs from each node. We formalise thisidea in the standard way. First de�ne two functions[�]; h�i : }(Rel)! }(Rel) by[S] def= f(P;Q) j whenever P ��! P 0 there is Q0with Q ��! Q0 and P 0 S Q0ghSi def= [S] \ [Sop]op6

where Rop = f(b; a) j (a; b) 2 Rg for any binaryrelation R. These are both monotone functions on}(Rel). Let a relation S � Rel be a bisimulation i�S � hSi. Let bisimilarity, � � Rel, be the union ofall the bisimulations. By the Tarski{Knaster the-orem, bisimilarity is the greatest �xpoint of h�i.In other words, bisimilarity is the greatest relationto satisfy the following: whenever (P;Q) 2 Rel,P � Q i�(1) P ��! P 0) 9Q0(Q ��! Q0 & P 0 � Q0)(2) Q ��! Q0) 9P 0(P ��! P 0 & P 0 � Q0).If S is a bisimulation, S � � by de�nition of �;this is the co-induction principle associated withbisimilarity.We shall need the preorder form of bisimilarity.Let relation S � Rel be a simulation i� S � [S].Similarity, . � Rel, is the greatest �xpoint of [�],that is, the union of all simulations.4.3 Basic properties of bisimilarityWe can easily establish the following using co-induction.Proposition 13(1) . is a preorder and � an equivalence relation.(2) � = . \.op.Part (2) depends on image-singularity, Lemma 12.This property fails in a nondeterministic calculussuch as CCS.4.4 Bisimilarity and subtypingWhenever A<:B, we would expect that if two pro-grams are equal at the subtype, A, that they willbe equal at the supertype, B. To prove this, weneed the following lemma.Lemma 14 Relation f(aB ; bB) j 9A(? ` A<:B &a �A b)g is a simulation.The following is a simple corollary by co-induction.Proposition 15(1) If a .A b and A<:B then a .B b.(2) If a �A b and A<:B then a �B b.In the following section we introduce the idea ofa relation being a congruence, and in the next weprove that bisimilarity is one.

4.5 Congruence and precongruenceA congruence is an equivalence that is preserved byall contexts. To state this formally we must beginwith a few preliminary de�nitions. Let a substi-tution be a function ~� = a1=x1; : : : ; an=xn (n � 0)from expressions to expressions, which substitutesprograms for free variables. The application of asubstitution ~� to an expression e is written e[~�].A substitution ~� � a1=x1; : : : ; an=xn is a �-closurefor an environment � � x1:A1; : : : ; xn:An i� eachai:Ai. Let a proved expression be a triple (�; e; A)such that � is `closed' (it contains no type vari-able bounds; that is, it only contains assignmentsof closed types to program variables), A 2 Typeand � ` e :A. If the relation R � Rel then its openextension, R�, is the relation on proved expressionssuch that (�; e; A)R� (�0; e0; A0) i� A � A0, � � �0and e[~�] R e0[~�] for all �-closures ~�. Open exten-sion is a monotonic operator on relations betweenprograms.Lemma 16 If R � S then R� � S�.For instance, Rel� is the universal relation onpairs of proved expressions with matching typesand environments. As a notational convention, ifR � Rel� we write � ` e R e0 : A to mean that((�; e; A); (�; e0; A)) 2 R.If R � Rel� then its compatible re�nement (Gor-don 1994) is the relation bR � Rel� that relatestwo expressions if they share the same outermostsyntactic constructor, and their immediate sub-expressions are pairwise related by R. We say arelation R � Rel� is a precongruence i� it containsits own compatible re�nement, that is, bR � R, andit satis�es the following rule, with $ equal to R.� ` e$ e0 :A A<:B (Eq Subsum)� ` e$ e0 :BThis de�nition of precongruence can easily beshown equivalent to a more conventional one basedon substitution into variable-capturing contexts. If,in addition, a precongruence is an equivalence rela-tion, we say it is a congruence.4.6 Bisimilarity is a congruenceWe will show that the open extension of bisimilarityis a congruence. Since bisimilarity is the symmetri-sation of similarity, Proposition 13(2), it is enough7

A0 � [`i:Bi]i2I A00 � [`i:Bi; `j :Bj]i2I;j2JI \ J = ? �; xi:A0 ` ei : Bi (i 2 I) �; xj :A00 ` ej : Bj (j 2 J) (Eq Sub Object)� ` [`i = ς(xi:A0)ei]i2I $ [`i = ς(xi:A00)ei]i2I[J :A0A � �(X)E � ` e :A (Eval Fold)� ` fold(A; unfold(e))$ e : ATable 2: Fragment of the equational theory of Ob1<:�to prove that similarity is a precongruence. We doso using a form of Howe's method (1989). We de-�ne an auxiliary relation, .�, which by de�nition isa precongruence, and prove that .� = .�. Let theprecongruence candidate, .� � Rel�, be the leastrelation closed under the following rule.� ` e c.� e00 :A0 A0 <:A� ` e00 .� e0 :A (Cand Def)� ` e .� e0 : ASince .� is de�ned by exactly one rule, it is validupwards, that is, whenever � ` e .� e0 : A, thereis some type A0 <: A and some expression e00 with� ` e c.� e00 : A0 and also � ` e00 .� e0 : A. Wecan easily prove the following properties of .� bystandard methods.Lemma 17 Relation .� is reexive, and the fol-lowing rules are valid.� ` e .� e0 :A (Cand Sim)� ` e .� e0 :A� ` e c.� e0 : A (Cand Comp)� ` e .� e0 :A� ` e .� e00 :A � ` e00 .� e0 :A (Cand Right)� ` e .� e0 : A�; x:B ` e1 .� e01 : A� ` e2 .� e02 :B (Cand Subst)� ` e1[e2=x] .� e01[e02=x] :AMoreover, .� is the least relation closed under therules (Cand Comp), (Cand Right) and (Eq Sub-sum).

Unlike in previous applications of Howe'smethod, we need to relate.� and subtyping. GivenLemma 14 the following new properties are easy toprove.Lemma 18 Both (Eq Subsum) and the ruleA<:B �; x:B;�0 ` e$ e0 : C (Eq Asm Subsum)�; x:A;�0 ` e$ e0 : Chold for $ equal to .� and to .�.The following lemma is the heart of the precon-gruence proof. The proof is detailed but follows thestandard pattern.Lemma 19 Relation S = f(aA; a0A) j ? ` a .�a0 : Ag is a simulation.Theorem 1 Relation �� is a congruence.Proof By Lemma 19, S is a simulation, andhence S � . by co-induction. Open extension ismonotone, Lemma 16, so S� � .�. Now .� � S�follows by (Cand Subst) and the reexivity of .�.Hence we have .� � .�. But (Cand Sim) pro-vides the reverse inclusion, so in fact .� = .� andhence .� is a precongruence. By appeal to Propo-sition 13(2), �� is a congruence. �4.7 Bisimilarity equals contextualequivalenceThe proof of our main result, Theorem 2, followsthe standard pattern.Lemma 20 Both . � @� and � � '.Lemma 21 Contextual order, @�, is a simulation.Theorem 2 � = '.Proof Apply co-induction to Lemma 21 andcombine with Lemma 20. �8

5 Operational adequacyThe relationship between operational semanticsand equivalence in Ob1<:� is subtle. The followingfacts are straightforward to state and prove.Proposition 22 For any type A,(1) 8a; b:A(a 7! b) a �A b);(2) 8a; v:A(a + v) a �A v);(3) 8a:A(a*) a �A
A).Part (3) strengthened from `)' to `i�' is an im-portant property of equality and divergence. Inthe setting of the equality induced by a denota-tional semantics it is usually known as computa-tional adequacy (see Pitts (1994), for instance). Itdoes not hold at all types inOb1<:�. Consider typeTop. Any two programs at type Top are bisimilar,because there are no transitions at type Top. Sotrue �Top
 but not true*.Top is an example of a singular type, one in whichall programs are equal. Let `E singular' be theleast predicate on types to satisfy the following:Top singular; X singular for any variableX ; �(X)Esingular if E singular; and [`i:Ei]i2I singular if eachEi singular.A type is singular if neither it nor anyof its subexpressions is Bool. So the type�(X)[`1:Top; `2:X] is singular but the type�(X)[`1:Bool; `2:X] is not. Intuitively, all pro-grams are equal at a singular type because thereare no Bool-contexts to tell them apart.Proposition 23 For any A,(1) A singular i� 8a; b:A(a �A b);(2) A not singular i� 8a:A(a �A
A) a*).The proof, which we omit, uses the fact that bisim-ilarity equals contextual equivalence. Computa-tional adequacy, that a program equals
 i� it di-verges, holds just at the non-singular types.6 Validating the equationaltheoryAbadi and Cardelli (1994c) present an equationaltheory for Ob1<:�. Their relation is essentially the

relation$ � Rel� that is inductively de�ned by therules in Table 2, together with rules of equivalence,compatibility, closure under evaluation, (Eq Top)and (Eq Subsum). We can show that the openextension of bisimilarity is closed under the relevantequational rules and hence $ � ��.Most of the Ob1<:� equational theory is easy toverify. The equivalence rules follow for bisimilar-ity from Proposition 13(1). The congruence rulesfollow directly from Theorem 1. The evaluationrules follow from Proposition 22. (Eq Top) followsfrom Proposition 23. (Eq Subsum) follows fromLemma 18. (Eval Fold) can easily be proved byco-induction. (Eq Sub Object) appears to be mosteasily proved via a direct proof that the two objectsare contextually equivalent. We omit the proof.Since �� is closed under all the rules inductivelyde�ning the equational theory, it is sound in thefollowing sense.Theorem 3 $ � ��.Bisimilarity is no panacea|witness the direct proofof (Eq Sub Object)|but the bisimulation proofsof most of the equational rules would appear tobe simpler than direct proofs of contextual equiva-lence.The reverse inclusion does not hold; see Proposi-tion 26 below for an example. In any case since thecalculus presented here is Turing-powerful, no re-cursively enumerable equational theory such as $could be complete for operational equivalence.7 ExampleTo demonstrate the power of the co-inductive proofprinciple, we consider an example, given in sec-tion 4.3 of Abadi and Cardelli (1994c) that doesnot follow from the equational theory. A �eld is adegenerate method that does not depend on its selfparameter. Let e0:` := e be short for e0:`(ς(x:A)efor some type A such that e0:A, and [` = e; : : :] beshort for [` = ς(x:A)e; : : :], for some x not in thefree variables of e. De�ne a type A and two objectsa and b as follows.A def= [x:Bool; f :Bool]a:A def= [x = true; f = true]b:A def= [x = true; f = ς(s:A)s:x]9

Proposition 24 Not a �A b.Proof Let the context e be �:x :=
Bool:f . Bothe[a] and e[b] are programs of type Bool, but e[a] +true whereas e[b]*. Hence the two are contextuallydistinct, therefore not bisimilar. �Proposition 25 a �[x:Bool] b.Proof Using (Eq Sub Object) we can prove both[x = true] �[x:Bool] a and [x = true] �[x:Bool] b,and therefore a �[x:Bool] b by transitivity. �Proposition 26 a �[f :Bool] b.Proof Let P and Q be a[f :Bool] and b[f :Bool] re-spectively. Here are all their possible transitions.(1) P f�! P 0 with P 0 � (a:f)Bool � trueBool.(2) Q f�! P 0 with P 0 � (b:f)Bool � trueBool.(3) P f(ς(x)e�! P 0 with P 0 �[x = true; f = ς(x:A)e][f :Bool].(4) Q f(ς(x)e�! Q0 with Q0 �[x = true; f = ς(x:A)e][f :Bool].In each case, whenever P ��! P 0 there is Q0 withQ ��! Q0 and P 0 � Q0, and vice versa. Hence(P;Q) 2 h�i and since � = h�i we have a �[f :Bool]b. �Proposition 26 does not follow from the equationaltheory $. We expect it would follow by a directproof of contextual equivalence (similar to the onewe needed for (Eq Sub Object)) but the bisimula-tion proof above is much simpler.8 Other equivalence relationsOur theory is based on characterising contextualequivalence as a form of bisimilarity. We consideredseveral other forms of operational equivalence.8.1 Contextual equivalence usingcapturing contextsIn Section 3, we de�ned contextual equivalence forclosed expressions only. In extending the relation

to open expressions, we have two choices; one isto use the relation '�, the other is to use contextswith a single hole that captures free variables; thatis, we de�ne a relation �1 as follows.e �1 e0 i� 8<: for all capturing contexts C s.t.if C[e]:Bool and C[e0]:Bool thenC[e] + i� C[e0] +In the pure object calculus Ob1<:� we can easilyshow that that �1 contains contextual equivalence,but the reverse inclusion fails. The only boundvariables in Ob1<:� are self-parameters, of objecttype, so x:Bool ` x �1 true holds vacuously, butof course x:Bool ` x 6'� true, because false=x isan x:Bool-closure. However, if the language is ex-tended with a let construct at arbitrary type orwith functions we can prove that the two equiva-lences are equal.Proposition 27 In the presence of functions or alet construct, '� = �1.8.2 Record-style bisimilarityThinking of objects as records, we considered anequivalence, �2, that equates two objects if selec-tions of their methods are pairwise bisimilar.a �2[`i:Ai](i2I) b i� � a + i� b +; anda:` �2Ai b:` for all i 2 IThis relation is not discriminatory enough becauseit has too narrow a notion of observation on ob-jects. It would be correct for a record calculus, butit ignores the possibility of method update and in-direction through self. For example, it equates aand b from Section 7 at type [x:Bool; f :Bool], butwe know from Proposition 24 that they are con-textually distinct at that type. Abadi and Cardelli(1994c) reject a record-style semantics for their cal-culus for similar reasons.8.3 Applicative bisimulationHowe (1989) de�nes a format for applicative bisim-ulation, �3, for a general class of untyped �-calculi.Here is a natural way to express this format in atyped setting.a �3A b i� whenever a + u then 9v s.t. b + vand ? ` ud�3� v : A, and vice versa.10

Unfortunately, this format is too discriminatory forthis object calculus. It distinguishes between thetwo programs a and b from Section 7 at the type[f :Bool], whereas Proposition 26 shows they arecontextually equivalent. Two �-calculus functions�(x:A)e and �(x:A)e0 are equal if and only if eand e0 are equal for any expression of the correcttype that may be substituted for x. However, forthe methods ς(s:A)true and ς(s:A)s:x to be equal,their bodies only need to be equal when particularvalues of s are substituted for x, namely the objectsa and b themselves.9 Related workMost prior work on the theoretical underpinningsfor object-oriented programming uses denotationalsemantics (Gunter and Mitchell 1994), which pro-vides �xpoint induction for reasoning about pro-grams. Co-induction cannot always take the placeof �xpoint induction, but Mason, Smith, and Tal-cott (1994) show how to derive �xpoint inductionin a purely operational setting. Breazu-Tannen,Gunter, and Scedrov (1990) is one of the few pa-pers to establish computational adequacy for a de-notational semantics in the presence of subtyping.One conclusion of our study is that in spite ofits elementary construction, bisimilarity is a use-ful operational model for an object calculus. Al-though much can be done purely operationally, itwould be worthwhile to research the connectionsbetween contextual equivalence and the PERmodelfor Ob1<:�.Walker (1995) and Jones (1993) show how toencode objects in the �-calculus. Following theirapproach, we could translate Ob1<:� into the �-calculus, but we expect, based on Sangiorgi (1994),that the equivalence generated by the encodingwould be �ner grained than contextual equivalence.Agha, Mason, Smith, and Talcott (1992) studieduntyped actors, a form of objects, with side-e�ectsand concurrency. We consider the extension of ourresults to the imperative object calculus of Abadiand Cardelli (1995) to be important future work.In the presence of dynamic state all known de�ni-tions of bisimilarity are �ner grained than contex-tual equivalence (Stark 1994) but nonetheless weexpect bisimilarity to be useful for imperative ob-jects. Ob1<:� is also studied by Palsberg (1994),

who presents a complete type inference algorithm.Ob1<:� is based on �xed-length objects; Mitchell,Honsell, and Fisher (1993) have developed a �-calculus of extensible objects. They too de�ne asimple operational semantics, analogous to our 7!relation. We expect our theory of bisimilarity couldbe reworked for their calculus. We are aware ofonly two other studies of bisimilarity and subtyp-ing. Pierce and Sangiorgi (1995) investigate typeannotations on names in the �-calculus. Maung(1993), like us, used a labelled transition systemand a notion of similarity to express object proper-ties. He proved that similarity of his objects impliesa notion of substitutability.
10 ConclusionContextual equivalence formally captures the ideathat two programs are equal i� no amount of pro-gramming can tell them apart. We characterisedcontextual equivalence as a form of bisimilarity.We validated Abadi and Cardelli's equational the-ory. Furthermore, we showed that bisimilarity ad-mits CCS-style proofs of equivalence, going beyondthe equational theory. Our work builds on pre-vious studies of bisimilarity for functional calculi(Abramsky and Ong 1993; Howe 1989; Crole andGordon 1995; Gordon 1995). This is the �rst useof Howe's method in the presence of subsumptionand the �rst study of contextual equivalence for anobject calculus. The chief di�culties were in de�n-ing a labelled transition system that correctly dealtwith method update and subsumption. Space pre-cludes their inclusion here, but our main resultsextend to function, dynamic, record and varianttypes. In all we claim that operational methodsare a promising new direction for the foundationsof object-oriented programming.Milner (1989) showed that bisimilarity is a use-ful theory of concurrent processes. Analogously,our work shows that bisimilarity is a useful theoryof objects with subtyping. We have shown thatfrom elementary foundations it captures intuitiveoperational arguments about objects.11

AcknowledgementsGordon holds a Royal Society University ResearchFellowship. Rees holds an EPSRC Research Stu-dentship. We thank Mart��n Abadi, Luca Car-delli and Andy Pitts for many useful conversationsabout this work.ReferencesAbadi, M. and L. Cardelli (1994a, June). A se-mantics of object types. In Proceedings of the9th IEEE Symposium on Logic in ComputerScience, pp. 332{341. IEEE Computer Soci-ety Press.Abadi, M. and L. Cardelli (1994b). A theory ofprimitive objects: Second-order systems. InProceedings of European Symposium on Pro-gramming, Volume 788 of Lecture Notes inComputer Science, pp. 1{25. Springer-Verlag.Abadi, M. and L. Cardelli (1994c, April). A the-ory of primitive objects: Untyped and �rst-order systems. In Theoretical Aspects of Com-puter Software, pp. 296{320. Springer-Verlag.Abadi, M. and L. Cardelli (1995). An impera-tive object calculus. In TAPSOFT'95: The-ory and Practice of Software Development,Volume 915 of Lecture Notes in ComputerScience, pp. 471{485. Springer-Verlag.Abramsky, S. and L. Ong (1993). Full abstrac-tion in the lazy lambda calculus. Informa-tion and Computation 105, 159{267. Avail-able as Technical Report 259, University ofCambridge Computer Laboratory.Agha, G., I. Mason, S. Smith, and C. Tal-cott (1992, August 24{27,). Towards a the-ory of actor computation. In CONCUR'92:Third International Conference on Concur-rency Theory, Stony Brook, New York, Vol-ume 630 of Lecture Notes in Computer Sci-ence, pp. 565{579. Springer-Verlag.Breazu-Tannen, V., C. A. Gunter, and A. Sce-drov (1990, June). Computing with coer-cions. In Proceedings of the 1990 ACM Con-ference on Lisp and Functional Programming,pp. 44{60.

Crole, R. L. and A. D. Gordon (1995). A soundmetalogical semantics for input/output ef-fects. In CSL'94 Computer Science Logic,Kazimierz, Poland, September 1994, Volume933 of Lecture Notes in Computer Science,pp. 339{353. Springer-Verlag.Felleisen, M. and D. Friedman (1986). Con-trol operators, the SECD-machine, and the�-calculus. In Formal Description of Pro-gramming Concepts III, pp. 193{217. North-Holland.Gordon, A. D. (1994). Functional Program-ming and Input/Output. Cambridge Univer-sity Press.Gordon, A. D. (1995). Bisimilarity as a theory offunctional programming. In Eleventh AnnualConference on Mathematical Foundations ofProgramming Semantics, Volume 1 of Elec-tronic Notes in Theoretical Computer Sci-ence. Elsevier Science Publishers B.V. To ap-pear. Extended version available as BRICSNote NS{95{3, Aarhus University.Gunter, C. A. and J. C. Mitchell (Eds.) (1994).Theoretical Aspects of Object-Oriented Pro-gramming: Types, Semantics, and LanguageDesign. MIT Press, Cambridge, Mass.Howe, D. J. (1989). Equality in lazy computationsystems. In Proceedings of the 4th IEEE Sym-posium on Logic in Computer Science, pp.198{203.Jones, C. (1993). A pi-calculus semantics foran object-based design notation. In CON-CUR'93: Fourth International Conference onConcurrency Theory, Volume 715 of LectureNotes in Computer Science, pp. 158{172.Springer-Verlag.Mason, I. A., S. F. Smith, and C. L. Talcott(1994). From operational semantics to do-main theory. Submitted for publication.Maung, I. (1993). Simulation, subtyping andsubstitutability. Technical Report UBC 93/5,Department of Computing, University ofBrighton.Meyer, A. R. and S. S. Cosmadakis (1988, July).Semantical paradigms: Notes for an invitedlecture. In Proceedings of the 3rd IEEE Sym-12

posium on Logic in Computer Science, pp.236{253.Milner, R. (1977). Fully abstract models oftyped lambda-calculi. Theoretical ComputerScience 4, 1{23.Milner, R. (1989). Communication and Concur-rency. Prentice-Hall International.Mitchell, J. C., F. Honsell, and K. Fisher (1993).A lambda calculus of objects and method spe-cialization. In Proceedings of the Eighth IEEESymposium on Logic in Computer Science,Montreal, pp. 26{38.Morris, J. H. (1968, December). Lambda-Calculus Models of Programming Languages.Ph. D. thesis, MIT.Palsberg, J. (1994). E�cient inference of objecttypes. In Proceedings of the 9th IEEE Sympo-sium on Logic in Computer Science, pp. 186{195.Pierce, B. and D. Sangiorgi (1995). Typing andsubtyping for mobile processes.MathematicalStructures in Computer Science. To appear.Summary in Proceedings of the 8th IEEEConference on Logic in Computer Science,pp. 376{385 (1993).Pitts, A. M. (1994). Computational adequacyvia `mixed' inductive de�nitions. In Proceed-ings Mathematical Foundations of Program-ming Semantics IX, New Orleans 1993, Vol-ume 802 of Lecture Notes in Computer Sci-ence, pp. 72{82. Springer-Verlag.Plotkin, G. D. (1977). LCF considered as a pro-gramming language. Theoretical ComputerScience 5, 223{255.Rees, G. (1994, April). Observational equiva-lence for a polymorphic lambda calculus. Uni-versity of Cambridge Computer Laboratory.http://www.cl.cam.ac.uk/users/gdr11/equivalence.dvi.Sangiorgi, D. (1994, May). The lazy lambda cal-culus in a concurrency scenario. Informationand Computation 111 (1), 120{153.Stark, I. D. B. (1994, December). Names andHigher-Order Functions. Ph. D. thesis, Uni-versity of Cambridge Computer Laboratory.

Walker, D. (1995, 1 February). Objects inthe �-calculus. Information and Computa-tion 116 (2), 253{271.

13

(Env ?)? ` � � ` � ? ` A x =2 Dom(�) (Env x)�; x:A ` � � ` E X =2 Dom(�) (Env X<:)�; X <: E ` �Table 3: Well-formed environmentsX 6= YX � Y Top � Y Bool � Y [`i:Ei]i2I � Y E � Y�(X)E � YTable 4: Formal contractivity� ` Ei (8i 2 I) (Type Object)� ` [li : Ei]i2I � ` � (Type Top)� ` Top �; X <:E;�0 ` � (Type X<:)�; X <:E;�0 ` X�; X <: Top ` E E � X (Type Rec <:)� ` �(X)E � ` � (Type Bool)� ` BoolTable 5: Well-formed types� ` E (Sub Re)� ` E <: E � ` E1 <:E2 � ` E2 <:E3 (Sub Trans)� ` E1 <:E3 �; X <:E;�0 ` � (Sub X)�; X <:E;�0 ` X <:E� ` E (Sub Top)� ` E <: Top J � I � ` Ei (8i 2 I) (Sub Object)� ` [`i : Ei]i2I <: [`i : Ei]i2J� ` �(X1)E1 � ` �(X2)E2 �; X2 <: Top; X1 <:X2 ` E1 <:E2 (Sub Rec)� ` �(X1)E1 <: �(X2)E2Table 6: Subtyping relation�; x:A;�0 ` � (Val x)�; x:A;�0 ` x :A �; xi:A ` ei :Ai (8i 2 I) A � [`i:Ai]i2I � ` � (Val Object)� ` [`i = ς(xi:A)ei]i2I :A� ` e : [`i:Ai]i2I j 2 I (Val Select)� ` e:`j :Aj A � [`i:Ai]i2I � ` e : A �; x:A ` e0 : Aj j 2 I (Val Update)� ` e:`j (ς(x:A)e0 :AA � �(X)E � ` e :E[A=X] ? ` A (Val Fold)� ` fold(A; e) : A A � �(X)E � ` e : A (Val Unfold)� ` unfold(e) :E[A=X]� ` e :A1 � ` A1 <:A2 (Val Subsumption)� ` e :A2 � ` � (Val True)� ` true : Bool� ` � (Val False)� ` false : Bool � ` e1 : Bool � ` e2 :A � ` e3 :A (Val If)� ` if(e1; e2; e3) :ATable 7: Type assignment14

