

ABSTRACT

Software often evolves from batch to interactive use.
Because these two usage styles are so different, batch sys-
tems usually require substantial changes to support interac-
tive use. Specific issues that arise during conversion include
assumptions about duration of system execution, incremental
and partial processing, scope of processing, unordered and
repeated processing, and error handling. Addressing these
issues affects the implementation in the areas of memory
management, assumptions and invariants, computational
organization, and error handling. We use as a working exam-
ple our conversion of the batch processor for the UniCon
architecture description tool into an interactive architecture
development tool. To capture the lessons for practitioners
undertaking this type of conversion, we summarize with a
checklist of design and implementation considerations.

Keywords

software evolution, interactive systems, batch systems, re-
engineering

INTRODUCTION

Successful software evolves over time. One of the most com-
mon evolutionary changes is migration from batch to inter-
active use. This minimally requires adding capability to
invoke the system’s operations one at a time and to provide
visibility into the intermediate results. In addition, it often
involves support for finer granularity of operations, user-
driven order of intermediate operations (including incremen-
tal re-computation and error checking), interactive construc-
tion of the information to be manipulated, graphical
depiction of that information, new strategies for error han-
dling, and multiple concurrent computations.

The batch implementation may not accommodate these addi-
tional capabilities gracefully. For example, batch systems
can predetermine the order of computational steps, so there
is little need for the clean decoupling of steps and no need
for the ability to incrementally repeat individual steps.
Response time and concurrent independent jobs are usually
not of concern, so a single thread of control is often suffi-

cient. All these are to some degree incompatible with inter-
active use.

We encountered many of these problems when we converted
the tools for our UniCon architecture description language
[9] from batch to interactive use. This batch processor
accepts a textual description of a system’s architecture, per-
forms architecture-specific analyses, and outputs a set of
instructions to build the system. In addition to these capabili-
ties, our interactive editor also allows the user to create and
modify architecture descriptions depicted as diagrams and
provides useful feedback during the editing operations. This
paper describes the issues that generally arise when convert-
ing a batch system to interactive use, their implications for
the implementation, and the lessons we can pass along. To
make the discussion concrete, we use the UniCon tool set as
our working example throughout the paper.

BATCH AND INTERACTIVE SOFTWARE

To understand the issues that arise when converting a batch
system to an interactive one, it is useful to compare the exter-
nal observable behavior of the two kinds of systems.

Batch systems

 accept one or more complete inputs, produce
one or more complete outputs, and terminate. The inputs and
outputs have state, for example as files or text streams. Batch
systems may use and perhaps update other on-line informa-
tion; they may also produce intermediate results that are
intended to be transient. Human intervention is neither
expected nor accepted, except perhaps for special error han-
dling. Start-up flags may tune the underlying computation,
but once the computation has started, it is not influenced
externally.

Interactive systems

 are of many kinds, differing in such
properties as the locus of control (internal or external), the
interaction model, and the coupling between the internal
state and the external state. They share the expectation that
the human user participates in the computation.

Interactive systems with internal control query the user
explicitly for input and ignore or queue input provided at
other times. Interactive systems with external control allow
the user to choose the order and timing of the inputs. Sys-
tems with internal control often have a single control thread;
systems with external control often dedicate a thread to the
user interface or else poll frequently for input. To illustrate
the difference, consider two systems that gather information

Lessons on Converting Batch Systems to Support Interaction

Experience Report

Robert DeLine Gregory Zelesnik Mary Shaw

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA 15213-3891

+ 1 412 268 1298
{rdeline, gz, mary.shaw}@cs.cmu.edu

Proceedings of the International Conference on Software Engineering, 1997, pp. 195-204

https://www.researchgate.net/publication/3187710_Abstractions_for_Software_Architecture_and_Tools_to_Support_Them?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

about the user, such as name, address, and phone number. A
typical system with internal control would prompt in turn
for each piece of information, with no way to go back and
change previously entered data. A typical system with exter-
nal control, on the other hand, would provide a form to be
filled out (for example, in a dialog box). The user can enter
the information in any order and can change previously
entered information at any time until the entire form is sub-
mitted to the system.

Interaction models vary widely. At one end of the spectrum
are systems where the user answers questions at system
prompts; at the other end are full object-manipulation mod-
els in which the user creates the “input” for the system
dynamically, incrementally, non-monotonically, and often
graphically. The more complex models allow users to create
and operate on portions of the system data alternately with
the system; “input” is therefore not an accurate label for the
description they create. We use the term “work product” to
refer to this shared definition that evolves from the “input”
to the “output” through cooperation of the user and the sys-
tem. The more complex models also require a representation
for the user’s view of the computation state as well as an
internal data structure.

We are chiefly interested in object-manipulation systems
with graphical interfaces and external control. Some of our
observations may not apply to simpler systems.

CONVERSION ISSUES

To accomplish the change from batch to interactive, several
issues must be addressed:

•

Assumptions about execution duration

. A batch system
is invoked for a single job; one invocation of an interac-
tive system may be used to process many individual
jobs, successively or concurrently. The execution dura-
tion of an invocation of a batch system is therefore deter-
mined by its computation and the size of its input; it is
usually relatively short (seconds, minutes, or hours). In
contrast, the user determines the execution duration of
an invocation of an interactive system. Since users can
leave sessions running indefinitely on modern worksta-
tions, an interactive system may run for hours, days, or
even weeks.

•

Incremental processing

. As Ambriola and Notkin [1]
observe, with a batch system no internal data structures
persist between multiple invocations; even small
changes to the input require complete re-computation.
An interactive system allows incremental editing of a
work product and can therefore allow incremental
update of the underlying data structures.

•

Partial processing

. Because a batch system’s input is
fixed at invocation, the input must be complete. The sys-
tem’s computation typically expects complete input and
reports incompleteness as an error. An interactive system
is used incrementally to create and modify a work prod-
uct. Its computations must be tolerant of incomplete and
missing input. These computations may be required to
work sensibly on well-formed, but globally incomplete,
substructures.

•

Scope of processing

. The batch system typically pro-
vides a fixed computation over a narrow range of input.
For example, many compilers process one file of source
code at a time. Interactive systems, however, often allow
multiple work products to be active at once. For exam-
ple, desktop publishing systems allow multiple unrelated
documents to be edited concurrently. Since a given inter-
active operation should apply to only one of the work
products, the scope of the underlying computations must
be carefully controlled.

•

Unordered and repeated processing

. Because a batch
system’s computation is fixed, the computation can often
be structured into sub-computations or phases, where
each phase fits into a context in which certain assump-
tions hold. Such an assumption might be that the phase
will be performed exactly once or that some other com-
putation has previously been performed. Because an
interactive system’s operations are driven by the end
user, the computations behind these operations typically
cannot make strong assumptions about ordering and rep-
etition.

•

Allowed operations

. A batch system’s input is fixed dur-
ing a given execution, while an interactive system’s
work product changes incrementally over a given execu-
tion. Because of this, the interactive system’s data struc-
tures may be required to support operations that the
batch system’s do not (e.g., modification, deletion of
portions of the work product).

•

Error prevention versus error detection

. A batch system
can only report errors that are found in its input. Because
an interactive system controls the production of the work
product, the user interface can be designed to prevent
many errors by disallowing the construction of ill-
formed constructs.

•

Error reporting

. In a batch system, errors are usually
reported as they are encountered in the input, and infor-
mation about the error is reported in an error message
that includes information about context, such as line
numbers. In an interactive system, errors may not be
reported immediately upon detection, but at a time more
appropriate to the particular user interaction. Addition-
ally, information about an error may need to be dis-
played graphically to supplement the text messages (if
text messages are even applicable). The contextual infor-
mation in error messages in an interactive system is also
different; line numbers, for example, may not be suit-
able.

•

System control.

 In a batch system, control proceeds
based on the computation over the input. If at any time a
severe error is encountered that would prevent success-
ful completion of the computation, a batch system can
choose to terminate. In an interactive system, however,
control is in the hands of the user. When a severe error
occurs, an interactive system must recover gracefully
from the error and return control to the user. This is
especially critical when an interactive system allows
simultaneous work on multiple work products. A fatal
error triggered by operations on one work product
should not affect other users of the system.

https://www.researchgate.net/publication/224001120_Compilers_principles_and_techniques_and_tools?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

When performing your own conversion of a batch system to
support interactive use, you may discover, as we did, that
these issues do not lead to independent modifications of the
implementation. As a result, the issues should not be
addressed in isolation. Sound software engineering practice
suggests considering of all the changes to the batch system
together since one change may impact another.

EXAMPLE: CONVERTING UNICON

Our original tool for the UniCon architecture description
language was a batch system that accepted textual architec-
ture descriptions and produced Odin* building instructions
and a log of warnings and errors. The processor was orga-
nized much like a classical compiler.

Since software architects frequently describe their systems
with diagrams, we converted the original batch tool to sup-
port interactive graphical development of system descrip-
tions. The graphical notation is interchangeable with the
textual notation. During interactive development of a defini-
tion, the user adds and deletes architectural elements, edits
properties of elements, and rearranges the way the elements
are composed, all through a direct-manipulation user inter-
face. An example of a diagram under construction, a
description of a simple Unix pipe–filter system, is shown in
the following picture. This partial snapshot from our tool

shows two filter components, A and B, along with a pipe
connector between then. At this point in the editing, the pipe
has been hooked up only to B.

The editor provides both immediate and deferred feedback
about the design under construction. An example of imme-
diate feedback is a kind of type check performed as the user
hooks up a connector to a component. For example, to hook
up the above pipe to A, the user would drag the triangle dan-
gling off to the left of the pipe and drop it on one of the tri-
angles on the right side of A. While the user is dragging, the
editor provides immediate feedback about the legality of the
potential connection. If the user tries to make an illegal con-
nection despite this feedback, the connection is rejected and
the triangle will animate back to its dangling position. In
this way, the diagram is always syntactically correct, if
incomplete, much like a program developed in a syntax-
directed editor [3][12]. Other feedback in our editor is
deferred. For example, checking whether each component is
connected to at least one other component is deferred until
the user “compiles” the diagram into a set of Odin instruc-
tions.

The UniCon batch processor has a conventional compiler

* Odin is a make-like utility for system construction,
which computes complete dependency information auto-
matically. For more information, contact Geoff Clemm
(geoff@atria.com).

architecture, shown below. The computation is staged in
phases, where each phase manipulates a central data struc-
ture, called the abstract syntax tree (

AST

). The lexing and

parsing phases create the

AST

. The attribute synthesis phase
fleshes out the

AST

 by caching search results as synthesized
attributes in specific tree nodes. Two semantic analysis
phases ensure that language-specific properties hold over
the

AST

; the earlier phase checks local properties, while the
later phase checks global properties. Finally the building
phase produces the processor’s output, the set of Odin
instructions, from the

AST

. We implemented the processor in
C, using the standard tools Lex [6] and Yacc [4] to produce
the lexing and parsing phases.

ARCHITECTURAL ALTERNATIVES

When converting a batch system to an interactive one, the
major strategic decisions address the overall structure, or
architecture, of the modified system. These decisions
include the kind of user interface to add and the way the
user interface will interact with the computations to be
retained from the batch system, which we’ll call the compu-
tational subsystem.

Since we are chiefly interested in interactive graphical
manipulation, we will consider only the case in which the
user interface is a distinct subsystem of the interactive sys-
tem. Further, we will assume that the user interface needs to
invoke operations of the computational subsystem incre-
mentally and on partially-formed results. This rules out the
option of complete separation, in which a graphical editor
works independently of the computational subsystem and
sends its final result off for batch processing.

Defining the interaction between the user interface and the
computational subsystem requires defining the abstractions,
representations, and control to be used [5]. The most signifi-
cant of these is the abstraction, especially the major choice
between interacting via shared state and interacting via dis-
crete actions—that is, whether the computations of the two
components will be driven by the

state

 of the shared data or
whether it will be driven by messages, events, or other
actions that announce

changes

 in the shared data. This
choice leads to decisions on representations and control.

Strategy 1: Shared State

One class of abstractions for the relation between the user
interface and the computational subsystem is state sharing.
In a shared-state system, both components can manipulate
and access the data of the computation. Neither takes the
initiative, and neither is responsible for notifying the other
of changes. In general, the tighter the coupling between
internal and external system state, the more likely it is that
shared state will be preferred.

lexing,
parsing

attribute
synthesis

semantic
analysis1

semantic
analysis 2 builder

AST

data accesses

https://www.researchgate.net/publication/213880306_The_Cornell_program_synthesizer_a_syntax-directed_programming_environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213879624_Lex_-_A_Lexical_Analyzer_Generator?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/242499913_Yacc_-_Yet_Another_Compiler-Compiler?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/243510530_Gandalf_software_development_environments?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

The representation decisions deal with the data

per se

. This
can either be accomplished within a single name space by
sharing data structures or across multiple name spaces
through a repository. The control issues center on the num-
ber of threads of control and synchronization.

Strategy 1.1: Shared Data Structures

This strategy tightly couples the user’s and system’s views
of the state of the computation. In the final system, both the
interactive subsystem and the computational subsystem
have direct access to the data structures that represent the
work product. The interactive subsystem updates these data
structures as the user edits the work product. The computa-
tional subsystem computes over the data structures, as it did
before the addition of the interactive interface. Given that
both parts must access the data structures, a natural architec-
tural choice is for both to access the same data structures
stored in a shared memory. If a single thread of control is to
be used, you now need to consider how the thread passes
from one subsystem to the other. If multiple threads of con-
trol will be used (e.g. separate processes), you need to worry
about synchronizing access to the shared data.

Strategy 1.2: Shared Repository

If numerous components of a system should all share the
same state but run as independent processes, it is possible to
share the state through an external repository. Because of
interprocess overheads, response time will be slower than
for shared data structures.

Integration of new tools into a set that processes the same
data is often accomplished via a shared repository architec-
ture. The data to be manipulated is given a structure in a
repository. Each tool that works on the data contains an
importer and an exporter which allow access to the data in
its persistent form in the repository. The importer and
exporter for a given tool convert the data between the repos-
itory form and a form natural for the performance of its own
task. Multiple tools can communicate with each other
through the data in the repository [7]. Integration of new
tools into the set requires, at most, implementing both a new
importer and a new exporter. Software development envi-
ronments that are systems of

CASE

 tools are often imple-
mented as shared repository systems.

Strategy 2: Discrete Actions

An alternative class of strategies for the relation between the
interactive subsystem and the computational subsystem is
interaction via discrete actions such as procedure calls, mes-
sages, or events. In a discrete-action system, components act
in response to changes in the environment or of the shared
state; the discrete actions are the means of announcing the
changes. This permits a looser coupling between the two
components, especially their representations [8].

The representation decisions under these strategies must
deal with the information carried by the actions. The control
issues are tied chiefly to the actions.

Strategy 2.1: API for Discrete Actions

The most common discrete-action organization is the use of
an application programming interface (

API

) to define a set of
procedure calls that can be used to invoke the capabilities of

a system. Note that this usually provides an essentially
asymmetric relation: one component provides services to be
invoked by another.

The X windows system [10] provides an example of this
type of asymmetric loose coupling. An X-based application
consists of a client that provides application-specific com-
putations and a server that is in charge of the display. The
client and server are connected by a communication channel
that is governed by an

API

. The client calls this

API

 both to
send update events, such as drawing commands, to the
server and to request input events, such as mouse clicks,
from the server.

Symmetric procedural interfaces can also be defined; this
requires joint design of the cooperating components. Sys-
tems in which messages or events are used as triggers are
more likely to be symmetric than those based on

API

s.

Strategy 2.2: Encapsulation of Shared State

A special case of an

API

 is the encapsulation of a data struc-
ture into an object or abstract data type (

ADT

). Here the
operations of the

ADT

 provide the programming interface,
but the essential abstraction is very similar to a shared data
structure. This strategy can resolve the tension between a
data-sharing abstraction and an implementation that hinders
direct application of the abstraction. That is, you can
approximate data sharing by adding a component that
encapsulates the data and exports operations symmetrically
to the user interface and the computational subsystem. Tay-
lor and Johnson note that a key benefit of this encapsulation
is its insulation of the computational parts of the system
from changes in the user interface [11].

Architectural Decisions for UniCon

Since we wanted our editor to give immediate feedback
about the architecture description under construction, we
realized that both our user interface (interactive subsystem)
and UniCon processor (computational subsystem) would
need low-latency access to the data structures representing
the description. Hence, Strategy 1.1 was attractive. Applied
to our system, this strategy meant having the user interface
and the UniCon processor both access the

AST

 in shared
memory.

Unfortunately, this architecture had two disadvantages.
First, for reasons not discussed here, the user interface and
UniCon processor were to be written in different program-
ming languages, which makes implementing shared data
tricky. Furthermore, the

AST

 is a complicated data structure
with many representation invariants. If the user interface
code were to directly modify this data structure, it would be
required to maintain these invariants.

Because of the

AST

’s invariants, Strategy 2.2 was the right
choice for our interactive editor. The

AST

 and its invariants
were encapsulated as a set of abstract data types. To update
the

AST

, the user interface calls the operations on the
abstract data types. Since the code for the existing batch
processor already upheld the data structures invariants, the
code for the operations on the abstract data types was scav-
enged from the batch processor’s code and reused. In addi-
tion, some new operations were added to accommodate the

https://www.researchgate.net/publication/234811173_Pattern-based_integration_architectures?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/2777641_Separations_of_Concerns_in_the_Chiron-1_User_Interface_Development_and_Management_System?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3246751_Connecting_Tools_Using_Message_Passing_in_the_Field_Environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

interactive editing features of the editor. The architecture of
the interactive editor is shown below.

IMPLEMENTATION CONSIDERATIONS

The conversion issues previously discussed lead to a num-
ber of requirements on the implementation. Some imple-
mentations may already satisfy some or all of the
requirements, but most will require revisions of one kind or
another. For narration purposes, it would be convenient if
each of the conversion issues had an independent impact on
the implementation. Unfortunately the reality of conversion
is not so simple. To structure the discussion, we cluster the
required revisions into four main areas of concern: memory
management; assumptions and invariants on internal data
structures; organization of computation; and error handling.
The table below summarizes which conversion issues
impact which implementation concerns, thereby establish-
ing a correspondence between the discussions of conversion
issues (rows) and implementation considerations (columns).

For each implementation consideration, we discuss several
types of revisions. For each type of revision, we first
describe the general impact on the implementation of any
batch system. Then, as a concrete illustration, we show the
specific impact on our working example.

Memory Management

Assumptions about execution duration and the allowed
operations on system state both have an impact on the
design of memory management functionality in a system.
Unlike many batch systems, interactive systems are long-
lived and often support operations that allow memory to be
reclaimed. Because of this, interactive systems have both
the opportunity and obligation to manage memory carefully.

Memory Usage Patterns

In a batch system, memory is typically allocated to build
one or more data structures that are needed throughout the
computation and hence cannot be reclaimed until the end.
As a result, memory management is usually simple because
there is no need to track and release any unused data struc-
tures. Many interactive systems, on the other hand, provide
operations to the user (e.g., delete operations) that render
previously allocated memory reclaimable. Furthermore,
interactive systems are often long-lived; if unneeded mem-
ory were not reclaimed, the system could eventually run out
of free memory.

In the UniCon batch tool, memory is primarily allocated to
construct the

AST

. The

AST

 must persist through all phases
of processing up to the last one. Releasing this memory is
unnecessary since the operating system frees all of the sys-
tem’s memory when the system terminates. Hence, the
batch processor contained no memory deallocation code. As
new operations that remove parts of the

AST

 were added to
support the interactive editor, memory deallocation code
was also added to release the allocated memory.

Memory Leaks

Not all memory that a batch system consumes is required to
persist until the end of its computation. Temporary space
may be required, for example, for buffers or transient copies
of data. Because a batch system is relatively short-lived, it is
often safe to allocate new memory for temporary space and
then abandon it, rather than carefully tracking and releasing
it when possible. In a language, like C, where memory man-
agement must be done by hand, tracking and releasing
unneeded memory can be tricky to get right. Because the
batch system’s short lifetime can make memory leaks toler-
able, simplifying memory management may be an appropri-
ate means for lowering the cost of system development. In
an interactive system, however, such a cost-saving method
is not appropriate: over its longer life, the interactive system
could easily run out of free memory.

The UniCon batch tool followed this simplification strategy
and never released the memory used for temporary space,
even when that space became unreachable. While convert-
ing the processor to support an interactive editor these mem-
ory leaks were found and corrected.

Assumptions and Invariants

When converting a batch system to an interactive one, many

m
em

or
y

m
an

ag
em

en
t

as
su

m
pt

io
ns

&
 in

va
ri

an
ts

co
m

pu
ta

tio
na

l
or

ga
ni

za
tio

n

er
ro

r
ha

nd
lin

g

assumptions about
execution duration

√

incremental
processing

√

√

√

partial processing

√

√

scope of processing

√

√

unordered and
repeated processing

√

√

allowed operations

√

√

√

error prevention
versus detection

√

error reporting

√

√

system control

√

lexing,
parsing

attribute
synthesis

semantic
analysis1

semantic
analysis 2 builder

AST

data accesses

editing
operations

AST OPERATIONS

editor

procedure calls

of the batch computation’s invariants and assumptions will
need to be revisited. Interactivity often requires incremental
modifications to the data structures and toleration of incom-
plete input. These may invalidate many of the assumptions
the computation makes about the state of the data structures.
The interactive portions of the system need to respect the
batch computation’s assumptions, while the batch computa-
tion may need to weaken its assumptions to accommodate
interactivity.

Invariants and Transition Assumptions

In a typical batch system, no data structures persist between
invocations. Any change to the input requires complete re-
computation of the results. In contrast, in an interactive sys-
tem, incremental changes can be made to the work product
within a given session. Incremental changes to the work
product lead to incremental changes to the underlying data
structures. These changes must preserve any invariants on
the data structures required for the safe re-computation of
the results.

In addition to invariants on data structures, computations
within an implementation make other assumptions about the
status of the data when they begin computation. In a batch
system with a fixed order of computation, these assumptions
are naturally established by the ordinary sequence of events.

However, incremental re-computation and processing of
partial data structures can easily lead to invocation of code
in new contexts, and the entry assumptions made by existing
code may no longer apply. For example, computation

X

 may
establish a relationship

R

 within a data structure that com-
putation

Y

 requires. (

R

 need not be an invariant of the struc-
ture, just a precondition for

Y

.) If

Y

 follows

X

 in the batch
version, all is well. However, an interactive change might
invoke computation

Z,

 which invalidates

R

, and then another
change might invoke

Y

 without first passing through

X

 or
any other operation that re-establishes

R

.

In the UniCon batch processor, the invariants and transition
assumptions all focus on the central data structure, the

AST

.
The data in this tree are called attributes and fall into two
categories: lexical and synthesized attributes*. For a given
language construct, the lexical attributes are the constituent
parts of the construct, as given by the grammar; the synthe-
sized attributes are the cached results of expensive opera-
tions, such as tree traversals.

The

AST

’s invariant property is that the lexical attributes are
present and correct. The first phase, the lexing and parsing
phase, establishes this property, and every subsequent phase
upholds it. Further, each phase establishes additional prop-
erties that the subsequent phases require as a precondition.
For example, the attribute synthesis phase establishes the
property that the synthesized attributes are present and cor-
rect, which the next phase—the local semantic analysis
phase—requires. This process of building up properties
from phase to phase can be pictured as below. The triangles

* Abstract syntax trees, as described in canonical com-
piler texts [1], also contain inherited attributes, which the
UniCon batch processor does not use.

represents the proven properties of the

AST

, with each kind
of hashing representing a different property. The arrows
indicate the phases that ensure and require these properties.

For the interactive tool to be able to provide immediate
feedback, the user interface code must use some of the com-
putations from the semantic analysis phases of the UniCon
processor. A precondition of these computations is that the

AST

’s synthesized attributes are present and correct. To
ensure that each user interface interaction upholds this con-
dition and to localize the knowledge required to manipulate
the

AST

’s synthesized attributes, the abstract data types that
represent the

AST

 export a set of operations that correspond
to editing commands in the editor. Each of these editing
operations is responsible for upholding the condition that
the synthesized attributes are present and correct. Thus,
after any series of these operations, a semantic analysis
operation may be called since its precondition is met. A
revision of the previous illustration shows how these editing
operations affect the

AST

 properties. As shown by the cycle,
each operation both requires and upholds the postcondition
of the attribute synthesis phase.

Weakening Assumptions

A batch system’s input must be complete, since there is no
opportunity for the input to be updated before the computa-
tion takes place. If the input to a batch system is incomplete,
the system reports the error and terminates. An interactive
system, on the other hand, is used to create and edit the
work product. Although it may withhold some operations
until the work product has reached a certain level of com-
pleteness, an interactive system must tolerate incomplete-
ness.

The original code for the UniCon processor’s phases was
written with completeness in mind. For example, the phases
that occur after the attribute synthesis phase were written to
assume that all synthesized attributes are present and cor-
rect. Since the interactive editor allows the incremental cre-
ation of the

AST

, at any given time some parts of an
architecture description—hence some nodes in the

AST

 and

parser attr syn sem 1 sem 2 builder

parser attr syn sem 1 sem 2 builder

editing
operation

https://www.researchgate.net/publication/224001120_Compilers_principles_and_techniques_and_tools?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

their attributes—may be missing. These assumptions about
the presence of

AST

 nodes and attributes had to be weak-
ened, and the phases with these newly weakened precondi-
tions had to be updated to be more robust.

The processor’s parsing phase is an interesting case. Since
the interactive editor must be able both to save an architec-
ture description at any time and to load that description, the
parser and unparser must be able to accommodate incom-
pleteness. In particular, in order to save an incomplete
design, the unparser must be able to record a potentially
incomplete

AST

 in a textual form; for the editor to load that
definition back in, the parser must produce an incomplete

AST

 from the text the unparser produced. What makes the
parsing phase unique is that it is implemented not purely as
source code, but as a grammar (Yacc script) annotated with
code fragments.

Two steps were needed to weaken the parsing phase’s com-
pleteness assumptions. First, the grammar was updated to
allow some constructs to be missing. For example, a place
in the grammar that requires a list of one or more elements
was changed to require a list of zero or more elements. The
code to check whether an instance of the construct in fact
does contain at least one element was added to a later
semantic analysis phase.

We could have continued modifying the grammar until it
allowed all the intended kinds of incompleteness. However,
certain language constructs were deemed too important to
allow their absence from an architecture description; with-
out these constructs, the description would simply be too
hard to read and understand. With respect to these con-
structs, we left the grammar unmodified. In the editor, if the
user saves an architecture description that is missing an
instance of one of these constructs, the unparser instead
writes a “dummy” version of the construct. (This use of
dummy constructs is rather like inserting stub procedures
into source code for testing purposes. The source code lan-
guage insists that for every procedure call there be a corre-
sponding procedure definition. In the case where no “real”
procedure definition yet exists, a “dummy” version is tem-
porary inserted.) The parser recognizes these dummy con-
structs as stand-ins for missing information and produces
the

AST

 accordingly. Architecture descriptions containing
these dummy constructs are readable, and their incomplete-
ness is readily visible.

Computational Organization

A batch system often makes strong assumptions about both
the completeness and range of input it will accept. A typical
batch compiler, for example, handles a single complete
source code file per invocation. Because of this, a batch sys-
tems’ computations can be expressed in monolithic pieces.
An interactive system, on the other hand, not only handles
incrementally created (and therefore sometimes incomplete)
work products, but also typically allows more than one work
product to be edited at once. The computations underlying
the interactive system therefore need to be expressed as
finer grained pieces, and those pieces need to handle multi-
ple data.

Granularity of invocable computations

Even if the steps of the batch computation can be identified
and their assumptions made explicit, further modifications
may be required to support incremental updates and pro-
cessing of partial inputs. As noted above, an interactive sys-
tem is often expected to handle partial definitions
gracefully—perhaps not performing complete computa-
tions, but at least providing display, feedback, and localized
checking. In order to do this, the batch computation must be
organized so that individual steps can be invoked individu-
ally.

The UniCon processor’s semantic analysis phases were
written as two monolithic computations: one for checking
local properties and one for checking global ones. Because
some of the checks that were embedded in these monolithic
computations were to be called interactively from the editor,
the individual checks needed to be excised and made avail-
able as individual computations. In particular, each of these
checks became a separate operation in our abstract data
types.

The parsing phase is again an interesting case. We used the
Lex and Yacc standard tools to produce our parsing phase.
These tools are designed for producing a monolithic parser:
a single parsing routine that parses languages from a single
grammar. As part of its design, the user interface needed not
only a parser and unparser for entire architecture descrip-
tions, but also a parser and unparser for instances of one
particular UniCon language construct. In a better world, we
would have broken up the monolithic parsing phase into
separately callable routines, as we did with the semantic
analysis phases. Instead, to suit the tools, we duplicated part
of the grammar as a separate Yacc script and produced a
separate “mini” parser.

Multiple Concurrent Computations

In a batch system, the input to the system is typically a sin-
gle coherent set of data to be processed. In an interactive
system, multiple, concurrent activities or work products are
often concurrently maintained in the system. In such a sys-
tem, the state for each work product must be kept separately.
Global data in such a system must be designed carefully to
avoid interference among independent computations. Code
should be re-entrant wherever multiple independent compu-
tations might invoke the same code paths in such a way that
state assumptions might be at risk. Synchronization may
also be required in some cases.

The scope of computation in the UniCon batch processor is
limited to the set of input language definitions, which usu-
ally describes a single system (or a small, finite set of sys-
tems). The processor builds a single

AST

 from this set of
input definitions. Since each phase of the processor operates
on this same tree, the root of the tree was made into a global
variable so that it would be accessible to every phase with-
out having to pass it around as a function parameter.

An architecture editor that allows only one system to be
edited at a time would be limited and clumsy. Hence adding
an interactive interface to the batch processor imposed a
new requirement that the interactive system build and main-

tain a set of

AST

s (one for each active editing session) rather
than a single

AST

. The global tree root in the batch processor
was changed to become a local variable in the main pro-
gram, and every function in the processor that accessed the
tree root directly was changed to take a tree root as a func-
tion parameter. This allowed the interactive interface to
parse, unparse, and process any tree in its set of trees by
simply passing it to the processor routines as a parameter.

Error Handling

Three aspects of error handling in a batch system are
affected by a conversion to support interactive use: error
detection, error reporting, and system control. In batch sys-
tems, error handling consists solely of error detection while
interactive systems can also prevent some errors during the
creation of the work product. Error reporting in a batch sys-
tem consists of outputting error messages upon detection of
errors. Interactive systems have different error reporting
requirements, especially if the interface is graphical in
nature. Lastly, batch systems may choose to terminate when
a serious error is encountered in the input. In interactive sys-
tems termination is always controlled by the user. The inter-
active system must recover from errors gracefully and return
control to the user.

Error Prevention versus Error Detection

The batch approach to error handling is essentially different
from the interactive approach. A batch system can easily
analyze its input with the expectation that it will be com-
plete and then report any discrepancies. Batch-style error
handling, therefore, is error detection and reporting. Errors
are reported in a log style, typically as text, and the location
of an error in the input must be determined from the text of
the message and any other information such as line num-
bers.

Interactive systems can both prevent and detect errors. For
example, a command-driven interface can prompt the user
to enter commands and detect when the user has entered an
invalid command. This interface could be changed to a
menu of commands, thereby preventing the user from enter-
ing an invalid one. Error prevention tends to be tied to those
operations that allow incremental creation and updating of
the work product. The system monitors the user’s input dur-
ing these tasks and checks for correctness. If the input is
incorrect, feedback can be given and the input rejected.
Error detection may still be appropriate in an interactive
system for those operations that have batch characteristics
such as those that process or analyze the work product as a
whole.

The original UniCon tool analyzed the input for correctness
and completeness before it attempted to build the system
from the description. It reported any incompleteness or
incorrectness that it detected during this analysis as a log of
error messages.

Since the interactive UniCon tool supports creation and
editing of architecture descriptions, it has the opportunity to
prevent some errors. For example, since the editor allows an
architectural description to be edited as high-level pictures,
many kinds of syntactic errors are not possible. This is the

graphical equivalent of the way syntax-directed editors
insert language constructs all in once piece. Another exam-
ple of error prevention occurs when the end user interac-
tively makes a connection. The user interface provides
immediate feedback about the legality of that connection
and will not allow an illegal connection to be made. The
user interface prevents as many errors as it can while the
user creates and edits language constructs. The capability is
limited to checks that depend on attributes that are guaran-
teed to be in place. When the user later builds the system as
a whole, any remaining semantic checks are performed and
errors detected and reported.

Hence, the editor’s error handling is a mixture of error pre-
vention and error detection. As part of designing the editor’s
user interface, the semantic checks in the batch processor
were categorized into those to be performed immediately
and those to be deferred until the user builds the system.
This decision hinged on the appropriateness of making a
particular semantic check interactive as well as on whether
it could be performed at an interactive speed. Several
semantic checks in the batch processor were redesigned
and/or had their performance tuned as a result.

Error Reporting

When interactive interfaces are graphical rather than textual,
batch error handling must be redesigned to support report-
ing of semantic errors in a form consistent with the user
interface—that is, graphically. In a batch system, an error
report usually consists of an error message containing the
location of the error (line number), severity indicator (error,
warning, or informational), and informative text. A graphi-
cal interface, however, has different information require-
ments for errors. First, line numbers do not adequately
identify the locations of the errors. Additionally, informative
text, though applicable, is not adequate since it may be diffi-
cult to convert the error information to a meaningful graphic
form.

The interactive interface must be able to determine the con-
text in which the error occurred in order to graphically dis-
play the error information and location to the user. In a
batch system, however, this information is embedded in the
text of the error message. To determine the context of an
error, the interactive interface may require access to the por-
tion of the internal data structures in which the error
occurred (and possibly the surrounding portions as well).
From this context, it can determine where the error occurred
and indicate this in the interface graphically. For example,
the interface might highlight the graphical representation of
the construct in which the error occurred with color and
then display the informative text along with it.

To support these requirements for error reporting in the Uni-
con editor, the batch processor was modified to bundle con-
textual information with the original error message for each
error. The extra contextual information consists of pointers
to nodes in the

AST

. The interactive editor uses this contex-
tual information to find the erroneous part of the architec-
ture description under construction and to annotation it with
an error indicator that includes the error message.

Control Issues

In a batch system, the flow of control through the system is
determined by the computation and proceeds based on the
makeup of the input. On encountering an error, the batch
system can choose between continuing the computation and
terminating the job. In an interactive system, on the other
hand, the flow of control through the system is most deter-
mined by the user’s selection of operations. Termination of
the interactive session is typically the user’s choice and not
the system’s. Further, many interactive systems must sup-
port multiple simultaneous work products. An error in a sin-
gle work product must not affect the others.

These different expectations about the locus of control can
create conflicts when a batch system is converted to support
interactive use. The code in the batch system may have to be
redesigned to relinquish control to users and to recover
gracefully from errors that would otherwise cause the sys-
tem to terminate. Furthermore, it must restore legal state.

The UniCon batch processor was designed to terminate
when it determined that errors in the input or in the run-time
environment were too severe to continue. Rather than return
control to the main program on error detection, the proces-
sor was designed to terminate immediately after reporting
the error.

To support interactive use, when an error is detected, the
code was redesigned to report it and then return an error sta-
tus to the main program. This type of graceful recovery
allows the user to address the error and continue the editing
session. The redesign essentially gave control of the system
to the interactive interface, and ultimately the user.

ADVICE TO SOFTWARE ENGINEERS

We summarize our lessons on adapting batch systems to
accommodate interaction in the form of a checklist. This
checklist is addressed to software developers or maintainers
and is intended to be used when they recognize that they are
confronted with a batch-to-interactive conversion problem.

Advice on External Behavior to the System
1. Choose a style of interaction that fits your problem.

Here we consider one of the richer cases, in which you
add a graphical editor for manipulating the work prod-
uct. Before beginning your conversion, consider the
nature of interaction required and consider other alterna-
tives. Lane’s thesis provides additional guidance [3].

2. Add new operations if necessary.
Determine whether incremental and partial processing
or the interactive style require additional operations. If
so, add them in a form consistent with pre-existing oper-
ations.

3. Replace as many error reports as possible with checks
that ward off the error. Check error reports to be sure
they will be meaningful in an interactive setting.
Find and review the error reports that the batch system
can generate. For each one, determine whether the user
interface can be designed to prevent it. This is most
likely to be possible when the error is localized to an
input item. If the error can be prevented, do so. For each
remaining error report, examine the information

included in the report to determine whether it will be
meaningful in an interactive context; the most common
problem will be the identification of the problematical
piece of the work product. Restate these error reports as
necessary. If new operations require new error reports,
handle them the same way.

Advice on Internal Structure of the System
4. Decide on the appropriate relation between the user

interface and the former batch program.
Examine the tightness of the required coupling, the tim-
ing requirements and frequency of interaction between
the two components, and the available mechanisms for
interaction.

5. Restructure the batch system as necessary to reduce the
granularity of operations.
See where you need to perform operations on partial
input and where you need to incrementally re-process
the work product after the user modifies it. Identify the
assumptions made by the code for these operations and
restructure the software to allow these operations to be
called individually. This will usually increase the num-
ber of procedures or other invocable parts and hence
reduce the granularity of the batch system.

6. Identify and isolate system state.
Global variables are not your friends. Find all the data
structures that represent the state of the system and make
sure they will survive reentrant use. Usually this will
involve instantiating all the data for each work product.
It may not be necessary for local variables of atomic
operations. This step is particularly important if you
have chosen a shared-data architecture.

Advice on the Code
7. Make the assumptions of the operations explicit.

Identify the invariants of data structures and the ordering
and context assumptions of procedures. Make them
explicit so the next person will not have to work so hard.
Unfortunately, this is hard to do and we do not have a
recipe for how to do it.

8. Be sure you do complete storage management.
Free intermediate data structures and chase down all
memory leaks.

ACKNOWLEDGEMENTS
We would like to thank our colleagues in the Composable
Systems research group for on-going discussions on Uni-
Con and its tool set. Thanks to Bob Monroe for giving us
feedback on the paper on short notice and to Daniel Jackson
for perceptive questions. Geoff Clemm has promptly helped
us with Odin on numerous occasions, for which we are
grateful. This work has been supported by the Wright Labo-
ratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects
Agency, under grant F33615-93-1-1330 and by a grant from
Siemens Corporation. This paper represents the views of the
authors and not of Carnegie Mellon University or any of the
sponsoring institutions.

https://www.researchgate.net/publication/243510530_Gandalf_software_development_environments?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

REFERENCES
1. A.V. Aho, R. Sethi, and J. D. Ullman. “Compilers: Prin-

ciples, Techniques, and Tools.” Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1986.

2. V. Ambriola and D. Notkin. “Reasoning about interac-
tive systems,” IEEE Trans. on Software Eng. 14(2),
Feb. 1988.

3. A.N. Habermann and D. Notkin. “Gandalf: Software
development environments,” IEEE Trans. on Software
Eng. 12(12): 1117-27, Dec. 1986.

4. S.C. Johnson. “Yacc - Yet Another Compiler-Com-
piler,” Comp. Sci. Tech. Rep. No. 32, Bell Laboratories,
July 1975.

5. T. Lane, “User Interface Software Structures,” Report
CMU/SEI-90-SR-13, May 1990.

6. M.E. Lesk. “Lex - A Lexical Analyzer Generator,”
Comp. Sci. Tech. Rep. No. 39, Bell Laboratories, Oct.
1975.

7. D.E. Mularz. “Pattern-based integration architecture,”
In Languages of Program Design, Addison-Wesley,
1995, pp. 441-452.

8. S.P. Reiss. “Connecting tools using message passing in
the Field Environment,” IEEE Software, 7(4):57-66,
July 1990.

9. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, G. Zelesnik. “Abstractions for software archi-
tecture and tools to support them,” IEEE Trans. on Soft-
ware Eng. 21(4), Apr. 1994.

10. R.W. Sheifler and J. Gettys. “The X window system,”
ACM Trans. on Graphics, 5(2):79-109, Apr. 1986.

11. R. Taylor and G. Johnson. “Separation of concerns in
the Chiron-1 user interface development and manage-
ment system,” Proc. INTERCHI '93, 1993.

12. T. Teitelbaum and T. Reps. “The Cornell Program Syn-
thesizer: A syntax-directed programming environment,”
Communications of the ACM 24(9): 563-573, Sept.
1981.

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/213880306_The_Cornell_program_synthesizer_a_syntax-directed_programming_environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213880306_The_Cornell_program_synthesizer_a_syntax-directed_programming_environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213880306_The_Cornell_program_synthesizer_a_syntax-directed_programming_environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213880306_The_Cornell_program_synthesizer_a_syntax-directed_programming_environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/224001120_Compilers_principles_and_techniques_and_tools?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/224001120_Compilers_principles_and_techniques_and_tools?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/224001120_Compilers_principles_and_techniques_and_tools?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/234811173_Pattern-based_integration_architectures?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/234811173_Pattern-based_integration_architectures?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/234811173_Pattern-based_integration_architectures?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/2777641_Separations_of_Concerns_in_the_Chiron-1_User_Interface_Development_and_Management_System?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/2777641_Separations_of_Concerns_in_the_Chiron-1_User_Interface_Development_and_Management_System?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/2777641_Separations_of_Concerns_in_the_Chiron-1_User_Interface_Development_and_Management_System?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3187710_Abstractions_for_Software_Architecture_and_Tools_to_Support_Them?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3187710_Abstractions_for_Software_Architecture_and_Tools_to_Support_Them?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3187710_Abstractions_for_Software_Architecture_and_Tools_to_Support_Them?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3187710_Abstractions_for_Software_Architecture_and_Tools_to_Support_Them?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3246751_Connecting_Tools_Using_Message_Passing_in_the_Field_Environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3246751_Connecting_Tools_Using_Message_Passing_in_the_Field_Environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3246751_Connecting_Tools_Using_Message_Passing_in_the_Field_Environment?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213879624_Lex_-_A_Lexical_Analyzer_Generator?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213879624_Lex_-_A_Lexical_Analyzer_Generator?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/213879624_Lex_-_A_Lexical_Analyzer_Generator?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/242499913_Yacc_-_Yet_Another_Compiler-Compiler?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/242499913_Yacc_-_Yet_Another_Compiler-Compiler?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/242499913_Yacc_-_Yet_Another_Compiler-Compiler?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3186887_Reasoning_About_Interactive_Systems?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3186887_Reasoning_About_Interactive_Systems?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/3186887_Reasoning_About_Interactive_Systems?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/243510530_Gandalf_software_development_environments?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/243510530_Gandalf_software_development_environments?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==
https://www.researchgate.net/publication/243510530_Gandalf_software_development_environments?el=1_x_8&enrichId=rgreq-51d846389d59802df7156df22d6b731c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1MzUzNjtBUzoxMDEwNjA3MjcyNzk2MTlAMTQwMTEwNjE2MzU2NA==

