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Abstract

There is growing interest in the use of richly-typed interme-

diate languages in sophisticated compilers for higher-order,

typed source languages. These intermediate languages are

typically strati�ed, involving terms, types, and kinds. As

the sophistication of the type system increases, these three

levels begin to look more and more similar, so an attractive

approach is to use a single syntax, and a single data type in

the compiler, to represent all three.

The theory of so-called pure type systems makes precisely

such an identi�cation. This paper describes Henk, a new

typed intermediate language based closely on a particular

pure type system, the lambda cube. On the way we give a

tutorial introduction to the lambda cube.

1 Overview

Many compilers can be divided into three main stages. The

front end translates the source language into an intermedi-

ate language; the middle end transforms the intermediate-

language into a more e�cient form; and the back end trans-

lates the intermediate language into the target language.

In the past, intermediate languages for source languages

with rich type systems have usually been un-typed. The

compiler �rst type-checks the source program, and then

translates the program to the intermediate language, dis-

carding all the type information. After all, the type check-

ing simply ensured that the program would not \go wrong"

at run-time, and once that is checked there is no further use

for types.

Recently, however, there has been increasing interest in typed

intermediate languages (Peyton Jones [1996]; Peyton Jones

et al. [1993]; Shao & Appel [1995]; Tarditi et al. [1996]).

There are several motivations for such an approach: the

compiler may be able to take advantage of type information

to generate better code; it may be desirable to treat types as

values at run-time, in which case it is necessary to maintain
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accurate compile-time types; and the compiler can check its

own activity (if desired) by checking the type-correctness of

the intermediate program. We elaborate each of these points

in Section 2.1.

This paper describes the design of a new, typed intermediate

language, Henk, designed for compilers for purely-functional

languages. It has the following distinctive features:

� Henk is based directly on the lambda-cube, an expres-

sive family of typed lambda calculi. We have found

a shortage of introductory material about the lambda

cube, so we present a tutorial in Section 3.

� Henk is a small language| there are only seven con-

structors in the data type of expressions. Even so, it

is a real language, in the sense that it is rich enough

to use as a compiler intermediate language.

� Because of its lambda-cube heritage, Henk uses a sin-

gle syntax for terms, types, and kinds. Better still,

compilers for Henk can use a single data type to repre-

sent all three levels. This leads to considerable econ-

omy in both the syntax of the language, and the utility

functions of the compiler itself.

� Henk has an explicit concrete syntax. Intermediate lan-

guages are typically expressed only as a data type in

a particular compiler. Giving a concrete syntax is an

apparently trivial step, but we believe it is an impor-

tant one, and it is one to which compiler-writers often

pay little attention. A compiler front end can produce

Henk to be consumed by the back end of a di�erent

compiler; or to be transformed by some external pro-

gram before being fed back into the original compiler.

This paper introduces no new technical results. Rather, our

main contribution is to build a bridge between recently-

developed type theory and the compiler research commu-

nity:

� We are the �rst to suggest using the lambda cube

as the basis for a typed intermediate language. Why

bother? We see two persuasive reasons:

{ It dramatically reduces the number of data types,

and the volume of code, required in the com-

piler. For example, the Glasgow Haskell Compiler

(GHC) has separate data types for terms, types,



and kinds, and separate algorithms for parsing,

printing, typing, and transforming them. Col-

lapsing the three levels gets rid of all this dupli-

cation.

{ It is easier to accommodate new developments in

the type system of the source language, because

the lambda cube's type language is already as ex-

pressive as its term language.

� We give a tutorial on the lambda cube, emphasising

aspects relevant to compiler builders. (Most of the lit-

erature is relatively recent | post 1988 | and written

from the point of view of theorists.)

Our initial focus is on non-strict languages, but we hope to

make Henk neutral with respect to the strict/non-strict ques-

tion. That is, rather than having two variants of Henk (one

strict, one non-strict), we hope to have a single language

that treats both styles as �rst class citizens, and allows free

mixing of the two in a single program.

We assume familiarity with the lambda calculus in general,

and with the second-order lambda calculus, also called F2,

in particular.

2 Background and motivation

2.1 Type-directed compilation

It has been recognized for some time that maintaining type

information right through to code generation, and beyond,

can be bene�cial. Speci�cally:

� Accurate type information can guide compiler analy-

ses, and transformations.

For example:

{ Strictness analysis over non-at domains has to

be guided by type information (Peyton Jones &

Partain [1993]).

{ A compiler may be able to use more e�cient rep-

resentations of data values if it knows their types.

For example, an integer can be represented by the

integer itself rather than a pointer to a box con-

taining the integer (either in a strict language,

or in a lazy one in contexts where the integer

is certainly evaluated). The price to be paid is

that such unboxed integers cannot be passed to

polymorphic functions, since their representation

di�ers from the simple pointer that polymorphic

code typically expects. Guided by type informa-

tion one can specialise the polymorphic function

to the unboxed types at which it is used (Pey-

ton Jones & Launchbury [1991]; Tarditi et al.

[1996]).

{ Transformations that remove intermediate data

structures, often called deforestation or fusion

transformations, rely heavily on types to guide

the transformation. In some cases the very cor-

rectness of the transformation relies on para-

metricity, a property of well-typed polymorphic

functions (Gill, Launchbury & Peyton Jones

[1993]; Hu, Iwasaki & Takeichi [1996]; Launch-

bury & Sheard [1995]).

� Traditional static type checking is performed com-

pletely at compile time. In more sophisticated set-

tings, however, it may be useful to postpone some type

checking until run time. For example:

{ Some reasonable programs cannot readily be ex-

pressed in a static type systems, notably ones in-

volving meta-programming. There are many pro-

posals for incorporating a type Dynamic in an oth-

erwise statically-typed language, but all involve

some run-time check that the type of a value

matches an expected type.

{ Rather than statically specialise a polymorphic

function for the types at which it is called, one

can pass the type as an explicit argument, so that

the function can behave appropriately (Harper &

Morrisett [1995]).

{ \Tag-free" garbage collectors need some run-time

type information to guide them (Tarditi [1996];

Tolmach [1994]).

All these applications require accurate type informa-

tion to be available at run-time, and hence at compile

time too.

� Debugging a compiler can be a nightmare. The only

evidence of an incorrect transformation can be a seg-

mentation fault in a large program compiled by the

compiler. Identifying the cause of the crash, and trac-

ing it back to the faulty transformation, is a long,

slow business. If, instead, the compiler type-checks

the intermediate-language program after every trans-

formation, the huge majority of transformation bugs

can be nailed in short order. It is quite di�cult to write

an incorrect transformation that is type correct! Fur-

thermore, the program cannot crash if it is type cor-

rect, so even incorrect transformations can only give an

unexpected result, not a crash, which is usually much

easier to trace.

We call the Henk type-checker \Core Lint". If the

compiler is correct, Core Lint does nothing useful, and

is switched o� by default. In our experience, its ability

to localise compiler bugs would by itself justify the use

of a typed intermediate language.

Compilers that maintain and use type information through-

out the compiler have come to be called \type-directed".

Standard ML of New Jersey has been type-directed for some

time (Shao & Appel [1995]), but its internal type system is

monomorphic, so it cannot track types through polymorphic

functions. Since 1990 the Glasgow Haskell Compiler (GHC)

has used a language based on the second-order lambda calcu-

lus as its intermediate language (Peyton Jones [1996]; Pey-

ton Jones et al. [1993]).

More recently, the TIL compiler uses a considerably more so-

phisticated (and complicated) intermediate language capa-

ble of expressing intensional polymorphism, including recur-

sive functions at the level of types (Morrisset [1995]; Tarditi

et al. [1996]). TIL uses a strati�ed type system, which sim-

pli�es the proof theory, but it does lead to considerable du-

plication in compiler transformations (Tarditi [1996]). We

2



speculate that the lambda cube might provide a theoreti-

cally sound way to get the best of both worlds.

Shao is also developing a typed intermediate language,

FLINT, with similar goals to TIL's (Shao [1996]).

2.2 Implicit vs explicit typing

It is important to distinguish the typing requirements of a

source language and an intermediate language.

Almost all source languages are, to some degree, implicitly

typed. There is a continuum between full type inference

(where no type information is given by the programmer)

and type checking (where all type information is given).

The type system of a source language is usually a delicate

compromise of expressiveness and type inference. The more

expressive the type system, the more guidance (in the form

of type signatures and the like) must be given to the type

checker.

On the other hand, it is highly implausible to have an

implicitly-typed intermediate language, because it hard to

ensure that every transformation preserves the delicate

property that types can be inferred from the program source.

Indeed, many transfomations do not (e.g. desugaring a let

expression to a lambda abstraction applied to the right-hand

side of the let de�nition). An intermediate language can,

however, be explicitly typed. When the front end trans-

lates a source program into the intermediate language, it

can decorate it with type information based on the results

of type inference on the source program. If the compiler,

for some reason, wants to check the type-correctness of an

intermediate-language program, it should be a matter of

type checking and not type inference. In practical terms,

type checking does not involve uni�cation or other sophisti-

cated algorithms.

Furthermore, because it is explicitly typed, the intermedi-

ate language can have a much more expressive type system

than the source language. For example, the intermediate

language might permit arbitrary universal quanti�cation in

types, whereas a source language like ML or Haskell restrict

universal quanti�cation to the top level of a type

1

.

2.3 Towards the lambda cube

While it is obvious enough in retrospect, it was a break-

through when we realised in 1990 that the second-order

lambda calculus was precisely what we needed to express

and maintain type information in the intermediate language

of a compiler. (Peyton Jones [1996] gives some examples.) A

large body of theory and its design choices, could be pressed

into immediate service.

With Henk, we aim to take the same idea one step further,

by appropriating another body of theory, the lambda-cube,

and adopting its design choices to structure the language.

1

Haskell's type classes actually give rise to intermediate-language

constants of rank-2 polymorphic type, a nice example of the way in

which a language feature can make use of a type discipline which

would be unworkable in its full generality.

Speci�cally, Henk goes beyond the second order lambda cal-

culus in the following ways:

� It is elegantly parameterised. Simply by selecting or

discarding type rules one can force Henk to be equiva-

lent to the simply-typed lambda calculus, the second-

order lambda calculus (Girard [1972]), its extension to

higher-order kinds (F!) (Girard [1972]), or the calcu-

lus of constructions (�C) (Coquand & Huet [1988]).

In Section 4 we show how we can also extract a pred-

icative version of F!.

� As it happens, Haskell's type system allows type vari-

ables to range over type constructors (not merely

types), so the generality of F! is already required.

Henk puts this extension on a �rm theoretical foun-

dation, whereas it is a somewhat ad hoc extension of

GHC's earlier Core language.

� Henk provides a full lambda calculus at the level of

types. Provided recursion is disallowed | a restric-

tion easily expressed in the type system | evaluation

of types is strongly normalising (i.e. guaranteed to ter-

minate), something that is really the de�ning property

of a type.

This lambda calculus subsumes Haskell's type syn-

onyms, which receive a rather ad hoc treatment in

GHC, and it also permits us to explore more ambi-

tious paths such as those suggested by TIL.

� Despite this extra richness, Henk is a very small lan-

guage. The data type of expressions, for example, has

only seven constructors. Better still, the very same

syntax is used for expressions, types, and kinds. This

economy is reected:

{ in the type system by a single set of rules that

say when a term is well-typed, when a type is

well-kinded, and when a kind is well formed.

{ in the compiler by a single data type that repre-

sents terms, types and kinds; and a single set of

utility functions to parse, print, type-check, and

so on.

One might object that using the same compiler data type

to represent terms and types would allow a buggy compiler

to construct ill-formed terms, such as attributing the type 3

to a variable. With GHC's current structure, such a thing

would be identi�ed as ill-typed when compiling the compiler,

because something from the datatype representing terms

cannot be used in place of something from the datatype

representing types.

GHC's current structure may prevent the compiler from ac-

cidentally constructing some bogus terms, but it does not

eliminate all of them. For example, 3 True is a legal value

in the datatype of terms, but of course it is ill-formed. In-

stead we rely on Core Lint (Section 2.1) to identify such

bugs. Folding together the three levels does, however, post-

pone the detection of certain (actually rather unusual) errors

from compiler-compilation-time to compiler-run-time.
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E ::= K Constant

j x Variable

j EE Application

j �x : E:E Abstraction

j �x : E:E Quanti�cation

Figure 1: Syntax of Pure Type System expressions

3 Pure Type Systems and the Lambda

Cube

So what should the new typed intermediate language look

like? Fortunately, Barendregt has done all the hard work

for us (Barendregt [1992]). Pure Type Systems (PTS) are

an elegant way of presenting explicitly-typed lambda-calculi

in a uniform way, and give us almost exactly what we want.

However, the literature on pure type systems is mostly writ-

ten from the perspective of theorists, and while much of it

is excellent, it is not for the faint hearted. In this section

we therefore begin with a tutorial on Pure Type Systems,

using a very small expression language. In Section 5 we then

elaborate this calculus into a real language.

3.1 The familiar core

The syntax of PTS expressions is given in Figure 1. The

�rst four productions should be familiar: constans, vari-

ables, applications, and abstractions. The language is ex-

plicitly typed, so that the variable bound by a lambda ab-

straction is annotated with its type. The �fth production,

�-abstraction, is a key idea of PTS, and as we will see shortly

subsumes both function arrow and universal quanti�cation.

3.2 Mixing terms and types

The unusual feature about the PTS world is that the type

that decorates the bound variable of a lambda abstraction

is simply another expression. That is, types have the very

same syntax as terms.

This seems like an attractive idea. After all, like terms, the

conventional syntax of types includes constants (e.g. Int),

type variables, applications (e.g. Tree Int), abstractions

(in the form of type synonyms), and (in a polymorphic sys-

tem) a binding construct, namely universal quanti�cation.

Furthermore, the second order lambda calculus requires ab-

stractions and applications of types to appear in terms.

In a PTS, a single form of abstraction and application suf-

�ces, at least from a syntactic point of view. For example,

here is an expression written in F2:

��:�x : �:id [�] x

� introduces a type abstraction that binds the type variable

�, which in turn is used as the type of x. In the body of

the abstraction, the polymorphic identity function, of type

8�:�! �, is applied to � and x. We use square brackets to

indicate type application.

In our PTS language, the same abstraction and application

forms serve for both types and terms, so we can rewrite the

expression thus:

�� : ?:�x : �:id � x

Notice that this decision forces us to attribute a type to the

variable �. The type of a type is called its kind, and ? is

a kind constant, usually pronounced \type". Thus \� : ?"

simply says that � is of kind \type"; that is, � is a type

variable. The question that begs to be asked is this: is ? the

only kind? The answer is \yes" for F2, and \no" for F!. In

F!, type variables can range over type constructors as well

as over types; indeed, this is precisely what distinguishes it

from F2. For example, in F! we might write:

(�m : ?! ?:�x : m Int: : : :) Tree

Here, the �rst lambda abstracts over m, whose kind is ? !

?. The second lambda abstracts over values of type m Int.

The whole abstraction is applied to a type constructor Tree,

whose kind is presumably ?! ?.

In short, even if the syntax had not forced us to attribute

a type to �, the move from F2 to F! would have done

so. Is the extra power of F! required in a compiler inter-

mediate language? Clearly this depends on the source lan-

guage, but the extra power is certainly required for Haskell,

whose type system explicitly includes higher-kinded type

variables

2

, most particularly to support constructor classes

(Jones [1995]).

So far this all seems attractive, but there are at least three

worries:

1. How should we interpret function arrow, \!", in the

language of types? As a constant? Perhaps, but it is

a very special one indeed, because it has an intimate

relationship with abstraction and application at the

term level.

2. What is to play the role of universal quanti�cation,

\8", in the language of types? (It does not take much

experimentation to convince oneself that � is inappro-

priate for this purpose.)

3. Now that the types and values are mixed up together,

how can we be sure that the resulting expression still

makes sense? That is, can we give sensible type rules

for the language?

These questions are all elegantly resolved by the �fth form of

expressions given in Figure 1, to which we turn our attention

next.

3.3 Notation

Before we do, it will be helpful to establish some terminol-

ogy. We have identi�ed three levels so far: terms, types, and

kinds. An expression, described by the syntax of Figure 1,

can denote a term, a type, or a kind. We call these three

levels sorts, so that we might say that an expression is of

2

This was an innovation in Haskell 1.3; earlier versions of Haskell

did not have higher-kinded type variables.
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sort Term, or of sort Type, or of sort Kind. More commonly,

though, we simply say that an expression is a term, or is a

type, or is a kind.

Unfortunately it is very hard to avoid using the word \type"

for multiple purposes. In particular, note the di�erence be-

tween sort Type and kind type. For example, both Int : ?

and Tree : ? ! ? are of sort Type; but only Int is of kind

type (Int : ?).

Each well-formed term has (belongs to) a type, and each

well-formed type has a kind. A type system speci�es pre-

cisely which expressions are well-formed and which are not.

In general, a PTS may have more than three levels (or even

an in�nite number), but in this paper we study a particular

family of PTSs called the lambda cube. The type system of

the lambda cube ensures that no more than three levels are

required, apart from a solitary constant, 2, at the fourth

level, as we shall see.

When writing example programs, we will use typewriter font

for term variables (e.g. x) and all constants (e.g. +, Int),

and Greek font for type variables (e.g. �; �). When writing

program schemes (for example in type rules) we will use

x; y; z to range over variables (of all sorts), and A;B;C; a; b; c

to range over expressions (of all sorts). Generally, A will be

of a sort one higher than a; thus we might say that \the

term a has type A". Finally, we use s; t to range over the

constants ? and 2.

3.4 Quanti�cation

The �fth production in the syntax of PTS expressions (Fig-

ure 1) introduces the dependent product, �. There are

many essentially-equivalent ways of interpreting the expres-

sion �x : A:B, but for our present purposes the most useful

one is this:

�x : A:B is the type of functions from values of

type A to values of type B, in which the result

type B may perhaps depend on the value of the

argument, x.

From this de�nition it is immediately clear that � subsumes

the function arrow !:

A! B is an abbreviation for �_ : A:B

where we use the underscore symbol \_" to denote an anony-

mous variable . (We could instead say \�x : A:B where x

does not occur free in B", but \�_ : A:B" is briefer.)

What is not so obvious is that � also subsumes universal

quanti�cation, 8. Consider the type �� : ?:A, where A is

a type. This type is the type of functions from values of

kind ? (that is, types) to values of type A (that is, terms),

where the type A may mention �. But that is precisely the

interpretation we would give to 8�:A! In short,

8�:A is an abbreviation for �� : ?:A

For example, consider the K combinator, de�ned thus:

K x y = y. In F2 we would write the typing judgement

for K's body like this:

` (����:�x : �:�y : �:y) : (8��:�! � ! �)

In a PTS we would write the judgement like this

3

:

` (�� : ?:�� : ?:�x : �:�y : �:y) : (�� : ?:�� : ?:�! � ! �)

Voil�a! With one blow, � deals with two of the three worries

at the end of the Section 3.2. However, it does so at the price

of making the third worry even more worrying. For example,

what is to stop us from writing types like this one?

�x : Int:if x>3 then Int else Bool

This is the type of functions from values of type Int to

a result of type Int if the argument is greater than 3, or

Bool otherwise. Type checking may now require arbitrary

computations at the term level!

The PTS framework allows us to answer the question in one

of two ways:

1. either we can arrange for strange types like the one

above to be ill-formed;

2. or we can decide that we like the expressiveness that

it gives, and permit it.

The latter choice is equivalent to adopting the calculus of

constructions (Coquand & Huet [1988]).

The PTS framework allows terms and types to \mix". We

ensure that we can only construct expressions that \make

sense" by means of a type system, which is what we discuss

next.

3.5 The lambda cube type system

We write typing judgements in the conventional way. The

judgement:

� ` E : A

is read \in environment � the expression E has type A".

The environment gives types for the free variables of the

expression E. So, for example, we could correctly state:

fInt : ?;+ : Int! Int! Intg

`

(�x : Int:+ x x) : Int! Int

The type rules for the lambda cube are given in Figure 2 and

3. The VAR rule should be quite familiar; it simply says that

if the environment � attributes the type A to x, then we can

conclude that x : A. The premise checks that the type A

of x is itself well formed. The context � is a sequence, not

a set, with inner bindings to the right of outer ones. The

weakening rule, WEAK, allows us to throw away irrelevant

bindings (but checking that they are each well formed); it

is usually applied as often as necessary just before the VAR

rule.

3

Remember, \A! B" is just an abbreviation for \�_ : A:B"
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` ? : 2

(STAR)

� ` A : s

�; x : A ` x : A

(VAR)

� ` b : B � ` A : s

�; x : A ` b : B

(WEAK)

� ` f : (�x : A:B) � ` a : A

� ` f a : B[x := a]

(APP)

�; x : A ` b : B � ` (�x : A:B) : t

� ` (�x : A:b) : (�x : A:B)

(LAM)

� ` A : s �; x : A ` B : t ` s; t

� ` (�x : A:B) : t

(PI)

� ` a : A � ` B : s A =

�

B

� ` a : B

(CONV)

Figure 2: Type rules for the Lambda Cube

The second rule, STAR, is also easy. It states that the con-

stant ? has super-kind 2. This is where the hierarchy stops

in the lambda cube. There is no typing rule for 2 and hence

it cannot appear explicitly in a program.

Things become more interesting when we meet the rule for

applications, APP. In ordinary lambda calculus one usually

sees a rule like this:

� ` f : A! B � ` a : A

� ` f a : B

(APP

F2

)

Remembering that A! B is an abbreviation for �_ : A:B,

it is easy to see the \ordinary" rule can be obtained by

specialising rule APP with x = _. The substitution of a for

x in B does nothing, because in this special case x cannot

occur in B | that is what the \_" meant.

The exciting thing is that the same rule, APP, also deals

correctly with type applications. In F2, we have this rule

for type applications (often called SPEC, since it specialises

a polymorphic type):

� ` f : 8�:B

� ` f [A] : B[� := A]

(SPEC

F2

)

A few moments thought, remembering that 8�:B is an ab-

breviation for �� : ?:B, should convince you that APP in-

deed subsumes SPEC

F2

. This time the substitution of a

for x in B in APP is vital, just as we must substitute A for

� in B in SPEC

F2

.

` ?; ?

(?; ?)

` 2 ; ?

(2 ; ?)

` 2 ; 2

(2 ; 2)

` ?; 2

(?; 2)

Figure 3: The ; judgement

Rule APP expects f to have a � type. The next rule in

Figure 2, LAM, shows how � types are introduced in the

�rst place. As before, it is helpful to compare it with the

rules for F2. The F2 rules for value and type abstractions

are:

�; x : A ` b : B

� ` (�x : A:b) : A! B

(V LAM

F2

)

� ` b : B

� ` (��:b) : 8�:B

(TLAM

F2

)

The �rst of these states that if, assuming x has type A we

can prove that the body, b, of the abstraction has type B,

then the abstraction �x : A:b has type A ! B. Compare

this with rule LAM in Figure 2; the �rst premise and the

conclusion match the F2 rules directly. The second premise

is more interesting. Its mission is to check that it is legiti-

mate to abstract a variable x : A from an expression of type

B. It does this simply by requiring that the type in the

conclusion is a legitimate type | that is, that it itself has a

type. For example, the type abstraction ��:E is permitted

i� its type, 8�:� is permitted, where E : �.

Of course, this just begs the question. When, precisely, is a

� type a valid type? To answer that look at the PI rule. It

speci�es how to �nd the type of the expression (�x : A:B).

The �rst premise checks that A is well formed, and �nds

its type, s. The second does the same for B, remembering

to bring x into scope �rst. The third premise uses a new

judgement form,;, which is also de�ned by the four axioms

in Figure 3 . Since these axioms only involve constants, the

; judgement does no more than generate four copies of rule

PI, each with its own values for s and t. In fact, the lambda

cube describes a family of eight type systems, each de�ned

by selecting a subset of the axioms for;, as we now discuss.

Let us �rst specialise rule PI with the axiom ? ; ?. Then

s = ? and t = ?. What does this mean? It means that A and

B must both be of kind ?; that is, they must both be types,

and hence (moving back to rule LAM) we can abstract a

term variable over a term expression. Indeed, we can read

\? ; ?" as \terms can depend on terms". Furthermore, if

?; ? is the only axiom for;, then these value abstractions

are the only sort of abstractions we are allowed, so we have

the simply-typed lambda calculus.

What is needed to allow type abstractions, which we need

for the second-order lambda calculus, F2? Looking at rule

LAM, we will need x to be a type variable, so A must be a

6



(�x : A:B) C =

�

B[x := C]

(LAM

conv

)

...plus the usual rules for symmetry, reexivity, and tran-

sitivity.

Figure 4: Conversion rules for expressions

kind, so s must be 2. However the body of a type abstrac-

tion is a term, so B is a type, and hence t is ?. Hence, to get

F2 we need the axiom 2 ; ?, which we can read as \terms

can depend on types"

4

.

To get F! we need not only that A is a kind, but also that

it can be a higher kind, such as ? ! ?. If A = ? ! ?, the

�rst premise of PI requires that � ` ? ! ? : s, which in

turn requires us to give the typing judgement for !, that

is, for �. So we have to re-use rule PI. It is an almost

immediate consequence that we require the axiom 2 ; 2

in order to conclude ` ? ! ? : 2. Hence, F! requires the

axiom 2 ; 2, which we can read as \types can depend on

types".

What would happen if we added the �nal axiom, ? ; 2?

That would allow \types can depend on terms", taking us

into the Calculus of Constructions (Coquand &Huet [1988]).

This is swampy territory for compilers, so we stay well clear

and avoid ?; 2.

To summarise, we have the following equivalences:

System Corresponding subset of;

Simply typed �-calculus f?; ?g

F2 f?; ?;2 ; ?g

F! f?; ?;2 ; ?;2 ; 2g

Calculus of constructions f? ; ?;2 ; ?;2 ;

2; ?; 2g

There are eight systems given by selecting ? ; ? and any

subset of the remaining three axioms, which is what gives

rise to the term \lambda cube". All eight systems make

sense, but the ones just identi�ed are the interesting ones.

3.6 Completing the type system

The �nal rule in Figure 2 is CONV, which states that if

we can deduce a type A for an expression a, and B is �-

equivalent to A, then A is a valid type for a. Why is this

rule necessary? First, notice that rule APP might substitute

an arbitrary term into the type of an expression, so the type

of an expression is not necessarily in normal form (it might

be an application, for example). Second, notice that the

�rst premise of rule APP requires the type of f to be a �

expression. But suppose the type of f is an expression that

evaluates to a � expression, such as (�x : ?:x)(�y : A:B)!

Rule CONV simply allows the necessary reduction to take

place. The =

�

relation is de�ned in Figure 4.

4

There is a slight awkwardness here, because you have to read

the notation backwards: p ; q means \q can depend on p". Also

confusingly, we read \terms" for \?" and \types" for \2", because

the ; judgement is two levels away from the original thing!

` ? : 2

(STAR)

x : A 2 �

� ` x : A

(VAR)

� ` f :!! (�x : A:B) � ` a : A

0

A =

�

A

0

� ` f a : B[x := a]

(APP)

�; x : A ` b : B � ` (�x : A:B) : t

� ` (�x : A:b) : (�x : A:B)

(LAM)

� ` A :!! s �; x : A ` B :!! t ` s; t

� ` (�x : A:B) : t

(PI)

� ` a : A A!!

wh

B

� ` a :!! B

(RED)

Figure 5: Syntax Directed rules for the Lambda Cube

3.7 Syntax directed rules

The inference rules given in Figure 2 are not directly suitable

for use in a Core Lint type checker as the rules are not syntax

directed. In particular, you cannot decide at which point

in a derivation the rule CONV must be applied simply by

looking at the structure of the term under consideration.

What we seek is a syntax-directed presentation of the rules

that is both sound and complete with respect to the old set;

that is, the new presentation should type exactly the same

terms in exactly the same way. The generality of PTSs

makes this task quite tricky, but Pollack, van Benthem Jut-

ting & McKinna [1993] have done much of the hard work

for us. Figure 5 gives a simpli�ed version of their `

f

syntax

directed system. The main di�erence compared with the

rules of Figure 2 is the strategic distribution of reduction

(!!) over the other rules. The notation A !!

wh

B means

that A reduces to the weak head normal form B. The new

judgement form � ` a :!! B means that � ` a : A and

� ` A!!

wh

B, as rule RED states.

We have also taken the opportunity to introduce the so-

called \valid context" optimization. If we assume that the

initial context is well-formed (a notion it is easy to de�ne

formally), then it will remain well-formed because the only

rules that extend it (LAM and PI) do so with a binding

whose type is well-formed. There is therefore no need to

check for this well-formedness in rules VAR and WEAK.

Furthermore adopt the Barendregt convention that all vari-

able names are distinct. As a result, we can regard � as an

unordered bag rather than a sequence, and this means we

can elininate WEAK altogether, in favour of the premise

x : A 2 � in VAR. All of this is well known (Pollack,

van Benthem Jutting & McKinna [1993, Section 2.4.]).
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`

type

a : A means \a has type A"

`

type

? : 2

(STAR

type

)

`

type

(x : A) : A

(VAR

type

)

`

type

f : F

`

type

(f a) : F a

(APP

type

)

`

type

b : B

`

type

(�x : A:b) : (�x : A:B)

(LAM

type

)

`

type

B : s

`

type

(�x : A:B) : s

(PI

type

)

`

type

A : B B =

�;�

B

0

`

type

A : B

0

(CONV

type

)

Figure 6: The type-of judgement, `

type

.

3.8 Factoring the typing judgement `

The typing judgement ` actually does two things:

� It checks that an expression is well formed.

� It �nds its type.

Inside a compiler one would hope that the program was

always well-formed (after an initial type-check, that is), but

the compiler might quite frequently want to �nd the type of

an expression.

The \type-of" judgement, `

type

, in Figure 6, �nds the type of

a well-formed expression, without using an environment. To

achieve this we annotate each bound occurrence of a variable

with its type. This latter property is very useful in practice,

because it means that the compiler can contain a simple

function (corresponding to `

type

) that maps a expression to

its type, without needing to plumb around an environment.

But is it not rather expensive to annotate every variable

occurrence? Not necessarily. If the compiler maintains the

exression as a graph, it can use a single data structure to

represent x:Int, say, and simply point to that data structure

from the binding site and each occurrence site.

The APP

type

rule in Figure 6 also uses a neat trick due

to Kamareddine and Nederpelt (Kamareddine & Nederpelt

[1996]). Rather than actually perform the substitution in

the rule, as we did in APP (Figure 2), we simply apply the

type of the function, F , to the argument, a. As before,

CONV

type

allows us to evaluate applications when neces-

sary, but with the additional �-reduction rule:

(�x : A:B)a !

�

B[x := a] (�)

This new presentation has the practical advantage in a com-

piler of allowing us to separate the type-�nder from the eval-

uator in the compiler, since `

type

no longer mentions substi-

tution. Instead, we can extract the type of an expression

and only then evaluate it.

A curious feature of this way of doing things is that the

type of an expression may not be well formed! Consider

the expression (id Int). Rule APP

type

would say that it

has type (�� : ?:� ! �) Int. This type evaluates to the

well-formed Int! Int as expected, but it is not itself well-

formed. Why? Because (�� : ?:� ! �) has type ? rather

than a � type. We are a bit suspicious of this intermediate

ill-formedness, but its advantages are persuasive.

Note that the rules VAR and APP rules of �gure 5 can

easily be modi�ed to incorporate the changes introduced in

this section.

4 A predicative variant

One disadvantage of the system we have described so far is

that it is impredicative. In an impredicative system, type

variables can range over universally-quanti�ed types. For

example, suppose that f : 8�:[�]! Int. Then the follow-

ing type application is legitimate:

f (8�:� ! �)

Here, f is instantiated at the polytype (8�:� ! �). There

is nothing wrong with this, in the sense that \well-typed

programs can't go wrong", but the ability for type variable

to range over polytypes greatly complicates the business of

providing a model for the calculus (Mitchell [1996, Chapter

9]).

4.1 De�ning the predicative variant

Fortunately, it is fairly easy to produce a predicative variant

of our calculus. Instead of just the kind ? we need two

constants:

? is the kind of monotypes

?? is the kind of polytypes

Corresponding to these two kinds are two super-kinds 2 and

22, with ? : 2 and ?? : 22. The latter requires a new rule,

STAR2, given in Figure 7.

To make the system predicative requires that we make more

distinctions about what can depend on what. This is what

the new rule PI' in Figure 7 does. It makes use of a three-

place judgement ` s; t : u, also de�ned in the same Figure.

The �rst four rules of the new ; judgement specify which

types are polytypes and which are monotypes. For example,

assuming that Int : ? we can deduce that

Int : ?

Int! Int : ?

8�:[�]! Int : ? ?

(8�:[�]! Int)! Int : ??

8



� ` ?? : 22

(STAR2)

� ` A : s �; x : A ` B : t ` s; t : u

� ` (�x : A:B) : u

(PI')

` ?; ? : ?

(?; ?)

` ?; ?? : ??

(?; ??)

` ??; ? : ??

(??; ?)

` ??; ?? : ??

(??; ??)

` 2 ; ? : ??

(2 ; ?)

` 2 ; ?? : ??

(2 ; ??)

` 2 ; 2 : 2

(2 ; 2)

Figure 7: Modi�ed rules for the predicative variant

As the last example shows, a value of polymorphic type

can still be passed as an argument to a function, but the

resulting function type is of kind ??. Notice that in the third

rule t and u di�er; that is why we now need a three-place

judgement.

The next two rules in ;, (2 ; ? and 2 ; ??) say that it

is legitimate to abstract a monotyped variable from either a

monotype or a polytype, giving a polytype in either case.

Finally, 2 ; 2 says that it is OK to create lambda ab-

stractions at the type level, provided we only abstract a

monotyped variable from a monotype. One could imagine

also having 2 ; 22 (allowing us to abstract a monotyped

variable from a polytype), but there doesn't seem to be a

pressing reason to add it, and life is simpler without.

The important thing is that there is no axiom of the form `

22 ; :::, corresponding to the fact that we cannot abstract

a polytyped variable from anything.

4.2 Pure Type Systems

The rules given in Figure 7 take us outside the lambda cube.

Fortunately, even this generalisation has been well studied.

The generalised PI' rule, together with the original rules

VAR, LAM, APP, de�ne a Pure Type System. A PTS is

de�ned by:

� The rules VAR, LAM, APP and PI'.

� A set, S, of constants (f?; ??;2;22g in our case).

� A set, A, of typing axioms relating these constants

(f? : 2; ?? : 22g in our case).

� A set, R, of ; rules, ranging over the constants Sq.

A PTS is called functional if:

� (s; t

1

) 2 A and (s; t

2

) 2 A ) t

1

= t

2

� (s; t; r

1

) 2 R and (s; t; r

2

) 2 R ) r

1

= r

2

In practice almost all practically useful PTSs, and certainly

the ones in this paper, are functional. Many useful theo-

rems (such as the substitution lemma, subject reduction)

have been proved for arbitrary PTSs, and more are true of

functional PTSs (such as uniqueness of types) (Barendregt

[1992, Section 5.2]). Functional PTSs seem to combine these

desirable theorems with a remarkable degree of exibility |

for example, we developed the predicative variant of this sec-

tion well after the �rst draft of this paper was completed.

5 A Real Language

We now elaborate the small language of the previous section

into a full language, complete with a concrete syntax. The

full language

5

is given in Figure 8. Compared to the previous

section we add the following features:

� A program consists of:

{ A set of mutually recursive data declarations,

each of which introduces a new data type (Sec-

tion 5.1).

{ A sequence of value declarations, each of which

may be recursive or non-recursive (Section 5.2).

� Expressions are augmented with let, letrec, and

case (Section 5.4).

� A special anonymous variable, \_", is provided (Sec-

tion 5.3.

� A variety of abbreviations are provided (Section 5.5)

as syntactic sugar. These abbreviations are marked

with \y" in the left column of Figure 8. Their purpose

is to reduce the number of characters it takes to print

out a program, and make it more comprehensible to

the human reader.

There is only one name space. Haskell programs that use

the same name for a data type and a data constructor will

need to be renamed before being expressed in Henk.

5

Actually there is still one production to come, for primitive

operations.
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Program program ! tdecl

1

: : : tdecl

n

vdecl

1

: : : vdecl

m

(n � 0;m � 0)

Type declaration tdecl ! data tvar = { tvar

1

: : : tvar

n

} (n � 1)

Value declaration vdecl ! let { bind } Non-recursive

j letrec { bind

1

: : : bind

n

} Recursive (n � 1)

Binding bind ! tvar = expr

Expression expr ! bexpr

j \ tvar

1

: : : tvar

n

. expr � (n � 1)

j |~| tvar

1

: : : tvar

n

. expr � (n � 1)

y j /\ tvar

1

: : : tvar

n

. expr � (n � 1)

y j \/ tvar

1

: : : tvar

n

. expr 8 (n � 1)

y j bexpr -> expr !

j vdecl in expr Local declaration

j case expr of { alt

1

; : : :; alt

n

} (n � 1)

at { aexpr

1

: : : aexpr

m

} (m � 0)

y j case expr of { alt

1

; : : :; alt

n

}

bexpr ! bexpr aexpr Application

j aexpr

aexpr ! tvar Variable

j literal Literal

j * Constant

j BOX Constant

j ( expr )

Typed variable tvar ! var : aexpr

y j var

Variable var ! _ (binding sites only)

j identifier

Case alternative alt ! pat -> expr

y j pat tvar

1

: : : tvar

n

-> expr

Case patterns pat ! tvar

j literal

\y" indicates syntactic sugar

Figure 8: Concrete syntax
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5.1 Type declarations

An important design choice is that we introduce new types

with explicit declarations, outside the syntax of expressions.

A data declaration de�nes a new algebraic data type. It

introduces a new type constructor plus a number of data

constructors into the environment. For example the type of

generalized trees with values of type a is de�ned as:

data Tree : ((*->*) -> * -> *)

= { Branch : (\/ (m:*->*) (a:*) .

a -> m (Tree m a) -> Tree m a)

}

This declaration introduces the type constructor Tree and

the data constructor Branch, each with the speci�ed type.

Like ML, and unlike Haskell, type constructors and data

constructors are not required to start with an upper-case

letter.

The main design alternative would be to provide primitive

type constructors for unit, sum, product, lifting, and recur-

sion, and then use ordinary value declarations to introduce

new types. For example, we might introduce lists thus:

List:(*->*) = \a:*. rec (\l:*. Lift (Unit + (a ** l)))

Whilst this is nice from a theoretical standpoint, it has sev-

eral disadvantages:

� It does not generalise easily to handle mutual recursion

and non-uniform data types; the former is very com-

mon, and the latter legal, in both ML and Haskell.

� It is hard to know when to unwind the recursion, for

example when testing types for equality.

� It is harder to prove strong normalisation for types.

We have opted to be conservative and exploit the type struc-

ture we know we have. The extra generality of arbitrary

products and sums does not seem worth the complexity.

5.2 Value Declarations

A value binding binds a variable to a value. This can ei-

ther be a term value (e.g. x:Int = 3), or a type value

(e.g. Diag:(*->*) = \a.Pair a a). Value bindings can be

grouped into recursive or non-recursive declarations. These

value declarations appear both at the top level of a program,

and as local declarations inside expressions.

5.3 The anonymous variable, _

The anonymous variable, _, can be used at the binding site

of a variable that is not mentioned in its scope. It is useful

in the concrete syntax to reduce the creation of new names.

More importantly, it is useful inside the compiler because it

allows the evaluator to eliminate a substitution step when

applying an abstraction (� or �) whose bound variable is

unused. Such abstractions are very common indeed: every

function arrow turns into one!

5.4 Case expressions

A case expression takes apart values built with constructors.

Here is an example:

case (reverse xs) of

{ Cons -> \y ys . <rhs1>

; Nil -> <rhs2>

}

at { Int }

A case expression scrutinises an expression, called the scru-

tinee. The scrutinee is reverse xs in this example. It eval-

uates the expression to head normal form, and matches it

against the alternatives. The pattern in a case alternative

must be a literal, a constructor name, or _. All the patterns

in a case expression must have the same type. The list of

types in the at clause gives the types at which the construc-

tors are instantiated (it is empty if the patterns are literals).

In the example, xs is presumably a list of Int, so Cons and

Nil are instantiated at Int.

When an alternative is selected, its right-hand-side is ap-

plied to the values of the arguments of the constructor.

Thus, if reverse xs evaluates to Cons Int <e1> <e2>, the

result of the case expression will be:

(\y ys . <rhs1>) <e1> <e2>

If _ is used as a pattern, it is selected only if all the others

fail to match, regardless of order.

This form of case is a little unusual. More typically the

patterns can also bind variables, thus:

case (reverse as) of

{ Cons y ys -> <rhs1>

; Nil -> <rhs2>

}

We provide the conventional form as syntactic sugar (Sec-

tion 5.5), but the core form reduces the number of expres-

sions that bind new variables. This in turn reduces clutter

in the compiler, without losing expressiveness.

5.5 Syntactic sugar

The following syntactic sugar greatly reduces the size of the

printed form of a program (apart from the �rst two, which

simply give more conventional equivalent forms):

� /\ means the same as \.

� \/ means the same as |~|.

� \x

1

: : : x

n

.e means the same as \x

1

. : : :\x

n

.e.

� e

1

-> e

2

means the same as |~| _:e

1

. e

2

.

� A binding occurrence of an un-annotated variable v

means the same as v:*. This allows us to omit the

annotation for most type variables.

� A bound occurrence of an un-annotated variable v

means the same as v:t, where t is the annotation

at its binding site. (It may be necessary to perform

11



�-conversion for this to have the expected meaning.)

This abbreviation allows us to omit annotations on all

bound occurrences.

� The at clause on a case expression can be omitted,

because it can readily be re-inferred.

� The case alternative c y

1

: : : y

n

-> emeans the same as

c -> \y

1

: : : y

n

. e. The variables y

1

; : : : ; y

n

need not

be annotated with their types; if they are not, their

types are recovered from the type of the constructor

and the instantiating types in the at clause.

5.6 Type rules

Figure 9 extend our typechecking rules to deal with the ex-

tended language.

The ` rules for declarations return an environment as the

\type" of a declaration. To avoid clutter, the rules for

letrec and case mention only a single binding or alter-

native respectively.

The main interesting point is in the LET and CASE rules.

Their form is very like the APP rule in Figure 6, in that

the type derived is of the same form as the expression being

typed. We rely on the conversion rules (which we don't have

space for here) to convert the resulting type to the required

form where necessary (i.e. in APP and CASE).

Rule LET raises an interesting question. Clearly, we need

check that it is legal to abstract the bound variable(s) over

the body (` � ; A). But, if the binding is recursive |

say, letrec {x

1

= a

1

;x

2

= a

2

} | do we need to check that

it is legal to abstract the bound variables over each of the

a

i

? We believe that the answer is no. To see why, consider

the expression let {x : A = a} let {y : B = b} c. Here, we

clearly do not check that we can abstract x : A over b. It is

not clear to us what the correct answer is here, but we plan

to �nd out!

6 Conclusions and further work

We believe that the lambda cube provides a solid foundation

for the intermediate langauge of sophisticated compilers. It

is a subtle system, and extending it to a real language raises

new technical issues, as we have just seen. Probably some

of these problems are old hat to the theorists, which is why

the direct link to a well-studied system is so valuable.

There is still much groundwork left to do:

� We have gaily extended the PTS framework with re-

cursive data types, let, letrec, case, and constants,

but it is necessary to prove that all the standard PTS

theorems still go through. (Indeed, we noted some un-

certainty about the exact typing rule for letrec in the

previous section.)

� Section 4 de�nes a predicative variant of Henk, with

the intention that it has a more tractable model; but

we have yet to exhibit such a model.

� We should provide an operational semantics for Henk.

Subsequently, we plan to move towards an implementation

in GHC. More ambitiously, we hope that by giving Henk a

clear de�nition, and a concrete syntax, we may be able to

work more closely with other compiler-writers. GHC has

always been intended as a substrate for others' research,

but it is such a daunting monster that it requires a certain

determination to delve into its innards. We hope that Henk

may provide a route from GHC into other back ends or

analysis tools, and vice versa.

7 Acknowledgements

Thanks for Koen Claessen, John Launchbury, Randy Pol-

lack, and Mark Shields for comments on earlier drafts. We

acknowledge gratefully the support of the Oregon Graduate

Institute during our sabbaticals, funded by a contract with

US Air Force Material Command (F19628-93-C-0069).

References

H Barendregt [1992], \Lambda calculi with types," in Hand-

book of Logic in Computer Science, Volume II , S

Abramsky, DM Gabbay & TSE Maibaum, eds., Ox-

ford University Press.

TH Coquand & G Huet [1988], \The calculus of construc-

tions," Information and Computation 76, .

A Gill, J Launchbury & SL Peyton Jones [June 1993], \A

short cut to deforestation," in Proc Functional Pro-

gramming Languages and Computer Architecture,

Copenhagen, ACM, .

J-Y Girard [1972], \Interpr�etation foctionelle et �elimination

des coupures

dans l'arithm�etique d'ordre sup�erieur," PhD the-

sis, Universit�e Paris VII.

R Harper & G Morrisett [Jan 1995], \Compiling polymor-

phism using intensional type analysis," in 22nd

ACM Symposium on Principles of Programming

Languages, San Francisco, ACM, .

RW Harper, JC Mitchell & E Moggi [Jan 1990], \Higher-

order modules and the phase distinction," in 17th

ACM Symposium on Principles of Programming

Languages, San Francisco, ACM, .

Z Hu, H Iwasaki & M Takeichi [May 1996], \Deriving struc-

tural hylomorphisms from recursive de�nitions," in

Proc International Conference on Functional Pro-

gramming, Philadelphia, ACM, .

MP Jones [Jan 1995], \A system of constructor classes: over-

loading and implicit higher-order polymorphism,"

Journal of Functional Programming 5, .

12



� [

S

1�i�n
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: �
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� [
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�

i

[

S

1�j�k�1

�

j

` v

k

: �

k

(1 � k �m)

� ` t

1

: : : t

n

v

1

: : : v

n
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�; x : A ` let {x : A = a} : fx : Ag

(VDECL1)
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� `
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