
Type classes: an exploration of the design space

Simon Peyton Jones

University of Glasgow and Oregon Graduate Institute

Mark Jones

University of Nottingham

Erik Meijer

University of Utrecht and Oregon Graduate Institute

May 2, 1997

Abstract

When type classes were �rst introduced in Haskell they

were regarded as a fairly experimental language feature, and

therefore warranted a fairly conservative design. Since that

time, practical experience has convinced many programmers

of the bene�ts and convenience of type classes. However, on

occasion, these same programmers have discovered examples

where seemingly natural applications for type class overload-

ing are prevented by the restrictions imposed by the Haskell

design.

It is possible to extend the type class mechanism of Haskell

in various ways to overcome these limitations, but such pro-

posals must be designed with great care. For example, sev-

eral di�erent extensions have been implemented in Gofer.

Some of these, particularly the support for multi-parameter

classes, have proved to be very useful, but interactions be-

tween other aspects of the design have resulted in a type

system that is both unsound and undecidable. Another illus-

tration is the introduction of constructor classes in Haskell

1.3, which came without the proper generalization of the no-

tion of a context. As a consequence, certain quite reasonable

programs are not typable.

In this paper we review the rationale behind the design of

Haskell's class system, we identify some of the weaknesses

in the current situation, and we explain the choices that we

face in attempting to remove them.

1 Introduction

Type classes are one of the most distinctive features of

Haskell (Hudak et al. [1992]). They have been used for an

impressive variety of applications, and Haskell 1.3

1

signif-

icantly extended their expressiveness by introducing con-

structor classes (Jones [1995a]).

All programmers want more than they are given, and many

people have bumped up against the limitations of Haskell's

class system. Another language, Gofer (Jones [1994]), that

has developed in parallel with Haskell, enjoys a much more

liberal and expressive class system. This expressiveness is

de�nitely both useful and used, and transferring from Gofer

1

The current iteration of the Haskell language is Haskell 1.4, but

it is identical to Haskell 1.3 in all respects relevant to this paper.

to Haskell can be a painful experience. One feature that is

particularly often missed is multi-parameter type classes |

Section 2 explains why.

The obvious question is whether there is an upward-

compatible way to extend Haskell's class system to enjoy

some or all of the expressiveness that Gofer provides, and

perhaps some more besides. The main body of this paper

explores this question in detail. It turns out that there are

a number of interlocking design decisions to be made. Gofer

and Haskell each embody a particular set, but it is very

useful to tease them out independently, and see how they

interact. Our goal is to explore the design space as clearly

as possible, laying out the choices that must be made, and

the factors that a�ect them, rather than prescribing a par-

ticular solution (Section 4). We �nd that the design space

is rather large; we identify nine separate design decisions,

each of which has two or more possible choices, though not

all combinations of choices make sense. In the end, however,

we do o�er our own opinion about a sensible set of choices

(Section 6).

A new language feature is only justi�able if it results in a

simpli�cation or uni�cation of the original language design,

or if the extra expressiveness is truly useful in practice. One

contribution of this paper is to collect together a fairly large

set of examples that motivate various extensions to Haskell's

type classes.

2 Why multi-parameter type classes?

The most visible extension to Haskell type classes that we

discuss is support for multi-parameter type classes. The pos-

sibility of multi-parameter type classes has been recognised

since the original papers on the subject (Kaes [1988]; Wadler

& Blott [1989]), and Gofer has always supported them.

This section collects together examples of multi-parameter

type classes that we have encountered. None of them are

new, none will be surprising to the cognescenti, and many

have appeared inter alia in other papers. Our purpose in

collecting them is to provide a shared database of motivating

examples. We would welcome new contributions.

2.1 Overloading with coupled parameters

Concurrent Haskell (Peyton Jones, Gordon & Finne [1996])

introduces a number of types such as mutable variables

MutVar, \synchronised" mutable variables MVar, channel

variables CVar, communication channels Channel, and skip

channels SkipChan, all of which come with similar opera-

tions that take the form:

newX :: a -> IO (X a)

getX :: X a -> IO a

putX :: X a -> a -> IO ()

where X ranges over MVar etc. Here are similar operations

in the standard state monad:

newST :: a -> ST s (MutableVar s a)

getST :: MutableVar s a -> ST s a

putST :: MutableVar s a -> a -> ST s ()

These are manifestly candidates for overloading; yet a single

parameter type class can't do the trick. The trouble is that

in each case the monad type and the reference type come as

a pair: (IO, MutVar) and (ST s, MutableVar s). What we

want is a multiple parameter class that abstracts over both:

class Monad m => VarMonad m v where

new :: a -> m (v a)

get :: v a -> m a

put :: v a -> a -> m ()

instance VarMonad IO MutVar where

instance VarMonad (ST s) (MutableVar s) where ...

This is quite a common pattern, in which a two-parameter

type class is needed because the class signature is really over

a tuple of types and where instance declarations capture di-

rect relationships between speci�c tuples of type construc-

tors. We call this overloading with coupled parameters.

Here are a number of other examples we have collected:

� The class StateMonad (Jones [1995]) carries the state

around naked, instead of inside a container as in the

VarMonad example:

class Monad m => StateMonad m s where

getS :: m s

putS :: s -> m ()

Here the monad m carries along a state of type s; getS

extracts the state from the monad, and putS overwrites

the state with a new value. One can then de�ne in-

stances of StateMonad:

newtype State s a = State (s -> (a,s))

instance StateMonad (State s) s where ...

Notice the coupling between the parameters arising

from the repeated type variable s. Jones [1995] also

de�nes a related class, ReaderMonad, that describes

computations that read some �xed environment

class Monad m => ReaderMonad m e where

env :: e -> m a -> m a

getenv :: m e

newtype Env e a = Env (e -> a)

instance ReaderMonad (Env e) e where ...

� Work in Glasgow and the Oregon Graduate Institute

on hardware description languages has led to class dec-

larations similar to this:

class Monad ct => Hard ct sg where

const :: a -> ct (sg a)

op1 :: (a -> b) -> sg a -> ct (sg b)

op2 :: (a -> b -> c) -> sg a -> sg b -> ct (s c)

instance Hard NetCircuit NetSignal where ...

instance Hard SimCircuit SimSignal where ...

Here, the circuit constructor, ct is a monad, while

the signal constructor, sg, serves to distinguish values

available at circuit-construction time (of type Int, say)

from those owing along the wires at circuit-execution

time (of type SimSignal Int, say). Each instance of

Hard gives a di�erent interpretation of the circuit; for

example, one might produce a net list, while another

might simulate the circuit.

Like the VarMonad example, the instance type come as

a pair; it would make no sense to give an instance for

Hard NetCircuit SimSignal.

�

2

The Haskell prelude de�nes de�nes the following two

functions for reading and writing �les

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

Similar functions can be de�ned for many more pairs

of device handles and communicatable types, such as

mice, buttons, timers, windows, robots, etc.

readMouse :: Mouse -> IO MouseEvent

readButton :: Button -> IO ()

readTimer :: Timer -> IO Float

sendWindow :: Window -> Picture -> IO ()

sendRobot :: Robot -> Command -> IO ()

sendTimer :: Timer -> Float -> IO ()

These functions are quite similar to the methods

get :: VarMonad r m => r a -> m a and put ::

VarMonad r m => r a -> a -> m () of the VarMonad

family, except that here the monad m is �xed to IO and

the choice of the value type a is coupled with the box

type v a. So what we need here is a multi-parameter

class that overloads on v a and a instead:

class IODevice handle a where

receive :: handle -> IO a

send :: handle -> a -> IO a

(Perhaps one could go one step further and unify class

IODevice r a and class Monad m => StateMonad m

r into a three parameter class class Monad m =>

Device m r a.)

2

This example was suggested by Enno Scholz.

2

�

3

An appealing application of type classes is to de-

scribe mathematical structures, such as groups, �elds,

monoids, and so on. But it is not long before the need

for coupled overloading arises. For example:

class (Field k, AdditiveGroup a)

=> VectorSpace k a where

@* :: k -> a -> a

...

Here the operator @* multiplies a vector by a scalar.

2.2 Overloading with constrained parame-

ters

Libraries that implement sets, bags, lists, �nite maps, and so

on, all use similar functions (empty, insert, union, lookup,

etc). There is no commonly-agreed signature for such li-

braries that usefully exploits the class system. One reason

for this is that multi-parameter type classes are absolutely

required to do a good job. Why? Consider this �rst attempt:

class Collection c where

empty :: c a

insert :: a -> c a -> c a

union :: c a -> c a -> c a

...etc...

The trouble is that the type variable a is universally quan-

ti�ed in the signature for insert, union, and so on. This

means we cannot use equality or greater-than on the ele-

ments, so we cannot make sets an instance of Collection,

which rather defeats the object of the exercise. By far the

best solution is to use a two-parameter type class, thus:

class Collection c a where

empty :: c a

insert :: a -> c a -> c a

union :: c a -> c a -> c a

...etc...

The use of a multi-parameter class allows us to make in-

stance declarations that constrain the element type on a

per-instance basis:

instance Eq a => Collection ListSet a where

empty = ...

insert a xs = ...

...etc..

instance Ord a => Collection TreeSet a where

empty = ...

insert x t = ...

...etc...

The point is that di�erent instance declarations can con-

strain the element type, a, in di�erent ways. One can look

at this as a variant of coupled-parameter overloading (dis-

cussed in the preceding section). Here, the second type

in the pair is constrained by the instance declaration (e.g.

\Ord a =>..."), rather than completely speci�ed as in the

previous section. In general, in this form of overloading, one

or more of the parameters in any instance is a variable that

3

This example was suggested by Sergey Mechveliani.

serves as a hook, either for one of the other arguments, or

for the instance context and member functions to use.

The parametric type classes of Chen, Hudak & Odersky

[1992] also deal quite nicely with the bulk-types example,

but their assymetry does not suit the examples of the pre-

vious section so well. A full discussion of the design choices

for a bulk-types library is contained in Peyton Jones [1996].

2.3 Type relations

One can also construct applications for multi-parameter

classes where the relationships between di�erent parame-

ters are much looser than in the examples that we have

seen above. After all, in the most general setting, a multi-

parameter type class C could be used to represent an arbi-

trary relation between types where, for example, (a; b) is in

the relation if, and only if, there is an instance for (C a b).

� One can imagine de�ning an isomorphism relationship

between types (Liang, Hudak & Jones [1995]):

class Iso a b where

iso :: a -> b

osi :: b -> a

instance Iso a a where iso = id

� One could imagine overloading Haskell's �eld selectors

by declaring a class

class Hasf a b where

f :: a -> b

for any �eld label f. So if we have the data type

Foo = Foo{foo :: Int}, we would get a class decla-

ration class Hasfoo a b where foo :: a -> b and

an instance declaration

instance Hasfoo Foo Int where

foo (Foo foo) = foo

This is just a cut-down version of the kind of extensible

records that were proposed by Jones (Jones [1994]).

These examples are \looser" than the earlier ones, because

the result types of the class operations do not mention all the

class type variables. In practice, we typically �nd that such

relations are too general for the type class mechanisms, and

that it becomes remarkably easy to write programs whose

overloading is ambiguous.

For example, what is the type of iso 'a' == iso 'b'? The

iso function is used at type Char -> b, and the resulting

values of iso 'a' and iso 'b' are compared with (==) used

at type b -> b -> Bool. However this intermediate type

is completely unconstrained and hence the resulting type,

(Eq b, Iso Char b) => Bool, is ambiguous. One runs into

similar problems quickly when trying to use overloading of

�eld selectors. We discuss ambiguity further in Section 3.7.

3

2.4 Summary

In our view, the examples of this section make a very per-

suasive case for multi-parameter type classes, just as Monad

and Functor did for constructor classes. These examples

cry out for Haskell-style overloading, but it simply cannot

be done without multi-parameter classes.

3 Background

In order to describe the design choices related to type classes

we must briey review some of the concepts involved.

3.1 Inferred contexts

When performing type inference on an expression, the type

checker will infer (a) a monotype, and (b) a context, or set

of constraints, that must be satis�ed. For example, consider

the expression:

\xs -> case xs of

[] -> False

(y:ys) -> y > z || (y==z && ys==[z])

Here, the type checker will infer that the expression has the

following context and type:

Context: fOrd a; Eq a; Eq [a]g

Type: [a] -> Bool

The constraint Ord a arises from the use of > on an element

of the list, y; the constraint says that the elements of the list

must lie in class Ord. Similarly, Eq a arises from the use of

== on a list element. The constraint Eq [a] arises from the

use of == on the tail of the list; it says that lists of elements

of type a must also lie in Eq.

These typing constraints have an operational interpretation

that is often helpful, though it is not required that a Haskell

implementation use this particular operational model. For

each constraint there is a corresponding dictionary| a col-

lection of functions that will be passed to the overloaded op-

erator involved. In our example, the dictionary for Eq [a]

will be a tuple of methods corresponding to the class Eq. It

will be passed to the second overloaded == operator, which

will simply select the == method from the dictionary and

apply it to ys and [z]. You can think of a dictionary as

concrete, run-time \evidence" that the constraint is satis-

�ed.

3.2 Context reduction

Contexts can be simpli�ed, or reduced, in three main ways:

1. Eliminating duplicate constraints. For example, we can

reduce the context fEq �; Eq �g to just fEq �g.

2. Using an instance declaration. For example, the

Haskell Prelude contains the standard instance dec-

laration:

instance Eq a => Eq [a] where ...

TV (P) � dom(�)

instance C => P where : : :

�(C) `̀ �(P)

(inst)

TV (P) � dom(�)

class C => P where : : :

�(P) `̀ �(C)

(super)

Q � P

P `̀ Q

(mono)

P `̀ Q Q `̀ R

P `̀ R

(trans)

Figure 1: Rules for entailment

This instance declaration speci�es how we can use an

equality on values of type a to de�ne an equality on

lists of type [a]. In terms of the dictionary model, the

instance declaration speci�es how to construct a dic-

tionary for Eq [a] from a dictionary for Eq a. Hence

we can perform the following context reduction:

fOrd a; Eq a; Eq [a]g �! fOrd a; Eq ag

We say that a constraint matches an instance declara-

tion if there is a substitution of the type variables in

the instance declaration head that makes it equal to

the constraint.

3. Using a class declaration. For example, the class dec-

laration for Ord in the Haskell Prelude speci�es that

Eq is a superclass of Ord:

class Eq a => Ord a where ...

What this means is that every instance of Ord is also

an instance of Eq. In terms of the dictionary model,

we can read this as saying that each Ord dictionary

contains an Eq dictionary as a sub-component. So the

constraint Eq a is implied by Ord a, and it follows that

we can perform the following context reduction:

fOrd a; Eq ag �! fOrd ag

More precisely, we say that Q entails P , written Q `̀ P , if

the constraints in P are implied by those in Q. We de�ne

the meaning of class constraints more formally using the def-

inition of the entailment relation de�ned in Figure 1. The

�rst two rules correspond to (2) and (3) above

4

. The sub-

stitution � maps type variables to types; it allows class and

instance declarations to be used at substitution-instances of

their types. For example, from the declaration

instance Eq a => Eq [a] where ...

4

Notice that in (inst), C and P appear in the same order on

the top and bottom lines of the rules, whereas they are reversed in

(super). This suggest an infelicity in Haskell's syntax, but one that

it is perhaps too late to correct!

4

we can deduce that fEq �g `̀ fEq [�]g, for an arbitrary

type �

5

. The remaining rules explain that entailment is

monotonic and transitive as one would expect.

The connection between entailment and context reduction

is this: to reduce the context P to P

0

it is necessary (but

perhaps not su�cient) that P

0

`̀ P . The reason that en-

tailment is not su�cient for reduction concerns overlapping

instances: there might be more than one P

0

with the prop-

erty that P

0

`̀ P , so which should be chosen? Overlapping

instance declarations are discussed in Section 3.6 and 4.4.

3.3 Failure

Context reduction fails, and a type error is reported, if there

is no instance declaration that can match the given con-

straint. For example, suppose that we are trying to reduce

the constraint Eq (Tree �), and there is no instance decla-

ration of the form

instance ... => Eq (Tree ...) where ...

Then we can immediately report an error, even if � contains

type variables that will later be further instantiated, because

no further re�nement of � can possibly make it match. This

strategy conicts slightly with separate compilation, because

one could imagine that a separately-compiled library might

not be able to \see" all the instance declarations for Tree.

Arguably, therefore, rather than reporting an error message,

context reduction should be deferred (see Section 4.3), in the

hope that an importing module will have the necessary in-

stance declaration. However, that would postpone the pro-

duction of even legitimate missing-instance error messages

until the \main" module is compiled (when no further in-

stance declarations can occur), which is quite a serious dis-

advantage. Furthermore, it is usually easy to arrange that

the module that needs the instance declaration is able to

\see" it. If this is so, then failure can be reported immedi-

ately, regardless of the context reduction strategy.

3.4 Tautological constraints

A tautological constraint is one that is entailed by the empty

context. For example, given the standard instance dec-

larations, Ord [Int] is a tautological constraint, because

the instance declaration for Ord [a], together with that for

Ord Int allow us to conclude that fg `̀ fOrd [Int]g.

A ground constraint is one that mentions no type variables.

It is clear that a ground constraint is erroneous (that is,

cannot match any instance declaration), or is tautological.

It is less obvious that a tautological constraint does not have

to be ground. Consider

5

In Gofer, an instance declaration instance P => C where ...

brings about the axiom C `̀ P , because the representation in Gofer

of a dictionary for C contains sub-dictionaries for P . In retrospect,

this was probably a poor design decision because it is not always very

intuitive. Moreover, it was later discovered that this is incompatible

with overlapping instances: while either one is acceptable on its own,

the combination results in an unsound type system. The Gofer type

system still su�ers from this problem today because of concerns that

removing support for either feature would break a lot of existing code.

instance Eq a => Foo (a,b) where ...

and let us assume for the moment that overlapping instance

declarations are prohibited (Section 4.4). Now suppose that

the context fFoo (Int,t)g is subject to context reduction.

Regardless of the type t, it can be simpli�ed to fEq Intg

(using the instance declaration above), and thence to fg

(using the Int instance for Eq). Even if t contains type

variables, the constraint Foo (Int,t) can still be reduced

to fg, so it is a tautological constraint.

Another example of one of these tautological constraints

that contain type variables is given by this instance dec-

laration:

instance Monad (ST s) where ...

This declares the state transformer type, ST s, to be a

monad, regardless of the type s.

If, on the other hand, overlapping instance declarations are

permitted, then reducing a tautological constraint in this

way is not legitimate, as we discuss in Section 4.4.

3.5 Generalisation

Suppose that the example in Section 3.1 is embedded in a

larger expression:

let

f = \xs -> case xs of

[] -> False

(y:ys) -> y > z ||

(y==z && ys==[z])

in

....

Having inferred a type for the right-hand side of f, the type

checker must generalise this type to obtain the polymorphic

type for f. Here are several possible types for f:

f :: (Ord a) => [a] -> Bool

f :: (Ord a, Eq a) => [a] -> Bool

f :: (Ord a, Eq a, Eq [a]) => [a] -> Bool

Which of these types is inferred depends on how much con-

text reduction is done before generalisation, a topic we dis-

cuss later (Section 4.3). For the present, we only need note

(a) that there is a choice to be made here, and (b) that the

time that choice is crystallised is at the moment of general-

isation.

What we mean by (b) is that it makes no di�erence whether

context reduction is done just before generalising f, or just

after inferring the type of the sub-expression (ys==[z]), or

anywhere in between; all that matters is how much is done

before generalisation.

3.6 Overlapping instance declarations

Consider these declarations:

class MyShow a where

myShow :: a -> String

5

instance MyShow a => MyShow [a] where

myShow = myShow1

instance MyShow [Char] where

myShow = myShow2

Here, the programmer wants to use a di�erent method for

myShowwhen used at [Char] than when used at other types.

We say that the two instance declarations overlap, because

there exists a constraint that matches both. For example,

the constraint MyShow [Char]matches both declarations. In

general, two instance declarations

instance P1 => Q1 where ...

instance P2 => Q2 where ...

are said to overlap if Q1 and Q2 are uni�able. This de�ni-

tion is equivalent to saying that there is a constraint Q that

matches both Q1 and Q2. Overlapping instance declarations

are illegal in Haskell, but permitted in Gofer.

When, during context reduction, a constraint matches two

overlapping instance declarations, which should be chosen?

We will discuss this question in Section 4.4, but for now we

address the question of whether or not overlapping instance

declarations are useful. We give two further examples.

3.6.1 \Default methods"

One application of overlapping instance declarations is to

de�ne \default methods". Haskell has the following stan-

dard classes:

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

class Functor f where

map :: (a -> b) -> f a -> f b

Now, in any instance of Monad, there is a sensible de�nition

of map, an idea we could express like this:

instance Monad m => Functor m where

map f m = [f x | x <- m]

These instance declarations overlap with all other instances

of Functor. (Whether this is the best way to explain that

an instance of Monad has a natural de�nition of map is de-

batable.)

3.6.2 Monad transformers

A second application of overlapping instance declarations

arises when we try to de�ne monad transformers. The idea

is given by Jones [1995]:

\In fact, we will take a more forward-thinking

approach and use the constructor class mecha-

nisms to de�ne di�erent families of monads, each

of which supports a particular collection of sim-

ple primitives. The bene�t of this is that, later,

we will want to consider monads that are simulta-

neously instances of several di�erent classes, and

hence support a combination of di�erent prim-

itive features. This same approach has proved

to be very exible in other recent work (Jones

[1995a]; Liang, Hudak & Jones [1995])."

To combine the features of monads we introduce a notion

of a monad transformer; the idea is that a monad trans-

former t takes a monad m as an argument and produces a

new monad (t m) as a result that provides all of the com-

putational features of m, plus some new ones added in by the

transformer t.

class MonadT t where

lift :: Monad m => m a -> t m a

For example, the state monad transformer that can add

state to any monad:

newtype StateT s m a = StateT (s -> m (a,s))

instance MonadT (StateT s) where ...

instance Monad m

=> StateMonad (StateT s m) s where ...

Critically, we also need to know that any properties enjoyed

by the original monad, are also supported by the trans-

formed monad. We can capture this formally using:

instance (MonadT t, StateMonad m s)

=> StateMonad (t m) s where

update f = lift (update f)

Note the overlap with the previous instance declaration,

which plays an essential role. De�ning monad transformers

in this way allows us to build up composite monads, with

automatically generated liftings of the important operators.

For example:

f :: (StateMonad m Int, StateMonad m Char)

=> Int -> Char -> m (Int,Char)

f x y = do x' <- update (const x)

y' <- update (const y)

return (x',y')

Later, we might call this function with an integer and a char-

acter argument on a monad that we've constructed using the

following:

type M = StateT Int (ErrorT (State Char))

Notice that the argument of the StateT monad trans-

former is not State Char but rather the enriched monad

(ErrorT (State Char)), assuming that ErrorT is another

monad transformer. Now, the overloading mechansims will

automatically make sure that the �rst call to update in f

takes place in the outermost Int state monad, while the sec-

ond call will be lifted up from the depths of the innermost

Char state monad.

3.7 The ambiguity problem

As we observed earlier, some programs have ambiguous typ-

ings. The classic example is (show (read s)), where di�er-

ent choices for the intermediate type (the result of the read

might lead to di�erent results). Programs with ambiguous

typings are therefore rejected by Haskell.

6

Preliminary experience, however, is that multi-parameter

type classes give new opportunities for ambiguity. Is there

any way to have multi-parameter type classes without risk-

ing ambiguity? Our answer here is \no". One approach

that has been suggested to the ambiguity problem in single-

parameter type classes is to insist that all class operations

take as their �rst argument a value of the class's type (Oder-

sky, Wadler & Wehr [1995]). Though it is theoretically at-

tractive, there are too many useful classes that disobey this

constraint (Num, for example, and overloaded constants in

general), so it has not been adopted in practice. It is also

not clear what the rule would be when we move to con-

structor classes, so that the class's \type" variable ranges

over type constructors.

If no workable solution to the ambiguity problem has been

found for single parameter classes, we are not optimistic that

one will be found for multi-parameter classes.

4 Design choices

We are now ready to discuss the design choices that must be

embodied in a type-class system of the kind exempli�ed by

Haskell. Our goal is to describe a design space that includes

Haskell, Gofer, and a number of other options beside. While

we express opinions about which design choices we prefer,

our primary goal is to give a clear description of the design

space, rather than to prescribe a particular solution.

4.1 The ground rules

Type systems are a huge design space, and we only have

space to explore part of it in this paper. In this section we

briey record some design decisions currently embodied in

Haskell that we do not propose to meddle with. Our �rst

set of ground rules concern the larger setting:

� We want to retain Haskell's type-inference property.

� We want type inference to be decidable; that is, the

compiler must not fail to terminate.

� We want to retain the possibility of separate compila-

tion.

� We want all existing Haskell programs to remain legal,

and to have the same meaning.

� We seek a coherent type system; that is, every di�erent

valid typing derivation for a program leads to a result-

ing program that has the same dynamic semantics.

The last point needs a little explanation. We have already

seen that the way in which context reduction is performed

a�ects the dynamic semantics of the program via the con-

struction and use of dictionaries (other operational models

will experience similar e�ects). It is essential that the way in

which the typing derivation is constructed (there is usually

more than one for a given program) should not a�ect the

meaning of the program.

Next, we give some ground rules about the form of class

declarations. A class declaration takes the form:

class P => C �

1

: : : �

n

where { op :: Q => � ; : : : }

(If multi-parameter type classes are prohibited, then n =

1.) If S �

1

: : : �

m

is one of the constraints appearing in the

context P , we say that S is a superclass of C. We insist on

the following:

� There can be at most one class declaration for each

class C.

� Throughout the program, all uses of C are applied to

n arguments.

� �

1

: : : �

n

must be distinct type variables.

� TV (P) � f�

1

; : : : ; �

n

g. That is, P must not mention

any type variables other than the �

i

.

� The superclass hierarchy de�ned by the set of class

declarations must be acyclic. This restriction is not ab-

solutely necessary, but the applications for cyclic class

structures are limited, and it helps to keep things sim-

ple.

Next, we give rules governing instance declarations, which

have the form:

instance P => C �

1

: : : �

n

where : : :

We call P the instance context, �

1

; : : : ; �

n

the instance types,

and C �

1

: : : �

n

the head of the instance declaration. Like

Haskell, we insist that:

� TV (P) �

S

TV (�

i

); that is, the instance context must

not mention any type variables that are not mentioned

in the instance types.

We discuss the design choices related to instance declara-

tions in Sections 4.5 and 4.7.

Thirdly, we require the following rule for types:

� If P => � is a type, then TV (P) � TV (�). If the

context P mentions any type variables not used in �

then any use of a value with this type is certain to be

ambiguous.

Fourthly, we will assume that, despite separate compilation,

instance declarations are globally visible. The reason for this

is that we want to be able to report an error if we encounter

a constraint that cannot match any instance declaration.

For example, consider

f x = 'c' + x

Type inference on f gives rise to the constraint (Num Char).

If instance declarations are not globally visible, then we

would be forced to defer context reduction, in case f is

called in another module that has an instance declaration

for (Num Char). Thus we would have to infer the following

type for f:

f :: Num Char => Char -> Char

7

Instead, what we really want to report an immediate error

when type-checking f.

So, if instance declarations are not globally visible, many

missing-instance errors would only be reported when the

main module is compiled, an unacceptable outcome. (Ex-

plicit type sigatures might force earlier error reports, how-

ever.) Hence our ground rule. In practice, though, we can

get away with something a little weaker than insisting that

every instance declaration is visible in every module | for

example, when compiling a standard library one does need

instance declarations for unrelated user-de�ned types.

Lastly, we have found it useful to articulate the following

principle:

� Adding an instance declaration to well-typed program

should not alter either the static or dynamic seman-

tics of the program, except that it may give rise to

an overlapping-instance-declaration error (in systems

that prohibit overlap).

The reason for this principle is to support separate compila-

tion. A separately compiled library module cannot possibly

\see" all the instance declarations for all the possible client

modules. So it must be the case that these extra instance

declarations should not inuence the static or dynamic se-

mantics of the library, except if they conict with the in-

stance declarations used when the library was compiled.

4.2 Decision 1: the form of types

Decision 1: what limitations, if any, are there on the form

of the context of a type? In Haskell 1.4, types (whether

inferred, or speci�ed in a type signature) must be of the

form P => � , where P is a simple context. We say that a

context is simple if all its constraints are of the form C �,

where C is a class and � is a type variable.

This design decision was defensible for Haskell 1.2 (which

lacked constructor classes) but seems demonstrably wrong

for Haskell 1.4. For example, consider the de�nition:

g = \xs -> (map not xs) == xs

The right hand side of the de�nition has the type

f Bool -> Bool, and context fFunctor f; Eq (f Bool)g

6

.

Because of the second constraint here, this cannot be re-

duced to a simple context by the rules in Figure 1, and

Haskell 1.4 rejects this de�nition as ill-typed. In fact, if we

insist that the context in a type must be simple, the function

g has many legal types (such as [Bool] -> Bool), but no

principal, or most general, type. If, instead, we allow non-

simple contexts in types, then it has the perfectly sensible

principal type:

g :: (Functor f, Eq (f Bool)) => f Bool -> Bool

In short, Haskell 1.4 lacks the principal type property,

namely that any typable expression has a principal type;

but it can be regained by allowing richer contexts in types.

This is not just a theoretical nicety | it directly a�ects the

expressiveness of the language.

6

The de�nition of the class Functor was given in Section 3.6.1.

Similar problems occur with multi-parameter classes if we

insist that the arguments of each constraint in a context

must be variables | a natural generalization of the single-

parameter notion of a simple context. For example, one

can imagine inferring a context such as fStateMonad IO �g,

where � is a type variable. If we then want to generalise

over �, we would obtain a function whose type was of the

form StateMonad IO � => � . If such a type was illegal then,

as with the previous example, we would be forced to reject

the program even though it has a sensible principal type in

a slightly richer system.

The choices for the allowable contexts in types seem to be

these:

Choice 1a (Haskell): the context of a type must be sim-

ple (with some extended de�nition of \simple").

Choice 1b (Gofer): there are no restrictions on the con-

text of a type.

Choice 1c: something in between these two. For example,

we might insist that the context in a type is reduced

\as much as possible". But then a legal type signature

might become illegal if we introduced a new instance

declaration (because then the type signature might no

longer be reduced as much as possible).

4.3 Decision 2: How much context reduc-

tion?

Decision 2: how much context reduction should be done be-

fore generalisation? Haskell and Gofer make very di�erent

choices here. Haskell takes an eager approach to context

reduction, doing as much as possible before generalisation,

while Gofer takes a lazy approach, only using context reduc-

tion to eliminate tautological constraints.

It turns out that this choice has a whole raft of consequences,

as Jones [1994, Chapter 7] discusses in detail. These con-

sequences mainly concern pragmatic matters, such as the

complexity of types, or the e�ciency of the resulting pro-

gram. It is highly desirable that the choice of how much

context reduction is done when should not a�ect the mean-

ing of the program. It is bad enough that the meaning of the

program inevitably depends on the resolution of overload-

ing (Odersky, Wadler & Wehr [1995]). It would be much

worse if the program's meaning depended on the exact way

in which the overloading was resolved | that is, if the type

system were incoherent (Section 4.1).

Here, then, are the issues a�ecting context reduction.

1. Context reduction usually leads to \simpler" contexts,

which are perhaps more readily understood (and writ-

ten) by the programmer. In our earlier example, Ord a

is simpler than fOrd a; Eq a; Eq [a]g.

Occasionally, however, a \simpler" context might be

less \natural". Suppose we have a data type Set with

an operation union, and an Ord instance (Jones [1994,

Section 7.1]):

8

data Set a = ...

union :: Eq a => Set a -> Set a -> Set a

instance Eq a => Ord (Set a) where ...

Now, consider the following function de�nition:

f x y = if (x<=y) then y else x `union` y

With context reduction, f's type is inferred to be

f :: Eq a => Set a -> Set a -> Set a

whereas without context reduction we would infer

f :: Ord (Set a) => Set a -> Set a -> Set a

One can argue that the latter is more \natural" since

it is clear where the Ord constraint comes from, while

the former contains a slightly surprising Eq constraint

that results from the unrelated instance declaration.

2. Context reduction often, but not always, reduces the

number of dictionaries passed to functions. In the run-

ning example of Section 3, doing context reduction be-

fore generalisation allowed us to pass one dictionary to

f instead of three.

Sometimes, though, a \simpler" context might have

more constraints (i.e. more dictionaries to pass in

a dictionary-passing implementation). For example,

given the instance declaration:

instance (Eq a, Eq b) => Eq (a,b) where ...

the constraint Eq (a,b)would reduce to fEq a; Eq bg,

which may be \simpler", but certainly is not shorter.

3. Context reduction eliminates tautological constraints.

For example, without context reduction the function

double = \x -> x + (x::Int)

would get the type

double :: Num Int => Int -> Int

This type means that a dictionary for Num Int will be

passed to double, which is quite redundant. It it in-

variably better to reduce fNum Intg to fg, using the

Int instance of Num. The \evidence" that Int is an

instance of Num takes the form of a global constant

dictionary for Num Int. (This example uses a ground

constraint, but the same reasoning applies to any tau-

tological constraint.)

4. Delaying context reduction increases sharing of dictio-

naries. Consider this example:

let

f xs y = xs > [y]

in

f xs y && f xs z

Haskell will infer the type of f to be:

f :: Ord a => [a] -> a -> Bool

A dictionary for Ord a will be passed to f, which will

construct a dictionary for Ord [a]. In this example,

though, f is called twice, at the same type, and the two

calls will independently construct the same Ord [a]

dictionary. We could obtain more sharing (i.e. e�-

ciency) by postponing the context reduction, inferring

instead the following type for f:

f :: Ord [a] => [a] -> a -> Bool

Now f is passed a dictionary for Ord [a], and this

dictionary can be shared between the two calls of f.

Because context reduction is postponed until the top

level in Gofer, this sharing can encompass the whole

program, and only one dictionary for each class/type

combination is ever constructed.

5. Type signatures interact with context reduction.

Haskell allows us to specify a type signature for a func-

tion. Depending on how context reduction is done, and

what contexts are allowed in type signatures, this type

might be more or less reduced than the inferred type.

For example, if full context reduction is normally done

before generalisation, then is this a valid type signa-

ture?

f :: Eq [a] => ...

That is, can a type signature decrease the amount of

context reduction that is performed? In the other di-

rection, if context reduction is not usually done at gen-

eralisation, then is this a valid type signature?

f :: Eq a => ...

where f's right-hand side generates a constraint

Eq [a]? That is, can a type signature increase the

amount of context reduction that is performed?

6. Context reduction is necessary for polymorphic recur-

sion. One of the new features in Haskell 1.4 is the

ability to de�ne a recursive function in which the re-

cursive call is at a di�erent type than the original call,

a feature that has proved itself useful in the e�cient en-

coding of functional data structures (Okasaki [1996]).

For example, consider the following non-uniformly re-

cursive function:

f :: Eq a => a -> a -> Bool

f x y = if x == y then True

else f [x] [y]

It is not possible to avoid all runtime dictionary con-

struction in this example, because each call to recur-

sive f must use a dictionary of higher type, and there

is no static bound to the depth of recursion. It fol-

lows that the strategy of defering all context reduc-

tion to the top level, thereby ensuring a �nite number

of dictionaries, cannot work. The type signature is

necessary for the type checker to permit polymorphic

recursion, and it in turn forces reduction of the con-

straint Eq [a] that arises from the recursive call to

f.

9

7. Context reduction a�ects typability. Consider the fol-

lowing (contrived) program:

data Tree a = Nil | Fork (Tree a) (Tree a)

f x = let silly y = (y==Nil)

in x + 1

If there is no Eq instance of Tree, then the program is

arguably erroneous, since silly performs equality at

type Tree. But if context reduction is deferred, silly

will, without complaint, be assigned the type

silly :: Eq (Tree a) => a -> Bool

Then, since silly is never called, no other type error

will result. In short, the de�nition of which programs

are typable and which are not depends on the rules for

context reduction.

8. Context reduction conicts with the use of overlapping

instances. This is a bigger topic, and we defer it until

Section 4.4.

Bearing in mind this (amazingly large) set of issues, there

seem to be the following possible choices:

Choice 2a (Haskell, eager): reduce every context to a

simple context before generalisation. However, as we

have seen, this may mean that some perfectly reason-

able programs are rejected as being ill-typed.

Choice 2b (lazy): do no context reduction at all until the

constraints for the whole program are gathered to-

gether; then reduce them. This is satisfyingly decisive,

but it gives rise to pretty stupid types, such as:

(Eq a, Eq a, Eq a) => a -> Bool

(Num Int, Show Int) => Int -> String

Choice 2c (Gofer, fairly lazy): do context reduction be-

fore generalisation, but refrain from using rule (inst)

except for tautological constraints. If overlapping in-

stances are permitted, then change \tautological" to

\ground". A variant would be to refrain from using

(super) as well.

Choice 2d (Gofer + polymorphic recursion): like 2c,

but with the added rule that if there is a type sig-

nature, the inferred context must be entailed by the

context in the type signature, and the variable being

de�ned is assigned the type in the signature through-

out its scope. This is enough to make the choice com-

patible with polymorphic recursion, which 2c is not.

Choice 2e (relaxed): leave it un-speci�ed how much con-

text reduction is done before generalisation! That is,

if the actual context of the term to be generalised is

P , then the inferred context for the generalised term

is P or any context that P reduces to. The same rule

for type signatures must apply as in 2d, for the same

reason. To avoid the problem of item 7 we can require

that an error is reported as soon as a generalisation

step encounters a constraint that cannot possibly be

satis�ed (even if that constraint is not reduced).

We should note that 2b-e rule out Choice 1a for type signa-

tures. Furthermore (as we shall see in Section 4.4), Choices

2a and 2e rule out overlapping instance declarations.

The intent in Choice 2e is to leave as much exibility as pos-

sible to the compiler (so that it can make the most e�cient

choice) while still giving a well-de�ned static and dynamic

semantics for the language:

� So far as the static semantics is concerned, when con-

text reduction is performed does not change the set of

typable programs.

� Concerning the dynamic semantics, in the absence of

overlapping instance declarations, a given constraint

can only match a unique instance declaration.

4.4 Decision 3: overlapping instance dec-

larations

Decision 3: are instance declarations with overlapping (but

not identical) instance types permitted? (See Section 3.6.)

If overlapping instances are permitted, we need a rule that

speci�es which instance declaration to choose if more than

one matches a particular constraint. Gofer's rule is that the

declaration that matches most closely is chosen. In general,

there may not be a unique such instance declaration, so

further rules are required to disambiguate the choice | for

example, Gofer requires that instance declarations may only

overlap if one is a substitution instance of the other.

Unfortunately, this is not enough. As we mentioned above,

there is a fundamental conict between eager (or unspeci-

�ed) context reduction and the use of overlapping instances.

To see this, consider the de�nition:

let

f x = myShow (x++x)

in

(f "c", f [True,False])

where myShowwas de�ned in Section 3.6. If we do (full) con-

text reduction before generalising f, we will be faced with a

constraint MyShow [a], arising from the use of myShow. Un-

der eager context reduction we must simplify it, presumably

using the instance declaration for MyShow [a], to obtain the

type

f :: MyShow a => a -> String

If we do so, then every call to f will be committed to the

myShow1 method. However, suppose that we �rst perform

a simple program transformation, inlining f at both its call

sites, to obtain the expression:

(myShow "c", myShow [True,False] [True,False])

Now the two calls distinct calls to myShow will lead to the

constraints MyShow [Char] and MyShow [Bool] respectively;

the �rst will lead to a call of myShow2 while second will lead

to a call of myShow1. A simple program transformation has

changed the behaviour of the program!

10

Now consider the original program again. If instead we de-

ferred context reduction we would infer the type:

f :: MyShow [a] => a -> String

Now the two calls to f will lead to the constraints

MyShow [Char] and MyShow [Bool] as in the inlined case,

leading to calls to myShow2 and myShow1 respectively. In

short, eager context reduction in the presence of overlapping

instance declarations can lead to premature committment to

a particular instance declaration, and consequential loss of

simple source-language program transformations.

Overlapping instances are also incompatible with the reduc-

tion of non-ground tautological constraints. For example,

suppose we have the declaration

instance Monad (ST s) where ...

and we are trying to simplify the context fMonad (ST �)g. It

would be wrong to reduce it to fg because there might be

an overlapping instance declaration

instance Monad (ST Int) where ...

This inability to simplify non-ground tautological con-

straints has, in practice, caused Gofer some di�culties

when implementing lazy state threads (Launchbury & Pey-

ton Jones [1995]). Briey, runST insists that its argument

has type 8�:ST � � , while the argument type would be in-

ferred to be Monad (ST �) => ST � � .

To summarise, if overlapping instances are permitted, then

the meaning of the program depends in detail on when con-

text reduction takes place. To avoid loss of coherence, we

must specify when context reduction takes place as part of

the type system itself.

One possibility is to defer reduction of any constraint that

can possibly match more than one instance declaration.

That restores the ability to perform program transforma-

tions, but it interacts poorly with separate compilation. A

separately-compiled library might not \see" all the instances

of a given class that a client module uses, and so must con-

servatively assume that no context reduction can be done at

all on any constraint involving a type variable.

So the only reasonable choices are these:

Choice 3a: prohibit overlapping instance declarations.

Choice 3b: permit instance declarations with overlapping,

but not identical, instance types, provided one is a

substitution instance of the other; but restrict all uses

of the (inst) rule (Figure 1) to ground contexts C;P .

This condition identi�es constraints that can match

at most one instance declaration, regardless of what

further instance declarations are added.

4.5 Decision 4: instance types

Decision 4: in the instance declaration

instance P => C �

1

: : : �

n

where : : :

what limitations, if any, are there on the form of the instance

types, �

1

: : : �

n

?

Haskell 1.4 has only single-parameter type classes, hence

n = 1. Furthermore, Haskell insists that the single type

� is a simple type; that is, a type of the form T �

1

: : : �

m

,

where T is a type constructor and �

1

: : : �

n

are distinct type

variables. This decision is closely bound up with Haskell's

restriction to simple contexts in types (Section 4.2). Why?

Because, faced with a constraint of the form (C (T �)) there

is either a unique instance declaration that matches it (in

which case the constraint can be reduced), or there is not (in

which case an error can be signaled). If � were allowed to

be other than a type variable then more than one instance

declaration might be a potential match for the constraint.

For example, suppose we had:

instance Foo (Tree Int) where ...

instance Foo (Tree Bool) where ...

(Note that these two do not overlap.) Given the constraint

(Foo (Tree �)), for some type variable �, we cannot decide

which instance declaration to use until we know more about

�. If we are generalising over �, we will therefore end up

with a function whose type is of the form

Foo (Tree �) => �

Since Haskell does not allow such types (because the con-

text is not simple), it makes sense for Haskell also to restrict

instance types to be simple types. If types can have more

general contexts, however, it is not clear that such a restric-

tion makes sense.

We have come across examples where it makes sense for

the instance types not to be simple types. Section 3.6.1

gave examples in which the instance type was just a type

variable, although this was in the context of overlapping

instance declarations. Here is another example

7

:

class Liftable f where

lift0 :: a -> f a

lift1 :: (a->b) -> f a -> f b

lift2 :: (a->b->c) -> f a -> f b -> f c

instance (Liftable f, Num a) => Num (f a) where

fromInteger = lift0 . fromInteger

negate = lift1 negate

(+) = lift2 (+)

The instance declaration is entirely reasonable: it says

that any \liftable" type constructor f can be used to con-

struct a new numeric type (f a) from an existing numeric

type a. Indeed, these declarations precisely generalises the

Behaviour class of Elliott & Hudak [1997], and we have en-

countered other examples of the same pattern. (You will

probably have noticed that lift1 is just the map from the

class Functor; perhaps Functor should be a superclass of

Liftable.) A disadvantage of Liftable is that now the

Haskell types for Complex and Ratiomust be made instances

of Num indirectly, by making them instances of Liftable.

This seems to work �ne for Complex, but not for Ratio. In-

cidentally, we could overcome this problem if we had over-

lapping instances, thus:

instance (Liftable f, Num a) => Num (f a) where ...

instance Num a => Num (Ratio a) where ...

Another reason for wanting non-simple instance types is

7

Suggested by John Matthews.

11

when using old types for new purposes. For example

8

, sup-

pose we want to de�ne the class of moveable things:

class Moveable t where

move :: Vector -> t -> t

Now let us make points moveable. What is a point? Perhaps

just a pair of Floats. So we might want to write

instance Moveable (Float, Float) where ...

or even

type Point = (Float, Float)

instance Moveable Point where ...

Unlike the Liftable example, it is possible to manage with

simple instance types, by making Point a new type:

newtype Point = MkPoint Float Float

instance Moveable Point where ...

but that might be tiresome (for example, unzip split a list

of points into their x-coordinates and y-coordinates).

Choice 4a (Haskell): the instance type(s) �

i

must all be

simple types.

Choice 4b: each of the instance types �

i

is a simple type

or a type variable, and at least one is not a type vari-

able. (The latter restriction is necessary to ensure that

context reduction terminates.)

Choice 4c: at least one of the instance types �

i

must not

be a type variable.

Choice 4c would permit the Liftable example above. It

would also permit the following instance declarations

instance D (T Int a) where ...

instance D (T Bool a) where ...

even if overlapping instances are prohibited (provided, of

course, there was no instance for D (T a b)). It would also

allow strange-looking instance declarations such as

instance C [[a -> Int]] where ...

which in turn make the matching of a candidate instance

declaration against a constraint a little more complicated

(although not much).

If overlapping instances are permitted, then it is not clear

whether choices 4b and 4c lead to a decideable type system.

If overlapping instances are not permitted then, seem to be

no technical objections to them, and the examples given

above suggest that the extra expressiveness is useful.

4.6 Decision 5: repeated type variables in

instance heads

Decision 5: in the instance declaration

instance P => C �

1

: : : �

n

where : : :

8

Suggested by Simon Thompson.

can the instance head �

i

contain repeated type variables?

This decision is really part of Decision 4 but it deserves

separate treatment.

Consider this instance declaration, which has a repeated

type variable in the instance type:

instance ... => Foo (a,a) where ...

In Haskell this is illegal, but there seems no technical rea-

son to exclude it. Furthermore, it is useful: the VarMonad

instance for ST in Section 2.1 used repeated type variables,

as did the Iso example in Section 2.3.

Permitting repeated type variables in the instance type of

an instance declaration slightly complicates the process of

matching a candidate instance declaration against a con-

straint, requiring full matching (i.e. one-way uni�cation,

a well-understood algorithm). For example, when matching

the instance head Foo (�;�) against a constraint Foo (�

1

; �

2

)

one must �rst bind � to �

1

, and then check for equality be-

tween the now-bound � and �

2

.

Choice 5a: permit repeated type variables in an instance

head.

Choice 5b: prohibit repeated type variables in an instance

head.

4.7 Decision 6: instance contexts

Decision 6: in the instance declaration

instance P => C �

1

: : : �

n

where : : :

what limitations, if any, are there on the form of the instance

context, P?

As mentioned in Section 4.1, we require that TV (P) �

S

TV (�

i

). However, Haskell has a more drastic restriction:

it requires that each constraint in P be of the form C �

where � is a type variable. An important motivation for

a restriction of this sort is the need to ensure termination

of context reduction. For example, suppose the following

declaration was allowed:

instance C [[a]] => C [a] where ...

The trouble here is that for context reduction to terminate

it must reduce a context to a simpler context. This instance

declaration will \reduce" the constraint (C [�]) to (C [[�]]),

which is more complicated, and context reduction will di-

verge. Although they do not seem to occur in practical

applications, instance declarations like this are permitted in

Gofer|with the consequence that its type system is in fact

undecidable.

In short, it is essential to place enough constraints on the

instance context to ensure that context reduction converges.

To do this, we need to ensure that something \gets smaller"

in the passage from C �

1

: : : �

n

to P . Haskell's restriction to

simple contexts certainly ensures termination, because the

argument types are guaranteed to get smaller. In princi-

ple, instance declarations with irreducible but non-simple

contexts might make sense:

12

instance Monad (t m) => Foo t m where ...

We have yet to �nd any convincing examples of this. How-

ever, if context reduction is deferred (Choices 2b,c) then we

must permit non-simple instance contexts. For example:

data Tree a = Node a [Tree a]

instance (Eq a, Eq [Tree a]) => Eq (Tree a) where

(==) (Node v1 ts1) (Node v2 ts2)

= (v1 == v2) && (ts1 == ts2)

Here, if we are not permitted to reduce the constraint

Eq [Tree a], it must appear in the instance context.

Lastly, if the constraints in P involve only type variables,

when multi-parameter type classes are involved we must also

ask whether a single constraint may contain a repeated type

variable, thus:

instance Foo a a => Baz a where ...

There seems to be no technical reason to prohibit this.

Choice 6a: constraints in the context of an instance dec-

laration must be of the form C �

1

: : : �

n

, with the �

i

distinct.

Choice 6b: as for Choice 6a, except without the require-

ment for the �

i

to be distinct.

Choice 6c: something less restrictive, but with some way

of ensuring decidability of context reduction.

4.8 Decision 7: what superclasses are per-

mitted

Decision 7: in a class declaration,

class P => C �

1

: : : �

n

where { op :: Q => � ; : : : }

what limitations, beyond those in Section 4.1, are there on

the form of the superclass context, P? Haskell restricts P

to consist of constraints of the form D �

1

: : : �

m

, where �

i

must be a member of f�

1

; : : : ; �

n

g, and all the �

i

must be

distinct. But what is wrong with this?

class Foo (t m) => Baz t m where ...

Also in this case, there seems to be no technical reason to

prohibit this.

Choice 7a: constraints in the superclass context must be

as in Haskell, i.e. the constraints are of the form

D �

1

: : : �

n

, with the �

i

distinct, and a subset of the

type variables that occur in the class head.

Choice 7b: no limitations on superclass contexts, except

those postulated in Section 4.1.

4.9 Decision 8: improvement

Suppose that we have a constraint with the following prop-

erties:

� it contains free type variables;

� it does not match any instance declaration

9

� it can be made to match an instance declaration by in-

stantiating some of the constraint's free type variables;

� no matter what other (legal) instance declarations are

added, there is only one instance declaration that the

constraint can be made to match in this way.

If all these things are true, an attractive idea is to improve

the constraint by instantiating the type variables in the con-

straint so that it does match the instance declaration. This

makes some programs typable that would not otherwise be

so. It does not compromise any of our principles, because

the last condition ensures that even adding new instance

declarations will not change the way in which improvement

is carried out.

Improvement was introduced by Jones [1995b]. A full dis-

cussion is beyond the scope of this paper. The conditions

are quite restrictive, so it is not yet clear whether it would

improve enough useful programs to be worth the extra e�ort.

Choice 8a: no improvement.

Choice 8b: allow improvement in some form.

Choice 8b would obviously need further elaboration before

this design decision is crisply formulated.

4.10 Decision 9: Class declarations

Decision 9: what limitations, if any, are there on the con-

texts in class-member type signatures? Presumably class-

member type signatures should obey the same rules as any

other type signature, but Haskell adds an additional restric-

tion. Consider:

class C a where

op1 :: a -> a

op2 :: Eq a => a -> a

In Haskell, the type signature for op2 would be illegal, be-

cause it further constrains the class type variable a. There

seems to be no technical reason for this restriction. It is sim-

ply a nuisance to the Haskell speci�cation, implementation,

and (occasionally) programmer.

Choice 9a (Haskell): the context in a class-member type

signature cannot mention the class type variable; in

addition, it is subject to the same rules as any other

type signature.

Choice 9b: the type signature for a class-member is sub-

ject to the same rules as any other type signature.

9

Recall that matching a constraint against an instance declaration

is a one-way uni�cation: we may instantiate type variables from the

instance head, but not those from the constraint.

13

5 Other avenues

While writing this paper, a number of other extensions to

Haskell's type-class system were suggested to us that seem

to raise considerable technical di�culties. We enumerate

them in this section, identifying their di�culties.

5.1 Anonymous type synonyms

When exposed to multi-parameter type classes and in par-

ticular higher order type variables, programmers often seek

a more expressive type language. For example, suppose we

have the following two classes Foo and Bar:

class Foo k1 where f :: k1 a -> a

class Bar k2 where g :: k2 b -> b

and a concrete binary type constructor

data Baz a b = ...

Then we can easily write an instance declaration that de-

clares (Bar a) to be a functor, thus:

instance Functor (Baz a) where

map = ...

But suppose Baz is really a functor in its �rst argument.

Then we really want to say is:

type Zab b a = Baz a b

instance Functor (Zab b) where

map = ...

However, Haskell prohibits partially-applied type synon-

myms, and for a very good reason: a partially-applied type

synonym is, in e�ect, a lambda abstraction at the type level,

and that takes us immediately into the realm of higher-order

uni�cation, and minimises the likelihood of a decidable type

system (Jones [1995a, Section 4.2]). It might be possible to

incorporate some form of higher-order uni�cation (e.g. along

the lines of Miller [1991]) but it would be a substantial new

complication to an already sophisticated type system.

5.2 Relaxed superclass contexts

One of our ground rules in this paper is that the type vari-

ables in the context of a class declaration must be a subset

of the type variables in the class head. This rules out dec-

larations like:

class Monad (m s) => StateMonad m where

get :: m s s

set :: s -> m s ()

The idea here is that the context indicates that m s should

be a monad for any type s. Rewriting this de�nition by

overloading on the state as well

class Monad (m s) => StateMonad m s where

get :: m s s

set :: s -> m s ()

is not satisfactory as it forces us to pass several dictionaries,

say (StateMonad State Int, StateMonad State Bool)

where they are really the same. What we really want is

to use universal quanti�cation:

class (forall s. Monad (m s))

=> StateMonad m where

get :: m s s

set :: s -> m s ()

but that means that the type system would have to han-

dle constraints with universal quanti�cation | a substantial

complication.

Another ground rule in this paper is the restriction to acyclic

superclass hierarchies. Gofer puts no restriction on the form

of predicates that may appear in superclass contexts, in par-

ticular it allows mutually recursive class hierarchies. For ex-

ample, the Iso class example of Section 2.3 can be written

in a more elegant way if we allow recursive classes:

class Iso b a => Iso a b where iso :: a -> b

The superclass constraint ensures that when a type a is iso-

morphic to b, then type b is isomorphic to a. Needless to

say that such class declarations easily give lead to an unde-

cidable type system.

5.3 Controling the scope of instances

One sometimes wishes that it was possible to have more

than one instance declaration for the same instance type,

an extreme case of overlap. For example, in one part of the

program one might like to have an instance declaration

instance Ord T where { (<) = lessThanT }

and elsewhere one might like

instance Ord T where { (<) = greaterThanT }

As evidence for this, notice that several Haskell standard

library functions (such as sortBy) take an explicit compar-

ison operator as an argument, reecting the fact that the

Ord instance for the data type involved might not be the

ordering you want for the sort. Having multiple instance

declarations for the same type is, however, fraught with the

risk of losing coherence; at the very least it involves strict

control over which instance declarations are visible where.

It is far from obvious that controlling the scope of instances

is the right way to tackle this problem | functors, as in ML,

look more appropriate.

5.4 Relaxed type signature contexts

In programming with type classes it is often the case

that we end up with an ambiguous type while we

know that in fact it is harmless. For example, know-

ing all instance declarations in the program, we might

be sure that the ambiguous example of Section 2.3

iso 2 == iso 3 :: (Eq b, Iso Int b) => Bool has the

same value, irrespective of the choice for b. Is it possible

to modify the type system to deal with such cases?

14

6 Conclusion

Sometimes a type system is so �nely balanced that virtually

any extension destroys some of its more desirable proper-

ties. Haskell's type class system turns out not to have the

property { there seems to be sensible extensions that gain

expressiveness without involving major new complications.

We have tried to summarise the design choices in a fairly

un-biased manner, but it is time to nail our colours to the

mast. The following set of design choices seems to de�ne

an upward-compatible extension of Haskell without losing

anything important:

� Permit multi-parameter type classes.

� Permit arbitrary constraints in types and type signa-

tures (Choice 1b).

� Use the (inst) context-reduction rule only when forced

by a type signature, or when the constraint is tauto-

logical (Choice 2d). Choice 2e is also viable.

� Prohibit overlapping instance declarations

(Choice 3a).

� Permit arbitrary instance types in the head of an in-

stance declaration, except that at least one must not

be a type variable (Choice 4c).

� Permit repeated type variables in the head of an in-

stance declaration (Choice 5a).

� Restrict the context of an instance declaration to men-

tion type variables only (Choice 6b).

� No limitations on superclass contexts (Choice 7b).

� Prohibit improvement (Choice 8a).

� Permit the class variable(s) to be constrained in class-

member type signatures (Choice 9b).

Our hope is that this paper will provoke some well-informed

debate about possible extensions to Haskell's type classes.

We particularly seek a wider range of examples to illustrate

and motivate the various extensions discussed here.

Acknowledegements

We would like to thank Koen Claessen, Benedict Gaster,

Thomas Hallgren, John Matthews, Sergey Mechveliani,

Alastair Reid, Enno Scholz, Walid Taha, Simon Thompson,

and Carl Witty for helpful feedback on earlier drafts of this

paper. Meijer and Peyton Jones also gratefully acknowl-

edge the support of the Oregon Graduate Institute during

our sabbaticals, funded by a contract with US Air Force

Material Command (F19628-93-C-0069).

References

K Chen, P Hudak & M Odersky [June 1992], \Paramet-

ric type classes," in ACM Symposium on Lisp and

Functional Programming, Snowbird, ACM.

C Elliott & P Hudak [June 1997], \Functional reactive ani-

mation," in Proc International Conference on Func-

tional Programming, Amsterdam, ACM.

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel,

J Fairbairn, J Fasel, M Guzman, K Hammond, J

Hughes, T Johnsson, R Kieburtz, RS Nikhil, W

Partain & J Peterson [May 1992], \Report on the

functional programming language Haskell, Version

1.2," SIGPLAN Notices 27.

MP Jones [Jan 1995a], \A system of constructor classes:

overloading and implicit higher-order polymor-

phism," Journal of Functional Programming 5, 1{

36.

MP Jones [June 1995b], \Simplifying and improving qual-

i�ed types," in Proc Functional Programming

Languages and Computer Architecture, La Jolla,

ACM.

MP Jones [May 1994], \The implementation of the Gofer

functional programming system,"

YALEU/DCS/RR-1030, Department of Computer

Science, Yale University.

MP Jones [May 1995], \Functional programming with over-

loading and higher-order polymorphism," in First

International Spring School on Advanced Func-

tional Programming Techniques, B�astad, Sweden,

Springer-Verlag LNCS 925.

MP Jones [Nov 1994], Quali�ed types: theory and practice,

Cambridge University Press.

S Kaes [Jan 1988], \Parametric overloading in polymor-

phic programming languages," in 15th ACM Sym-

posium on Principles of Programming Languages,

ACM, 131{144.

J Launchbury & SL Peyton Jones [Dec 1995], \State in

Haskell," Lisp and Symbolic Computation 8, 293{

342.

S Liang, P Hudak &M Jones [Jan 1995], \Monad transform-

ers and modular interpreters," in 22nd ACM Sym-

posium on Principles of Programming Languages,

San Francisco, ACM.

D Miller [1991], \A logic programming language with

lambda abstraction, function variables, and simple

uni�cation," Journal of Logic and Computation 1.

M Odersky, PL Wadler & M Wehr [June 1995], \A second

look at overloading," in Proc Functional Program-

ming Languages and Computer Architecture, La

Jolla, ACM.

15

C Okasaki [Sept 1996], \Purely functional data structures,"

PhD thesis, CMU-CS-96-177, Department of Com-

puter Science, Carnegie Mellon University.

SL Peyton Jones [Sept 1996], \Bulk types with class,"

in Electronic proceedings of the 1996 Glas-

gow Functional Programming Workshop (http://-

www.dcs.gla.ac.uk/fp/workshops/fpw96/-

Proceedings96.html).

SL Peyton Jones, AJ Gordon & SO Finne [Jan 1996], \Con-

current Haskell," in 23rd ACM Symposium on

Principles of Programming Languages, St Peters-

burg Beach, Florida, ACM, 295{308.

PL Wadler & S Blott [Jan 1989], \How to make ad-hoc poly-

morphism less ad hoc," in Proc 16th ACM Sym-

posium on Principles of Programming Languages,

Austin, Texas, ACM.

16

