
Let-
oating: moving bindings to give faster programs

Simon Peyton Jones, Will Partain, and Andr�e Santos

University of Glasgow

Email: {simonpj,partain,andre}@dcs.glasgow.ac.uk.

Abstract

Virtually every compiler performs transformations on the

program it is compiling in an attempt to improve e�ciency.

Despite their importance, however, there have been few sys-

tematic attempts to categorise such transformations and

measure their impact.

In this paper we describe a particular group of transforma-

tions | the \let-
oating" transformations | and give de-

tailed measurements of their e�ect in an optimising compiler

for the non-strict functional language Haskell. Let-
oating

has not received much explicit attention in the past, but our

measurements show that it is an important group of trans-

formations (at least for lazy languages), o�ering a reduction

of more than 30% in heap allocation and 15% in execution

time.

1 Introduction

Consider the following expression:

let v = let w = <w-rhs>

in Cons w Nil

in <body>

A semantically-equivalent expression which di�ers only in

the positioning of the binding for w is this:

let w = <w-rhs>

in let v = Cons w Nil

in <body>

While the two expressions have the same value, the second is

likely to be more e�cient than the �rst to evaluate. (We will

say why this is so in Section 3.3.) A good compiler should

transform the �rst expression into the second. However, the

di�erence in e�ciency is not large, and the transformation

between the two is easy | none of the romance of strictness

analysis here | and so not much attention has been paid

to transformations of this kind. We call them \let-
oating"

transformations, because they concern the exact placement

of let or letrec bindings; in the example, it is the binding

This paper appears in the proceedings of the 1996

International Conference on Functional Programming,

Philadelphia (ICFP'96).

for w which is
oated from one place to another.

The Glasgow Haskell Compiler (GHC) is an optimising com-

piler for the non-strict purely-functional language Haskell

(Hudak et al. [1992]). Its guiding principle is that of compi-

lation by transformation| that is, as much as possible of the

compilation process is expressed as a series of correctness-

preserving program transformations. As we developed the

compiler we gradually discovered the importance of well-

targeted let-
oating. This paper reports on and quanti�es

this experience.

We make the following main contributions:

� We identify and describe three distinct kinds of let-

oating transformations:

{ Floating inwardsmoves bindings as far inwards as

possible (Section 3.1).

{ The full laziness transformation
oats selected bind-

ings outside enclosing lambda abstractions (Sec-

tion 3.2)

{ Local transformations \�ne-tune" the location of

bindings (Section 3.3).

� We give detailed measurements of their e�ectiveness

(Section 5). We do not simply measure bottom-line

performance changes, but also quantify many of the

e�ects predicted in Section 3, and explore the e�ects

of some variants of the basic transformations.

These measurements are made in the context of a state-

of-the-art compiler and a set of substantial programs.

Our results are encouraging: on average, let-
oating reduces

heap allocation by over 30% and execution time by more

than 15%. In the context of an optimising compiler | all the

other optimisations are turned on for these measurements,

so there are no easy pickings | this is a very worthwhile

gain. For particular programs the gains can be spectacular;

one program ran twice as fast with let-
oating.

We believe that our results are not very GHC-speci�c, but

probably are rather lazy-language-speci�c. Analogous trans-

formations should be equally successful in other compilers

for non-strict languages, but the whole issue is probably

much less important for a strict language.

Program Prog !
Binding

1

; : : : ; Binding

n

n � 1

Bindings Binding ! Bind

j rec Bind

1

: : :Bind

n

Bind ! var = Expr

Expression Expr ! Expr Atom Application

j Expr ty Type application

j � var

1

: : : var

n

-> Expr Lambda abstraction

j � ty -> Expr Type abstraction

j case Expr of Alts Case expression

j let Binding in Expr Local de�nition

j con var

1

: : : var

n

Constructor n � 0

j prim var

1

: : : var

n

Primitive n � 0

j Atom

Atoms Atom ! var Variable

j Literal Unboxed Object

Literal values Literal ! integer j
oat j : : :

Alternatives Alts ! Calt

1

; : : : ; Calt

n

; Default n � 0

j Lalt

1

; : : :; Lalt

n

; Default n � 0

Constr. alt Calt ! Con var

1

: : : var

n

-> Expr n � 0

Literal alt Lalt ! Literal -> Expr

Default alt Default ! NoDefault

j var -> Expr

Figure 1: Syntax of the Core language

2 Language framework

Before describing the transformations themselves, we must

�rst introduce the language we use. Its grammar is given

in Figure 1, and consists essentially of the (non-strict) sec-

ond order lambda calculus augmented with let(rec) ex-

pressions, case expressions, and constructors. A program

consists of a set of bindings. The value of the program is

the value of the variable main.

A value is an expression in weak head normal form | a vari-

able, literal, constructor application, or lambda abstraction.

An unusual feature of the Core language is that it is based

on the polymorphic, second-order lambda calculus (Girard

[1971]; Reynolds [1974]), featuring type abstractions (in-

troduced by �) and type applications (denoted by simple

juxtaposition). Its usefulness to us is that it provides a

simple, well-understood way of attaching types to the pro-

gram which can be maintained through substantial program

transformations. We discuss this aspect in Peyton Jones et

al. [1993], but here we tend to omit the type abstractions

and applications, since they do not play an important role.

Throughout the paper we take a few liberties with the syn-

tax: we allow ourselves in�x operators (eg <e1> + <e2>),

and special syntax for lists ([] for nil and in�x : for cons).

We allow multiple de�nitions in a single let expression to

abbreviate a sequence of nested let expressions. We use the

notation <e> to denote an arbitrary expression.

2.1 The operational reading

Another unusual feature of the Core language is that it has

a direct operational interpretation, as well as the conven-

tional denotational semantics. If we are to reason about the

usefulness of a transformation | and this paper contains a

great deal of such reasoning | we must have some model for

how much it costs to execute it, so an operational interpreta-

tion is very desirable. The two most important operational

intuitions are as follows:

1. let(rec) bindings (and only let(rec) bindings) per-

form heap allocation. For example:

let v = factorial 20

in

f v 3

The operational understanding is \�rst allocate in the

heap a thunk (or suspension) for factorial 20, and

bind it to v, then call f passing it the parameters v and

3". The language is non-strict, so v is not evaluated

before calling f. Rather, a heap-allocated thunk is built

and passed to f. If f ever needs the value of v it will

force the thunk which, when its evaluation is complete,

will update (overwrite) itself with its value. If f needs

the value of v again, the heap object now contains its

value instead of the suspended computation.

A let(rec) binding may also allocate a value rather

than a thunk.

2

In our implementation, the allocated object (be it a

thunk or value) consists only of a code pointer together

with a slot for each free variable of the expression.

Only one object is allocated, regardless of the size of

the expression (older implementations of graph reduc-

tion do not have this property). We do not attempt

to share environments between thunks (Appel [1992];

Kranz et al. [1986]).

2. case expressions (and only case expressions) perform

evaluation. For example:

case x of

[] -> 0

(y:ys) -> y + g ys

The operational understanding is \evaluate x, and then

scrutinise it to see whether it is an empty list, [], or

a cons cell of form (y:ys), continuing execution with

the appropriate alterative.

case expressions subsume conditionals, of course. The

conditional if <cond> <e1> <e2> is written

case <cond> of

True -> <e1>

False -> <e2>

The syntax in Figure 1 requires that function arguments

must be atoms

1

(that is, variables or literals), and now we

can see why. If the language allowed us to write

f (factorial 20) 3

the operational behaviour would still be exactly as described

in (1) above, with a thunk allocated as before. The let form

is simply more explicit. Furthermore, the let form gives us

the opportunity of moving the binding for v elsewhere, if

that turns out to be desirable, which the apparently-simpler

form does not. Lastly, the let form is more economical,

because many transformations on let expressions (concern-

ing strictness, for example) would have to be duplicated for

function arguments if the latter were non-atomic.

It is also important to note where atoms are not required. In

particular, the scrutinee of a case expression is an arbitrary

expression not just an atom. For example, the following is

quite legitimate:

case (reverse xs) of

[] -> <nil-case>

(y:ys) -> <cons-case>

Operationally, there is no need to build a thunk for reverse xs

and then evaluate it; rather, we can simply save the contin-

uation and call reverse xs. Again, the operational model

determines the syntax.

These informal operational notions help identify transfor-

mations that might be bene�cial, but they do not constitue

a formal model of \e�ciency". We have started to develop

such a model, but technical di�culties remain (Santos [1995,

Chaper 9]).

2.2 The costs of a let(rec)-binding

Consider the expression

1

This syntax is becoming quite widely used (Ariola et al. [1995];

Flanagan et al. [1993]; Launchbury [1993]; Peyton Jones [1992]).

let x = f y

in ...x...x...

What, precisely, are the costs of the let-binding for x? The

performance of modern processors is often limited by their

memory bandwidth, so we treat interaction with memory as

the major cost:

1. Allocation. The thunk for (f y) has to be allocated

and initialised.

2. Evaluation. The �rst time x is evaluated, the contents

of the thunk must be read from the heap into registers.

3. Update. When the evaluation x is started, an update

frame must be stored on the stack; when its evalua-

tion is complete, its �nal value must be written back

into the heap, overwriting the thunk identi�ed in the

update frame. This value will either be a data value

(such as an integer, character, or list cell) or a function

value.

4. Further evaluations. Any subsequent evaluations of x

will �nd the evaluated form, but each still entails read-

ing the value from the heap into processor registers.

Sometimes, the right-hand side (RHS) of a binding is already

manifestly a value, rather than a thunk:

let y = (p,q)

in ...y...y...

The let-binding for y is somewhat cheaper than that for x,

because no update need be performed.

2.3 Strictness analysis

Strictness analysis is a static program analysis that iden-

ti�es expressions which are sure to be evaluated. Though

strictness analysis is not the subject of this paper

2

, it helps

to have some understanding of how the results of the anal-

ysis are used, because some let-
oating transformations are

designed to improve the e�ectiveness of strictness analysis.

Suppose we start with the expression

let x = f y

in ...x...

If the strictness analyser is able to prove that x is sure to be

evaluated, and annotates its binding to say so, then we can

subsequently make the following transformation (which we

call \let-to-case"):

case (f y) of

x -> ...x...

The operational reading of the latter form is just as for any

case expression: evaluate (f y), bind its value to x, and

continue with the code for ...x.... In e�ect, this form

encodes a strict let expression.

The second form is signi�cantly cheaper to execute than the

�rst. In e�ect, the �rst-evaluation and update costs of the

thunk (items 2 and 3 in Section 2.2) are eliminated, quite a

worthwhile saving.

2

Peyton Jones & Partain [1993] presents detailed measurements of

its e�ectiveness in the same spirit as this paper.

3

3 What we hope to gain

We are now ready to describe the three let-
oating transfor-

mations mentioned earlier, and to say what we hope to gain

by each. The details of how each is implemented, and what

the actual gains achieved, are discussed subsequently.

3.1 Floating inwards

The
oating-inward transformation is based on the following

observation: other things being equal, the further inward a

binding can be moved, the better. For example, consider:

let x = y+1

in case z of

[] -> x*x

(p:ps) -> 1

Here, the binding for x is used in only one branch of the

case, so it can be moved into that branch:

case z of

[] -> let x = y+1

in x*x

(p:ps) -> 1

Moving the binding inwards has at least three distinct be-

ne�ts

3

:

p

The binding may never be \executed". In the example,

z might turn out to be of the form (p:ps), in which

case the code which deals with the binding for x is

not executed. Before the transformation a thunk for x

would be allocated regardless of the value of z.

p

Strictness analysis has a better chance. It is more likely

that at the point at which the binding is now placed it

is known that the bound variable is sure to be evalu-

ated. This in turn may enable other, strictness-related,

transformations to be performed. In our example, in-

stead of allocating a thunk for x, any decent compiler

will simply evaluate y, increment it and square the

result, allocating no thunks at all (Section 2.3).

p

Redundant evaluations may be eliminated. It is pos-

sible that the RHS will \see" the evaluation state of

more variables than before. To take a similar example:

let x = case y of (a,b) -> a

in

case y of

(p,q) -> x+p

If the binding of x is moved inside the case branch, we

get:

case y of

(p,q) -> let x = case y of (a,b) -> a

in

x+p

Now the compiler can spot that the inner case for y is

in the RHS of an enclosing case which also scrutinises

y. It can therefore eliminate the inner case to give:

3

Throughout the paper, advantages are marked with

p

and dis-

advantages with �. 2 indicates moot points.

case y of

(p,q) -> p+p

The �rst two bene�ts may also accrue if a binding is moved

inside the RHS of another binding. For example,
oating

inwards would transform:

let x = v+w

y = ...x...x...

in

<body>

(where <body> does not mention x) into

let y = let x = v+w in ...x...x...

in

<body>

(The alert reader will notice that this transformation is pre-

cisely the opposite of that given in the Introduction, a point

we return to in Section 3.3.) This example also illustrates

another minor e�ect of moving bindings around:

2 Floating can change the size of the thunks allocated.

Recall that in our implementation, each let(rec)bind-

ing allocates a heap object that has one slot for each

of its free variables. The more free variables there are,

the larger the object that is allocated. In the example,

oating x into y's RHS removes x from y's free vari-

ables, but adds v and w. Whether y's thunk thereby be-

comes bigger or smaller depends on whether v and/or

w were already free in y.

So far, we have suggested that a binding can usefully be

oated inward to \as far as possible"; that is, to the point

where it can be
oated no further in while still keeping

all the occurrences of its bound variable in scope. There

is an important exception to this rule: it is dangerous to

oat a binding inside a lambda abstraction. Why? Because

if the abstraction is applied many times, each application

will instantiate a fresh copy of the binding. Worse, if the

binding contains a reducible expression the latter will be

re-evaluated each time the abstraction is applied.

The simple solution is never to
oat a binding inside a

lambda abstraction, and that is what our compiler currently

does (but see Section 7). But what if the binding is inside

the abstraction to start with? We turn to this question next.

3.2 Full laziness

Consider the de�nition

f = \xs -> letrec

g = \y -> let n = length xs

in ...g...n...

in

...g...

Here, the length of xs will be recomputed on each recursive

call to g. This recomputation can be avoided by simply

oating the binding for n outside the \y-abstraction:

f = \xs -> let n = length xs

in

letrec

g = \y -> ...g...n...

in

...g...

4

This transformation is called full laziness. It was originally

invented by Hughes (Hughes [1983]; Peyton Jones [1987]),

who presented it as a variant of the supercombinator lamb-

da-lifting algorithm. Peyton Jones & Lester [1991] subse-

quently showed how to decouple full laziness from lambda

lifting by regarding it as an exercise in
oating let(rec)

bindings outwards. Whereas the
oat-in transformation a-

voids pushing bindings inside lambda abstractions, the full

laziness transformation actively seeks to do the reverse, by

oating bindings outside an enclosing lambda abstraction.

The full laziness transformation can save a great deal of

repeated work, and it sometimes applies in non-obvious sit-

uations. One example we came across in practice is part

of a program which performed the Fast Fourier Transform

(FFT). The programmer wrote a list comprehension similar

to the following:

[xs_dot (map (do_cos k) (thetas n)) | k<-[0 .. n-1]]

What he did not realise is that the expression (thetas n)

was recomputed for each value of k! The list comprehen-

sion syntactic sugar was translated into the Core language,

where the (thetas n) appeared inside a function body. The

full laziness transformation lifted (thetas n) out past the

lambda, so that it was only computed once.

A potential shortcoming of the full laziness transformation,

as so far described, is this: it seems unable to
oat out

an expression that is free in a lambda abstraction, but not

let(rec) bound. For example, consider

f = \x -> case x of

[] -> g y

(p:ps) -> ...

Here, the subexpression (g y) is free in the \x-abstraction,

and might potentially be an expensive computation which

could potentially be shared among all applications of f. It

is simple enough, in principle, to address this shortcoming,

by simply let-binding (g y) thus:

f = \x -> case x of

[] -> let a = g y

in a

(p:ps) -> ...

Now the binding for a can be
oated out like any other

binding.

The full laziness transformation may give rise to large gains,

but at the price of making worse all the things that
oating

inwards makes better (Section 3.1). Hence, the full laziness

transformation should only be applied when there is some

chance of a bene�t. For example, it should not be used if

either of the following conditions hold:

1. The RHS of the binding is already a value, or reduces

to a value with a negligible amount of work. If the RHS

is a value then no work is saved by sharing it among

many invocations of the same function, though some

allocation may be saved.

2. The lambda abstraction is applied no more than once.

We are experimenting with a program analysis which

detects some situations in which a lambda abstraction

is applied only once (Turner, Wadler & Mossin [1995]).

There is a �nal disadvantage to the full laziness which is

much more slippery: it may cause a space leak. Consider:

f = \x -> let a = enumerate 1 n in <body>

where enumerate 1 n returns the list of integers between 1

and n. Is it a good idea to
oat the binding for a outside the

\x-abstraction? Certainly, doing so would avoid recomput-

ing a on each call of f. On the other hand, a is pretty cheap

to recompute and, if n is large, the list might take up a lot

of store. It might even turn a constant-space algorithm into

a linear-space one, or even worse.

In fact, as our measurements show, space leaks do not seem

to be a problem for real programs. We are, however, rather

conservative about
oating expressions to the top level where,

for tiresome reasons, they are harder to garbage collect.

3.3 Local transformations

The third set of transformations consist of local rewrites,

which \�ne-tune" the placement of bindings. There are just

three such transformations:

(let v=e in b) a �! (let v=e in b a)

case (let v=e in b) of

alts

�! let v=e

in

case b of alts

let x = let v=e in b

in c

�! let v=e

in

let x=b

in c

Each of the three has an exactly equivalent form when the

binding being
oated outwards is a letrec. The third also

has a variant when the outer binding is a letrec: in this

case, the binding being
oated out is combined with the

outer letrec to make a larger letrec. Subsequent depen-

dency analysis (see Section 3.4) will split the enlarged group

up if it is possible to do so.

The �rst two transformations are always bene�cial. They

do not change the number of allocations, but they do give

other transformations more of a chance. For example, the

�rst moves a let outside an application, which cannot make

things worse and sometimes makes things better | for ex-

ample, b might be a lambda abstraction which can then be

applied to a. The second
oats a let(rec) binding out-

side a case expression, which might improve matters if, for

example, b was a constructor application.

The third transformation, the \let-from-let" transformation,

which
oats a let(rec) binding from the RHS of another

let(rec) binding, is more interesting. It has the following

advantages:

p

Floating a binding out may reveal a head normal form.

For example, consider the expression:

let x = let v = <v-rhs> in (v,v)

in <body>

When this expression is evaluated, a thunk will be al-

located for x. When (and if) x is evaluated by <body>,

the contents of the thunk will be read back into reg-

isters, its value (the pair (v,v)) computed, and the

heap-allocated thunk for x will be overwritten with

the pair.

Floating the binding for v out would instead give:

5

let v = <v-rhs>

x = (v,v)

in <body>

When this expression is evaluated, a thunk will be al-

located for v, and a pair for x. In other words, x is

allocated in its �nal form. No update will take place

when x is evaluated, a signi�cant saving in memory

tra�c.

p

There is a second reason why revealing a normal form

may be bene�cial: <body>may contain a case expres-

sion which scrutinises x, thus:

...(case x of (p,q) -> <case-rhs>)...

Now that x is revealed as being bound to the pair

(v,v), this expression is easily transformed to

...(<case-rhs>[v/p,v/q])...

(We call this the \known-branch" transformation, be-

cause it uses information about the scrutinee of a case

expression to choose the correct branch of the case.)

p

Floating v's binding out may reduce the number of

heap-over
ow checks. A \heap-over
ow check" is nec-

essary before each sequence of let(rec) bindings, to

ensure that a large enough contiguous block of heap is

available to allocate all of the bindings in the sequence.

For example, the expression

let v = <v-rhs>

x = (v,v)

in <body>

requires a single check to cover the allocation for both

v and x. On the other hand, if the de�nition of v

is nested inside the RHS of x, then two checks are

required.

These advantages are all very well, but the let-from-let trans-

formation also has some obvious disadvantages: after all, it

was precisely the reverse of this transformation which we ad-

vocated when discussing the
oating-inward transformation!

Speci�cally, there are two disadvantages:

� If x is not evaluated, then an unnecessary allocation for

v would be performed. However, the strictness anal-

yser may be able to prove that x is sure to be evaluated,

in which case the let-from-let transformation is always

bene�cial.

� It is less likely that the strictness analyser will discover

that v is sure to be evaluated. This suggests that the

strictness analyser should be run before performing the

let-from-let transformation.

It is possible that the let-from-let transformation is worth

while even if x is not sure to be evaluated. We explore

various compromises in Section 5.3.

3.4 Composing the pieces

We have integrated the three let-
oating transformations

into the Glasgow Haskell Compiler. The full laziness and

oat-inwards transformations are implemented as separate

passes. In contrast, the local let-
oating transformations are

combined with a large collection of other local transforma-

tions in a pass that we call the \Simpli�er" (Peyton Jones

& Santos [1994]; Santos [1995]). Among the transforma-

tions performed by the Simpli�er is dependency analysis,

which splits each letrec binding into its minimal strongly-

connected components. Doing this is sometimes valuable

because it lets the resulting groups be
oated independently.

We perform the transformations in the following order.

1. Do the full laziness transformation.

2. Do the
oat-inwards transformation. This won't a�ect

anything
oated outwards by full laziness; any such

bindings will be parked just outside a lambda abstrac-

tion.

3. Perform strictness analysis.

4. Do the
oat-inwards transformation again.

Between each of these passes, the Simpli�er is applied.

We do the
oat-inwards pass before strictness analysis be-

cause it helps to improve the results of strictness analysis.

The desirability of performing the
oat-inwards transforma-

tion again after strictness analysis surprised us. Consider

the following function:

f x y = if y==0

then error ("Divide by zero: " ++ show x)

else x/y

The strictness analyser will �nd f to be strict in x, because

calls to error are equivalent to ?, and hence will pass x

to f in unboxed form. However, the then branch needs x

in boxed form, to pass to show. The post-strictness
oat-

inwards transformation
oats a binding that re-boxes x into

the appropriate branch(es) of any conditionals in the body

of f, thereby avoiding the overhead of re-boxing x in the

(common) case of taking the else branch.

4 Implementing let-
oating

The implementation of the
oat-in transformation and local

let-
oating is straightforward, but the full laziness transfor-

mation has a few subtleties.

We use a two-pass algorithm to implement full laziness:

1. The �rst pass annotates each let(rec) binder with its

\level number"

4

. In general, level numbers are de�ned

like this.

� The level number of a let-bound variable is the

maximum of the level numbers of its free vari-

ables, and its free type variables.

4

Actually, all the other binders are also annotated, but they are

never looked at subsequently.

6

� The level number of a letrec-bound variable is the

maximum of the level numbers of the free vari-

ables of all the RHSs in the group, less the letrec-

bound variables themselves.

� The level number of a lambda-bound variable is

one more than the number of enclosing lambda

abstractions.

� The level number of a case- or type-lambda-bound

variable is the number of enclosing (ordinary) lamb-

da abstractions.

2. The second pass uses the level numbers on let(rec)s to

oat each binding outward to just outside the lambda

which has a level number one greater than that on the

binding.

Notice that a binding is
oated out just far enough

to escape all the lambdas which it can escape, and no

further. This is consistent with the idea that bindings

should be as far in as possible. There is one exception

to this: bindings with level number zero are
oated

right to the top level.

Notice too that a binding is not moved at all unless it

will de�nitely escape a lambda.

This algorithm is much as described by Peyton Jones &

Lester [1991], but there are a few complications in practice.

Firstly, type variables are a nuisance. For example, suppose

that f and k are bound outside the following \x-abstraction:

\x -> ...(/\a -> ...let v = f a k in ...)

We'd like to
oat out the v = f a k, but we can't because

then the type variable a would be out of scope. The rules

above give a the same level number as x (assuming there are

no intervening lambdas) which will ensure that the binding

isn't
oated out of a's scope. Still, there are some partic-

ularly painful cases, notably pattern-matching failure bind-

ings, such as:

fail = error a "Pattern fail"

We really would like this to get lifted to the top level, de-

spite its free type variable a. There are two approaches:

ignore the problem of out-of-scope type variables, or �x it

up somehow. We take the latter approach, using the fol-

lowing procedure. If a binding v = e has free type variables

whose maximum level number is strictly greater than that of

the ordinary variables, then we abstract over the o�ending

type variables, a1..an, thus:

v = let v' = /\a1..an -> e in v' a1 ... an

Now v is given the usual level number (taking type variables

into account), while v' is given the maximum level number

of the ordinary free variables only (since the type variables

a1..an are not free in v').

The reason this is a bit half baked is that some subsequent

binding might mention v; in theory it too could be
oated

out, but it will get pinned inside the binding for v. (It's the

binding for v' which
oats.) But our strategy catches the

common cases.

The second complication is that there is a penalty associated

with
oating a binding between two adjacent lambdas. For

example, consider the binding

f = \x y -> let v = length x in ...

It would be possible to
oat the binding for v between the

lambdas for x and y, but the result would be two functions

of one argument instead of one function of two arguments,

which is less e�cient. There would be gain only if a partial

application of f to one argument was applied many times.

Indeed, our measurements

5

indicate that allowing lambdas

to be split in this way resulted in a signi�cant loss of per-

formance. Our pragmatic solution is to therefore treat the

lambdas for x and y as a single \lambda group", and to give

a single level number to all the variables bound by a group.

As a result, lambda groups are never split.

The third complication is that we are paranoid about giving

bindings a level number of zero, because that will mean they

oat right to the top level, where they might cause a space

leak

6

. We use several heuristics which sometimes decide

(conservatively) to leave a binding exactly where it is. If

this happens, instead of giving the binding level number

zero, it is given a level number of the number of enclosing

lambdas (so that it will not be moved by the second pass).

5 Results

We measured the e�ect of our transformations on a sam-

ple of 15 \real" programs from our NoFib test suite

7

(Par-

tain [1993]). By \real" we mean that each is an application

program written by someone other than ourselves to solve

a particular problem. None was designed as a benchmark,

and they range in size from a few hundred to a few thousand

lines of Haskell.

Table 5 gives the absolute performance numbers for each

program, compiled with ghc-0.26 -O, which includes all the

let-
oating transformations of this paper. The SPARC in-

struction counts were collected with SpixTools, kindly pro-

vided by Bob Cmelik, then at Sun; we also report how many

of the instructions were memory loads and stores, and how

many were used by the garbage collector. Instruction-count

changes tend to understate execute-time changes, so per-

formance changes might be a bit better In Real Life. The

\time" numbers (from a single use of /bin/time) are inher-

ently fuzzy; we provide them mainly as a sanity check for

the instruction-count numbers. \Allocs" gives the number

of words in heap-allocated objects, a widely-used measure

which is surprisingly poorly correlated with execution time;

we place little faith in it.

\Resid" (residency) gives the average and maximum amount

of live data during execution, a number that directly a�ects

the cost of garbage collection, and is the best measure of

the space consumption of a program. The residency num-

bers were gathered by sampling the amount of live data

at frequent intervals, using the garbage collector. Frequent

5

See Santos [1995] for these �gures; we do not present them here.

6

In our implementation, all top-level values are retained for the

whole life of the program. It would be possible for the garbage collec-

tor to �gure out which of them cannot be referred to again, and hence

which could safely be garbage collected, but doing so adds complexity

and slows both the mutator and the garbage collector.

7

The results reported in this paper are by no means all that we

collected. We pored over results for all 70-ish NoFib programs, not

just the \real" ones used here. First we built 14 special versions of

prelude libraries (145MB worth). Then we built each NoFib program

16 ways (the extra 2 ways used standard prelude libraries), taking up

a total of 1,415MB in disk space. Compile time and run time for all

the tests?|we'd rather not think about it!

7

Allocs. Resid.(Kwords) Instructions (M) Time

Program (Kwords) Avg. Max. total %mem %gc (secs.)

real/HMMS 74,233 1,008 1,885 3293.0 35.5% 20.5% 67.8

real/anna 5,873 329 542 252.0 46.4% 10.5% 6.4

real/bspt 1,015 288 365 26.6 41.0% 18.6% 0.7

real/compress 34,735 158 164 918.9 50.4% 14.0% 19.8

real/fulsom 51,488 1,177 3,328 1142.0 43.9% 20.2% 25.9

real/gamteb 20,053 279 528 594.4 26.7% 16.1% 10.9

real/gg 1,628 215 369 47.5 34.2% 17.0% 1.0

real/hidden 93,494 211 315 1937.0 38.6% 4.7% 37.3

real/hpg 13,440 355 597 344.7 33.6% 24.7% 11.3

real/infer 2,531 961 1,935 201.1 46.3% 32.9% 4.8

real/parser 2,465 470 860 110.9 41.1% 29.0% 2.5

real/pic 1,208 208 296 38.7 32.1% 12.4% 0.9

real/reptile 1,108 488 606 28.5 41.3% 15.8% 0.7

real/rsa 7,315 3 9 1122.1 8.3% 1.8% 12.9

real/symalg 46,960 23,210 46,160 7449.2 3.3% 1.1% 109.1

Table 1: Base case: absolute numbers for what happens with -O

sampling means that any \spikes" in live memory usage are

unlikely to be missed.

The following sections give the results of measuring the ef-

fect of the three transformations (
oating inwards,
oating

outwards, and local
oating) separately, followed by mea-

surements of their combined e�ect. In each case, we try to

quantify the e�ects predicted in Sections 3.1{3.3, as well as

measuring the overall e�ect on execution time and space.

Most results will be given as percentage changes from these

-O numbers, which we treat as the base case. A positive

value means \more than the base case", negative means \less

than the base case"; whether that is \good" or \bad" de-

pends on what is being measured. Changes to percentages,

e.g. \percentage of instructions in garbage-collection", are

given as raw numbers; if the base number was 35.1% and the

change is given as -0.7, then the percentage in the changed

case is 34.4%. In all tables, a dash indicates a zero �gure.

Space precludes listing the results for each individual pro-

gram. Instead, we report the minimum, maximum, median

and mean �gures for the whole set. The `Means' listed

are geometric means, since they are the means of perfor-

mance ratios (Smith [1988]). While the mean improvements

we �nd are often modest, it is important to bear in mind

the \outliers", re
ected in the `Min' and `Max' columns. A

production-quality compiler should have a lot bullets in its

gun; each individual bullet may only target a small class of

programs, but it may make a large di�erence to that class.

5.1 Floating inwards

In this section, we quantify the e�ects of the
oating-inwards

transformation. Table 2 shows the e�ects of switching
oat-

ing-inwards o�. In most of the table, all the other optimi-

sations are left on, except for the second block of the table

where strictness analysis is also switched o�.

The �rst block gives the \bottom line". Without
oating

inwards, we write about 6% more words into memory, and

execute somewhat under 1% more instructions. Residency

is not a�ected signi�cantly. The largest improvement came

from fulsom, with 55.7% more allocations, and infer, with

3.9% more instructions.

Mean Min. Median Max.

Allocs. 6.1% -0.5% 0.1% 55.7%

Avg. resid. -2.2% -29.6% - 7.6%

Max. resid. -2.7% -38.0% -0.1% 13.3%

Insns. 0.6% -1.9% - 3.9%

%mem -0.1 - - -

%gc +0.1 - -0.5 -1.8

noSA-FI vs noSA-noFI

Alloc'd 5.0% - 0.2% 54.9%

AvgSize -0.1% -2.4% - 0.8%

Strict bindings found

-O 37.7% 24.0% 37.9% 69.4%

noFI -0.7 -0.4 -0.5 -

E�ect on number of enters

Enters: 0.2% -0.3% 0.1% 1.6%

Table 2: The e�ects of turning o�
oating inwards

Next, we try to quantify the e�ects predicted in Section 3.1.

� How many heap objects are not allocated at all as a re-

sult of
oating inwards, and how is the size of allocated

object a�ected? There is a complication here:
oating

inwards helps strictness analysis, and successful strict-

ness analysis also reduces allocation. Hence, to mea-

sure the reduction in allocation due only to
oating

inwards we turned o� strictness analysis (noSA), and

compared how many objects were allocated with and

without
oating inwards (FI and noFI).

The results are given in the second block of Table 2.

About 5% fewer objects are allocated when
oating in-

wards is on, and there is essentially no e�ect on object

size (-0.1%).

� How much is the strictness analyser helped by
oating

inwards? The third block of Table 2 shows the pro-

portion of binders that are identi�ed by the strictness

analyser as sure to be evaluated in the base case (-O),

and how this proportion changes when
oating inwards

is switched o�.

With
oating inwards, strictness analysis manages to

tag 37.7% of binders as \certain to be demanded".

8

Mean Min. Median Max.

Allocs. 10.9% - 6.4% 66.8%

Avg. resid. 0.1% -35.8% 0.4% 23.9%

Max. resid. -0.3% -7.8% -0.1% 11.0%

Insns. 7.3% -0.2% 3.3% 90.5%

%mem - - -0.4 +0.2

%gc +1.3 - +0.3 +1.3

Updates: 7.0% -0.2% 2.9% 60.1%

Table 3: E�ect of turning o� the full laziness transformation

Things are slightly worse without
oating inwards (-0.7%).

So
oating inwards does help the strictness analyser,

but not much.

� How many evaluations are eliminated by
oating in-

wards? The �nal block of Table 2 concerns the num-

ber of times a heap closure (be it a thunk, data value

or function value) was evaluated | or \entered" |

during the execution of the program. Again,
oating

inwards has a small but bene�cial e�ect (mean 0.2%,

max 1.6%).

5.2 Full laziness

Next we turn our attention to the full laziness transforma-

tion. The results are summarised in Table 3, which shows

the e�ect of switching o� full laziness while leaving all other

optimisations on.

Overall, full laziness buys a reduction of 10% in allocation,

and 7% in instructions executed. We would expect the num-

ber of updates to decrease, because of the extra sharing of

thunks caused by full laziness, and indeed it does go down,

by about 7%.

As the \Max" column shows, one program (hidden, a hid-

den-line removal algorithm) is dramatically improved by full

laziness. Leaving bindings unnecessarily stuck inside an in-

ner loop is a Really Bad Idea.

Does full laziness a�ect a very few expressions in each pro-

gram, or is it widely applicable? Initially we guessed the for-

mer, but the measurements in Table 4 contradicts this guess.

The table counts how many bindings were
oated at all by

full laziness. In order to make comparable the �gures for dif-

ferent programs, we (somewhat arbitrarily) normalised them

to the number of lambda groups in the program. We also

identify separately bindings which
oat to the top level |

these are just constant expressions | and those that
oat to

some other place. For example, in HMMS, on average 1.4 con-

stant bindings and 0.3 non-constant bindings
oated past

each lambda group.

As you would expect,
oated constant bindings are about 5

times as common as
oated non-constant bindings. Overall,

we �nd the �gures in Table 4 surprisingly high, and we be-

lieve that there is probably scope for increased selectivity in

the full laziness transformation.

5.3 Local transformations

Next, we compare four di�erent strategies for local let-
oat-

ing:

Float outwards: Lambda Top-level Inner

groups ratio ratio

real/HMMS 435 1.4 0.3

real/anna 2,221 0.7 0.1

real/bspt 290 0.8 0.1

real/compress 19 0.3 -

real/ebnf2ps 487 1.3 0.4

real/fluid 468 1.0 0.2

real/fulsom 217 1.0 0.3

real/gamteb 52 2.1 -

real/gg 363 0.9 0.3

real/grep 173 0.5 0.1

real/hidden 269 0.3 0.1

real/hpg 310 0.6 0.3

real/infer 258 0.6 0.3

real/lift 151 0.6 0.2

real/maillist 37 0.6 0.2

real/parser 424 0.9 0.3

real/pic 124 1.0 0.6

real/prolog 185 0.6 0.2

real/reptile 246 1.5 0.1

real/rsa 24 1.9 0.1

real/symalg 148 1.8 -

real/veritas 1,047 2.0 0.2

MEAN 0.9 0.2

MIN 0.3 -

MEDIAN 0.9 0.2

MAX 2.1 0.6

Table 4: Details of full laziness
oats

None. Do no local let-
oating at all.

Strict. Bindings are
oated out of strict contexts only;

namely, applications, case scrutinees, and the RHSs of

strict lets. These
oats cannot increase the number

of closures allocated, so \strict" should out-perform

\none".

Base case (-O). Like \strict", but in addition a binding is

oated out of a let(rec)RHS if doing so would reveal

a value.

Always. Like \strict", but any binding at the top of a

let(rec) RHS is
oated out.

Table 5 shows the e�ects of these four strategies; as always

we report percentage changes from the base case (-O). Over-

all, the base case consistently out-performs the three other

variants (which is, of course, why we make it the default

choice). \None" is, unsurprisingly, terrible (15% more al-

location, 8% more instructions, 8% worse peak residency).

\Strict" is relatively dire (5% more allocation, 6% more in-

structions, 6% worse peak residency); \always" has more

gentle e�ects (e.g., only 0.5% more instructions) but cannot

be said to justify its more aggressive
oating strategy.

Note also that \strict" is prone to very unpleasant \outliers"

(e.g., 70%+ residency degradation); moreover, these \outlier

e�ects" are spread across a range of programs (it isn't just

one program being hit very badly).

We now compare the three defensible strategies for
oating

bindings out of let(rec) RHSs, using the e�ects predicted

in Section 3.3. (Since \none" is so obviously terrible we

don't consider it further.)

9

Mean Min. Median Max.

Allocs.:

always 3.4% 0.1% 1.3% 15.5%

strict 5.3% 0.1% 3.2% 16.1%

none 15.7% 0.2% 10.1% 118.2%

Avg. resid.:

always -0.8% -30.8% 0.4% 29.0%

strict 3.9% -19.9% 1.0% 75.8%

none 5.7% -19.9% 4.1% 50.9%

Max. resid.:

always -0.5% -38.5% 0.5% 19.1%

strict 6.1% -19.8% 0.8% 71.1%

none 8.3% -19.8% 4.0% 69.0%

Insns.:

always 0.5% -2.1% - 3.2%

strict 6.0% - 4.7% 18.6%

none 8.7% 0.1% 5.7% 35.3%

%mem:

always +0.7 +1.2 - +0.1

strict - - +0.3 -0.2

none +0.4 +0.6 +0.2 -0.2

%gc:

always +1.2 +0.7 -0.5 -

strict +0.6 - -0.3 -2.4

none +1.6 +0.7 +0.3 -2.3

Updates:

always 2.4% -12.8% 0.5% 33.7%

strict 28.2% 2.0% 26.9% 103.1%

none 30.7% 3.1% 30.5% 103.1%

AvgSize:

always -2.3% -7.5% -1.2% 0.1%

strict 1.0% -3.6% 0.7% 6.6%

none -1.3% -12.7% -0.6% 5.7%

Heap Chks:

always -0.3% -14.7% -0.2% 19.3%

strict 14.2% 0.7% 10.1% 35.7%

none 25.5% 0.8% 16.8% 96.6%

Known branches:

always -3.8% -14.8% -3.2% -

strict -2.5% -20.0% -0.9% 9.3%

none -7.5% -36.7% -5.5% -

Enters:

always 1.5% -0.1% 0.4% 8.0%

strict 2.5% -1.1% 1.4% 16.9%

none 6.5% -0.8% 4.5% 32.0%

Table 5: E�ects of local let-
oating

� How many extra allocations are performed? Is the av-

erage closure size increased or decreased? Allocation

is up 3% in the \always" case, which is unsurprising,

because
oating a binding out of a let(rec)RHS will

cause that binding to be allocated when it might not

otherwise be.

It is more surprising that allocation also rises in the

\strict" case, which is less aggressive than the base

case. The reason turns out to be that the strictness

analyser is foxed by de�nitions like this one:

f = let x = <x-rhs> in \y -> <f_body>

With the \strict" strategy the binding for x may not

be
oated out of that for f. Whilst the strictness anal-

yser spots that f is strict, it does not exploit that fact

because doing so naively would involve recomputing

<x-rhs> on each call of f (Peyton Jones & Launch-

bury [1991]). Since our default -O
oating strategy

dominates \strict" in other ways, and solves this dif-

�culty by
oating x out one level, we have not made

the strictness analyser able to deal with it directly.

� How many updates are saved?

It is no surprise that updates are more common (28%)

with the less aggressive \strict" strategy, because fewer

let(rec) RHSs are values which require no update.

It is slightly surprising that \always" seems to make

updates increase again (2.4%). Why? Perhaps because

it undoes
oating inwards, and hence gives less good

strictness analysis and hence more updates.

� How many known-branch transformations are elimi-

nated? Both \strict" and \always" reduce the number

of known-branch transformations. Since this transfor-

mation is a guaranteed win, this reduction is undesir-

able. It is easy to explain why \strict" o�ers fewer

known-branch opportunities, because the non-
oated

bindings may hide a constructor (Section 3.3). We do

not yet understand why \always" has the same e�ect;

one would expect the reverse.

� How many fewer heap-allocation checks are performed?

The \always" strategy does indeed \clump" lets so

that we do fewer heap checks, but it is a mere 0.3%

improvement over the base case. The downside of the

\strict" strategy is quite a bit worse (14.2%).

5.4 Overall results

Table 6 summarises the total e�ect of switching all three

oating transformations o� (using \strict" as the \no local

oating" case). The total reduction in allocation due to

oating is 34.4%, which is close to the sum of the gains

measured for each transformation separately (6 :1 + 10 :9 +

15 :7 = 32 :7%).

The reduction in instruction count is 16.4% (with measured-

but-fuzzy time savings of 18.7%). This, too, is not far from

the sum of the gains for each transformation independently

(0 :6 + 7 :3 + 8 :7 = 16 :6%).

We have more than once found that the e�ects of an optimi-

sation are drastically reduced when it is done along with a

10

Resid. Instructions

Program Allocs. Avg. Max. total %mem %gc Time

real/HMMS 37.4% -1.3% -1.2% 7.5% -0.4 +1.8 11.9%

real/anna 32.3% 7.3% 3.8% 12.0% -0.8 +4.3 12.5%

real/bspt 33.9% -27.9% -34.2% 13.2% +0.6 +1.9 14.3%

real/compress 24.8% -18.5% -18.5% 14.1% - -0.7 15.2%

real/fulsom 55.5% 5.3% 10.9% 31.0% -1.8 +2.7 33.6%

real/gamteb 27.7% -8.1% -7.9% 6.4% - +0.1 6.4%

real/gg 47.9% -41.7% -5.5% 19.8% +1.1 +2.1 30.0%

real/hidden 90.2% 25.4% 0.1% 110.3% - +6.4 107.2%

real/hpg 24.7% -12.8% -14.4% 11.4% +0.6 +1.1 4.4%

real/infer 66.7% 1.3% 3.0% 4.1% +0.1 -2.2 4.2%

real/parser 62.4% 9.3% 10.8% 23.4% -1.2 +6.2 20.0%

real/pic 26.7% 2.4% -9.2% 13.6% +1.0 +0.2 33.3%

real/reptile 14.7% 0.2% -1.1% 7.6% -0.8 -1.4 14.3%

real/rsa 1.3% -1.0% -3.8% 0.1% - - 0.8%

real/symalg 0.2% -0.2% 0.1% 1.4% +0.6 +1.3 2.7%

MEAN 34.4% -5.5% -5.2% 16.4% +0.3 +2.2 18.7%

MIN 0.2% -41.7% -34.2% 0.1% +0.6 +0.7 0.8%

MEDIAN 32.3% -0.2% -1.2% 12.0% - +0.1 14.3%

MAX 90.2% 25.4% 10.9% 110.3% - +2.3 107.2%

Table 6: Bottom line: how \no
oating" compares with -O

slew of others, because several transformations were hitting

the same targets. In this case, however, the fact that the

three let-
oating transformations \add up" reasonably well

means that they are hitting genuinely di�erent targets.

We made some measurements of the e�ect on compile time

of the
oating transformations. Generally, compile times

are a few percent worse with no
oating at all, presumably

because other parts of the compiler (such as the code gen-

erator) have to work harder. Certainly, none of the
oating

transformations cause a noticeable increase in compile time.

All these bottom-line �gures should be taken with a pinch

of salt. Since the rest of the compiler was written in the

expectation that at least the more basic let-
oating trans-

formations were implemented, the �gures probably overstate

the penalty for turning them o�.

6 Related work

Using correctness-preserving transformations as a compiler

optimisation is, of course, a well established technique (Aho,

Sethi & Ullman [1986]; Bacon, Graham & Sharp [1994]).

In the functional programming area especially the idea of

compilation by transformation has received quite a bit of

attention (Appel [1992]; Fradet & Metayer [1991]; Kelsey

[1989]; Kelsey & Hudak [1989]; Kranz [1988]).

Perhaps because it seems such a modest transformation,

however, there are few papers about let-
oating, except in

the context of hoisting invariants out of loops. Appel's work

on \let-hoisting" in the context of ML is the only substan-

tial example we have uncovered (Appel [1992, Chapter 8]).

He identi�es both
oating inwards (\hoisting downwards")

and
oating outwards (\hoisting upwards"). Because ML is

strict, though,
oating outwards is only sure to save work

if the loop is guaranteed to execute at least once, which

restricts its applicability. The local let-
oating transforma-

tions are done automatically by the CPS transform | be-

cause the language is strict all three local strategies coincide.

Appel reports some outline results that show instruction-

count improvements on the order of 1% for hoisting down

and 2% for hoisting up.

7 Contributions

We have described a group of three related transformations

that each attempt to improve the location of let(rec) bind-

ings in a purely-functional program. We found it very help-

ful to identify three independent
avours of let-
oating. Our

results suggest that they really are independent: they aren't

just various ways to get the same optimisation bene�ts.

We have measured the e�ects of the transformations, both

on the \bottom line" and on more insightful internal mea-

sures. The improvements we obtain are modest but signi�-

cant. Any serious compiler for a non-strict language should

implement (a) local
oating to expose values (the less ag-

gressive \strict" strategy has all sorts of unfortunate e�ects);

(b)
oating out of constants. The bene�ts of the other

transformations | namely
oating inwards and complete

full-blown full laziness | are more modest.

One lesson that we learned repeatedly is that it is very

hard to predict the interactions between transformations. A

major bene�t of performing all these measurements is that

they threw up many individual cases where a usually-useful

transformation was counter-productive. Investigating these

cases led us to some new transformations, and a consider-

able amount of �ne-tuning of the existing one. So far as

let-
oating goes, the net result is fairly good: collectively,

the let-
oating transformations never increase instruction

the count, and seldom do so individually.

We are now adding a linear-type inference pass to GHC,

to spot lambda abstractions that are guaranteed only to

be applied once (Turner, Wadler & Mossin [1995]). This

information can increase opportunities for
oating inwards,

and reduce unnecessary
oating outwards. It is also useful

for other reasons, such as arity expansion and inlining (Gill

11

[1996]).

References

AVAho, R Sethi & JD Ullman [1986], Compilers - principles,

techniques and tools, Addison Wesley.

AW Appel [1992], Compiling with continuations, Cambridge

University Press.

Z Ariola, M Felleisen, J Maraist, M Odersky & P Wadler

[Jan 1995], \A call by need lambda calculus," in

22nd ACM Symposium on Principles of Program-

ming Languages, San Francisco, ACM, 233{246.

DF Bacon, SL Graham & OJ Sharp [Dec 1994], \Compiler

transformations for high-performance computing,"

ACM Computing Surveys 26, 345{420.

C Flanagan, A Sabry, B Duba & M Felleisen [June 1993],

\The essence of compiling with continuations," SIG-

PLAN Notices 28, 237{247.

P Fradet & D Le Metayer [Jan 1991], \Compilation of func-

tional languages by program transformation," ACM

Transactions on Programming Languages and Sys-

tems 13, 21{51.

AJ Gill [Jan 1996], \Cheap deforestation for non-strict func-

tional languages," PhD thesis, Department of Com-

puting Science, Glasgow University.

J Girard [1971], \Une extension de l'interpretation de G�odel

a l'analyse, et son application a l'elimination de

coupures dans l'analyse et la theorie des types," in

2nd Scandinavian Logic Symposium, JE Fenstad,

ed., North Holland, 63{92.

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel,

J Fairbairn, J Fasel, M Guzman, K Hammond, J

Hughes, T Johnsson, R Kieburtz, RS Nikhil, W

Partain & J Peterson [May 1992], \Report on the

functional programming language Haskell, Version

1.2," SIGPLAN Notices 27.

RJM Hughes [July 1983], \The design and implementation

of programming languages," PhD thesis, Program-

ming Research Group, Oxford.

R Kelsey [May 1989], \Compilation by program transforma-

tion," YALEU/DCS/RR-702, PhD thesis, Depart-

ment of Computer Science, Yale University.

R Kelsey & P Hudak [Jan 1989], \Realistic compilation by

program transformation," in Proc ACM Confer-

ence on Principles of Programming Languages, ACM,

281{292.

DA Kranz [May 1988], \ORBIT - an optimising compiler

for Scheme," PhD thesis, Department of Computer

Science, Yale University.

DA Kranz, R Kelsey, J Rees, P Hudak, J Philbin & N

Adams [1986], \ORBIT - an optimising compiler for

Scheme," in Proc SIGPLAN Symposium on Com-

piler Construction, ACM.

J Launchbury [Jan 1993], \A natural semantics for lazy eval-

uation," in 20th ACM Symposium on Principles of

Programming Languages, Charleston, ACM, 144{

154.

WD Partain [1993], \The no�b Benchmark Suite of Haskell

Programs," in Functional Programming, Glasgow

1992, J Launchbury & PM Sansom, eds., Work-

shops in Computing, Springer Verlag, 195{202.

SL Peyton Jones [1987], The Implementation of Functional

Programming Languages, Prentice Hall.

SL Peyton Jones [Apr 1992], \Implementing lazy functional

languages on stock hardware: the Spineless Tagless

G-machine," Journal of Functional Programming

2, 127{202.

SL Peyton Jones, CV Hall, K Hammond, WD Partain & PL

Wadler [March 1993], \The Glasgow Haskell com-

piler: a technical overview," in Proceedings of Joint

Framework for Information Technology Technical

Conference, Keele, DTI/SERC, 249{257.

SL Peyton Jones & J Launchbury [Sept 1991], \Unboxed

values as �rst class citizens," in Functional Pro-

gramming Languages and Computer Architecture,

Boston, Hughes, ed., LNCS 523, Springer Verlag,

636{666.

SL Peyton Jones & D Lester [May 1991], \A modular fully-

lazy lambda lifter in Haskell," Software { Practice

and Experience 21, 479{506.

SL Peyton Jones & WD Partain [1993], \Measuring the ef-

fectiveness of a simple strictness analyser," in Func-

tional Programming, Glasgow 1993, K Hammond

& JT O'Donnell, eds., Workshops in Computing,

Springer Verlag, 201{220.

SL Peyton Jones & A Santos [1994], \Compilation by trans-

formation in the Glasgow Haskell Compiler," in

Functional Programming, Glasgow 1994, K Ham-

mond, DN Turner & PM Sansom, eds., Workshops

in Computing, Springer Verlag, 184{204.

JC Reynolds [1974], \Towards a theory of type structure," in

International Programming Symposium, Springer

Verlag LNCS 19, 408{425.

A Santos [Sept 1995], \Compilation by transformation in

non-strict functional languages," PhD thesis, De-

partment of Computing Science, Glasgow Univer-

sity.

JE Smith [Oct 1988], \Characterising computer performance

with a single number," Communications of the ACM

31, 1202{1207.

DN Turner, PL Wadler & C Mossin [June 1995], \Once upon

a type," in Proc Functional Programming Languages

and Computer Architecture, La Jolla, ACM, 1{11.

12

