
Relational Parametricity and Units of Measure
Andrew J. Kennedy

In Proceedings of the 24th Annual ACM Symposium on Principles of Programming Languages,
Paris, France, January 1997.

The following copyright notice is required by the ACM (see http://www.acm.org/pubs/copyright_policy.html).

Copyright c© 1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Relational Parametricity and Units of Measure

Andrew J. Kennedy∗

LIX, École Polytechnique
91128 Palaiseau cedex, France

Abstract

Type systems for programming languages with numeric
types can be extended to support the checking of units
of measure. Quantification over units then introduces
a new kind of parametric polymorphism with a cor-
responding Reynolds-style representation independence
principle: that the behaviour of programs is invariant
under changes to the units used. We prove this ‘dimen-
sional invariance’ result and describe four consequences.
The first is that the type of an expression can be used to
derive equations which describe its properties with re-
spect to scaling (akin to Wadler’s ‘theorems for free’ for
System F). Secondly there are certain types which are
inhabited only by trivial terms. For example, we prove
that a fully polymorphic square root function cannot
be written using just the usual arithmetic primitives.
Thirdly we exhibit interesting isomorphisms between
types and for first-order types relate these to the cen-
tral theorem of classical dimensional analysis. Finally
we suggest that for any expression whose behaviour is
dimensionally invariant there exists some equivalent ex-
pression whose type reflects this behaviour, a conse-
quence of which would be a full abstraction result for
a model of the language.

1 Introduction

Ever since FORTRAN, programming languages have
provided a numeric type suitable for modelling physi-
cal quantities in scientific computations. Typically these
quantities possess units of measure (such as kilograms
or pounds) which belong to some class, or dimension
(such as mass), but existing programming languages
treat all numeric values as dimensionless. In previous

∗Current address: Persimmon IT, The Westbrook Centre, Mil-
ton Road, Cambridge CB4 1YG, U.K., andrew@persimmon.co.uk

Appears in the Proceedings of the 24th Annual ACM
Symposium on Principles of Programming Languages,
Paris, France, January 1997. c© ACM.

work the author and other researchers have shown how
the type system of a language can be extended to sup-
port the compile-time checking and automatic inference
of dimensions or units of measure [7, 5, 15, 12]. In this
article we study the semantics of such a language, and
in particular, how the notion of parametricity (due to
Reynolds [11]) has an analogue here.

The paper is structured as follows. In Section 2 we
introduce basic concepts from dimensional analysis and
explain informally how a programming language can be
extended with units of measure, giving illustrative ex-
amples in Standard ML. This motivates the formal defi-
nition in Section 3 of an explicitly-typed language whose
denotational semantics is specified in the standard way
using domains and continuous functions. This under-
lying semantics ignores the unit annotations in types;
instead, units are accounted for by a binary relation
over the underlying semantics defined in Section 4. Us-
ing the relation we prove the main result of this paper:
a parametricity theorem which captures the idea that
the behaviour of programs is independent of the units
of measure used. The theorem is used in Section 5 to
prove several properties of terms and types in the lan-
guage, as outlined in the abstract above. In Section 6
we discuss whether it is possible to use the relation to
construct a model of the language which is fully abstract
with respect to the underlying cpo-based model. This
notion of relative full abstraction is believed to be new.

2 Motivation

2.1 Units and dimensions

Physical quantities are measured with reference to a unit
of scale. When we say that something is ‘6 metres long’
we mean that six metre-lengths placed end-to-end would
have the same length. The unit ‘metre’ is acting as a
point of reference, not just for the purpose of comparison
(X is longer than a metre), but also for measurement (X
is six times as long as a metre). A single quantity can
be measured in many different systems of units, some
of which may even be non-linear (such as decibels) or
have an origin not at zero (such as degrees Celsius). In

1

computer science terms, these can be seen as isomorphic
data representations; then the notion of dimension is a
class of representations.

It is usual in science to fix a set of base dimensions
which cannot be defined in terms of each other such as
mass, length and time (abbreviated to M, L and T).
Derived dimensions are products of powers of base di-
mensions; the dimensions of force are MLT−2, for ex-
ample. Similarly there are base units: the SI units for
mass, length and time are respectively kilograms, metres
and seconds. Examples of derived units include inches
(0.0254 metres) and newtons (1.0 kg m s−2). Of course,
this division of dimensions and units into base and de-
rived is arbitrary, and one could easily work with, say,
force, acceleration and velocity instead of mass, length
and time.

Dimensionless quantities are common in science. Ex-
amples include refractive index, coefficient of restitution
and angle. The last should properly be considered di-
mensionless though it is tempting to think otherwise –
after all, angles are expressed in ‘units’ of radians. Nev-
ertheless, it is just a dimensionless ratio of two lengths:
the distance along an arc divided by the radius it sub-
tends.

2.2 Dimensional analysis

The addition, subtraction or comparison of two quan-
tities with different dimensions is invalid dimensionally,
whereas their product or quotient has dimensions which
are the product or quotient of the corresponding dimen-
sions. If a formula or equation is free of dimension errors,
then it is said to be dimensionally consistent. For scien-
tists and engineers, dimensional consistency is a handy
check on correctness, for dimensional inconsistency cer-
tainly indicates that something is amiss. Therefore the
automatic checking of numerical programs for dimension
errors is potentially very useful.

Why does dimension checking work? The answer lies
in the assumption that physical laws are dimensionally
invariant [9] (or unit-free [3]): they remain the same
under changes in the units of measure used. Philo-
sophically, this is profound: why should they have the
same form at all scales? Pragmatically, it leads to a
very useful technique called dimensional analysis. The
idea is simple: when investigating some physical phe-
nomenon, if the equations governing the phenomenon
are not known but the parameters are known, one can
use the dimensions of the parameters to narrow down
the possible form the equations may take. For example,
consider investigating the equation which determines
the period of oscillation t of a simple pendulum. Pos-
sible parameters are the length of the pendulum l, the
mass m, the initial angle from the vertical θ and the

acceleration due to gravity g. After performing dimen-
sional analysis it is possible to assert that the equation
must be of the form t =

√
l/g φ(θ) for some function

φ of the angle θ. Of course it turns out that for small
angles φ(θ) ≈ 2π, but dimensional analysis got us a
long way – in particular, the period of oscillation turned
out to be independent of the mass m. In general, any
dimensionally consistent equation over several variables
can be reduced to an equation over a smaller number of
dimensionless terms which are products of powers of the
original variables. This is known (rather awkwardly) as
the Pi Theorem (Π = product) [3].

2.3 Some design choices

There are a number of parameters involved in the design
of a programming language that supports the prevention
of dimension errors. We fix these now.

First, should numeric types be parameterised on units
or dimensions? If several units with the same dimen-
sion are permitted, then parameterising on units is the
sensible choice – it is even possible for the compiler to
insert conversions between different units automatically.
Semantically, too, it makes sense: the type of an expres-
sion which is polymorphic in its units, denoted ∀u.τ , can
be interpreted as meaning ‘for all changes in the units
of measure u’.

The second question is whether or not to allow units
such as kg1/2. We take the view that if such a thing
arose, it would suggest revision of the set of base units
rather than the use of fractional exponents, and there-
fore we assume that powers of units are integers.

Static checking of units of measure is of limited value
without polymorphism, since even something as simple
as a squaring function must be polymorphic if it is ap-
plied to values with different units. There are many va-
rieties of polymorphism (for example, ad hoc, subtype,
conjunctive, parametric) but only parametric polymor-
phism suits units of measure, as was recognised even in
an early proposal to extend Pascal with units and di-
mensions [6]. Parametric polymorphism itself comes in
many flavours. All of the work on type inference cited in
the introduction is based on ML-style polymorphism, in
which quantifiers (over types and over units or dimen-
sions) appear only outermost in a type, and polymor-
phism is introduced solely through the let construct and
not in lambda abstractions. On account of these restric-
tions, the automatic inference of types from typeless ex-
pressions is possible – sometimes referred to as implicit
typing. In contrast, the explicitly-typed polymorphic
lambda calculus (or System F) allows quantifiers to be
nested inside types; moreover, its type system is impred-
icative in that the quantification in a polymorphic type
∀t.τ ranges over all types including ∀t.τ itself. In this

2

article we study polymorphism for units of measure in
the style of System F: syntactically it is simpler (there is
no need for let or a separation between simple types and
type schemes), the type isomorphisms described later
turn out to be definable in the system itself, and be-
cause units can appear inside types but not vice versa,
the system is predicative. Also, it is more interesting!

2.4 Examples in Standard ML

Consider writing a function which differentiates another
function numerically using the formula

f ′(x) ≈ f(x + h) − f(x − h)
2h

.

The ML code for this accepts a function f and increment
h as arguments and returns a new function which is an
approximation to the derivative of f:

fun diff h f x = (f(x+h) - f(x-h)) / (2.0 * h)

Using parametric polymorphism over units of measure
this function can be assigned the type

∀u1.∀u2.num u1 → (num u1 → num u2)
→ (num u1 → num u2 · u−1

1),

which specifies succinctly the relationship between the
units of f (which are arbitrary), the increment h and the
resulting derivative. Our second example is a recursive
function for finding a solution to the equation f(x) = 0
using Newton’s method of iteration:

xn+1 = xn − f(xn)
f ′(xn)

.

The ML code is as follows:
fun newton f f’ x xacc =

let val dx = f x / f’ x

val x’ = x - dx

in

if abs dx / x’ < xacc then x’

else newton f f’ x’ xacc

end

It accepts a function f, its derivative f’, an initial esti-
mate x and a relative accuracy xacc. Its type is

∀u1.∀u2.(num u1 → num u2)
→ (num u1 → num u2 · u−1

1)
→ num u1 → num 1 → num u1.

The variable xacc and the constant 2.0 are both di-
mensionless, as indicated by the symbol 1. Note, how-
ever, that zero should be polymorphic and take any
units of measure. If this were not the case, polymor-
phic types could not be assigned to functions such as
fn x => 0.0 - x or the function which sums the ele-
ments of a list and returns zero for the empty list. For
an analogy, consider the polymorphic type ’a list as-
signed to [] in Standard ML.

2.5 Preview

We now preview informally some results which are given
substance in later sections.

For the polymorphic lambda calculus and similar cal-
culi, the essence of relational parametricity is the follow-
ing: if a term e has polymorphic type ∀t.τ , then for any
relation between values of types τ1 and τ2 the behaviour
of eτ1 : {t �→ τ1}τ and eτ2 : {t �→ τ2}τ is related in a
corresponding way. In a sense, e is independent of the
representation of values of type t. For example, if e has
type ∀t.t → (t × t), then for any ‘change of representa-
tion’ function k : τ1 → τ2,

eτ2(k(x)) ≈ (k × k)(eτ1(x))

where k×k
def= λy.〈k(y), k(y)〉 and ≈ is an appropriate

notion of observational equivalence. Wadler calls such
results ‘theorems for free’ [14] because they are derived
purely from the type of a term without inspecting its
definition.

Analogously, we will prove that the behaviour of a
term e of type ∀u.τ is independent of the representation
assigned to u, that is, the units of measure. Suppose
that e has type ∀u.num u → num u2. It should not
matter what units an argument to e has, and if they
were scaled by a conversion factor k, then the result
should scale by k2. To be concrete, suppose that an
argument whose units are in kilograms is converted into
pounds by means of a conversion factor k = 2.2 lb kg−1.
Then

elb(k ∗ x) ≈ k ∗ k ∗ ekg(x).

The equivalences above cut down the space of possible
terms with types ∀t.t → (t× t) and ∀u.numu → numu2.
For some types, the space of terms can be cut down
even further. For instance, we will prove that functions
of type ∀u.num u2 → num u cannot return a non-zero
result for any argument value. Hence it is not possible
to write an approximate square root function with this
polymorphic type.

Even more curious is the existence of certain isomor-
phisms between types – that is, maps from values of one
type to the other and vice versa which compose to give
the identity. For the simply typed lambda calculus there
exist isomorphisms such as τ1×τ2

∼= τ2×τ1 (exchanging
components of a pair) and τ1 × τ2 → τ3

∼= τ1 → τ2 → τ3

(currying and uncurrying) [4]. For a language with poly-
morphism over units of measure, the following more in-
teresting isomorphism holds (with certain restrictions):

∀u.num u → num u → num u ∼= num 1 → num 1.

We show later that isomorphisms like this are intimately
related to the Pi Theorem from dimensional analysis
described in Section 2.2, and for first-order types prove
its programming language equivalent.

3

3 An explicitly-typed language

We are now ready to formalise the syntax, type system,
and denotational semantics of a programming language
that supports units of measure.

3.1 Units and types

The syntax for units (ranged over by µ) and for types
(ranged over by τ) is specified as follows:

µ ::= u unit variables
| 1 ‘no units’
| µ1 · µ2 product
| µ−1 inverse

τ ::= bool booleans
| num µ numbers with units of measure
| τ1 → τ2 functions
| ∀u.τ polymorphic types

Unit variables (ranged over by u) are used both to stand
for base units (such as kilograms, metres and seconds)
and to express polymorphism through explicit quantifi-
cation. We will see later that the distinction is really
that of free and bound occurrences. Variables are com-
bined using product and inverse, and the symbol 1 is
used for dimensionless quantities. Types include the
booleans, a numeric type parameterised by units, func-
tion types and unit-polymorphic types which are iden-
tified up to renaming of bound variables. In addition to
the usual binding conventions on arrows and quantifiers,
we let inverse bind tighter than product which in turn
binds tighter than num.

Given a set of unit variables V, the set of all unit ex-
pressions with variables in V is denoted Units(V), and
likewise Ty(V) for types whose free variables are drawn
from V. A substitution S ∈ Subst(V,V ′) is a map from
V to Units(V ′) which extends homomorphically to maps
from Units(V) to Units(V ′) and from Ty(V) to Ty(V ′)
in the usual way, avoiding variable capture in polymor-
phic types by renaming bound variables where neces-
sary. We write Sµ and Sτ for the application of a sub-
stitution S to unit expression µ and type τ . The partic-
ular substitution which maps u to µ is written {u �→ µ},
and iV,V′ ∈ Subst(V,V ′) is the canonical inclusion for
V ⊆ V ′.

The most unusual aspect of the type system is that
the algebraic properties of units of measure are built into
the typing rules via an equational theory of types. Let
E be the set of axioms which define an Abelian group

of units of measure:

u1 · u2 = u2 · u1 commutativity
(u1 · u2) · u3 = u1 · (u2 · u3) associativity

u · 1 = u identity
u · u−1 = 1 inverses

These equations are extended to congruence relations
=E over unit and type expressions by closure under re-
flexivity, symmetry, transitivity, substitution of unit ex-
pressions for unit variables, and congruence.

Let µn denote the raising of µ to the power n ∈ Z:

µn def=




µ · · · · · µ (n-fold product) if n > 0,

1 if n = 0,

µ−1 · · · · · µ−1 (−n-fold product) if n < 0.

With this notation, it is easily seen that any unit ex-
pression µ can be written in the form

µ =E uz1
1 · · · · · uzn

n

where u1, . . . , un are distinct and z1, . . . , zn are non-
zero. We call this the normal form of µ.

3.2 Terms

The language which we study is a typed lambda calculus
Λu with constructs for explicit introduction and elimi-
nation of units of measure quantification. In the absence
of type polymorphism, fixed-point and conditional con-
structs are built-in, with unit-polymorphic arithmetic
operations and numeric constants provided by a stan-
dard environment. The syntax of terms is as follows:

e ::= x identifiers
| λx : τ . e function abstraction
| e1 e2 function application
| if e1 then e2 else e3 conditional
| rec x : τ . e recursive definition
| Λu.e units abstraction
| eµ units application

The typing rules are shown in Figure 1. As usual, Γ
ranges over type environments: finite maps from identi-
fiers to types. The set of all type environments with free
variables in V is denoted TyEnv(V), and the equivalence
relation =E and definition of substitution extend point-
wise to type environments. Then a well-formed typing
judgment V; Γ � e : τ means

“Under type environment Γ ∈ TyEnv(V) the
expression e has type τ ∈ Ty(V)”.

It is assumed that complete programs in Λu are typed
in the context of a type environment Γops ∪Γunits, where
Γops supplies the types of basic arithmetic operations

4

(id)
V; Γ ∪ {x : τ} � x : τ

(abs)
V; Γ ∪ {x : τ1} � e : τ2

V; Γ � (λx : τ1. e) : τ1 → τ2

(app)
V; Γ � e1 : τ1 → τ2 V; Γ � e2 : τ1

V; Γ � e1 e2 : τ2

(cond)
V; Γ � e1 : bool V; Γ � e2 : τ V; Γ � e3 : τ

V; Γ � if e1 then e2 else e3 : τ
(rec)

V; Γ ∪ {x : τ} � e : τ

V; Γ � (rec x : τ . e) : τ

(eq)
V; Γ � e : τ1

V; Γ � e : τ2

τ1 =E τ2 (∀-intro)
V ∪ {u}; Γ � e : τ

V; Γ � Λu.e : ∀u.τ
u /∈ V (∀-elim)

V; Γ � e : ∀u.τ

V; Γ � eµ : {u �→ µ}τ

Figure 1: Typing rules: V; Γ � e : τ well-formed if Γ ∈ TyEnv(V) and τ ∈ Ty(V)

Γops =
{ 0 : ∀u.num u,
1 : num 1,
+ : ∀u.num u → num u → num u,
- : ∀u.num u → num u → num u,
* : ∀u1.∀u2.num u1 → num u2 → num u1 · u2,
/ : ∀u1.∀u2.num u1 → num u2 → num u1 · u−1

2 ,
< : ∀u.num u → num u → bool }

Γunits = { kg : num kg , m : num m, s : num s }

Figure 2: Type environments Γops and Γunits

and Γunits supplies types for base units as shown in Fig-
ure 2. The availability of a comparison test allows the
writing of iterative functions such as newton from Sec-
tion 2.4, and also trigonometric functions such as sin
and cos of type num 1 → num 1. For simplicity we
provide only the constant 1 of type num 1; all other
dimensionless rationals can be constructed from this
using the arithmetic operations provided. When pre-
senting examples, however, we will freely use constants
r ∈ Q and also constructs such as e1 ∗ e2 instead of
the clumsy *µ1 µ2(e1)(e2) (assuming that e1 and e2 have
types num µ1 and num µ2).

3.3 Denotational semantics

We define a call-by-name† denotational semantics for
Λu in the usual way using complete partial orders (or
domains) and continuous functions (a good reference
is [16]). Our notation is standard: if D and E are do-

†Chosen for ease of presentation; similar results should hold
for a call-by-value language.

mains, then D⊥ is the set {⊥} ∪ { [d] | d ∈ D } in
which ⊥ is the new least element and [·] is the canonical
map from D to D⊥, and D → E is the set of continuous
functions between D and E ordered pointwise. Then for
each type τ a domain of values [[τ]] is defined as follows:

[[bool]] = B⊥
[[num µ]] = Q⊥

[[τ1 → τ2]] = [[τ1]] → [[τ2]]
[[∀u.τ]] = [[τ]]

Here B is the discrete cpo consisting simply of the values
true and false, and Q is the discrete cpo of rationals.
Notice how the units of measure have been ignored – the
semantics of units will be captured by a logical relation
defined in the next section.

A value environment ρ which respects some type en-
vironment Γ is a finite map from identifiers in dom(Γ) to
values so that whenever Γ(x) = τ then ρ(x) ∈ [[τ]]. We
write [[Γ]] for the set of all value environments respect-
ing Γ. If V; Γ � e : τ then the meaning of e is given by
a map [[e]] : [[Γ]] → [[τ]] defined inductively in Figure 3.
Again the units are ignored – this underlying semantics
just resembles that of PCF [10] with rationals in place
of integers.

4 Dimensional invariance

To formalise the ideas sketched in Section 2.5, we will
define type-indexed relations between domains, parame-
terised on scaling environments which represent changes
to the units of measure. For the base type num µ the
scaling will depend directly on the units µ, so that, for
instance, if r ∈ Q scales at type num u to give kr for
some k ∈ Q+, then r′ should scale at type num u2 to
give k2r′. Thus the obvious approach (and the one taken
in [8]) is to assign a scale factor k ∈ Q+ to each unit

5

[[e]] : [[Γ]] → [[τ]]

[[x]](ρ) = ρ(x)
[[λx : τ . e]](ρ)(v) = [[e]](ρ[x �→ v])

[[e1 e2]](ρ) = [[e1]](ρ)([[e2]](ρ))

[[if e1 then e2 else e3]](ρ) =



⊥ if [[e1]](ρ) = ⊥
[[e2]](ρ) if [[e1]](ρ) = [true]
[[e3]](ρ) if [[e1]](ρ) = [false]

[[rec x : τ . e]](ρ) =
⊔
i∈N

vi
where v0 = ⊥ and
vi+1 = [[e]](ρ[x �→ vi])

[[Λu.e]](ρ) = [[e]](ρ)
[[eµ]](ρ) = [[e]](ρ)

Figure 3: Underlying semantics for V; Γ � e : τ

variable, and then extend this uniquely to a homomor-
phism from the Abelian group of (equivalence classes of)
unit expressions into the Abelian group of scale factors.
However this is not sufficient for proving inhabitation
results such as the square root example mentioned ear-
lier. So, instead, to avoid anticipating any particular
notion of scaling we split dimensional invariance into
two parts. First, we prove a parametricity result for Λu

which holds for a very general definition of scaling en-
vironments. Then we show that the standard interpre-
tation of constants in Γops imposes a notion of scaling
on the scaling environments that subsumes the homo-
morphisms described above. These two results together
constitute dimensional invariance.

We start by defining some standard constructions on
relations. If R ⊆ D × E is a relation between do-
mains, then R⊥ ⊆ D⊥ × E⊥ is the relation {(⊥,⊥)} ∪
{ ([d] , [e]) | (d, e) ∈ R }. For a domain D, the iden-
tity relation idD ⊆ D × D is just { (d, d) | d ∈ D }.
Finally, if R ⊆ D × E and S ⊆ D′ × E′ then
(R → S) ⊆ (D → D′) × (E → E′) is the relation
{ (f, g) | (d, e) ∈ R ⇒ (f(d), g(e)) ∈ S }.

Let a scaling environment ψ be a map from unit ex-
pressions to binary relations on Q which respects unit
equivalence (if µ1 =E µ2 then ψ(µ1) = ψ(µ2)) and which
preserves the identity element (that is, ψ(1) = idQ).†

A family E of sets of scaling environments provides for
each set of variables V a set E(V) consisting of scaling
environments over Units(V), with the following closure

†Strictly speaking this latter property is not required by the
parametricity theorem but its inclusion simplifies the presentation,
and clearly will be required later to scale dimensionless constants
to themselves.

Rψ
τ ⊆ [[τ]] × [[τ]] for τ ∈ Ty(V), ψ ∈ E(V)

Rψ
bool = (idB)⊥

Rψ
num µ = ψ(µ)⊥

Rψ
τ1→τ2

= Rψ
τ1

→ Rψ
τ2

Rψ
∀u.τ =

⋂ {
Rχ(ψ)

τ | χ ∈ ExtE(V,V ∪ {u})
}

Figure 4: Family of relations induced by E

property: that if ψ ∈ E(V ′) and S ∈ Subst(V,V ′) then
ψ ◦ S ∈ E(V). Given V ⊆ V ′, an extension of scaling
environments is a map χ : E(V) → E(V ′) with the prop-
erty that χ(ψ) ◦ iV,V′ = ψ for all ψ ∈ E(V). We write
ExtE(V,V ′) for the set of extensions from E(V) to E(V ′).

Using these constructions, a family E of scaling envi-
ronments induces a family {Rψ

τ ⊆ [[τ]] × [[τ]]} of scaling
relations parameterised on a type τ ∈ Ty(V) and a scal-
ing environment ψ ∈ E(V). This is shown in Figure 4.
For booleans it is the identity relation, for functions it
carries related arguments to related results (this makes
Rψ

τ a logical relation), and for polymorphic types it re-
quires that values be related at all possible extensions of
the scaling environment on the quantified unit variable.
The relations on values extend pointwise to relations on
environments {Rψ

Γ ⊆ [[Γ]] × [[Γ]]} for Γ ∈ TyEnv(V) and
ψ ∈ E(V). We omit the scaling environment ψ when τ
or Γ is closed (and V = ∅), writing Rτ and RΓ respec-
tively (as there is only one choice of scaling environment,
namely that which maps 1 to the identity relation).

In order for relations to preserve the fixed-point in-
terpretation of recursive definitions, they must be strict
and complete, that is, preserve ⊥ and least upper bounds
of chains.

Lemma 1. Let E induce a family of relations {Rψ
τ }.

For any τ ∈ Ty(V) and ψ ∈ E(V), the following hold:

1. (⊥,⊥) ∈ Rψ
τ .

2. If {vi} and {v′
i} are chains for which (vi, v

′
i) ∈ Rψ

τ

for all i ∈ N, then (
⊔{vi},

⊔{v′
i}) ∈ Rψ

τ .

Proof. By induction on the structure of τ .

The interaction of substitutions with scaling relations
is captured by the following lemma.

Lemma 2. Let E induce a family of relations {Rψ
τ }.

Then for any τ ∈ Ty(V), S ∈ Subst(V,V ′) and ψ ∈
E(V ′) it is the case that Rψ◦S

τ = Rψ
Sτ .

Proof. By induction on the structure of τ .

6

We are now ready to prove the parametricity result.
In essence this states that if two value environments
are related with respect to some scaling environment,
then the interpretations of an expression under those
environments are related in a corresponding way. For-
mally, we write V; Γ |=E e : τ if for any scaling environ-
ment ψ ∈ E(V) and pair of related value environments
(ρ, ρ′) ∈ Rψ

Γ it follows that ([[e]](ρ), [[e]](ρ′)) ∈ Rψ
τ .

Theorem 1 (Parametricity).

V; Γ � e : τ ⇒ V; Γ |=E e : τ.

Proof. By induction on the typing derivation. The cases
for (abs) and (app) follow as usual for logical relations,
the identity relation on booleans is required for (cond),
the case for (eq) uses the fact that ψ respects =E , and
Lemma 1 is used in (rec). We present the remaining
cases in detail.

(∀-intro). We need to show

V ∪ {u}; Γ |=E e : τ ⇒ V; Γ |=E Λu.e : ∀u.τ .

Suppose that ψ ∈ E(V) and (ρ, ρ′) ∈ Rψ
Γ . Now pick any

χ ∈ ExtE(V,V ∪ {u}). Then (ρ, ρ′) ∈ R
χ(ψ)
Γ because

u /∈ V, and for the antecedent of the above implication
to hold it must be the case that ([[e]](ρ), [[e]](ρ′)) ∈ R

χ(ψ)
τ .

From the semantics [[Λu.e]] = [[e]] so given the definition
of the relation at polymorphic type we have just shown
that ([[Λu.e]](ρ), [[Λu.e]](ρ′)) ∈ Rψ

∀u.τ .
(∀-elim). We need to show

V; Γ |=E e : ∀u.τ ⇒ V; Γ |=E eµ : {u �→ µ}τ .

Suppose that ψ ∈ E(V) and (ρ, ρ′) ∈ Rψ
Γ . Let S = {u �→

µ} ∈ Subst(V ∪ {u},V). It is easy to see that the map
ψ �→ ψ◦S is an element of ExtE(V,V ∪ {u}) so when the
antecedent of the above implication holds it is the case
that ([[e]](ρ), [[e]](ρ′)) ∈ Rψ◦S

τ . By Lemma 2 we know
that Rψ◦S

τ = Rψ
Sτ , and because [[eµ]] = [[e]] the required

result is reached.

In the sections which follow we will apply Theorem 1
to terms which have been typed under the type envi-
ronment Γops and interpreted in the presence of a value
environment ρops ∈ [[Γops]]. We assume that ρops assigns
to 0, 1, +, -, *, / and < their usual arithmetic meanings
(with division by zero leading to divergence). To get the
most out of Theorem 1 we now find the largest collection
of scaling environments E such that (ρops, ρops) ∈ RΓops

for the relation RΓops
induced by E .

First observe that the polymorphism of zero forces
(0, 0) to be in every relation ψ(µ) ∈ E(V) for any V and
µ ∈ Units(V). It also turns out that if any pair not of the
form (0, 0) is present in a relation ψ(µ), then the relation

Eops(V) =
{

ψG,h | G is a subgroup of Units(V),
h ∈ hom(G, Q+)

}

where

ψG,h(µ) def=

{
{ (r, h(µ)r) | r ∈ Q } if µ ∈ G,

{ (0, 0) } otherwise.

Figure 5: Sets of scaling environments preserving ρops

is a bijection of the form { (r, kr) | r ∈ Q } for some
k ∈ Q+ (for details of the proof, see Appendix A). This
still leaves the possibility of singleton relations {(0, 0)},
and indeed these do occur. The end result is the family
Eops shown in Figure 5. In this definition, G is a sub-
group of the Abelian group Units(V), that is, it is a sub-
set that is closed under all unit-forming constructions.†

Then h ∈ hom(G, Q+) is a homomorphism from G into
the Abelian group of positive rationals with product as
the group operation (that is, h(µ1 · µ2) = h(µ1)h(µ2),
h(µ−1) = 1/h(µ) and h(1) = 1). For example, con-
sider the set of unit expressions generated from u2

1u
3
2

and u2
2. Homomorphisms from this into Q+ take the

form u2m
1 · u3m+2n

2 �→ km
1 kn

2 for k1, k2 ∈ Q+.
The essence of the theorem which follows is that Eops

consists of exactly those scaling environments which pre-
serve all the constants in ρops. By a slight abuse of no-
tation we write E ⊆ E ′ if E(V) ⊆ E ′(V) for all V.

Theorem 2 (Completeness of Eops). Suppose that E
induces RΓops

. Then

(ρops, ρops) ∈ RΓops
⇐⇒ E ⊆ Eops.

Proof. See Appendix A.

Sieber proves a similar result in his application of log-
ical relations to PCF to remove elements that destroy
full abstraction [13]. He shows that certain sequential
relations are exactly the logical relations under which
all the constants of PCF are invariant.

Before presenting sophisticated applications of Theo-
rems 1 and 2 we observe the important special case that
the behaviour of a program is independent of the values
assigned to the base units. Suppose that a boolean-
valued expression e is typed under the type environ-
ments of Figure 2:

{kg ,m, s}; Γops ∪ Γunits � e : bool.

†To be really precise, we should write G ⊆ Units(V)/=E and
distinguish a unit expression µ ∈ Units(V) from its equivalence
class [µ]=E ∈ Units(V)/=E . For simplicity we avoid this.

7

Given the environment ρops ∈ [[Γops]] described above,
it is the case that [[e]](ρops ∪ ρunits) has the same value
for any ρunits ∈ [[Γunits]], with one proviso: the values
chosen for ρunits must be positive. This is due to the
possibility that e could test their sign using the compar-
ison function <. Intuitively, it makes no sense for units
of measure to be negative or zero.

In the rest of this paper, we assume that scaling re-
lations Rψ

τ are induced by Eops and that V; Γ |= e : τ is
shorthand for V; Γ |=Eops e : τ .

5 Dimensional invariance applied

5.1 Theorems for free

Theorems 1 and 2 can be used to derive equivalences of
the kind that Wadler calls ‘theorems for free’ [14]. We
give examples informally; the formal reasoning involved
is tedious but trivial, and always involves picking scaling
environments of the form

ψ(uz1
1 · · ·uzn

n) = { (r, kz1
1 · · · kzn

n r) | r ∈ Q }
for some scale factors k1, . . . , kn ∈ Q+. For clarity we
omit unit information from expressions, as would be the
case for an implicitly-typed language such as ML.

Example (Powers). Consider an expression e with
the following type for some n ∈ Z:

Γops � e : ∀u.num u → num un.

Then for any k ∈ Q+ the following equivalence holds:

e(k ∗ x) ≈ kn ∗ e(x).

Example (Differentiation). Suppose that e has the
type of the differentiation function from Section 2.4:

Γops � e : ∀u1.∀u2.real u1 → (num u1 → num u2)
→ (num u1 → num u2 · u−1

1).

Then for any k1, k2 ∈ Q+ the following equivalence
holds:

e h f x ≈ k2

k1
∗ e

(
h

k1

)(
λx.

f(x ∗ k1)
k2

) (
x

k1

)
.

5.2 Type inhabitation

Conventional parametricity can be used to characterise
all terms with a particular type. For example, there is no
term in System F with type ∀t.t, and for a fragment of
ML the type ∀t.t → t contains only the identity function
and the always-divergent function [2]. Analogous results
can be obtained for Λu.

Example (Square root). Consider the typing

Γops � e : ∀u.num u2 → num u.

Let f = [[e]](ρops). Then by Theorems 1 and 2, for any
scaling environment ψ ∈ Eops({u}), if (v, v′) ∈ ψ(u2)⊥
then (f(v), f(v′)) ∈ ψ(u)⊥. Take ψ to be

ψ(un) = { (r, knr) | r ∈ Q }

for some scale factor k ∈ Q+. First observe that if
f(⊥) = [r] then r = 0, so it follows from monotonic-
ity of functions that f(v) = [0] for any other argument
v. In other words, if f is not strict then it must be
the constant zero function. Now if f([r]) = ⊥ then
f(

[
k2r

]
) = ⊥, and if f([r]) = [r′] then f(

[
k2r

]
) = [kr′].

This cuts down the range of possible functions some-
what. If f diverges on any value without a rational root
then it must diverge on all such values. Also, if it re-
turns zero for any value without a rational root then it
must return zero for all such values. So we have the
intriguing possibility of a function which finds rational
roots when they exist, but which otherwise returns zero
or just loops. Amusingly, it is actually possible to write
such a function simply by enumerating all rationals until
reaching the root but looping if none exists. However,
this function must be assigned the dimensionless type
num 1 → num 1; to prove formally that it cannot be
polymorphic we use scaling environments defined by

ψ(u2n) = { (r, knr) | r ∈ Q }
ψ(u2n+1) = { (0, 0) }

for k ∈ Q+. Under such an environment, either f([r]) =
f([kr]) = ⊥ or f([r]) = f([kr]) = [0]. Hence if f di-
verges for any positive argument then it must diverge
for all positive arguments, and if f returns zero for any
positive argument then it must return zero for all pos-
itive arguments. Extending this to all arguments, it
follows that f is characterised by

f([r]) =




v1 if r < 0,

v2 if r = 0,

v3 if r > 0,

where each of v1, v2 and v3 is either ⊥ or [0]. With
the constant zero function included this yields just nine
possible functions.

We can make sense of this result in two ways. First,
consider the operation of a root-finding function. It
must start with an initial estimate for the root (type:
numu) and yet it cannot generate this estimate from its
argument (type: num u2) using only the built-in arith-
metic operations. The only value of type num u which

8

it can construct is zero, and this is useless. A more se-
mantic explanation is the following. The final estimate
of the root is just that – an estimate – and the degree
of error will scale with respect to the degree of error
in the initial estimate. If this initial estimate is some
fixed number then the error will depend on the units in
which the argument is measured, and hence the function
cannot be uniformly polymorphic in units of measure.

We are led to the conclusion that in order to write
polymorphic root-finding functions it is necessary to
provide an initial estimate for the root as an addi-
tional argument. For example, it is possible to write
an approximating square root function with the type
∀u.num u → num u2 → num u. It is also interesting
to note that one can write a unit-polymorphic function
that accepts two numbers a and b and returns an ap-
proximation to

√
a2 + b2. This function has the type

∀u.num u → num u → num u, and would use some lin-
ear combination of a and b as its initial estimate for the
root.

For the next example we formalise the use of the term
non-trivial.

• A value r ∈ Q is non-trivial if r �= 0.

• A value f ∈ D → E is non-trivial if f(d) is non-
trivial for some d ∈ D.

• A value d′ ∈ D⊥ is non-trivial if d′ = [d] for some
non-trivial d ∈ D.

Example (First-order types). Consider the typing

Γops � e : ∀u1 . . . ∀um.num µ1 → · · · → num µn → num µ

where µj = num(ua1j

1 · · ·uamj
m) and µ = num(ub1

1 · · ·ubm
m)

for a11, . . . , amn, b1, . . . , bm ∈ Z. There exists an ex-
pression e with this typing with non-trivial meaning
f = [[e]](ρops) if and only if there is a solution in integers
z1, . . . , zn to the equations

a11z1 + · · · + a1nzn = b1

...
am1z1 + · · · + amnzn = bm.

Proof. For the (if) part, we exhibit the term

Λu1 . . . um.
λx1 : num µ1. . . . λxn : num µn. xz1

1 ∗ · · · ∗ xzn
n .

For (only if), use the scaling environment

ψ(µ) =




idQ if µ =E µz1
1 · · ·µzn

n

for some z1, . . . , zn ∈ Z,

{(0, 0)} otherwise.

Our final example is the type ∀u1.∀u2.(num u1 →
num u2) → num u1 · u2. Perhaps a function that calcu-
lates the area under a curve might have this type – in-
tuitively, though, such a thing is impossible as there are
no arguments representing bounds (a, b in

∫ b

a
f(x) dx) or

increment values.

Example (Integration). There is no term e with typ-
ing

Γops � e : ∀u1.∀u2.(num u1 → num u2) → num u1 · u2

and non-trivial meaning f = [[e]](ρops).

Proof. From Theorems 1 and 2 we know that for any
ψ ∈ Eops({u1, u2}) and g, g′ ∈ [[num u1 → num u2]],

(g, g′) ∈ Rψ
num u1→num u2

⇒ (f(g), f(g′)) ∈ Rψ
num u1·u2

.

Suppose that ψ is the following:

ψ(um
1 · un

2) def=

{
idQ if m = 0,

{ (0, 0) } otherwise.

If we set g′ = g then (g, g) ∈ Rψ
num u1→num u2

, hence
(f(g), f(g)) ∈ Rψ

num u1·u2 and so f(g) ∈ {⊥, [0]}.

5.3 Type isomorphisms

Consider the types

τ1
def= ∀u.num u → num u → num u

and τ2
def= num 1 → num 1.

If arguments are restricted to positive values, it can be
shown that τ1 is isomorphic to τ2, that is, there exists a
map i from values of type τ1 to values of type τ2, and a
map j from τ2 to τ1 such that i◦j and j◦i are identities.
Furthermore, these maps are definable in Λu:

i
def= λf : τ1. λy : num 1. f1(1)(y)

j
def= λg : τ2. Λu.λx : num u. λy : num u. x ∗ g(y/x)

Intuitively, a function of type τ1 can be reduced to a
function of type τ2 if one of its arguments is considered
to be the ‘units’ by which the other argument is mea-
sured.

Let us be more precise. The type τ of a function with
n numeric arguments and a numeric result has a domain
of values

[[τ]] = Q⊥
n→ . . . → Q⊥ → Q⊥.

Let τ1 and τ2 be such types with m and n arguments
respectively. Then τ1 and τ2 are isomorphic for positive

9

values, written τ1
∼=+ τ2, if there are definable functions

Γops � i : τ1 → τ2 and Γops � j : τ2 → τ1 such that for
any expressions Γops � f : τ1 and Γops � g : τ2, the
equivalences

[[j(i(f))]](ρops)(v1) · · · (vm) = [[f]](ρops)(v1) · · · (vm)
[[i(j(g))]](ρops)(v1) · · · (vn) = [[g]](ρops)(v1) · · · (vn)

hold for all positive or looping values vi.
For our example above, the second equation follows

directly from the underlying semantics, whereas the first
relies crucially on dimensional invariance. This is similar
to Wadler’s demonstration that in System F the isomor-
phism τ ∼= ∀t.(τ → t) → t holds for any type τ , where
parametricity is required to prove one direction of the
isomorphism [14].

Why the restriction to positive values? Intuitively,
there are more functions of type ∀u.num u → num u →
num u than of type num 1 → num 1 because the former
can use the signs of two arguments to determine differ-
ent courses of action, whereas the latter has the sign of
only one argument available.

In Section 2.2 we outlined the technique of dimen-
sional analysis: the reduction of an equation involving
dimensioned quantities to an equation over a smaller
number of dimensionless ones. We have just done some-
thing very similar, reducing a dimensionally-invariant
function of two arguments to a dimensionless function
of just one. In order to obtain a precise connection be-
tween these two ideas, we first state the central theorem
of dimensional analysis.

Pi Theorem. Fix a set of m base dimensions and let
x1, . . . , xn be positive variables with the dimensions of
xi given by the i’th column of an m× n matrix A of di-
mension exponents. Then any dimensionally-invariant
relation of the form

f(x1, . . . , xn) = 0

is equivalent to a relation

f ′(Π1, . . . ,Πn−r) = 0

where r is the rank of the matrix A and Π1, . . . ,Πn−r

are dimensionless power-products of x1, . . . , xn.

Proof. See Birkhoff [3].

We prove the following analogous result for first-order
types in Λu.

Theorem 3 (Pi Theorem for Λu). Let τ be a closed
type of the form

∀u1 . . . ∀um.num µ1 → · · · → num µn → num µ0.

Let A be the m × n matrix of unit exponents in
µ1, . . . , µn, and B the m-vector of unit exponents in µ0.
If the equation AX = B is solvable for integer variables
in X, then

τ ∼=+ num 1
n−r→ · · · → num 1 → num 1

where r is the rank of A.

Proof. See Appendix A.

Example (Pendulum). Suppose that the square of
the period of a pendulum is determined by a function

Γops � e : ∀M.∀L.∀T.num M → num L
→ num L · T−2 → num 1 → num T2

whose arguments represent the mass and length of the
pendulum, the acceleration due to gravity and the angle
of swing. Then for positive argument values num 1 →
num 1 is an isomorphic type.

It is possible to prove similar results for higher-order
types, for example that the type of the differentiation
function of Section 2.4 is isomorphic for positive values
to (num 1 → num 1) → (num 1 → num 1). A general
result in the style of Theorem 3 is the subject of further
research.

5.4 Relative definability

If Λu is extended with lists then one can define a
recursive function to calculate the arithmetic mean
of a list of n numbers according to the formula
(
∑n

i=1 ai) /n. The function would have the polymor-
phic type ∀u.list (num u) → num u. Now try writing
a function gm to calculate the geometric mean accord-
ing to the formula (

∏n
i=1 ai)

1/n. At a first attempt,
one immediately runs up against the problem that the
product of the elements of the list has units which de-
pend upon the length of the list. Although geomet-
ric mean has behaviour consistent with the polymorphic
type ∀u.list (num u) → num u, its natural definition re-
ceives the typing

Γops � gm : list (num 1) → num 1.

But by a trick due to Rittri [12] one can turn this into
a polymorphic function, as follows:

Λu.λxs : list (num u).
abs(hd xs) ∗ gm(map (λx : num u. x/abs(hd xs)) xs)

The trick is to use the magnitude of the first element
of the list (abs(hd xs)) as a ‘unit’ by which to scale the
whole list, pass this dimensionless list to gm, and then
scale back again by the first element. The dimensional

10

invariance of gm ensures that its semantics is preserved
by the translation.

To formalise this idea, which we call relative definabil-
ity, let τ� denote the unit-erasure of τ : the removal of
all quantifiers and the replacement of numµ with num1.
Then given a closed type τ and a term e with typing
Γops � e : τ� but behaviour Γops |= e : τ , we seek an-
other another term e′ with typing Γops � e′ : τ such that
[[e]](ρops) = [[e′]](ρops).

Example. Suppose that a term has typing and be-
haviour specified by

Γops � e : num 1 → num 1
Γops |= e : ∀u.num u → num u2.

Let e′ be the term

Λu.λx : num u.
e(if x = 0 then 0 else x/abs(x)) ∗ abs(x) ∗ abs(x).

with the typing Γops � e′ : ∀u.num u → num u2. Then
[[e]](ρops) = [[e′]](ρops).

Proof. Let f = [[e]](ρops) and f ′ = [[e′]](ρops). Using
Figure 3 and the usual interpretation of arithmetic con-
stants it is easily shown that

f ′(v) =




f(v) if v = ⊥ or v = [0] ,
⊥ if v = [r1] and f([r1/|r1|]) = ⊥,[
r2|r1|2

]
if v = [r1] and f([r1/|r1|]) = [r2] .

From the dimensional invariance of e we know that for
any ψ ∈ Eops({u}) it is the case that

(v, v′) ∈ ψ(u)⊥ ⇒ (f(v), f(v′)) ∈ ψ(u2)⊥.

By setting ψ(um) = { (r, |r1|mr) | r ∈ Q } it follows
that f = f ′ as required.

6 Full abstraction

It is well-known that standard cpo models of PCF are
not fully abstract [10]; that is, denotational equality
([[e1]] = [[e2]]) does not coincide with observational equiv-
alence (e1 ≈ e2, which formulated denotationally states
that [[C[e1]]] = [[C[e2]]] for every program context C[·]).
This is because there are certain elements in the model
which are not definable by any term in the language,
and these elements can be used to distinguish the de-
notations of observationally-equivalent terms. Natu-
rally enough, these elements exist in the underlying se-
mantics of Λu; moreover, they can even exhibit unit-
polymorphic behaviour. For example, consider a func-
tion p ∈ Q⊥ → Q⊥ → Q⊥:

p(v1)(v2) =

{
[0] if v1 �= ⊥ or v2 �= ⊥,

⊥ otherwise.

This is a version of the classic ‘parallel or’ function
whose implementation requires parallel evaluation of its
arguments. It is continuous, and furthermore is pre-
served by the scaling relation Rτ induced by Eops for
τ = ∀u.num u → num u → num u, but there is no ex-
pression e of type τ whose meaning is p. The function
p can be used to distinguish the denotations of the fol-
lowing observationally-equivalent expressions (where Ω
is a divergent term of type num 1):

e1
def= λy : τ . y1(Ω)(0) + y1(0)(Ω)

and e2
def= λy : τ . y1(Ω)(Ω).

Now consider the expressions

e3
def= λy : (∀u.num u → num u). y1(2)

and e4
def= λy : (∀u.num u → num u). 2 ∗ y1(1).

Although the underlying semantics assigns different
meanings to e3 and e4, we know from dimensional in-
variance that they must be observationally equivalent.
Similarly, because functions of type ∀u.numu2 → numu
cannot distinguish between different positive arguments,
the expressions

e5
def= λy : (∀u.num u2 → num u). y1(3)

and e6
def= λy : (∀u.num u2 → num u). y1(5)

are observationally-equivalent.
The scaling relation Rψ

τ has proved to be remarkably
powerful in a variety of applications. The ultimate test
of its power would be to construct a model of the lan-
guage in which the only incorrect distinctions between
terms are due to the failure of full abstraction in the
underlying semantics – so it distinguishes e1 and e2 but
identifies e3 with e4 and e5 with e6.

To formalise this notion of relative full abstraction,
first extend the notion of unit-erasure from Section 5.4
to terms: let e� denote the removal of all unit abstrac-
tions and unit applications from e and the unit-erasure
of type annotations. Because the underlying semantics
of Figure 3 ignores unit annotations, it is easy to see
that [[τ]] = [[τ�]] and [[e]] = [[e�]]. We can now define
two kinds of observational equivalence: unit-respecting
equivalence (e1 ≈ e2 iff [[C[e1]]] = [[C[e2]]] for every pro-
gram context C[·]) and underlying equivalence (e1 ≈� e2

iff [[C�[e1
�]]] = [[C�[e2

�]]] for every dimensionless program
context C�[·]). Consider the expressions studied above:
we have e1 ≈ e2 and e1 ≈� e2; e3 ≈ e4 but e3 �≈� e4;
e5 ≈ e6 but e5 �≈� e6.

Now let {|e|} stand for the meaning of a term e in some
more abstract model, and assume that the two models

11

identify exactly the same unit-erased terms. Then we
say that {|·|} is fully abstract relative to [[·]] if

{|e1|} �= {|e2|} and e1 ≈ e2

implies [[e1]] �= [[e2]] and e1 ≈� e2.

Can such a model be constructed? Space constraints
prevent us giving details of a proposed model here, but
the basic idea is to use the scaling relation to quotient
the underlying semantics into equivalence classes. This
is possible because for closed types τ , the relation Rτ is
symmetric and transitive, making it a partial equivalence
relation, that is, an equivalence relation on a subset of
[[τ]]. By extending this idea to open types and open
terms in an appropriate way, a PER can be constructed
on the underlying meanings in [[Γ]] → [[τ]]. It is then
possible to show that if the relative definability property
of Section 5.4 holds for all types (an open problem), then
the quotienting of the underlying semantics by this PER
is fully abstract relative to the underlying semantics in
the sense described above.

7 Conclusion

We have presented a novel application of Reynolds’ no-
tion of parametricity: the dimensional invariance of
terms which are polymorphic in units of measure. As
with conventional parametricity, this has allowed us to
prove certain observational equivalences, to give condi-
tions on the terms which inhabit a type, and to demon-
strate isomorphisms between types. Furthermore it sug-
gests a means of constructing an abstract model of the
language that validates all the equivalences introduced
by units of measure.

There is an apparent dependence of our results on the
particular properties of the constants in ρops. However,
Theorem 1 itself is independent of these constants, and
the idea of completeness captured by Theorem 2 adapts
well to other constants. For example, if the comparison
operation < is replaced by a function which compares
the magnitudes of two values, then the Abelian group
Q+ in Figure 5 is replaced by the Abelian group Q\{0}.
Similarly, in a programming language with ‘computable
reals’, a built-in square root function can be accommo-
dated whilst still ruling out non-trivial functions of type
∀u.num u3 → num u.

Reynolds suggests that parametricity should not be
limited to computation [11]. In this paper we have fur-
nished one such instance: the invariance of physical laws
under changes of scale. In general they are also invari-
ant under changes in the coordinate system, given by
a translation or rotation of the axes. Perhaps this too
can be supported by the type system of a programming
language.

Acknowledgements

Part of this work was carried out at the University of
Cambridge Computer Laboratory with funding provided
by an EPSRC studentship. I am extremely grateful for
many productive discussions there with Nick Benton,
Francis Davey, Alan Mycroft and Ian Stark and for com-
ments on this paper from Simon Gay and Ian Stark.

References

[1] W. A. Adkins and S. H. Weintraub. Algebra: An Ap-
proach via Module Theory. Springer-Verlag, 1992.

[2] P. N. Benton. Strictness Analysis of Lazy Functional
Programs. PhD thesis, University of Cambridge Com-
puter Laboratory, August 1993. Technical Report 309.

[3] G. Birkhoff. Hydrodynamics: A Study in Logic, Fact and
Similitude. Princeton University Press, Revised edition,
1960.

[4] Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Long.
Provable isomorphisms of types. Mathematical Struc-
tures in Computer Science, 2(2):231–247, June 1992.

[5] J. Goubault. Inférence d’unités physiques en ML.
In P. Cointe, C. Queinnec, and B. Serpette, editors,
Journées Francophones des Langages Applicatifs, Noir-
moutier, pages 3–20. INRIA, 1994.

[6] R. T. House. A proposal for an extended form of
type checking of expressions. The Computer Journal,
26(4):366–374, 1983.

[7] A. J. Kennedy. Dimension types. In Proceedings of the
5th European Symposium on Programming, volume 788
of Lecture Notes in Computer Science, pages 348–362.
Springer-Verlag, 1994.

[8] A. J. Kennedy. Programming Languages and Dimen-
sions. PhD thesis, Computer Laboratory, University of
Cambridge, 1995. Available as Technical Report No.
391.

[9] D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky.
Foundations of Measurement, volume I, III. Academic
Press, 1971, 1990.

[10] G. D. Plotkin. LCF considered as a programming lan-
guage. Theoretical Computer Science, 5:223–255, 1977.

[11] J. C. Reynolds. Types, abstraction and parametric poly-
morphism. In R. E. A. Mason, editor, Information Pro-
cessing 83, pages 513–523, Amsterdam, 1983. Elsevier
Science Publishers B. V. (North-Holland).

[12] M. Rittri. Dimension inference under polymorphic re-
cursion. In 7th ACM Conf. on Functional Programming
Languages and Computer Architecture, pages 147–159.
ACM Press, June 1995.

[13] K. Sieber. Reasoning about sequential functions via
logical relations. In M. P. Fourman, P. T. Johnstone,
and A. M. Pitts, editors, Applications of Categories in
Computer Science: Proceedings of the LMS Symposium,
Durham, 1991. Cambridge University Press, 1992. LMS
Lecture Notes Series, 177.

12

[14] P. Wadler. Theorems for free! In Proceedings of the 4th
International Symposium on Functional Programming
Languages and Computer Architecture, 1989.

[15] M. Wand and P. M. O’Keefe. Automatic dimensional
inference. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honor of Alan Robinson,
pages 479–486. MIT Press, 1991.

[16] G. Winskel. The Formal Semantics of Programming
Languages: An Introduction. The MIT Press, 1993.

A Omitted proofs

Theorem 2 (Completeness of Eops). Suppose that E
induces RΓops

. Then

(ρops, ρops) ∈ RΓops
⇐⇒ E ⊆ Eops.

Proof.
(⇐). The verification that ρops is invariant under

RΓops
is straightforward.

(⇒). We can deduce from the antecedent that for any
V, ψ ∈ E(V), and µ, µ1, µ2 ∈ Units(V):

0: (0, 0) ∈ ψ(µ).

1: (1, 1) ∈ ψ(1).

+: If (r1, r
′
1) ∈ ψ(µ) and (r2, r

′
2) ∈ ψ(µ)

then (r1 + r2, r
′
1 + r′2) ∈ ψ(µ).

-: If (r1, r
′
1) ∈ ψ(µ) and (r2, r

′
2) ∈ ψ(µ)

then (r1 − r2, r
′
1 − r′2) ∈ ψ(µ).

*: If (r1, r
′
1) ∈ ψ(µ1) and (r2, r

′
2) ∈ ψ(µ2)

then (r1r2, r
′
1r

′
2) ∈ ψ(µ1 · µ2).

/: If (r1, r
′
1) ∈ ψ(µ1) and (r2 �= 0, r′2 �= 0) ∈ ψ(µ2)

then (r1/r2, r
′
1/r′2) ∈ ψ(µ1 · µ−1

2).

<: If (r1, r
′
1) ∈ ψ(µ) and (r2, r

′
2) ∈ ψ(µ)

then r1 < r2 iff r′1 < r′2.

We proceed to the consequent in two steps.

1. We show that

ψ(µ) =
either { (0, 0) }
or { (r, kr) | r ∈ Q } for some k ∈ Q+.

We already know that (0, 0) ∈ ψ(µ) for any µ. Now
consider (r, r′) ∈ ψ(µ) for r and r′ not both zero.
From the interpretation of < we can deduce that
r < 0 iff r′ < 0 and that 0 < r iff 0 < r′. Hence
r �= 0 and r′ = kr for some k ∈ Q+.

Now pick any two pairs (r, kr), (r′, k′r′) ∈ ψ(µ).
From the interpretation of / we know that
(r/r′, (kr)/(k′r′)) ∈ ψ(1). As ψ(1) = idQ we can
deduce that r/r′ = (kr)/(k′r′) so k = k′ giving the
bijection as required.

2. We show that if the constants in ρops are invari-
ant under the scaling relation RΓops

induced by E
then for any ψ ∈ E(V) there is some subgroup
G ⊆ Units(V) and h ∈ hom(G, Q+) such that
ψ = ψG,h ∈ Eops(V) as defined in Figure 5.

Let G be the set

G = { µ ∈ Units(V) | ψ(µ) �= {(0, 0)} } ,

and assuming step (1), define h by:

h(µ) = k if ψ(µ) = { (r, kr) | r ∈ Q } .

Pick any µ1, µ2 ∈ G. Then

ψ(µ1) = { (r, k1r) | r ∈ Q }
ψ(µ2) = { (r, k2r) | r ∈ Q }

for some k1, k2 ∈ Q+. From the interpretation of *
we know that

ψ(µ1 · µ2) = { (r, k1k2r) | r ∈ Q }
and from this deduce that µ1·µ2 ∈ G and that h(µ1·
µ2) = k1k2 = h(µ1)h(µ2). From the interpretation
of / and 1 we also know that

ψ(µ−1
1) = { (r, r/k1) | r ∈ Q }

and from this deduce that µ−1
1 ∈ G and that

h(µ−1
1) = 1/k1 = 1/h(µ1). We already know that

h(1) = 1. Thus we have just shown that G is a sub-
group of Units(V), and that h is a homomorphism
from G into Q+. This completes the proof.

Theorem 3 (Pi Theorem for Λu). Let τ be a closed
type of the form

∀u1 . . . ∀um.num µ1 → · · · → num µn → num µ0.

Let A be the m × n matrix of unit exponents in
µ1, . . . , µn, and B the m-vector of unit exponents in µ0.
If the equation AX = B is solvable for integer variables
in X, then

τ ∼=+ num 1
n−r→ · · · → num 1 → num 1

where r is the rank of A.

Proof. To save space, let 	u = u1 . . . um and τi = numµi.
We first identify a class of isomorphisms which do not
rely on dimensional invariance and whose bijections sim-
ply manipulate unit expressions. Think of them as
changing the set of base units used, for example replac-
ing units of length and time by units of velocity and ac-
celeration. They can be classified into three subclasses:

13

(R1). The exchange of two base units:

∀	u.τ ∼= ∀	u.{ui �→ uj , uj �→ ui}τ.

(R2). The replacement of a base unit by its inverse:

∀	u.τ ∼= ∀	u.{ui �→ u−1
i }τ.

(R3). The invertible combination of two units (for
i �= j and z ∈ Z):

∀	u.τ ∼= ∀	u.{ui �→ ui · uz
j}τ

A second class of isomorphisms manipulates the argu-
ments in a way analogous to the manipulation of units
seen above. Again, dimensional invariance is not re-
quired for their validation; the appropriate bijections
are straightforward and are omitted.

(C1). The exchange of two arguments:

∀	u.τ1 → · · · → τi → · · · → τj → · · · → τn → τ0∼= ∀	u.τ1 → · · · → τj → · · · → τi → · · · → τn → τ0.

(C2). The inversion of an argument:

∀	u.τ1 → · · · num µi · · · → τn → τ0∼= ∀	u.τ1 → · · · num µ−1
i · · · → τn → τ0.

(C3). The invertible combination of two arguments
(for i �= j and z ∈ Z):

∀	u.τ1 → · · · num µi → · · · → τn → τ0∼=+ ∀	u.τ1 → · · · num (µi · µz
j) · · · → τn → τ0.

This relies on the j’th argument being non-zero,
which explains ∼=+.

Consider the matrix of integers A′ associated with the
units of the arguments in the resulting types above. The
isomorphisms (R1), (R2) and (R3) correspond to the ap-
plication of elementary row operations to A to produce
A′ (the exchange of two rows, the multiplication of a row
by −1, and the addition of a scalar multiple of one row
to another row). Similarly, the isomorphisms (C1), (C2)
and (C3) correspond to elementary column operations.
The application of a set of elementary row operations
to a matrix A is equivalent to multiplication on the left
by an invertible matrix U to give UA. Similarly, the
application of a set of column operations to a matrix A
is equivalent to multiplication on the right by an invert-
ible matrix V to give AV . Furthermore, for any m × n
matrix A, there exists an invertible m×m matrix U and
invertible n × n matrix V such that

UAV =
(

Dr 0
0 0

)

where 0 denotes a block of zeroes, r = rank(A) and
Dr is an r × r matrix with positive diagonal elements
s1, . . . , sr and zeroes elsewhere, such that si divides si+1

for 1 � i � r − 1. The matrix UAV is unique and is
known as the Smith normal form of A [1]. The values
s1, . . . , sr are its invariant factors.

Using this particularly simple form, we can reduce our
original problem to a much simpler one. By a compo-
sition of type isomorphisms represented by elementary
row and column operations on the matrix A, we obtain
a new type whose arguments have units given by UAV
and whose result has units given by UB = (c1, . . . , cm):

τ ∼=+ ∀	u.num us1
1 → · · · → num usr

r

→ num 1
n−r→ · · · → num 1 → num (uc1

1 · · ·ucm
m).

Recall an assumption made in the statement of the the-
orem: that the equation AX = B is solvable for in-
tegers in X (if this is not the case then all terms of
type τ are trivial as was shown in Section 5.2). Hence
UA(V V −1)X = UB, and this is the case if and only if
UAV Y = UB is solvable for integers in Y . Therefore
we must have ci = sizi for some zi ∈ Z when 1 � i � r
and zi = 0 when r + 1 � i � m. By a trivial isomor-
phism we can remove the superfluous bound variables
ur+1, . . . , um and rewrite the above as

τ ∼=+ ∀u1 . . . ur.num us1
1 → · · · → num usr

r

→ num 1
n−r→ · · · → num 1 → num (us1z1

1 · · ·us1zr
r).

Now define bijections in Λu between this type (call it τ ′)
and the dimensionless type

τ ′′ = num 1
n−r→ · · · → num 1 → num 1,

as follows:

I = λf : τ ′.λx1 : num 1 . . . λxn−r : num 1.
f1...1(1) · · · (1)(x1) · · · (xn−r)

J = λg : τ ′′.Λu1 . . . ur.
λx1 : num us1 . . . λxr : num usr .
λxr+1 : num 1 . . . λxn : num 1.
xz1

1 ∗ · · · ∗ xzr
r ∗ g(xr+1) · · · (xn)

In a similar fashion to the example sketched in Sec-
tion 5.3 we can prove that these bijections compose to
give the identity with respect to terms of types τ ′ and
τ ′′. As before, one direction (showing that J(I(f)) is
equivalent to f for positive values) requires the use of
dimensional invariance (at last!).

14

