Statically Checkable Pattern Abstractions

Manuel Fahndrich
Computer Science Division

Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA  94720-1776

Abstract

Pattern abstractions increase the expressiveness of pattern
matching, enabling the programmer to describe a broader
class of regular forests with patterns. Furthermore, pat-
tern abstractions support code reuse and code factoring,
features that facilitate maintenance and evolution of code.
Past research on pattern abstractions has generally ignored
the aspect of compile-time checks for exhaustiveness and re-
dundancy. In this paper we propose a class of expressive
patterns that admits these compile-time checks.

1 Introduction

Patterns promote well-structured and readable code by com-
bining matching and binding in a single syntactic “picture.”
Furthermore, patterns permit important sanity checks on
case statements to be performed at compile time. The two
commonly used checks verify that a set of patterns is ezhaus-
tive, that is, any value of the appropriate type is matched by
some pattern, and detect whether any pattern is redundant,
that is, it matches only values already matched by textually
preceding patterns.

There are however three major shortcomings with the
simple patterns found in languages like ML. First, these pat-
terns are very restricted in terms of the sets of trees (forests)
that they can describe. A pattern compares only a syntac-
tically fixed number of initial nodes of each tree. Second,
patterns cannot be used with abstract data types. Third,
patterns cannot be named and reused. All problems hamper
program development, maintenance, and evolution.

A number of proposals have addressed the first prob-
lem [8, 2, 6, 12], but without addressing the second one.

*Effort partially sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-97-2-0241. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Rome Laboratory
or the U.S. Government.

To appear in the 1997 ACM SIGPLAN International
Conference on Functional Programming, June 9-11
1997, Amsterdam, Netherlands.

John Boyland*
Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA  15213-3891

Wadler’s views [14] elegantly solve the second problem. How-
ever, whether something constitutes a view can in general
not be checked by the compiler. Recently a very general
solution to all three problems has been proposed by Palao
Gostanza et al [11]. However, their patterns do not admit
compile-time checking.

In this paper we propose a new class of expressive pat-
terns that solve problems one and three. Patterns in this
class can be modeled by finite-state tree recognizers. Hence,
static checking reduces to the problem of containment be-
tween tree recognizers, a property which is decidable [7]. A
forthcoming technical report will address problem two on
integrating our patterns with abstract datatypes.

The paper is organized as follows. Section 2 motivates
our approach with examples and identifies two syntactic re-
strictions that are sufficient to guarantee that patterns cor-
respond to finite state tree recognizers. Section 3 defines
the syntax and semantics of patterns. Section 4 describes
a translation of our patterns to a simpler canonical form.
Construction of tree recognizers for canonical patterns is
straight-forward. Section 5 describes this construction, and
how the result can be used to check for exhaustion and re-
dundancy. Section 6 discusses a source translation of canon-
ical patterns to Standard ML patterns. Finally, Section 7
describes related work and Section 8 contains our conclu-
sions.

2 Motivation

Naming of constants and functions is a fundamental feature
in any programming language. The two main benefits of
naming are factoring, in which a concept is expressed in a
single place, and encapsulation, in which a concept is im-
plemented separately from its uses. Functional languages,
such as ML, support naming of values but not naming of
patterns. In this section, we argue the benefits of named
patterns for the purpose of factoring and encapsulation, and
motivate our extensions to patterns: alternation, recursion,
and node creation.
Consider a datatype to represent forests':

datatype forest = Node of { label : int,
left : forest,
right : forest }
| Union of forest list

L¥or the sake of concreteness we will use ML syntax and terminol-
ogy throughout the paper. But our results should carry over naturally
to other call-by-value functional languages.



where empty forests are represented as an empty union:
val empty = Union []

ML permits datatype constructors (such as Union) to be
used in patterns, but does not permit values (such as empty)
to be used as patterns. Thus the fact that empty forests
are represented using empty unions is explicit everywhere
pattern matching is used. If the forest datatype is later
changed by adding an explicit Empty constructor, all pat-
terns involving Union may need to be changed as well.

On the other hand, suppose one can define a pattern
abstraction such as:

pat Empty = Union [];

If this abstraction is used in patterns wherever one wishes to
match the empty forest, it is trivial to accommodate the rep-
resentation change by changing only the pattern definition.
Pattern abstractions thus enable factoring.

In functional languages, we can not only name simple
values, but also functions. Similarly, we need the power of
pattern abstractions with parameters. Consider a datatype
modeling types in Oberon 2, which has both fixed size arrays
(with a constant integer bound) and open arrays (with a
runtime bound):

datatype Type = ...
| FixedArray of int * Type
| OpenArray of Type;

Large parts of a compiler will treat the two array types the
same, but may need the respective element types. Rather
than having both cases wherever arrays are matched, one
can use a single pattern Array, which is defined with two
alternatives:

pat Array(elemtype) = FixedArray(_,elemtype)
| OpenArray(elemtype)

Alternative patterns are already provided in some versions
of SML/NJ. We call them simply or-patterns. In order to
be well-formed, each alternative must bind the same set of
pattern variables (elemtype in this case).

When a pattern abstraction is used in a pattern, it is
applied to actual parameter patterns. We call such uses
pattern applications or pattern calls, or simply calls. The
function dimensions given below uses the pattern Array to
bind the variable ty to the element type of any array type,
no matter what kind of array it is, fixed or open.

fun dimensions (Array(ty)) = dimensions(ty)+1
| dimensions _ = 0;

One can think of a pattern application as being replaced by
the body of the named pattern with the actual parameter
patterns substituted for the formals. For simple patterns
such as Array, this intuition is accurate, modulo renaming
of bound variables.

The next example illustrates the use of recursive pat-
terns. Consider a datatype for join lists:

datatype jlist = None | Single of int
| Append of jlist * jlist

and consider writing a pattern that matches two-element
join lists. Before we show a solution to this problem, con-
sider the much simpler problem: how can the set of jlist’s

representing empty lists be characterized? Of course None
is empty, but so is the appending of two empty jlist’s.
This intuition can be translated into the following pattern
abstraction:

pat Nil = None | Append(Nil,Nil)

This pattern abstraction is recursive since it includes calls to
itself. Recursive patterns can match arbitrarily many nodes
in a tree. Using Nil we can define:

pat One(x) = Single x | Append(One(x),Nil)
| Append(Nil,One(x))

Here we have an example of a recursive pattern abstraction
with an argument. It matches any jlist with exactly one
Single node in it, and binds x to the element of that node.
Using Nil and One, we can write Pair so that it handles any
jlist with exactly two elements:

pat Pair(x,y) = Append(Pair(x,y),Nil)
| Append(One(x),0ne(y))
| Append(Nil,Pair(x,y))

Thus a pair is always represented by an Append node and the
two elements are either in the first subtree, spread between
both subtrees, or are both in the second subtree.

Our third pattern extension—node creation—is moti-
vated by the complement to the Nil pattern, namely a pat-
tern Cons that matches the first element of a jlist and also
binds a variable to a jlist holding the rest of the elements.
The difficulty is that there may be no node in the structure
being matched that represents the rest of the elements. For
example, in the tree

Append (Append (Single 1, Single 2), Single 3)

there is no subtree holding exactly 2 and 3. More trivially,
the value Single 1 contains no “empty list” to be bound
to the “rest” variable. To solve this dilemma, we introduce
a limited form of expressions into patterns, which permit
bindings to be augmented with newly created nodes. We
can now define Cons as follows:

pat Cons(x,1) = Single x where 1 = None
| Append(Nil,Cons(x,1))
| Append(Cons(x,11),12)
where 1 = Append(11,12)

The first alternative matches a Single node and binds 1 (the
“rest” variable) to a newly constructed empty jlist. The
second alternative handles the case when all of the elements
occur in the right subtree, in which case a simple recursive
call is used. The third alternative matches Append nodes
with at least one element in the left subtree. Here 1 must
be bound to a jlist holding the rest of the elements from
the left subtree (available through recursion) and all of the
elements of the right subtree. The jlist is constructed
using Append.

2.1 Restrictions

The syntax as we have outlined in this section permits overly
powerful patterns. For instance, Pedro Palao Gostanza has
shown in private communication that the halting problem
for Turing machines can be reduced to checking whether a
set of (unrestricted) patterns is exhaustive. If we restrict
patterns to match recognizable forests, compile-time checks



are decidable. Recognizable forests are defined to be the
forests for which there exist finite-state bottom-up tree rec-
ognizers [7]. Below we give examples of two classes of pat-
terns that match non-recognizable forests. It turns out that
if we syntactically restrict our patterns to avoid these classes,
then we can always construct finite tree recognizers for them,
which in turn enables the desired compile-time checks.

An example of the first class of patterns to avoid is Cnt
defined by

datatype X = A of X | Bof X | Cof X | D
pat Cnt(x) = C(x) | A(Cnt(B(x)))

The pattern Cnt(_) matches the set of trees of the form
A" (C(B"(_))), which is not recognizable by a finite tree
recognizer. The characterizing syntactic property of this
pattern is that the recursive call to Cnt contains a non-trivial
argument pattern B(x). Next consider the pattern Power0£f2
defined by

pat Even(half) Z where half = Z
S(S(Even(x)))
where half = S(x)
pat Power0f2 = S(Z) | Even(Power0f2)

datatype Nat = Z | S of Nat
|

The pattern Power0f2 only matches trees of the form S" (Z),
where n is a power of 2. This set cannot be recognized by
a finite tree recognizer. Here the characterizing property
is the recursive call to Power0f2 as a pattern argument to
Even.

In general, the two syntactic properties that may cause
patterns to match non-recognizable forests are:

1. Non-atomic (non-variable, non-wild card) pattern ar-
guments to recursive calls.

2. Recursion nested within a call to a named pattern.

We can always construct finite tree recognizers for patterns
that adhere to these restrictions (Sections 4 and 5). Weaker
restrictions are possible but would have made this paper
more complex.

3 Patterns

In this section, we describe the syntax and semantics of pat-
terns. The static semantics places our extensions in the
context of the ML type system.

3.1 Syntax

Figure 1 shows the abstract syntax for patterns, and pat-
tern definitions. ML patterns are extended with pattern
definitions, or-patterns, pattern calls, node creation, and
general as-patterns. We assume a set of variable names
x € Vars and a set of pattern names f € Funcs. Construc-
tors ¢ € Cons have fixed arity and type typeof (¢). Nullary
constructors and patterns are written ¢() and f() respec-
tively, although in examples, we drop the extra (). Node
creation is limited to constructor applications and variables.
Pattern declarations are sets of mutually recursive pattern
definitions.
Syntactic restrictions on patterns are listed below:

1. Patterns must be linear (no variable may be bound
twice).

(atomic pattern) a == _|=z
(pattern) p = a
(constructor) | c(pr,-..pn)
(pattern call) | f (.- pn)
(as-pattern) |  p1 as p2
(or-pattern) } p1 | p2

(where clause) p where =1 = s;

and X2 = S2 ...
(creation) s u= z|c(S1y...y8n)
dec = ...
| pat fi(zi1,...,%T1ny) = p1
and fo(Z21,...,%20,) = D2

(declaration)

Figure 1: The syntax of patterns.

2. Each alternative in an or-pattern must bind the same
set of variables.

3. Variable bindings must be used exactly once, i.e., ev-
ery variable occurring in a pattern is either a formal
parameter or used exactly once in a where-clause to
create a new node. Unused variables must be replaced
by _.

4. Arguments to recursive calls must be atomic (Avoids
the Cnt example of Section 2).

5. No recursive calls in pattern arguments (Avoids the
Power0f2 example).

6. No cycles in the top-level call graph among mutually
recursive patterns.

Restrictions 1 and 2 are standard. Restriction 3 makes the
technical material in the rest of the paper simpler, and re-
strictions 4 and 5 guarantee that we can form finite tree
recognizers for each pattern. Restriction 6 disallows non-
terminating patterns, such as

pat Bottom(x) = Bottom(x)

Non-terminating patterns cause non-termination in the im-
plementation as well as in the translation given in the next
section. They furthermore break the correspondence be-
tween the operational meaning of a patterns and its tree
recognizer.

3.2 Static Semantics

We give a set of typing rules that extend ML’s type sys-
tem [10] for patterns and declarations. The type rules use
type environments TE which are finite maps from variables
Vars to types 7, and pattern environments F', which are fi-
nite maps from pattern names Funcs to types 7. We write
the union of two environments with disjoint domains as
TE:\ 4+ TE,. Figure 2 contains three kinds of judgments:

e Ft, p: (TE, ) states that in pattern environment
F, p matches values of type 7 and binds each variable
z in the domain of TE to a value of type TE(z).

e TE b s : (1, U) states that in environment TFE, the
expression s has type 7 and uses variables U.



e F F4d: F' states that declaration d extends environ-
ment F to F’.

Most rules are straight-forward, hence we only describe the
[WHERE] rule. Intuitively, a pattern p where z; = s;
matches whatever p matches, and introduces extra bindings
for x;, defined by s;. The constructs s; must use variable
bindings produced by p. We therefore type s; in the type en-
vironment TE produced by p. Because we want each binding
to be used only once for simplicity, we remove the bindings
U; used by s; from TFE in the resulting environment (written
TE\u,).

3.3 Dynamic Semantics

In Section 6, we define the semantics with a source-level
translation to Standard ML. Here we informally contrast
two possible match-semantics, local match vs. global match.
Local and global match differ in the way pattern parameters
are handled. We illustrate the distinction by means of an
example. Consider a pattern call

Elem(3)

to some pattern abstraction Elem. With local match seman-
tics, Elem(3) matches a tree ¢, if Elem(x) matches ¢, and
3 matches z. Global match on the other hand expands the
pattern definition of Elem, by substituting the actual ar-
gument pattern 3 for the formal. The resulting pattern is
then used to match ¢. The two approaches yield different
results if or-patterns are involved at some level. If the defi-
nition of Elem is as below, then Elem(x) can match the tree
t = Append (Single(2),Single(3)) in two different ways.

pat Elem(x) = Single(x)
| Append(Elem(x),_)
| Append(_,Elem(x))

If the second alternative is used, then x is bound to 2, if the
third is used, x is bound to 3. Since we desire a deterministic
semantics, we follow the tradition of ML by choosing the
“first match” with alternatives being considered left to right.

Now consider again the local match vs. global match dis-
tinction. Using local match, Elem(3) does not match ¢, since
Elem(x) commits to the second branch without consider-
ing the pattern argument 3. Using global match, Elem(3)
matches ¢, since we expand the alternatives with the argu-
ment pattern. In our example we obtain

Single(3)
| Append(Elem(3),_)
| Append(_,Elem(3))

and it is now clear that the second branch cannot match
(after one more expansion). Global match only commits
to a branch if it matches the input tree w.r.t. the given
argument patterns.

Local matching enables a simple implementation with-
out backtracking. This choice of semantics is used in Palao
Gostanza et al’s active destructors [11]. However, as we de-
scribe in Sections 4 and 6, the more powerful global match
semantics can also be efficiently implemented. Hence, since
global match is more expressive and may be more intuitive,
we chose global match semantics for our patterns.

[WILD]

Fryz:(zw—r1],71) [PVAR]

Ftr,pi: (TE;, 1)
dom(TE;)Ndom(TE;) =0 forali#j€l...n
TE=TE; +---+ TE,

typeof (¢) =71 — -+ = Tw — T

Fl_pc(pla“' ,pn) : (TE,T)

[PCON]

Fbtyopi: (TE:, ™)
dom(TE;)Ndom(TE;) =0 forali#j€l...n
TE = TE, +---+ TE,

F(fy=m1—> - —>1m —>T

F|_p f (pla"' 7pn) : (TE)T)

[PAPP]

F l_p P1
F |—p P2
dom(TE;) Ndom(TEz) =

)
Fbtopi as p2: (TE; + TE2, T)

TE1,T)

#(
Z(TEQ,T)

[AS]

Fbtopi: (TE, 1)
Fr,p2:(TE,T)
Fropr | p2: (TE,7)

[OR]

Ftyop:(TE,T)

TE ts s : (i, Us)

z; ¢ dom(TFE)

U; C dom(TE)

€T; #mj,UiﬂUj =0 foralli;éj

TE = TE\y, .. \u, [WHERE]

Ftyp where 1 = 51 ... and xp = $pn : (TE'[z; — 73], 7)

TE|z — 7] Fs z: (1,{z}) [SVAR]
TE ts s : (15, Us)
UnU;=0 foralli#j€l...n
U=U1U---UU,
typeof (¢) =11 — -+ = Th — T
N
TEbs ¢ (S1,...,58a) : (1, U) [SCON]
Ti = Ti1 — '+ —> Tin; — Ti0
F’:F[fiHTi]
F’ FppiZ(TEi,ﬂg)
dOm(TEi) = {Iil,... ,J?,‘nl.}
TE:(zik) =T k=1,... ,n;
(zix) = 7t " [PAT]

Fi—d...fi(a:il,...,xmi) = Di and ... . F

Figure 2: Type rules for patterns.



4 Canonical Patterns

This section describes the crux of the paper, a translation
from the patterns we defined in Section 3 to a simpler canon-
ical form. A pattern is canonical if the pattern arguments
in any pattern call are variables. In terms of the grammar
in Figure 1, the only change is in the production for pattern
calls, which becomes

(pattern call) | f (z1,...,2n)

Non-atomic pattern arguments account for nearly all the
complexity (and the expressiveness) of the patterns. As
we will see in Sections 5 and 6, construction of tree au-
tomata and implementation of canonical patterns is almost
trivial. Moreover, the distinction between local and global
match semantics discussed in Section 3.3 becomes irrelevant
for canonical patterns. All the potential backtracking, and
matching against node creations is handled by the transla-
tion to canonical patterns.

To reduce a pattern to canonical form, we essentially
perform the expansion described w.r.t. the global match se-
mantics, i.e. substitution of argument patterns for formals
in the body of pattern definitions. Due to recursion, the
expansion may however be infinite. The following observa-
tion gives some intuition for why a finite partial expansion
is sufficient:

In the infinite expansion of a given pattern, every
pattern abstraction is only called with finitely
many distinct argument patterns.

This fact follows immediately from our syntactic restriction
that argument patterns to recursive calls must be atomic.
Thus in the expansion, argument patterns to recursive calls
are either _, or sub-patterns of the original pattern argu-
ments. The possibility of sub-patterns comes from where-
patterns, since they bind new variables to sub-patterns of
arguments.

Another way to look at the expansion is as a specializa-
tion of pattern abstractions to all contexts they appear in.
Again, the syntactic restrictions guarantee that there are
only finitely many specializations.

The canonicalization works as follows: for each pattern
call with non-atomic argument patterns, we create a new
pattern definition that takes as arguments the free variables
of the original argument list. The body of the new definition
is obtained by substitution of the arguments into the body of
the pattern definition being called. Finally, the original call
is replaced with a call to the new pattern definition with
arguments being the free variables of the original pattern
arguments.

As an example, the pattern call Cons(3,Cons(y,_)) is
replaced by a call to a specialized version of Cons, namely
Cons3ConsY_ (y). Assuming the definition of Cons given ear-
lier, Figure 3 shows the specializations involved.

Besides recursion, specialization is complicated by where-
patterns. To handle node creation, we essentially partially
evaluate the pattern matching against created nodes. This
evaluation is possible due to the absence of recursion in ar-
gument patterns and cycles in top-level call graphs (restric-
tions 5 and 6 in Section 3.1). Due to the matching performed
during translation, fail patterns (which never match) may
be introduced. Fail patterns can always be removed from
canonical patterns, but it is simpler to deal with them dur-
ing the automata construction and the source translation to
ML.

pat Cons3ConsY_(y) Append (Nil () ,Cons3ConsY_(y))
Append (Cons3ConsY_(y),_)
Append (Cons3Nil () ,ConsY_(y))
= Single(3)
| Append (Nil(),Cons3Nil())
| Append(Cons3Nil(),Nil())
= Single(y)
| Append (Nil(),ConsY_(y))
| Append(ConsY_(y),_)

and Cons3Nil()

and ConsY_(y)

Figure 3: Canonicalization of Cons(3,Cons(y,_)).

A cache of ongoing substitutions is used to limit the
number of specializations to a finite number. The details
of the translation are given in Appendix A. While the worst
case expansion of patterns during the translation is exponen-
tial, we believe the algorithm will prove tractable for normal
cases. For example, patterns using chains of Cons patterns
yield cubic-size canonical patterns.

5 From Patterns to Tree Automata

In this section, we show how to construct non-deterministic
bottom-up tree automata for patterns. The problems of ex-
haustion and redundancy then reduce to deciding inclusion
between regular tree languages.

5.1 Definitions

A non-deterministic bottom-up tree automaton is a triple
A = (A,0,F) where A is a set of states, d is a set of
transitions of the forms c(a1,..,a,) — a, (a1,a2) A aor
a; — a2, where ¢ is an n-ary constructor from Cons, and
ai, ... ,an,a are states from A. The set F' C A is the set of
accepting states.

An epsilon transition a; — as states that the automaton
can enter state a» if it can enter state a1. An and transition
(a1,a2) 25 q states that the automaton can enter state a if it
can enter both a; and az2. In order to capture the semantics
of these transitions, we define the closure of a set of states
A w.r.t. transitions 4, (denoted closures(A)) as the smallest
set satisfying

a € closures(A) < a€ AV
a' € closures(A) Aa' S aedv

a’,a" € closures(A) A (a,a") Saes

Given a tree t over Cons, a run of A is an assignment of
subsets of A to each subtree in ¢ (written A(t)) defined in
a bottom-up fashion: A(c(t1,...,ts)) = closures({a | a; €
A(ti),c(ar, ... ,an) — a € 6}). A run is successful if one of
the states at the root of the tree ¢ is in F (A(t) N F # ).
A accepts all trees for which there is a successful run.

An automaton A = (A, 4, F) is deterministic if § contains
no € or A transitions and moreover, when it contains two
transitions for the same constructor c(ai,..,a,) — a € §
and c¢(ai1,.,an) — a’ € § then a = a’. In a run of a de-
terministic automaton, all the sets A(¢) have at most one
element. We include € and A transitions in our automata to
make the construction simpler. Such transitions can always
be eliminated. Appendix B shows how a nondeterministic



automaton can be transformed into a deterministic automa-
ton.

5.2 Construction

Given a canonical pattern p, we show how to construct a
tree-automaton A, recognizing the same forest as p. Since
canonical pattern definitions are only called with pattern
variables, parameters are only used for binding and do not
affect pattern matching. As a result, we can ignore param-
eters during the automata construction.

Let a, be a (unique) state for every sub-pattern p in
the program, and ay be a (unique) state for every pattern
definition f. Furthermore, let ar be a (unique) state for
every type 7 used in the program. Let A™ be the complete
set of all these states. In the following discussion, we assume
each 7 is a monomorphic datatype. We believe our results
can be extended to polymorphic types.

We define a transition set §* among the states A™. First,
for each datatype 7 declared as follows:

datatype 7 = c1 of Tii*.. . ¥Tim,
| ... | cn of T *Tpm,

we add edges

{Cl(a""llv' . 'aa"'lml) — aTa e acﬂ(a‘rnla' . '7a7'nm") — (1-,—}

Next for every pattern definition pat f(...) = p, we
add the edge a, — a;y.

Then for each kind of pattern p of inferred type 7, we
add additional edges:

_ ar — ay,
b4 ar = ap
fail
cprs.spn)  clapy,. . ap,) = ap
flxr,...,xn) af;ap
p1 as p2 (apy s apy) 5 ap
p1 | p2 Apy = A, Ay = ap
p' where ... Apr = ap

The automaton for any pattern p, A, is (A",6%,{ap}).
Of course, many of the states and edges will be irrelevant to
a run which must eventually contain a,. One can define A}
to be those states from which a, is reachable, and 4§, to be
0™ restricted to this set and then define A, as (A}, 6,, {ap}).

5.3 Checking Exhaustion and Redundancy

We can decide exhaustiveness of a set of patterns (p;) of
type 7 by forming the union of the automata A,;, and veri-
fying that (47,67, {a-}) C |J; Ap,. For redundancy, one can
test whether A, C |J; Ay, holds, in which case p is redun-
dant w.r.t. (p;). With the transformation to deterministic
bottom-up tree automata in Appendix B, these relations are
all decidable [7]. The complexity of the decision procedure is
worst-case exponential in the size of the canonical patterns
(due to the subset construction for deterministic automata).

6 Implementation

Each pattern abstraction f is implemented as a function f
that takes a tree and either returns bindings for the param-
eters, or raises a reserved exception Fail. For a pattern
definition of the form

pat f(x1,...,2,) = p

we generate a function definition of the form
fun f(node) = T,[(p,node)] (z1,...,%x)

As an example, Figure 4 shows how the pattern definition
Cons3ConsY from Section 4 is translated.

fun Cons3ConsY_(node) =
(case node
of Append(vl,v2) =>
(let () = Nil(v1)
in let (y) = Cons3ConsY_(v2)
in (y))
| _ => raise Fail)
handle Fail =>
(case node
of Append(vl,v2) =>
(let (y) = Cons3ConsY_(vl)
in (y))
| _ => raise Fail)
handle Fail =>
(case node
of Append(vi,v2) =>
(let () = Cons3Nil(v1)
in let (y) = ConsY_(v2)
in (y))
| _ => raise Fail)

Figure 4: Translation of Cons3ConsY_ from a pattern to a
function.

Figure 5 gives the translation of patterns to Standard
ML. The translation function 7, for patterns takes a list
of pattern-variable pairs and code to be generated if the
match succeeds. A pair (p, v) represents a match of v against
p. At runtime, v will be bound to the tree to be matched
against p. In the translation for or-patterns we catch the
Fail exception and try the next alternative.

To implement an expression of the form

case e of
p1 => el

| Pn => en
we rewrite it to

let v = e in
(T [(p1, v)] e1)
handle Fail => (7, [(p2,v)]e2)

handle Fail => (7, [(pn,v)]e€n)
handle Fail => raise Match

The simple translation given here does not make use of
the many sophisticated techniques for improving the effi-
ciency of pattern-matching, such as jump tables, or Ses-
toft’s technique for using information known from previous
matches [13]. Adapting these techniques to handle recur-
sive pattern definitions is one interesting area for further
research.



Tp

Tole

To[(Zsv) i r]e

Tpl(@,0) 1 r]e

Tp [(fail,v) : r]e

Tol(cCpry oo spn),v) i 7]e

To[(f(x1, ... ,zn),v) 7)€

To[(p1 as p2,v) :7]e

Tol(p1 | p2,v):r]e

Tp[(p where z1 = s1 and ... and x, = $p,v):7T]e

T [(p,v) : 7] [let z1 =

(p x Vars)® — Ezp — Exp

e
Tpre
Tprlet = =

[
[

v in €]

raise Fail]

case v

Cson) = Tpllpr,v): ...

| _ => raise Fail]

of c(v1, (Dn,vn) 1] e

(vi fresh)

[let (z1,...,2n) = f(v)
n (Tpre)]

(vi fresh)

To [(p1,v) = (p2,v) : r]e

[(Tp [(p1,v) : 7] €) handle Fail => (T, [(p2,v):7r]e)]

s1 and ... and Z, = S, in €]

Figure 5: Translation of canonicalized patterns to Standard ML.

7 Related Work

A class of work extends Hoffman and O’Donnell’s [9] sim-
ple matchers with complex operations such as the subtree
operator of Trafola [8], the vertical iterator of Dora [2, 6],
and Queinnec and Geffroy’s recursive tree operator [12]. All
these extensions match recognizable forests, but do not ad-
dress pattern abstraction per se.

Aitken and Reppy’s abstract value constructors (AVC) [1]
form a subclass of our named patterns without alternation,
recursion or node creation. But unlike our patterns, some
AVCs can also be used as values. The authors do not address
static checking of AVCs.

Wadler’s views [14] define alternative, free data types
that are isomorphic to the underlying representation. The
isomorphism is described using in and out functions with
general computation. Views naturally admit exhaustiveness
and redundancy checks, but whether something constitutes
a view can in general not be checked by the compiler. In
contrast to our patterns, views can also be used as values.
Burton and Cameron [4] drop views as values and obtain
a system similar to ours. However, their implementation
requires translation via the in function from the underlying
data type to the view before matching can be performed.
Such a translation is not necessary in our framework.

Palao Gostanza et al [11] propose pattern abstractions
that completely separate patterns from data types, Boy-
land [3] implements named patterns with recursion using
first-match semantics, and Erwig has a proposal for active
patterns [5] in which patterns are parameterized by values
as well as patterns. All of these mechanisms permit arbi-
trary computation in patterns and thus cannot be statically
analyzed.

8 Conclusions

We have described an extension to ML: pattern abstractions
with recursion, alternation, and node creation. Patterns us-
ing these abstractions can be checked at compile time for

exhaustiveness and redundancy using finite-state tree rec-
ognizers. Implementation of the patterns is based on a sim-
plifying substitution that partially evaluates the patterns
against nodes created in patterns. The result of the substi-
tution can be translated in a straight-forward manner to a
set of ML patterns and ML functions.

The size of the translation is worst-case exponential in
the size of the original pattern definitions, and the determin-
istic automata needed for the compile time checking may be
doubly-exponential. While the theoretical complexity looks
discouraging, we believe—based on experience with a pro-
totype implementation that these worst-case bounds are
only met for contrived examples.

Acknowledgments

We thank Alex Aiken, Chris Okasaki, Pedro Palao Gostanza,
David Gay, Zhendong Su, and the anonymous referees for
their helpful and insightful comments on earlier drafts of the

paper.

References

[1] William E. Aitken and John H. Reppy. Abstract value
constructors. In ACM SIGPLAN Workshop on ML and
its Applications, pages 1-11. 1992.
[2] John Boyland, Charles Farnum, and Susan L. Gra-
ham. Attributed transformational code generation for
dynamic compilers. In R. Giegerich and S. L. Gra-
ham, editors, Code Generation - Concepts, Tools, Tech-
niques. Workshops in Computer Science, pages 227
254. Springer-Verlag, Berlin, 1992.

John Tang Boyland. Descriptional Composition of
Compiler Components. PhD thesis, University of Cal-
ifornia, Berkeley, 1996. Available as technical report
UCB//CSD-96-916.

3]



[4] F. Warren Burton and Robert D. Cameron. Pattern
matching with abstract data types. Journal of Func-
tional Programming, 3(2):171-190, April 1993.

[5] Martin Erwig. Active patterns. In 8th International
Workshop on the Implementation of Function Lan-
guages. 1996.

[6

Charles Farnum. Pattern-based languages for prototyp-
ing compiler optimizers. PhD thesis, Computer Sci-
ence Division EECS, University of California, Berke-
ley, December 1990. Available as technical report
UCB//CSD-90-608.

[7

Ferenc Gécseg and Magnus Steinby. Tree Automata.
Akadémiai Kiadé, Budapest, 1984.

3

Reinhold Heckmann. A functional language for the
specification of complex tree transformations. In Har-
ald Ganzinger, editor, Furopean Symposium on Pro-
gramming (ESOP ’88), volume 300 of Lecture Notes
in Computer Science, pages 175 190. Springer-Verlag,
Berlin, 1988.

[9

Christoph M. Hoffmann and Michael J. O’Donnell. Pat-
tern matching in trees. Journal of the ACM, 29(1):68—
95, January 1982.

10

Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. The MIT Press, Cambridge,
MA, 1990.

11

Pedro Palao Gostanza, Ricardo Pena, and Manuel
Nunez. A new look at pattern matching in abstract
data types. In Proceedings of the ACM SIGPLAN Inter-
nation Conference on Functional Programming (ICFP
'96), ACM SIGPLAN Notices, 31(6):110 121, 1996.

12

Christian Queinnec and Jean-Marie Geffroy. Partial
evaluation applied to symbolic pattern matching with
intelligent backtrack. In Workshop for Static Analysis.
October 1992.

13

P. Sestoft. ML pattern match compilation and partial
evaluation. In O. Danvy, R. Gluck, and P. Thiemann,
editors, Partial Evaluation. International Seminar. Se-
lected Papers, pages 446—464. Springer-Verlag, Berlin,
February 1996.

[14

Philip Wadler. Views: A way for pattern matching to
cohabit with data abstraction. In Conference Record of
the Fourteenth ACM Symposium on Principles of Pro-
gramming Languages, pages 307 313. ACM Press, New
York, January 1987.

A Reduction to Canonical Patterns

This appendix describes the translation of patterns to canon-
ical form in detail. We translate a mutually recursive group
of pattern definitions together. We assume that patterns
occurring in case expressions are first factored out into pat-
tern definitions so that patterns outside pattern definitions
are canonical. Hence, we only have to deal with pattern
definitions. In the course of the translation process, we gen-
erate new pattern definitions, these are added to the set of
mutually recursive definitions currently being analyzed.

Figure 7 defines four functions that perform the transla-
tion at compile-time:

Sp This function takes a cache of specializations, an environ-
ment and a pattern. The environment binds parameter
names to patterns. The function returns a canonical
pattern, one in which all calls to pattern definitions
have only pattern variables for arguments. Translation
starts by calling this function with an empty cache and
an identity environment for free pattern variables.

Sw This function takes a node expression (from a where
clause) and a pattern. It returns a set of pairs: each
an environment and a set of bindings of variables to
node expressions.

Ss This function takes a set of bindings of variables to node
expressions, and a single node expression. It returns a
substitution of the latter using the given bindings.

Sy This function takes the cache of specializations, and a
pattern call. It returns a pattern call with only the
free variables as parameters.

We also make use of an auxiliary function:

free This function (not shown) returns the free variables of
a pattern or used variables of a node expression.

We use some operations on environments and patterns. These
operations are defined in Figure 6:

+ This operation joins two environments together. If they
each provide a binding for the same pattern variable,
a conjunction of the two bindings is produced. (Here
we require unrestricted as patterns.)

@ This operation joins pairs of an environment and a set
of node bindings. It is extended to operate on sets of
such pairs. We use it to combine results of compile-
time pattern matching against node creations.

V This operation joins patterns together in alternation. If
the set of patterns to join is empty, it returns the spe-
cial pattern fail that doesn’t match anything.

B Nondeterministic to Deterministic Automata

Given a nondeterministic tree automaton, as defined in Sec-
tion 5, we show that an equivalent deterministic automa-
ton can be created. If we did not include ‘and’ transi-
tions in our nondeterministic automata, we could have re-
ferred to Gécseg and Steinby’s standard definition of tree
automata [7] for the proof.

Let A = (A, 4, F) be a (nondeterministic) tree automa-
ton. We construct a deterministic automaton A" = (A4',§', F")
as follows:

A P(A)

F' = {deA|dnF+#0
with a transition in §’ defined for every ¢ € Cons with arity
n and every n-tuple (a},...,a,) € A'™:
cay, ... an) — closures({a | a; € aj,c(a1,... ,a,) — a € §})

By construction, we have therefore that A’ is deterministic
and moreover, runs of the two automata are closely related:
Ve A = {A0)}

Furthermore, A accepts ¢ if and only if A(¢) N F # @ if and
only if A(t) € F'. Thus we see the two automata accept the
same tree language.



(e+e)(z) = e(x) as e(x) e(z),e (z) defined
(e+¢e)(z) = e(z) e(x) defined
(e+e)(z) = €(z) €(x) defined

(e+e,wuuw)
{(ei,wi) ® (e, wj) | 0<i<n0<j<m}

IR}

(e,w) ® (e, w'")
{(ei,wi) |0 < i <n}d{(e),w)) | 0<j<m}

P

Vi
Vit = »

\ipo.pr,. - opa} = po | \/{p1,--- pad

fail

Figure 6: Definitions of +, &, and V



Env = Varsw—p

Bindings = P(Vars x s)
Cache = (Funcs X (p X ...X p)) — Funcs
S, : Cache - Env —p —p
S, Ce_ = _
S,Cex = e(x)
Sp,Cefail = fail
SpCeclpr, ... ,pn) = c(SpyCepr, ..., 5, Cepy)
SpCeflpr, ... ,pn) = S;Cf(S,Cepr, ... ,5,Cepyn)
SpCe(pr | p2) = S,Cep1 | SyCep
SpCe(pr as p2) = Sp,Cepr as SpCepo
S,Ce(p where ©1 = s1 and ... and =, = §,) = \/{(SPC(E \e1.. wn} +€)p) where w' | (e/,w') € @Sw sie(x:)}
Sw : $— p— P(Env x Bindings)

Swrp = {(z=pl{H}

Sws_. = {([r = _ |z € free(s),{}}
Swsy = {(Jz— x|z €free(s)],{y = s})}
Swsfail = {}
Swelst, .. ,8u)c(pry .. ,pn) = @Swsipi
Swelsi, onssn)c (pry o) = {} (c#)
Swsflpr, ..upn) = Suws(Spl[zi = pilp)
where f declared as pat f(z1,...,z,) = p
Sws(p1 | p2) = SwsprUSy, sp2
Sws(pt as p2) = Susp1 D Swsp2
Sws(p where 1 = s1 and ... and z, = sp) = {(e,w\v U{z;: = Ssws; |0<i<n})| (e,w) € Suwsp}

where U = Ufree(si)

Ss : Bindings — s — s
Ss{..,z=3s,...}x = s
Ss{zi = sitex = z Vi #«x
Sswelst, ... ,8,) = c(Sswst, ... ,SswSn)
Sy Cache - p —p
S;C f(&) = [f(&) x; are pattern variables
S;Cf = C(f,p)ree(p)) (Gf C(f,p) exists)
S;Cf(p) = g(free(p)), (g fresh)
add declaration pat g(§) = S, C'[z; = pi]p
where
¢’ = Cl(f.5) > 9]
i = free(p)

f declared as pat f(Z)

n
=

Figure 7: Translation to canonical patterns.

10



