
Area Light Sources for Real-Time Graphics

John M. Snyder

March 6, 1996

Technical Report

MSR-TR-96-11

Microsoft Research

Advanced Technology Division

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

1

Abstract

In an effort to extend the sorts of lighting models used in real-time computer graphics, this paper presents several area light

source models, including Lambertian and Phong illumination from constant and cosine-falloff hemispherical light sources,

constant subhemispherical light sources, and constant polygonal light sources. The subhemispherical lighting model can also

be used to represent illumination from finite-distance spherical light sources. The models are not unduly more expensive than

the simple point light source models, and are capable of real-time evaluation.

1 Introduction

Finite area light sources can make a big difference in the realism of synthetic imagery. New results [Arvo95] make it possible

to analytically compute the illumination at a point from area light sources for simple kinds of lighting models, including

perfect Lambertian reflectance, and Phong model specular reflectance. This paper explores some of these results as well as

some new, special cases and extensions that are particularly easy to compute (e.g., infinite hemispherical light sources, and a

simpler specular reflectance model). The computations are simple enough to be implemented as part of the standard graphics

illumination model present in every rendering API.

In addition to added realism, there are two more benefits of replacing the traditional point light source models with area light

sources. First, area light sources are softer, tending to reduce the variation of surface intensity. This is true at both the specular

highlight falloff region and at the terminator line for Lambertian models. Real-time graphics systems typically sample the

illumination at the vertices of each polygon and linearly interpolate the shading function between the vertices. High-frequency,

nonlinear variation of the surface shading thus requires finely tessellated polygons. Using area light sources reduces this

variation and allows larger polygons to be rendered with an acceptable degree of fidelity to the pixel-by-pixel shading variation.

Second, area light sources suffer less from the problem of highlight burnount, in which regions very near to the precise

peak of the highlight are clipped to the maximum intensity, thereby becoming regions of constant color with attendant Mach

bands. Area light sources tend to create more gradation within these burnout regions. This is not exactly a contradiction of

the statements of the previous paragraph: area light sources both soften (i.e., reduce variation) in the near-peak specular falloff

region, and add variation in the formerly constant peak regions.

A summary of the main results of this paper is contained in Section 4.

2 Lambertian Lighting

We first consider perhaps the simplest form of lighting model, Lambert’s law, in which incident light is scattered so as to appear

equally bright from all directions. Given a point P on a surface with unit-length normal N, Lambert’s law states that the output

intensity, I, is equal in any direction and given by

I � 1

Inorm

Z
H(N)

F(p) (p � N) dA(p) (1)

where H(N) is a unit-radius hemisphere around N, p is a point on this hemisphere representing the incident direction, F is the

incident radiance as a function of incident direction, and dA is the differential area of the surface element at p. Inorm is a factor

that normalizes the BRDF; i.e.,

Inorm � Z
H(N)

(p � N) dA(p) = �:
We will show that Inorm = � in the next section.

The following sections compute I analytically for various light sources; that is, for various incident radiance distributions

F(p).

2.1 Infinite Hemispherical Light Sources

An infinite hemispherical light source is defined by a light direction L which represents the “top” of the hemisphere. An

arbitrary direction D receives light only if D � L � 0. Such a model ignores the location of the point to be illuminated (P);

only the normal at the point (N) matters. For example, a scene may be lighted by an infinite hemispherical light source whose

direction corresponds to the zenith, a model that is a reasonable approximation to sky illumination [Nishita86]. Within the

1

general category of infinite hemispherical light sources, various subtypes can be defined that apply different weighting to the

incident radiances over the hemisphere. The next sections define analytic shading functions for both constant-weighted and

cosine-weighted hemispherical light sources. These can be combined (Section 2.1.3) to produce a reasonable simulation of

illumination from an overcast sky.

Subsequent derivations make use of the following hemispherical parameterization. This parameterization assumes that the

coordinate system has been arranged so that N is transformed to the z-axis, and the perpendicular projection of L onto N is

mapped to the negative x-axis. The hemisphere around N is then given by

p(�; �) � 0@ cos � sin�� cos�
sin � sin�1A

where � 2 [0; �] and � 2 [0; �]. The angle between N and L is denoted by !, where ! 2 [0; �]. Figure 1 illustrates this

hemispherical parameterization.

N

L

p

θ

φ

ω

Figure 1: Hemispherical parameterization: A point on the hemisphere is given by p(�; �) where � parameterizes the angle in the plane of

N and L, and � parameterizes the angle perpendicular to this plane. ! is the angle between L and N.

Using this parameterization, we have

Inorm =

Z �
0

d� Z �
0

d� F(�; �) sin � sin2 �
= �:

This is because the differential area is given by

dA = sin� d� d�
and because the Lambert’s law dot product reduces to

p � N = sin � sin�
in the transformed coordinate system. Thus

Ihemi(!) � 1� Z �! d� Z �
0

d� F(�; �) sin � sin2 �: (2)

The limits on � are [!; �] since there is no incident radiance except in the hemisphere about L, and the hemisphere about N

intersects the hemisphere about L in the range � = ! to � = � (refer to Figure 1). The integration limits on � are [0; �], just as

in the original hemisphere.

2.1.1 Constant-Weighted

In the constant-weighted hemisphere case, we have

F(�; �) � � 0; if L � p(�; �) < 0

1; otherwise.
:

2

Equation 2 becomes

Ihemi-const(!) =
1� Z �! d� Z �

0

d� sin � sin2 �
which reduces to

Ihemi-const =
1� ��2 � sin 2�

4

������
0

�� cos�������!
=

1

2
(1 + cos!): (3)

Converting back into the global coordinate system, we have

Ihemi-const(N; L) =
1

2
(1 + N � L) (4)

2.1.2 Cosine-Weighted

In the cosine-weighted hemisphere case, we have

F(�; �) � L � p(�; �)

where L expressed in the special coordinate is given by

L � 0@ cos(�
2

+ !)

0

sin(�
2

+ !)

1A =

0@� sin!
0

cos! 1A :
Equation 2 becomes

Ihemi-cos(!) =
1� Z �! d� Z �

0

d� [� sin! cos � sin� + cos! sin � sin�] sin � sin2 �
which reduces to

Ihemi-cos(!) =
1� Z �! Z �

0

sin3 � ��sin! sin � cos � + cos! sin2 �� d�d�
=

1� ��1

3
cos�(sin2 � + 2)

������
0

�� sin! sin2 �
2

+ cos!(
�
2
� 1

4
sin 2!)

������!
=

4

3� � sin3 !
2

+ cos!��
2
� !

2
+

1

4
sin 2!��

=
2

3� �sin3 ! + cos! (� � ! + sin! cos!)� : (5)

Converting back into the global coordinate system is easily accomplished since

cos! = N � L

sin! =
p

1� (N � L)2! = cos�1(N � L)

Note that this light source type requires evaluation of the inverse cosine function to calculate the output intensity.

2.1.3 Combining Weights: The CIE Sky Model

The above two weighting functions can be combined to yield illumination from an infinite hemispherical light source whose

incident radiance is a linear combination of constant and cosine-weighted functions. More precisely, we define the output

intensity as Ihemi-sum, given by

Ihemi-sum(!; �; �) � � Ihemi-const(!) + � Ihemi-cos(!):
3

For example, The CIE Standard sky luminance function [Nishita86] can be used as a model for illumination from overcast

skies. This model weights the radiance function over the hemisphere using

Ihemi-sum(!; C

3
; 2C

3
)

where C is the luminance at the sky zenith (i.e., in the direction L).

2.2 Sub-Hemispherical Light Sources

Similar derivations can be used to construct the analytic shading function due to a finite spherical light source that is a perfectly

diffuse emitter, or due to an infinite light source that subtends a fixed angle of less than �. We define a sub-hemispherical

light source, a generalization of the hemispherical light source introduced in Section 2.1. Such a light source is defined with

a direction L that points toward the center of the light source, and an angle � 2 [0; �=2], representing the maximum angle an

incident direction can make with L. That is, an arbitrary direction D receives light only if D � L � cos�. The hemispherical

case considered before is thus a specialization, for which � = �=2.

It can be shown (Section A) that Lambertian lighting due to such a light source has the following analytic form:

Ihemi-sub(!; �) � 1� 8>><>>: � cos! sin2 �; ! 2 [0; �
2
� �]� cos! sin2 � + G(!; �;)�H(!; �;); ! 2 [�

2
� �; �

2
]

G(!; �;) + H(!; �;); ! 2 [�
2
; �

2
+ �]

0; ! 2 [�
2

+ �; �]

(6)

where � sin�1
�cos�

sin! � ;
G(!; �;) � �2 sin! cos� cos +

�
2
� + sin cos;

and

H(!; �;) � cos! hcos psin2 � � cos2 + sin2 � sin�1
�cos

sin � �i :
As in the previous section, ! is the angle between N and L. We also note that trigonometric evaluations can be avoided by

observing

sin =
cos�
sin!

cos =
p

1� sin2
Figure 2 illustrates the sub-hemispherical model for various values of �. Note that Ihemi-sub is a generalization of Ihemi-const

from Section 2.1.1, where

Ihemi-const(!) = Ihemi-sub(!; �
2

):
In the case of an infinite sub-hemispherical light source, � is a constant for all points (P;N) to be illuminated. In this case, the

quantities cos� and sin � should be computed as a pre-preprocessing step and stored. As in the case for infinite hemispherical

light sources, the location of the point in space, P, is ignored.

The sub-hemispherical model can also be used to model illumination from a finite spherical light source. Given the position

of the light source, PL, and its radius, r, we can compute the angle subtended at a point to be illuminated, P, via� = sin�1

�
rkP� PLk� (7)

i.e.,

sin � =
rkP� PLk

cos� =
p

1� sin2 �:
In this case, both � and ! vary as (P;N) varies, for the same light source.

4

π/2 π

ω

0

0.5

1

I

Figure 2: Normalized Sub-Hemispherical Illumination: The relation of the “normalized” shading function to ! is plotted for values of� = �
6

, �
3

, and �
2

. Normalization means dividing by sin2 � so as to return a maximum result (at ! = 0) of 1. The dashed line represents the

point light source model max(0; cos!). The sub-hemispherical model essentially produces a “fillet” over the smoothness discontinuity in the

point light source curve, where the smoothness of the fillet increases with increasing �.

Approximating the sub-hemispherical model The computations required by Equation 6 are fairly complex, including two

inverse trigonometric operations to calculate and H(!; �;). Computations can be reduced by approximating the “fillet”

region of Ihemi-sub (i.e., ! 2 [�
2
� �; �

2
+ �]) as a cubic curve. At one endpoint of this segment, ! = �

2
� �,

Ihemi-sub(
�
2
� �) = cos(

�
2
� �) sin2 � = sin3 �

and
d Ihemi-sub

d! (
�
2
� �) = � sin(

�
2
� �) sin2 � = � cos� sin2 �:

At the other endpoint, ! = �
2

+ �,

Ihemi-sub(
�
2

+ �) = 0

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

� = �
2

� = �
4

� = �
8

Figure 3: Approximate Sub-hemispherical Illumination: The three plots show the accuracy with which the two-segment hermite

interpolation approximates the sub-hemispherical Lambertian model. The dashed line represents the actual model; the solid is the approximate

model. The plots represent normalized intensity vs. ! for � = �
2
; �

4
; �

8
.

5

and
d Ihemi-sub

d! (
�
2

+ �) = 0:
We can therefore use hermite interpolation to construct an approximation to this segment.

Hermite interpolation approximates a function f (x) in an interval by a cubic curve, given its value and the value of its first

derivative at the endpoints of the interval. Let the value of the function and its derivatives at the endpoints of the interval [x0; x1]

be given by

f (x0) = f0; f (x1) = f1; f 0(x0) = f 00; f 0(x1) = f 01:
For the canonical interval [0; 1], the cubic curve having given endpoints values of

g(0) = g0; g(1) = g1; g0(0) = g00; g0(1) = g01:
is

g(y) � ay3 + by2 + cy + d

where

a(g0; g1; g00; g01) � g01 + g00 � 2(g1 � g0)

b(g0; g1; g00; g01) � 3(g1 � g0)� g01 � 2g00
c(g0; g1; g00; g01) � g00
d(g0; g1; g00; g01) � g0:

For an arbitrary interval [x0; x1], the transformation

y =
x� x0

x1 � x0

can be made. A cubic curve h(x) = g(y(x)) approximating f (x) in [x0; x1] can then be defined using the above cubic polynomial

for g(y), with the following substitutions for the endpoint conditions:

g0 = f0

g1 = f1

g00 = (x1 � x0) f 00
g01 = (x1 � x0) f 01:

To increase accuracy, we can break the fillet region into two cubic curves instead of one by introducing another knot at

w = �
2

.1 A piecewise cubic curve is then defined using hermite interpolation over the two intervals [�
2
� �; �

2
] and [�

2
; �

2
+ �].

The values of the intensity function and its derivative with respect to ! at ! = �
2

are given by

Ihemi-sub(
�
2

) =
1� (� � cos� sin�)

and
d Ihemi-sub

d! (
�
2

) = �1

2
sin2 �:

Figure 3 shows the results of the two-segment hermite approximation.

2.3 Polygonal Light Sources

Illumination from a uniformly bright (perfectly diffuse) polygonal light source can be analytically integrated; a result first

achieved by Lambert in 1760. The result is summarized in [Arvo94], but is repeated here for completeness. The polygonal light

source is represented as a collection of m vertices V1;V2; : : : ;Vm. The output intensity is given by

Ipoly � 1

2� mX
i=1

�i(P) (�i(P) � N) (8)

1This is especially important for large values of �, since the fillet region becomes larger as � ! �
2

, becoming the entire curve at �
2

. A single hermite curve

is a fairly coarse approximation to Ihemi-sub in this case.

6

where �i is the angle subtended by the edge from Vi to Vi+1, and �i is the “edge normal”. More precisely,�i(P) � cos�1

�
Vi � PkVi � Pk � Vi+1 � PkVi+1 � Pk�

and �i(P) � (Vi � P)� (Vi+1 � P)k(Vi � P)� (Vi+1 � P)k
where Vm+1 = V1.

The above expression assumes that the light source is entirely within the hemisphere around N at P. If not, then the light

source must be restricted to this hemisphere. This is easily accomplished by clipping the light source polygon to the plane

containing P perpendicular to N; i.e., the plane of points Q for which

(Q� P) � N = 0:
The set of vertices resulting from clipping the light source polygon to this plane can then be used in Equation 8.

3 Non-Lambertian Lighting

This section considers a simple specular lighting model, the Phong power-law model, in which the output intensity in the

viewing direction V is given by

I � 1

Inorm-Phong

Z
H(R)

F(p) (p � R)n dA(p): (9)

R is the reflection direction, given by reflecting the viewing direction V through the normal N:

R � 2N(V � N)� Vk2N(V � N)� Vk :
The integral exponent n controls the shininess of the surface; larger exponents yield shinier surfaces. As in the Lambertian case

(Equation 1), H(R) is a unit-radius hemisphere (but around around R rather than N), p is a point on this hemisphere representing

the incident direction, F is the incident radiance as a function of incident direction, and dA is the differential area of the surface

element at p. Inorm-Phong is the normalization factor, given by

Inorm-Phong � Z
H(R)

(p � R)n dA(p) =
2�

n + 1
(10)

and will be derived later.

We note that this model is different from the specular models used in both OpenGL model and in [Arvo95], in that different

expressions are substituted for (p �R)n. For OpenGL, the power law relation is given by (p �H)n, where H, the “halfway vector”,

is given by

H � V + pkV + pk :
Arvo uses yet another integrand, given by

(p � R)n (p � N):
The main difference of these two models from Equation 9 is that the specular intensity falls off as the angle of the plane formed

by V and p becomes perpendicular to N. The OpenGL model is difficult to integrate analytically. Arvo’s model is also more

difficult to integrate, in that the domain of integration becomes the intersection of the two hemispheres around N and R.

3.1 Phong Illumination from Infinite Hemispherical Light Sources

As in Section 2.1, we first consider lighting from a hemispherical light source. For a constant-weighted light field, using the

same spherical parameterization as in Section 2.1, Equation 9 reduces to

Ihemi-const-Phong(!; n) =
1

Inorm-Phong(n)

Z �! d� Z �
0

d� (sin � sin�)n sin�: (11)

7

Similarly, for a cosine-weighted light field, Equation 9 reduces to

Ihemi-cos-Phong(!; n) =
1

Inorm-Phong(n)

Z �! d� Z �
0

d� (sin � sin�)n sin2 � [� sin! cos � + cos! sin �] : (12)

In this case, ! is the angle between the hemispherical direction L with the reflection direction R rather than the normal direction

N; i.e., ! = cos1 (R � L) :
The normalization factor is given by

Inorm-Phong(n) =

Z �
0

d� Z �
0

d� (sin � sin�)n sin�:
To compute these integrals analytically, we define the sine-power-integral function, S(n; x) as

S(n; x) � Z x

0

sinn � d�
where n � 0 is an integer, and x 2 R. A recurrence relation can be defined that allows computation of S, via

S(n; x) = �1

n
sinn�1 x cos x +

n� 1

n
S(n� 2; x)

with termination cases given by

S(0; x) = x

S(1; x) = 1� cos x:
We can thus build the recurrence upward to evaluate S(n; x), using the initial value S(0; x) for even n, and S(1; x) for odd n. We

also note that for odd n, only the value of cos x and sin x are important for evaluating S(n; x). For even n, the value of x itself

is also necessary, implying an additional inverse trigonometric evaluation when only cos x is known. Code for evaluating the

sine-power-integral function can be found in Appendix B.

Using the sine-power-integral function, we first find the value of Inorm-Phong as

Inorm-Phong = S(n; �) S(n + 1; �):
But S(n; �) obeys a particularly simple recurrence relation which can be derived from the general formula above, namely

S(n; �) =
n� 1

n
S(n� 2; �)

with

S(0; �) = �
S(1; �) = 2:

From this result, it can easily be proved by induction that

S(n; �) S(n + 1; �) =
2�

n + 1
(13)

the result stated in Equation 10. We also note that

S(n; 0) = 0

S(n; �
2

) =
1

2
S(n; �)

for any integer n � 0.

8

Equations 11 and 12 then reduce to

Ihemi-const-Phong(!; n) =
1

S(n + 1; �) S(n; �)
S(n + 1; �) (S(n; �)� S(n; !))

= 1� S(n; !)

S(n; �)
(14)

Ihemi-cos-Phong(!; n) =
1

S(n + 1; �) S(n; �)
S(n + 2; �)

�
1

n + 1
sinn+2 ! + cos! (S(n + 1; �)� S(n + 1; !))�

=
(n + 1)

(n + 2) S(n + 1; �)

�
1

n + 1
sinn+2 ! + cos! (S(n + 1; �)� S(n + 1; !))� (15)

Note that the constant S(n; �) can be evaluated as a pre-processing step and stored with other surface material characteristics to

avoid redundant evaluations. From that constant, S(n + 1; �) can be derived using Equation 13 as

S(n + 1; �) =
2�

(n + 1) S(n; �)
:

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

constant-weighted (Ihemi-const-Phong) cosine-weighted (Ihemi-cos-Phong)

Figure 4: Infinite Hemisphere Phong Illumination: The left side plots constant-weighted model, the right plots the cosine-weighted

model, for n = 1; 4; 16; 64. The dashed curve represents n = 1 on both sides.

Figure 4 compares the infinite hemisphere Phong illumination model (both constant and cosine weighted) for various values

of n. Note that Ihemi-const-Phong and Ihemi-cos-Phong are generalizations of the functions Ihemi-const and Ihemi-cos, respectively, from

Sections 2.1.1 and 2.1.2, where

Ihemi-const(!) = Ihemi-const-Phong(!; 1)

Ihemi-cos(!) = Ihemi-cos-Phong(!; 1):
3.2 Phong Illumination from Sub-Hemispherical Light Sources

We next analyze the specular lighting model of Equation 9 for sub-hemispherical light sources, as we did in Section 2.2 for the

Lambertian model. As in Section 2.2, the incident radiance is described by the function

F(p) =

�
1; if p � L � cos�
0; otherwise

where L is the direction to the center of the light source, and � is the size of the light source (i.e., the maximum angle an incident

direction can make with L and still hit the light source). This implies Equation 9 is 0 if ! � �
2

+ �; i.e.

cos! � � sin�
9

since then the light source is entirely outside the hemisphere around R.

To perform the integration, we introduce yet another parameterization of the sphere via

p(x; y; z) � 0@ x

y

z

1A
where x2 + y2 + z2 = 1. The hemisphere around the reflection direction R is mapped to the the hemisphere with z � 0. Letting

I(n) represent the output intensity as a function of the specular exponent n, this parameterization yields

I(n) =

Z
 znd
 =

Z Z
xy

zn�1 dx dy

since

dA(p) =
1

z

for this parameterization. Here
 represents the part of the hemisphere around R on which the spherical light source projects,

and
xy the xy projection of this region.

Using Stoke’s Theorem (Appendix C), I(n) can be converted to the following series

I(n) =

8>>>>>>><>>>>>>>: 1

n + 1

n�1
2X

i=0

J(2i + 1); for n odd

1

n + 1

24I(0) +

n
2X

i=1

J(2i)

35 ; for n even

(16)

where J(n) is a line integral over the boundary of the region
, given by

J(n) � Z@
 zn�1(xdy� ydx);
and I(0) represents the solid angle subtended by the light source, clipped to the hemisphere around R.

We next consider how to evaluate the boundary integrals J(n). We first note that the boundary of the region
 is defined

by a circular segment around the projection of the spherical light source, denoted C, and (possibly) a segment in the xy plane

where the projection of the spherical light source intersects the hemisphere around R, denoted D. But the contribution to J(n)

from D is 0 for n > 1, since z = 0 on this segment, and the integrand contains a factor of zn�1. Thus,

J(n) =

8>>>>>><>>>>>>: Z
C

(xdy� ydx) +

Z
D

(xdy� ydx); if n = 1Z
C

zn�1(xdy� ydx); if n > 1.

(17)

To parameterize the boundary C, we transform the light direction L into the simple coordinate system that aligns R with the

z axis. Since L makes an angle of ! with R, we use

L =

0@ sin!
0

cos!1A :
We also define two perpendicular vectors to L, L1 and L2, so that fL1; L2; Lg form an orthonormal basis of R3, given by

L1 � 0@ cos!
0� sin!1A ; L2 � 0@ 0

1

0

1A :
10

Then C may be parameterized by an angle � via

C(�) = cos� L + sin� (cos� L1 + sin� L2) (18)

since the boundary makes an angle of � with the central axis L. On this boundary, we then have

z = cos� cos! � sin � sin! cos� (19)

and

xdy� ydx =
�
sin2� cos! + cos� sin � sin! cos�� d�: (20)

Integrating over C in J(n) thus requires integrals of the form

F0(a; b; n; �1; �2) � Z �2�1

(a + b cos�)n d�
and

G0(a; b; n; �1; �2) � Z �2�1

(a + b cos�)n cos� d�:
where

a = cos� cos!
b = � sin� sin!

and where the integration limits �1 and �2 represent the endpoints of C. To simplify the notation, we define F and G with

respect to the upper limit of integration only, with a constant lower limit of integration of 0, so that

F0(a; b; n; �1; �2) = F(a; b; n; �2)� F(a; b; n; �1)

G0(a; b; n; �1; �2) = G(a; b; n; �2)�G(a; b; n; �1)

The integrals F and G can be computed using the recurrence relations from Appendix D.

To find the integration limits, �1 and �2, two cases arise. In the first, C is entirely within the hemisphere around R, in which

case �1 = 0 and �2 = 2�. In the second, we must compute the intersection of C with the z = 0 plane, and return the angular

range over which the z component of C is non-negative. Solving for z = 0 in Equation 19, we have

cos�1 = cos�2 = �a=b:
This also provides a test for whether C is entirely within R’s hemisphere via jbj � jaj. Since b � 0,2 the segment of the

boundary for which z = a + b cos� � 0 is given by�1 � �
0; if �b � jaj
cos�1(�a=b); otherwise

(21)�2 � 2� � �1 (22)

where cos�1 returns a result in [0; �]. Note also that

cos�1 = cos�2 = �a=b

sin�1 =
p

1� a2=b2

sin�2 = � sin�1

which requires a single inverse trigonometric function evaluation and square root, and no trigonometric function evaluations in

order to compute �1 and �2 and their sines and cosines.

2This is because � � �
2

and ! � �.

11

Since evaluation of I(n) requires summation of a series of terms of J(i), which can be evaluated using a recurrence formula,

it is efficient to compute the sum over J(i) as the recurrence is computed. We therefore define the series functions Fsum and

Gsum using

Fsum(a; b; n; �) �8>>>>><>>>>>: n�1
2X

i=0

F(a; b; 2i + 1; �); if n odd

n
2X

i=0

F(a; b; 2i; �); if n even

and similarly for Gsum. The code for evaluating the functions Fsum and Gsum is found in Appendix E.

Evaluating J(1) in the case that the boundary of the light source intersects the z = 0 plane also requires a boundary integral

over D (Equation 17), denoted K, given by

K � Z
D

(xdy� ydx):
D is a unit circle in the xy plane since z = 0. We can therefore parameterize D using an angle � via (cos �; sin �). Then,

K =

Z �2�1

[cos � cos � + sin � sin �] d� =

Z �2�1

d� = �2 � �1:
The angular difference, �2 � �1, can be found by determining where C intersects the xy plane. To find the xy projection of the

intersections, Q1 and Q2, we substitute the angular endpoints of C, �1 and �2, into Equation 18, as well as the definitions of L,

L1, and L2 in terms of !, to obtain

Qi � � cos� sin! + sin � cos! cos�i

sin� sin�i

�
for i = 1; 2. Then

K = �2 � �1 = cos�1(Q1 �Q2):
Defining the constants

c � cos� sin!
d � sin� cos!;

K can be reduced to

K = cos�1
�
(c + d cos�1)2 � (sin� sin�1)2

� : (23)

Since the boundary integrals over C were computed from �1 to �2, the integral over D must be computed from �2 to �1. It can

be shown that the choice of coordinate system for L, L1 and L2 always locates Q1 in quadrant IV and Q2 in quadrant I. Thus K

from Equation 23 has the correct sense of directionality of the boundary D.

Combining the previous results, we have

I(n) =
sin �
n + 1

[d (Fsum(a; b; n� 1; �2)� Fsum(a; b; n� 1; �1)) + c (Gsum(a; b; n� 1; �2)�Gsum(a; b; n� 1; �1))] +
E

n + 1

where

E � 8<: I(0); if n is even

K; if n is odd and �b � jaj
0; otherwise.

Multiplying by the normalization factor of Equation 9, we finally obtain

Ihemi-sub-Phong(!; �; n) =

(
0; if cos! � � sin�
1

2� [sin � (d�Fsum + c�Gsum) + E] ; otherwise
(24)

where �Fsum � Fsum(a; b; n� 1; �2)� Fsum(a; b; n� 1; �1)�Gsum � Gsum(a; b; n� 1; �2)�Gsum(a; b; n� 1; �1):
12

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

� = �
6

� = 2�
6

Figure 5: Sub-hemispherical Phong Illumination: The left side plots the sub-hemispherical model for � = �
6

, the right plots for � = 2�
6

.

Both sides plot intensity versus the angle ! 2 [0; �] for values of n = 1; 3; 15; 63. The dashed curve represents n = 1 on both sides.

Figure 5 compares Ihemi-sub-Phong for various values of �, !, and n. Note that Ihemi-sub-Phong is a generalization of both Ihemi-sub and

Ihemi-const-Phong via

Ihemi-const-Phong(!; n) = Ihemi-sub-Phong(!; �
2
; n)

Ihemi-sub(!; �) = Ihemi-sub-Phong(!; �; 1):
Thus, the left side of Figure 4 can be compared to Figure 5, representing results in which � = �

2
.

The function Ihemi-sub-Phong attains its maximum value at ! = 0, for which

Ihemi-sub-Phong(0; �; n) = 1� cosn+1 �:
Figure 6 compares normalized Phong shading for various values of �, where normalized means dividing by Ihemi-sub-Phong(0; �; n).

It remains to discuss the computation of the solid angle subtended by the light source I(0), in the case that n is even. One

technique is to avoid computation of I(0) by restricting specular exponents to odd powers. Another is to compute I(n) for the

two odd integers n and n + 2 that bracket the desired exponent and interpolate to find an approximate result. In the interests of

future work, it can be shown that

I(0) = 2

Z ��!�
2
�� r1� cos2 �

sin2 � d�:
Also, in the case that the light source is fully within the hemisphere around R (i.e., ! + � � �

2
), this simpler result applies:

I(0) = 2�(1� cos�):
Actual code for evaluation of the sub-hemispherical Phong model can be found in Appendix F. As in the case of Lambertian

lighting, a finite spherical light source can be modeled by computing � via Equation 7. An infinite light source of fixed angular

dimension is modeled using a fixed �, for which cos� and sin � can be pre-computed.

3.3 Phong Illumination from Polygonal Light Sources

As in Section 2.3, a polygonal light source is given consisting of m vertices V1;V2; : : : ;Vm. Using the spherical parameterization

of Section 3.2, Equation 16 still applies. The boundary curve of the light source C now becomes the spherical projection of the

light source polygon edges.3 Let Ui be the spherical projection of each of the light source vertices, given by

Ui =
Vi � PkVi � Pk :

3As in Section 2.3, the light source polygon must be clipped; in this case to the hemisphere around R rather than N.

13

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

n = 1 n = 3

π/2 π

ω
�

���

�

)

π/2 π

ω
�

���

�

)

n = 15 n = 63

Figure 6: Normalized Sub-hemispherical Phong Illumination: This table compares “normalized” Phong Illumination from sub-

hemispherical light sources, where normalized means dividing by the maximum value of the intensity function so as to locate the new

maximum value at 1. Each plot fixes the Phong exponent, at n = 1, n = 3, n = 15, and n = 63, and displays intensity vs. ! curves for� = 5
10
�; 4

10
�; 3

10
�; 2

10
�; 1

10
�. The dashed curve represents � = �

2
in all plots.

Let �i be the vector perpendicular to Ui and Ui+1 �i � Ui �Ui+1

and �?i be the vector perpendicular to Ui and �i: �?i � �i �Ui:
Then the spherical projection of the edge between Vi and Vi+1 is given by

Ci(�) = Ui cos� + �?i sin�:
where � goes from 0 on Ui to cos�1(Ui � Ui+1) on Ui+1. Then

dCi = (�Ui sin� + �?i cos�) d�:
On the i-th polygon edge, we finally obtain

zi = R � Ci = R � Ui cos� + R � �?i sin�
and

(xdy� ydx)i = R � (Ci � dCi) = R � �i;
14

the analogs of Equations 19 and 20 on this boundary. Note that the factor (xdy� ydx)i is a constant independent of �.

Integrating over Ci in J(n) thus requires integrals of the form

T(ai; bi; n; xi) � Z x

0

(a cos� + b sin�)n d�
where

ai = R �Ui

bi = R � �?i
xi = cos�1 (Ui � Ui+1) :

Using integration by parts, a recurrence relation can be derived for T via

T(a; b; n; x) =
1

n

�
(a cos x + b sin x)n�1(a sin x� b cos x) + an�1b + (n� 1)(a2 + b2)T(a; b; n� 2; x)

�
with

T(a; b; 0; x) = x

T(a; b; 1; x) = a sin x� b cos x + b:
As in Section 3.2, we define the series function Tsum via

Tsum(a; b; n; x) � 8>>>>><>>>>>: n�1
2X

i=0

T(a; b; 2i + 1; x); if n odd

n
2X

i=0

T(a; b; 2i; x); if n even

The code for evaluating the function Tsum can be found in Appendix G.

Multiplying by the normalization factor of Equation 9, we finally obtain

Ipoly-Phong � 1

2� 8>>>><>>>>: mX
i=1

Tsum(ai; bi; n� 1; xi); if n odd

I(0) +

mX
i=1

Tsum(ai; bi; n� 1; xi); if n even

: (25)

As before, we can avoid evaluation of the solid angle subtended by the light source I(0) by restricting Phong exponents to

odd integers. See [Arvo95] for details on computing solid angles for polygonal sources. Code for evaluating Ipoly-Phong is given

in Appendix H. The same code suffices for computing the Lambertian lighting of Section 2.3. Note that the code performs

clipping of the light source polygon with respect to the hemisphere around R (or N) as it sums edge contributions.

4 Summary

The following table summarizes the results in this paper.

Lighting Model Light Source Name Equation Number

Lambertian constant-weighted hemisphere Ihemi-const (3)

Lambertian cosine-weighted hemisphere Ihemi-cos (5)

Lambertian constant-weighted sub-hemisphere Ihemi-sub (6)

Lambertian constant-weighted polygon Ipoly (8)

Phong constant-weighted hemisphere Ihemi-const-Phong (14)

Phong cosine-weighted hemisphere Ihemi-cos-Phong (15)

Phong constant-weighted sub-hemisphere Ihemi-sub-Phong (24)

Phong constant-weighted polygon Ipoly-Phong (25)

Figure 7 compares images using some of the area light source models with traditional point light source models.

15

(a) Non-Area Directional (b) Non-Area Positional

(c) Overcast Sky Hemispherical Light Source

(d) Finite Spherical (e) Polygonal

Figure 7: Comparison of Area Light Source Results.

16

References

[Arvo94] Arvo, James, “The Irradiance Jacobian for Partially Occluded Polyhedral Sources,” Siggraph 94, July 1994, 343-350.

[Arvo95] Arvo, James, “Applications of Irradiance Tensors to the Simulation of Non-Lambertian Phenomena,” Siggraph 95,

August 1995, 335-342.

[Nishita85] Nishita, Tomoyuki, and Eihachiro Nakamae, “Continuous Tone Representation of Three-Dimensional Taking

Account of Shadows and Interreflection,” Siggraph 85, July 1985, 23-30.

[Nishita86] Nishita, Tomoyuki, and Eihachiro Nakamae, “Continuous Tone Representation of Three-Dimensional Objects

Illuminated by Sky Light,” Siggraph 86, August 1986, 125-132.

A Derivation of Lambertian Luminance from Sub-Hemispherical Light Sources

This section derives Equation 6. The region of integration has three distinct forms: first, in which the sub-hemispherical light

source is entirely within the hemisphere around the normal, second, in which the light source is partially within the normal’s

hemisphere, and finally, in which the light source is entirely outside the normal’s hemisphere. These cases may be detected

using the following test on !, the angle between L and N:! 2 [0; �
2
� �] ! entirely inside! 2 [�

2
� �; �

2
+ �] ! partially inside! 2 [�

2
+ �; �] ! entirely outside

Clearly, the value of the integral will be zero in the last case.

In the case that the light source is entirely within the normal’s hemisphere, we perform the integration analytically by

parameterizing the subsphere about L via

p(�; �) � 0@ cos � sin�
sin � sin�

cos� 1A
where � 2 [0; 2�] and � 2 [0; �]. The coordinate system is transformed so that L maps to the z-axis. The normal represented

in this coordinate system is

N =

0@ sin!
0

cos!1A :
Note that this is different than the parameterization used in Section 2.1 in that we parameterize around the light source direction

rather than the normal. The unnormalized integral from Equation 1 then reduces to

I =

Z 2�
0

d� Z �
0

d� [sin! cos � sin� + cos! cos�] sin�
since

dA = sin� d� d�
and

p � N = cos � sin� sin! + cos� cos!:
This integral is easily evaluated to yield

I = � cos! sin2 �
which forms the first case in Equation 2.

The second case is more difficult. We transform coordinates and parameterize the light source region via

p(�; �) � 0@ cos � sin�� cos�
sin � sin�1A

17

L

p

θ

φ
σ

Figure 8: Subhemispherical parameterization: The light source region is the part of the hemisphere around L that makes an angle of no

more than � with L. � parameterizes the angle between L and the perpendicular projection of N onto L; �, the angle in the plane perpendicular

to L and N.

with

N =

0@ sin!
0

cos!1A :
Here L has been transformed to map onto the z-axis, and the plane formed by N and L becomes the xz plane (Figure 8). The

parameter domain is a subset of �; � 2 [0; �], representing the full hemisphere around L, intersected with the angular extent of

the light source and the hemisphere around N. We denote the appropriate integral domain as H0. We thus have

I =

Z Z
H0[sin! cos � + cos! sin �] sin2 � d� d�: (26)

Using Gauss’ integral theorem, which statesZ Z
D

(@Q=@x� @P=@y) dD =

Z
C

Pdx + Qdy;
we can transform the above iterated integral into a 1D integral around the boundary of the region H0, denoted C. Let

Q = sin2 �[sin! sin � � cos! cos �]

P = 0

in Gauss’ theorem. Then @Q=@�� @P=@� is equal to the integrand in Equation 26. So Equation 26 reduces toZ
C

sin2 �[sin! sin � � cos! cos �] d� (27)

The boundary curves are of two types. One type forms the circular boundary of the light source. On this boundary,

p(�; �) �0@ 0

0

1

1A = cos�) sin � sin� = cos� (28)

since the incident light direction makes an angle of exactly � with L, which maps to the z-axis in the transformed coordinate

system. Thus, on this boundary, we have

sin � =
cos�
sin�

cos � =

8>>>><>>>>: +

s
1� cos2 �

sin2 � ; � � �
2�s1� cos2 �

sin2 � ; � > �
2

18

The second boundary is an constant-� boundary formed where the normal’s hemisphere intersects the light source. Note

that the parameterization (with � parameterizing the angle in the plane formed by L and N) is explicitly chosen so that this

intersection forms such a simple curve. The normal hemisphere intersection with the hemisphere around L occurs where� = � � !.

Because of the change in sign in cos �, the integration region must be further broken down. The boundary of the light

source must be separated into segments where � � �
2

and � > �
2

. In one case (Figures 9), the normal hemisphere intersects the

light source at � � �
2

. This happens when ! 2 [�
2
� �; �

2
]. The boundary of the integration region consists of five segments.

For larger ! (Figure 10), the normal hemisphere intersects the light source at � < �
2

. The boundary of the integration region

consists of three segments.

L

Nω

1

43

2

5

θ=π−ω

Figure 9: Boundary curves for ! 2 [�
2
� �; �

2
]: In this case the normal’s hemisphere intersects the light source at � � ! � �

2
.

L

N

ω

1

2 3

θ=π−ω

Figure 10: Boundary curves for ! 2 [�
2
; �

2
+ �]: Here, the normal’s hemisphere intersects the light source at � � ! � �

2
.

On a circular boundary segment (segments 1, 2, 4, and 5 from Figure 9, segments 1 and 3 from Figure 10), the boundary

integral in Equation 27 reduces to

Icircle(�1; �2; �-quadrant) � Z �2�1

sin2 �"sin! cos�
sin� � cos!s1� cos2 �

sin2 � # d�
where the top (�) of the � is used when �-quadrant = 1 (i.e., � � �

2
) and the bottom (+) of the � is used when �-quadrant = 2

19

(i.e., � > �
2

). The integral reduces to� sin! cos� � cos�������2�1

� cos! Z �2�1

sin�psin� � cos2 �d�:
But the following relation holdsZ p

a2 � cos2 x sin x dx = �1

2

h
cos x

p
a2 � cos2 x + a2 sin�1

�cos x

a

�i :
Therefore, we have

Icircle = � sin! cos� � cos�������2�1

� 1

2
cos! �cos�psin2 � � cos2 � + sin2 � sin�1

�
cos�
sin � �������2�1

: (29)

On a constant-� boundary segment (segment 3 from Figure 9 or segment 2 from Figure 10), the boundary integral in

Equation 27 reduces to

Iiso-�(�1; �2; �) � 1

2
[sin! sin � � cos! cos �]

��� sin� cos�������2�1

(30)

Using these definitions, we can now perform the boundary integrals. We start with the situation illustrated in Figure 9,

where ! 2 [�
2
� �; �

2
]. Note that for any value of �, the corresponding value of � on the circular boundary curve (segments 1,

2, 4, and 5) takes on two values (refer to Equation 28), given by�1(�) � sin�1

�
cos�
sin ��

and �2(�) � � � sin�1

�
cos�
sin��

where �1 is an angle in quadrant 1 (� �
2

) and �2 is in quadrant 2, (> �
2

).4 We obtain the following table of (�; �) pairs at the

endpoints of the circular boundary segments: � �
2
� � �

2
� � !�1 �

2
�
2
� � �2 �

2
�
2

+ � � �
where � sin�1

�
cos�

sin(� � !)

�
= sin�1

�cos�
sin! � :

Summing the curve integrals over the boundary segments, we obtain

I = Icircle(
�
2
; �

2
� �; 1) + Icircle(

�
2
� �; ; 2) + Iiso-�(; � � ; � � !) + Icircle(� � ; �

2
+ �; 2) + Icircle(

�
2

+ �; �
2
; 1)

where the terms are derived from the segments in the order 1, 2, 3, 4, and 5. Substituting Equations 29 and 30 yields

I = � sin! cos� � cos�� �����2�
2
�� +

�����2 �� +

�������
2

+� +

�����2 +��
2

!
+

1

2
cos! �cos�psin2 � � cos2 � + sin2 � sin�1

�
cos�
sin � �� �����2�

2
�� +

�����
2
�� +

�����2 +��� +

�����2 +��
2

!
+

1

2
[sin! sin � � cos! cos �]

��� sin� cos�� ������ :
4This assumes sin�1 refers to the principal value of the inverse sine, returning an argument in the range [��

2
; �

2
]. Since � 2 [0; �

2
] and � 2 [0; �], the

ratio of the argument of sin�1 in the definition of �1 is therefore positive, so an angle in the range [0; �
2

] is returned.

20

Since

sin! sin(� � !)� cos! cos(� � !) = 1;
this reduces finally to

I = � cos! sin2 � � cos! hcos psin2 � � cos2 + sin2 � sin�1
�cos

sin � �i� 2 sin! cos� cos +
�
2
� + sin cos;

as in Equation 6.

The derivation for the situation illustrated in Figure 10 is similar. Integrating over the three boundary segments, we obtain

I = Icircle(
�
2
; ; 1) + Iiso-�(; � � ; � � !) + Icircle(� � ; �

2
; 1)

which yields

cos! hcos psin2 � � cos2 + sin2 � sin�1
�cos

sin � �i� 2 sin! cos� cos +
�
2
� + sin cos;

as in Equation 6.

B Code for Sine Power Integral Evaluation

/*

sine_power_integral

Recurrence algorithm for computing the parameterized function

S(n,x) = integral(sin(x)ˆn d x)

where S(n,0) = 0 (i.e., integral is from 0 to x).

The function for the first few integers has the following form:

S(0,x) = x

S(1,x) = 1-cos(x)

S(2,x) = x/2 - 1/4 sin(2 x)

.

.

.

The appropriate recurrence relation here is

S(n,x) = 1/n (-sin(x)ˆ(n-1) cos(x) + (n-1) S(n-2,x))

Note: the argument x is unused if n is odd.

*/

double sine_power_integral(int n,double x,double cos_x,double sin_x)

{

double S,G;

int i,start;

double sin_x_sq = sin_x*sin_x;

/* initial conditions for recurrence */

if (n&1) { /* n is odd */

/* Note: parameter x unused! */

S = 1-cos_x;

G = sin_x_sq*cos_x;

start = 1;

} else { /* n is even */

S = x;

G = sin_x*cos_x;

start = 0;

}

21

/* iterate recurrence upward */

for (i = start+2; i <= n; i += 2) {

/* compute S(i) from S(i-2) */

S = ((i-1)*S - G)/i;

G *= sin_x_sq;

}

return S;

}

C Stokes’ Theorem Derivation of Boundary Integral Series for Specular Integral

Stokes’ Theorem states that Z
 N � (r� V) d
 =

I@
 V � dr

where N is the normal to the surface
, V is a vector function over this surface, @
 is the closed curve forming the boundary of
, and r = (x; y; z) are the surface parameters. Letting

V � 0@� 1
2
yzn�1

1
2
xzn�1

0

1A ;
and noting that

N =

0@ x

y

z

1A
for a sphere, we have Z
(r� V) �0@ x

y

z

1A =
1

2

I@
 zn�1(xdy� ydx) (31)

by Stokes’ Theorem. Expanding (r� V) � N, we have

(r� V) � N = �1

2
(n� 1)x2zn�2 +�1

2
y2zn�2 + zn

= zn � 1

2
(n� 1)(1� z2)zn�2 (32)

since x2 + y2 = 1� z2 on the sphere.

We define I(n) as the surface integral

I(n) � Z
 znd

and J(n) as the boundary integral

J(n) � I@
 zn�1(xdy� ydx):
Substituting the result from Equation 32 in Equation 31, and using the above definitions, yields

I(n)� 1

2
(n� 1) [I(n� 2)� I(n)] =

1

2
J(n):

Rearranging, we have

I(n) =
n� 1

n + 1
I(n� 2) +

1

n + 1
J(n) (33)

22

Two observations can be used to define the termination criteria for the above recurrence. First, from the definition of I(n),

I(0) can be seen to represent the solid angle subtended by
. Second, substituting n = 1, we have

I(1) =
1

2
J(1):

From the recurrence relation and these termination criteria, it can easily be proved by induction that

I(n) =

8>>>>>>><>>>>>>>: 1

n + 1

n�1
2X

i=0

J(2i + 1); for n odd

1

n + 1

24I(0) +

n
2X

i=1

J(2i)

35 ; for n even.

Note that the above definition uses J(n) for n > 0 (i.e., J(0) is not required).

D Recurrence Relations for Integrals of the form (a + b cos�)n

This section derives a recurrence relation for calculating integrals of the form

F(a; b; n; x) � Z x

0

(a + b cos�)n d�
and

G(a; b; n; x) � Z x

0

(a + b cos�)n cos� d�:
We first define an auxiliary function H via

H(a; b; n; x) � Z x

0

(a + b cos�)n cos2 � d�:
Then,

F(a; b; n; x) =

Z x

0

(a + b cos�)n d�
=

Z x

0

(a + b cos�)(a + b cos�)n�1d�
= aF(a; b; n� 1; x) + bG(a; b; n� 1; x):

Also,

G(a; b; n; x) =

Z x

0

(a + b cos�)n cos� d�
=

Z x

0

(a + b cos�)(a + b cos�)n�1 cos� d�
= aG(a; b; n� 1; x) + bH(a; b; n� 1; x):

This implies

H(a; b; n� 1; x) =
1

b
(G(a; b; n; x)� aG(a; b; n� 1; x)) : (34)

Using integration by parts, we also have

G(a; b; n; x) =

Z x

0

(a + b cos�)n cos� d�
=

�
(a + b cos�)n sin�� ����x

0

+ nb

Z x

0

sin2 � (a + b cos�)n�1 d�
= (a + b cos x)n sin x + nb [F(a; b; n� 1; x)�H(a; b; n� 1; x)] :

23

Substituting Equation 34 into the above,

G(a; b; n; x) = (a + b cos x)n sin x + nb

�
F(a; b; n� 1; x)� G(a; b; n; x)� aG(a; b; n� 1; x)

b

� :
The final recurrence is given by

F(a; b; n; x) = aF(a; b; n� 1; x) + bG(a; b; n� 1; x) (35)

G(a; b; n; x) =
1

n + 1
[(a + b cos x)n sin x + n (bF(a; b; n� 1; x) + aG(a; b; n� 1; x))] : (36)

The termination criteria are given by

F(a; b; 0; x) = x (37)

G(a; b; 0; x) = sin x: (38)

Note that the (a + b cos x) sin x term in the above recurrence is 0, and can therefore be eliminated, when this integral is

applied to the Phong illumination from sub-hemispherical light source problem (Eqns. 21 and 22). The code in Appendix E

reflects this optimization.

E Code for Evaluation of Finite Series of Integrals of Form (a + b cos�)n

/*

--

cosine_const_power_integral_sum

Computes the sum

Fsum(theta,n,a,b) = Sum_{i=0}ˆ{n/2} F(theta,2i,a,b), if n is even

Sum_{i=0}ˆ{(n-1)/2} F(theta,2i+1,a,b), if n is odd

where the function F is defined as

F(theta,n,a,b) = integral([a + b cos(theta)]ˆn d theta)

and where F(0,n,a,b) = 0 (i.e., integral is from 0 to theta).

As a by-product, also computes the functions

G(theta,n,a,b) = integral([a + b cos(theta)]ˆn cos(theta) d theta)

The recurrence relation for F is

F(theta,n,a,b) = a F(theta,n-1,a,b) + b G(theta,n-1,a,b,c)

G(theta,n,a,b) = n/(n+1) [b F(n-1) + a G(n-1)]

The routine assumes that either sin(theta) = 0, or a + b cos(theta) = 0,

allowing a simplification in the general recurrence relation.

Returns the sums of F and G as last two arguments.

--

*/

#define EVEN(i) (((i)&1) == 0)

void cosine_const_power_integral_sum(double theta,double sin_theta,

int n,double a,double b,

double *_Fsum,double *_Gsum)

{

double F,G,Fsum,Gsum;

int i;

24

/* initial conditions for recurrence */

F = theta;

G = sin_theta;

if (EVEN(n)) {

Fsum = F;

Gsum = G;

} else {

Fsum = Gsum = 0;

}

/* iterate recurrence upward */

for (i = 1; i <= n; i++) {

/* compute F(i),G(i) from F(i-1),G(i-1) */

double Fnew = a*F + b*G;

double Gnew = (i*(b*F + a*G))/(i+1);

F = Fnew;

G = Gnew;

/* accumulate sums of F and G */

if (EVEN(n+i)) {

Fsum += F;

Gsum += G;

}

}

*_Fsum = Fsum;

*_Gsum = Gsum;

}

F Code for Evaluation of Sub-hemispherical Phong Illumination

/*

shd_subsphere_specular

Computes integral over subsphere of specular lighting.

Parameters:

cos_omega, sin_omega: cosine and sine of omega, the angle between the the light source central

axis and the reflection direction

cos_sigma, sin_sigma: cosine and sine of sigma, the angular size of the light source.

Sigma must be <= Pi/2; i.e., cos_sigma, sin_sigma >= 0.

e: specular exponent (currently converted to odd integer to speed things up)

Returns the specular reflectance result.

*/

double shd_subsphere_specular(double cos_omega,double sin_omega,double cos_sigma,double sin_sigma,int e)

{

double a = cos_sigma*cos_omega;

double b = -sin_sigma*sin_omega;

double c = cos_sigma*sin_omega;

double d = sin_sigma*cos_omega;

double phi1,cos_phi1,sin_phi1;

double phi2,sin_phi2;

double Fsum1,Gsum1,Fsum2,Gsum2;

double E;

/* light source must be in hemisphere around reflection direction (omega >= Pi/2 + sigma) */

if (cos_omega <= -sin_sigma) return 0;

25

/* make exponent odd */

if ((e & 1) == 0) e = e+1;

/* find integration limits */

if (fabs(a) > -b) {

/* light source boundary wholly within hemisphere */

phi1 = 0;

phi2 = 2*M_PI;

cos_phi1 = 1;

sin_phi1 = sin_phi2 = 0;

E = 0;

} else {

/* light source boundary partially outside hemisphere */

/*

b is always negative, so take decreasing cosine

so that a+b cos(phi) is positive for phi between

phi1 and phi2.

*/

cos_phi1 = -a/b;

sin_phi1 = sqrt(1 - cos_phi1*cos_phi1);

phi1 = acos(cos_phi1);

sin_phi2 = -sin_phi1;

phi2 = 2*M_PI - phi1;

{ /* compute contribution from boundary/hemisphere intersection */

double x = c+d*cos_phi1;

double y1 = sin_sigma*sin_phi1;

double y2 = sin_sigma*sin_phi2;

E = acos(x*x + y1*y2);

}

}

cosine_const_power_integral_sum(phi1,sin_phi1,e-1,a,b,&Fsum1,&Gsum1);

cosine_const_power_integral_sum(phi2,sin_phi2,e-1,a,b,&Fsum2,&Gsum2);

return (sin_sigma*(d*(Fsum2-Fsum1) + c*(Gsum2-Gsum1)) + E)/(2*M_PI);

}

G Code for Evaluation of Finite Series of Integrals of Form (a cos � + b sin �)n

/*

--

cosine_sine_power_integral_sum

Computes the sum

Tsum(theta,n,a,b) = Sum_{i=0}ˆ{n/2} T(theta,2i,a,b), if n is even

Sum_{i=0}ˆ{(n-1)/2} T(theta,2i+1,a,b), if n is odd

where the function T is defined as

T(theta,n,a,b) = integral([a cos(theta) + b sin(theta)]ˆn d theta)

and where T(0,n,a,b) = 0 (i.e., integral is from 0 to theta).

The recurrence relation is

T(theta,n,a,b) = 1/n [(a sin(theta) - b cos(theta)) (a cos(theta) + b sin(theta))ˆ(n-1) +

aˆ(n-1) b + (n-1) (aˆ2 + bˆ2) T(theta,n-2,a,b)]

--

*/

26

double cosine_sine_power_integral_sum(double theta,double cos_theta,double sin_theta,

int n,double a,double b)

{

double f = a*a + b*b;

double g = a*cos_theta + b*sin_theta;

double gsq = g*g;

double asq = a*a;

double h = a*sin_theta - b*cos_theta;

double T,Tsum;

double l,l2;

int i,start;

/* initial conditions for recurrence */

if (n&1) { /* n is odd */

T = h+b;

l = gsq*h;

l2 = b*asq;

start = 1;

} else { /* n is even */

T = theta;

l = g*h;

l2 = b*a;

start = 0;

}

Tsum = T;

/* iterate recurrence upward */

for (i = start+2; i <= n; i += 2) {

/* compute T(i) from T(i-2) */

T = (l + l2 + f*(i-1)*T)/i;

l *= gsq;

l2 *= asq;

Tsum += T;

}

return Tsum;

}

H Code for Evaluation of Polygonal Phong Illumination

static void cross(double a[3],double b[3],double c[3])

{

c[0] = a[1]*b[2] - a[2]*b[1];

c[1] = a[2]*b[0] - a[0]*b[2];

c[2] = a[0]*b[1] - a[1]*b[0];

}

static double dot(double a[3],double b[3])

{

return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];

}

static double length(double v[3])

{

return sqrt(dot(v,v));

}

static double normalize(double v[3])

{

double l = length(v);

if (l > 0) {

v[0] /= l;

v[1] /= l;

v[2] /= l;

}

27

return l;

}

static void diff_vector(double p1[3],double p2[3],double v[3])

{

v[0] = p1[0] - p2[0];

v[1] = p1[1] - p2[1];

v[2] = p1[2] - p2[2];

}

/*

Finds point on line segment where the segment intersects a plane through the origin.

The plane is specified by a normal n. The line

segment is specified by two points: v0 and v1. The point of intersection

is returned in q. The segment is assumed to intersect the plane.

*/

static void seg_plane_intersection(double v0[3],double v1[3],double n[3],double q[3])

{

double vd[3];

double t;

vd[0] = v1[0] - v0[0];

vd[1] = v1[1] - v0[1];

vd[2] = v1[2] - v0[2];

t = -dot(v0,n)/dot(vd,n);

q[0] = v0[0] + t*vd[0];

q[1] = v0[1] + t*vd[1];

q[2] = v0[2] + t*vd[2];

}

#define COPY3(dst,src) (memcpy(dst,src,sizeof(double)*3))

/*

Computes the contribution from a single edge.

*/

static double shd_edge_contribution(double v0[3],double v1[3],double n[3],int e)

{

double f;

double cos_theta,sin_theta;

double q[3];

cross(v0,v1,q);

sin_theta = normalize(q);

cos_theta = dot(v0,v1);

if (e == 1) {

f = acos(cos_theta);

} else {

double w[3];

double theta;

theta = acos(cos_theta);

cross(q,v0,w);

f = cosine_sine_power_integral_sum(theta,cos_theta,sin_theta,e-1,dot(v0,n),dot(w,n));

}

return f*dot(q,n);

}

/*

Computes the surface integral over the solid angle subtended by a polygon as seen

from the point p in the direction n of

max(0,dot(n,l))ˆe dl

28

where l is the projection of the light polygon into the hemisphere surrounding p

with zenith direction n, and e is an exponent (1 for diffuse shading, > 1 for specular).

nv -- number of vertices in light source

v -- array of light source vertices

p -- point to be illuminated

n -- direction of hemisphere zenith (unit vector)

e -- exponent

*/

static double shd_polygonal(int nv,double v[][3],double p[3],double n[3],int e)

{

int i,j,i1;

double sum = 0;

double ui0[3],ui1[3]; /* unnormalized vertices of edge */

double vi0[3],vi1[3]; /* unit-length vector vertices of edge */

int belowi0,belowi1; /* flag for whether last vertex was below point’s "horizon" */

/* find first vertex above horizon */

for (j = 0; j < nv; j++) {

double u[3];

diff_vector(v[j],p,u);

if (dot(u,n) >= 0) {

COPY3(ui0,u);

COPY3(vi0,u);

normalize(vi0);

belowi0 = 0;

break;

}

}

if (j >= nv) return 0; /* whole polygon is below horizon */

/* make exponent odd */

if ((e & 1) == 0) e = e+1;

/* loop through edges of polygonal light source */

i1 = j;

for (i = 0; i < nv; i++) {

/* next edge to process goes from v[(i+j)%nv] to v[(i+j+1)%nv] */

i1++;

if (i1 >= nv) i1 = 0;

/* compute next vertex */

diff_vector(v[i1],p,ui1);

belowi1 = (dot(ui1,n) < 0);

if (!belowi1) {

COPY3(vi1,ui1);

normalize(vi1);

}

if (belowi0 && !belowi1) {

double vinter[3];

/* edge arises from horizon */

/* find intersection with horizon */

seg_plane_intersection(ui0,ui1,n,vinter);

normalize(vinter);

/* add contribution from last vertex to intersection */

/* don’t need to add for exponents > 1 since

contribution is 0 on boundary for such exponents */

sum += shd_edge_contribution(vi0,vinter,n,1);

COPY3(vi0,vinter);

29

} else if (!belowi0 && belowi1) {

/* edge dives below horizon */

/* find intersection wth horizon */

seg_plane_intersection(ui0,ui1,n,vi1);

normalize(vi1);

}

/* compute contribution from edge */

if (!belowi0 || !belowi1) sum += shd_edge_contribution(vi0,vi1,n,e);

/* set next iteration’s starting vertex to this iteration’s ending vertex */

COPY3(ui0,ui1);

COPY3(vi0,vi1);

belowi0 = belowi1;

}

if (sum < 0) sum = -sum; /* integrate around boundary in the right direction.

If negative, it was wrong. */

return sum/(2*M_PI);

}

30

