
Statically Checkable Pattern AbstractionsManuel F�ahndrichComputer Science DivisionDepartment of Electrical Engineering and Computer ScienceUniversity of California, BerkeleyBerkeley, CA 94720-1776 John Boyland�Computer Science DepartmentCarnegie Mellon University5000 Forbes AvenuePittsburgh, PA 15213-3891
AbstractPattern abstractions increase the expressiveness of patternmatching, enabling the programmer to describe a broaderclass of regular forests with patterns. Furthermore, pat-tern abstractions support code reuse and code factoring,features that facilitate maintenance and evolution of code.Past research on pattern abstractions has generally ignoredthe aspect of compile-time checks for exhaustiveness and re-dundancy. In this paper we propose a class of expressivepatterns that admits these compile-time checks.1 IntroductionPatterns promote well-structured and readable code by com-bining matching and binding in a single syntactic \picture."Furthermore, patterns permit important sanity checks oncase statements to be performed at compile time. The twocommonly used checks verify that a set of patterns is exhaus-tive, that is, any value of the appropriate type is matched bysome pattern, and detect whether any pattern is redundant,that is, it matches only values already matched by textuallypreceding patterns.There are however three major shortcomings with thesimple patterns found in languages like ML. First, these pat-terns are very restricted in terms of the sets of trees (forests)that they can describe. A pattern compares only a syntac-tically �xed number of initial nodes of each tree. Second,patterns cannot be used with abstract data types. Third,patterns cannot be named and reused. All problems hamperprogram development, maintenance, and evolution.A number of proposals have addressed the �rst prob-lem [8, 2, 6, 12], but without addressing the second one.�E�ort partially sponsored by the Defense Advanced ResearchProjects Agency, and Rome Laboratory, Air Force Materiel Com-mand, USAF, under agreement number F30602-97-2-0241. The U.S.Government is authorized to reproduce and distribute reprints forGovernmental purposes notwithstanding any copyright annotationthereon. The views and conclusions contained herein are those ofthe authors and should not be interpreted as necessarily representingthe o�cial policies or endorsements, either expressed or implied, ofthe Defense Advanced Research Projects Agency, Rome Laboratoryor the U.S. Government.To appear in the 1997 ACM SIGPLAN InternationalConference on Functional Programming, June 9-111997, Amsterdam, Netherlands.

Wadler's views [14] elegantly solve the second problem. How-ever, whether something constitutes a view can in generalnot be checked by the compiler. Recently a very generalsolution to all three problems has been proposed by PalaoGostanza et al [11]. However, their patterns do not admitcompile-time checking.In this paper we propose a new class of expressive pat-terns that solve problems one and three. Patterns in thisclass can be modeled by �nite-state tree recognizers. Hence,static checking reduces to the problem of containment be-tween tree recognizers, a property which is decidable [7]. Aforthcoming technical report will address problem two onintegrating our patterns with abstract datatypes.The paper is organized as follows. Section 2 motivatesour approach with examples and identi�es two syntactic re-strictions that are su�cient to guarantee that patterns cor-respond to �nite state tree recognizers. Section 3 de�nesthe syntax and semantics of patterns. Section 4 describesa translation of our patterns to a simpler canonical form.Construction of tree recognizers for canonical patterns isstraight-forward. Section 5 describes this construction, andhow the result can be used to check for exhaustion and re-dundancy. Section 6 discusses a source translation of canon-ical patterns to Standard ML patterns. Finally, Section 7describes related work and Section 8 contains our conclu-sions.2 MotivationNaming of constants and functions is a fundamental featurein any programming language. The two main bene�ts ofnaming are factoring, in which a concept is expressed in asingle place, and encapsulation, in which a concept is im-plemented separately from its uses. Functional languages,such as ML, support naming of values but not naming ofpatterns. In this section, we argue the bene�ts of namedpatterns for the purpose of factoring and encapsulation, andmotivate our extensions to patterns: alternation, recursion,and node creation.Consider a datatype to represent forests1:datatype forest = Node of { label : int,left : forest,right : forest }| Union of forest list1For the sake of concreteness we will use ML syntax and terminol-ogy throughout the paper. But our results should carry over naturallyto other call-by-value functional languages.

where empty forests are represented as an empty union:val empty = Union []ML permits datatype constructors (such as Union) to beused in patterns, but does not permit values (such as empty)to be used as patterns. Thus the fact that empty forestsare represented using empty unions is explicit everywherepattern matching is used. If the forest datatype is laterchanged by adding an explicit Empty constructor, all pat-terns involving Union may need to be changed as well.On the other hand, suppose one can de�ne a patternabstraction such as:pat Empty = Union [];If this abstraction is used in patterns wherever one wishes tomatch the empty forest, it is trivial to accommodate the rep-resentation change by changing only the pattern de�nition.Pattern abstractions thus enable factoring.In functional languages, we can not only name simplevalues, but also functions. Similarly, we need the power ofpattern abstractions with parameters. Consider a datatypemodeling types in Oberon 2, which has both �xed size arrays(with a constant integer bound) and open arrays (with aruntime bound):datatype Type = : : :| FixedArray of int * Type| OpenArray of Type;Large parts of a compiler will treat the two array types thesame, but may need the respective element types. Ratherthan having both cases wherever arrays are matched, onecan use a single pattern Array, which is de�ned with twoalternatives:pat Array(elemtype) = FixedArray(_,elemtype)| OpenArray(elemtype)Alternative patterns are already provided in some versionsof SML/NJ. We call them simply or-patterns. In order tobe well-formed, each alternative must bind the same set ofpattern variables (elemtype in this case).When a pattern abstraction is used in a pattern, it isapplied to actual parameter patterns. We call such usespattern applications or pattern calls, or simply calls. Thefunction dimensions given below uses the pattern Array tobind the variable ty to the element type of any array type,no matter what kind of array it is, �xed or open.fun dimensions (Array(ty)) = dimensions(ty)+1| dimensions _ = 0;One can think of a pattern application as being replaced bythe body of the named pattern with the actual parameterpatterns substituted for the formals. For simple patternssuch as Array, this intuition is accurate, modulo renamingof bound variables.The next example illustrates the use of recursive pat-terns. Consider a datatype for join lists:datatype jlist = None | Single of int| Append of jlist * jlistand consider writing a pattern that matches two-elementjoin lists. Before we show a solution to this problem, con-sider the much simpler problem: how can the set of jlist's

representing empty lists be characterized? Of course Noneis empty, but so is the appending of two empty jlist's.This intuition can be translated into the following patternabstraction:pat Nil = None | Append(Nil,Nil)This pattern abstraction is recursive since it includes calls toitself. Recursive patterns can match arbitrarily many nodesin a tree. Using Nil we can de�ne:pat One(x) = Single x | Append(One(x),Nil)| Append(Nil,One(x))Here we have an example of a recursive pattern abstractionwith an argument. It matches any jlist with exactly oneSingle node in it, and binds x to the element of that node.Using Nil and One, we can write Pair so that it handles anyjlist with exactly two elements:pat Pair(x,y) = Append(Pair(x,y),Nil)| Append(One(x),One(y))| Append(Nil,Pair(x,y))Thus a pair is always represented by an Append node and thetwo elements are either in the �rst subtree, spread betweenboth subtrees, or are both in the second subtree.Our third pattern extension|node creation|is moti-vated by the complement to the Nil pattern, namely a pat-tern Cons that matches the �rst element of a jlist and alsobinds a variable to a jlist holding the rest of the elements.The di�culty is that there may be no node in the structurebeing matched that represents the rest of the elements. Forexample, in the treeAppend(Append(Single 1, Single 2), Single 3)there is no subtree holding exactly 2 and 3. More trivially,the value Single 1 contains no \empty list" to be boundto the \rest" variable. To solve this dilemma, we introducea limited form of expressions into patterns, which permitbindings to be augmented with newly created nodes. Wecan now de�ne Cons as follows:pat Cons(x,l) = Single x where l = None| Append(Nil,Cons(x,l))| Append(Cons(x,l1),l2)where l = Append(l1,l2)The �rst alternative matches a Single node and binds l (the\rest" variable) to a newly constructed empty jlist. Thesecond alternative handles the case when all of the elementsoccur in the right subtree, in which case a simple recursivecall is used. The third alternative matches Append nodeswith at least one element in the left subtree. Here l mustbe bound to a jlist holding the rest of the elements fromthe left subtree (available through recursion) and all of theelements of the right subtree. The jlist is constructedusing Append.2.1 RestrictionsThe syntax as we have outlined in this section permits overlypowerful patterns. For instance, Pedro Palao Gostanza hasshown in private communication that the halting problemfor Turing machines can be reduced to checking whether aset of (unrestricted) patterns is exhaustive. If we restrictpatterns to match recognizable forests, compile-time checks2

are decidable. Recognizable forests are de�ned to be theforests for which there exist �nite-state bottom-up tree rec-ognizers [7]. Below we give examples of two classes of pat-terns that match non-recognizable forests. It turns out thatif we syntactically restrict our patterns to avoid these classes,then we can always construct �nite tree recognizers for them,which in turn enables the desired compile-time checks.An example of the �rst class of patterns to avoid is Cntde�ned bydatatype X = A of X | B of X | C of X | Dpat Cnt(x) = C(x) | A(Cnt(B(x)))The pattern Cnt(_) matches the set of trees of the formAn(C(Bn(_))), which is not recognizable by a �nite treerecognizer. The characterizing syntactic property of thispattern is that the recursive call to Cnt contains a non-trivialargument pattern B(x). Next consider the pattern PowerOf2de�ned bydatatype Nat = Z | S of Natpat Even(half) = Z where half = Z| S(S(Even(x)))where half = S(x)pat PowerOf2 = S(Z) | Even(PowerOf2)The pattern PowerOf2 only matches trees of the form Sn(Z),where n is a power of 2. This set cannot be recognized bya �nite tree recognizer. Here the characterizing propertyis the recursive call to PowerOf2 as a pattern argument toEven.In general, the two syntactic properties that may causepatterns to match non-recognizable forests are:1. Non-atomic (non-variable, non-wild card) pattern ar-guments to recursive calls.2. Recursion nested within a call to a named pattern.We can always construct �nite tree recognizers for patternsthat adhere to these restrictions (Sections 4 and 5). Weakerrestrictions are possible but would have made this papermore complex.3 PatternsIn this section, we describe the syntax and semantics of pat-terns. The static semantics places our extensions in thecontext of the ML type system.3.1 SyntaxFigure 1 shows the abstract syntax for patterns, and pat-tern de�nitions. ML patterns are extended with patternde�nitions, or-patterns, pattern calls, node creation, andgeneral as-patterns. We assume a set of variable namesx 2 Vars and a set of pattern names f 2 Funcs . Construc-tors c 2 Cons have �xed arity and type typeof (c). Nullaryconstructors and patterns are written c() and f() respec-tively, although in examples, we drop the extra (). Nodecreation is limited to constructor applications and variables.Pattern declarations are sets of mutually recursive patternde�nitions.Syntactic restrictions on patterns are listed below:1. Patterns must be linear (no variable may be boundtwice).

(atomic pattern) a ::= _ j x(pattern) p ::= a(constructor) j c (p1; : : : ; pn)(pattern call) j f (p1; : : : ; pn)(as-pattern) j p1 as p2(or-pattern) j p1 | p2(where clause) j p where x1 = s1and x2 = s2 : : :(creation) s ::= x j c (s1; :::; sn)(declaration) dec ::= : : :j pat f1(x11,: : : ,x1n1) = p1and f2(x21,: : : ,x2n2) = p2...Figure 1: The syntax of patterns.2. Each alternative in an or-pattern must bind the sameset of variables.3. Variable bindings must be used exactly once, i.e., ev-ery variable occurring in a pattern is either a formalparameter or used exactly once in a where-clause tocreate a new node. Unused variables must be replacedby _.4. Arguments to recursive calls must be atomic (Avoidsthe Cnt example of Section 2).5. No recursive calls in pattern arguments (Avoids thePowerOf2 example).6. No cycles in the top-level call graph among mutuallyrecursive patterns.Restrictions 1 and 2 are standard. Restriction 3 makes thetechnical material in the rest of the paper simpler, and re-strictions 4 and 5 guarantee that we can form �nite treerecognizers for each pattern. Restriction 6 disallows non-terminating patterns, such aspat Bottom(x) = Bottom(x)Non-terminating patterns cause non-termination in the im-plementation as well as in the translation given in the nextsection. They furthermore break the correspondence be-tween the operational meaning of a patterns and its treerecognizer.3.2 Static SemanticsWe give a set of typing rules that extend ML's type sys-tem [10] for patterns and declarations. The type rules usetype environments TE which are �nite maps from variablesVars to types � , and pattern environments F , which are �-nite maps from pattern names Funcs to types � . We writethe union of two environments with disjoint domains asTE1 + TE2. Figure 2 contains three kinds of judgments:� F `p p : (TE ; �) states that in pattern environmentF , p matches values of type � and binds each variablex in the domain of TE to a value of type TE(x).� TE `s s : (�;U) states that in environment TE , theexpression s has type � and uses variables U .3

� F `d d : F 0 states that declaration d extends environ-ment F to F 0.Most rules are straight-forward, hence we only describe the[WHERE] rule. Intuitively, a pattern p where xi = simatches whatever p matches, and introduces extra bindingsfor xi, de�ned by si. The constructs si must use variablebindings produced by p. We therefore type si in the type en-vironmentTE produced by p. Because we want each bindingto be used only once for simplicity, we remove the bindingsUi used by si from TE in the resulting environment (writtenTEnUi).3.3 Dynamic SemanticsIn Section 6, we de�ne the semantics with a source-leveltranslation to Standard ML. Here we informally contrasttwo possible match-semantics, local match vs. global match.Local and global match di�er in the way pattern parametersare handled. We illustrate the distinction by means of anexample. Consider a pattern callElem(3)to some pattern abstraction Elem. With local match seman-tics, Elem(3) matches a tree t, if Elem(x) matches t, and3 matches x. Global match on the other hand expands thepattern de�nition of Elem, by substituting the actual ar-gument pattern 3 for the formal. The resulting pattern isthen used to match t. The two approaches yield di�erentresults if or-patterns are involved at some level. If the de�-nition of Elem is as below, then Elem(x) can match the treet = Append(Single(2),Single(3)) in two di�erent ways.pat Elem(x) = Single(x)| Append(Elem(x),_)| Append(_,Elem(x))If the second alternative is used, then x is bound to 2, if thethird is used, x is bound to 3. Since we desire a deterministicsemantics, we follow the tradition of ML by choosing the\�rst match" with alternatives being considered left to right.Now consider again the local match vs. global match dis-tinction. Using local match, Elem(3) does not match t, sinceElem(x) commits to the second branch without consider-ing the pattern argument 3. Using global match, Elem(3)matches t, since we expand the alternatives with the argu-ment pattern. In our example we obtainSingle(3)| Append(Elem(3),_)| Append(_,Elem(3))and it is now clear that the second branch cannot match(after one more expansion). Global match only commitsto a branch if it matches the input tree w.r.t. the givenargument patterns.Local matching enables a simple implementation with-out backtracking. This choice of semantics is used in PalaoGostanza et al 's active destructors [11]. However, as we de-scribe in Sections 4 and 6, the more powerful global matchsemantics can also be e�ciently implemented. Hence, sinceglobal match is more expressive and may be more intuitive,we chose global match semantics for our patterns.

F `p _ : ([]; �) [WILD]F `p x : ([x 7! �]; �) [PVAR]F `p pi : (TE i ; �i)dom(TE i) \ dom(TE j) = ; forall i 6= j 2 1 : : : nTE = TE 1 + � � �+ TEntypeof (c) = �1 �! � � � �! �n �! �F `p c (p1; : : : ; pn) : (TE ; �) [PCON]F `p pi : (TE i ; �i)dom(TE i) \ dom(TE j) = ; forall i 6= j 2 1 : : : nTE = TE 1 + � � �+ TEnF (f) = �1 �! � � � �! �n �! �F `p f (p1; : : : ; pn) : (TE ; �) [PAPP]F `p p1 : (TE 1 ; �)F `p p2 : (TE 2 ; �)dom(TE 1) \ dom(TE2) = ;F `p p1 as p2 : (TE 1 + TE 2 ; �) [AS]F `p p1 : (TE ; �)F `p p2 : (TE ; �)F `p p1 | p2 : (TE ; �) [OR]F `p p : (TE ; �)TE `s si : (�i ;Ui)xi 62 dom(TE)Ui � dom(TE)xi 6= xj ; Ui \ Uj = ; forall i 6= jTE0 = TE nU1 : : : nUnF `p p where x1 = s1 : : : and xn = sn : (TE0[xi 7! �i]; �)[WHERE]TE [x 7! �] `s x : (�; fxg) [SVAR]TE `s si : (�i ;Ui)Ui \ Uj = ; forall i 6= j 2 1 : : : nU = U1 [� � � [Untypeof (c) = �1 �! � � � �! �n �! �TE `s c (s1 ; : : : ; sn) : (�;U) [SCON]�i = �i1 �! � � � �! �ini �! �i0F 0 = F [fi 7! �i]F 0 `p pi : (TE i ; �i0)dom(TE i) = fxi1 ; : : : ; xini gTE i(xik) = �ik k = 1; : : : ; niF `d : : : fi(xi1,: : : ,xini) = pi and : : : : F 0 [PAT]Figure 2: Type rules for patterns.4

4 Canonical PatternsThis section describes the crux of the paper, a translationfrom the patterns we de�ned in Section 3 to a simpler canon-ical form. A pattern is canonical if the pattern argumentsin any pattern call are variables. In terms of the grammarin Figure 1, the only change is in the production for patterncalls, which becomes(pattern call) j f (x1; : : : ; xn)Non-atomic pattern arguments account for nearly all thecomplexity (and the expressiveness) of the patterns. Aswe will see in Sections 5 and 6, construction of tree au-tomata and implementation of canonical patterns is almosttrivial. Moreover, the distinction between local and globalmatch semantics discussed in Section 3.3 becomes irrelevantfor canonical patterns. All the potential backtracking, andmatching against node creations is handled by the transla-tion to canonical patterns.To reduce a pattern to canonical form, we essentiallyperform the expansion described w.r.t. the global match se-mantics, i.e. substitution of argument patterns for formalsin the body of pattern de�nitions. Due to recursion, theexpansion may however be in�nite. The following observa-tion gives some intuition for why a �nite partial expansionis su�cient:In the in�nite expansion of a given pattern, everypattern abstraction is only called with �nitelymany distinct argument patterns.This fact follows immediately from our syntactic restrictionthat argument patterns to recursive calls must be atomic.Thus in the expansion, argument patterns to recursive callsare either _, or sub-patterns of the original pattern argu-ments. The possibility of sub-patterns comes from where-patterns, since they bind new variables to sub-patterns ofarguments.Another way to look at the expansion is as a specializa-tion of pattern abstractions to all contexts they appear in.Again, the syntactic restrictions guarantee that there areonly �nitely many specializations.The canonicalization works as follows: for each patterncall with non-atomic argument patterns, we create a newpattern de�nition that takes as arguments the free variablesof the original argument list. The body of the new de�nitionis obtained by substitution of the arguments into the body ofthe pattern de�nition being called. Finally, the original callis replaced with a call to the new pattern de�nition witharguments being the free variables of the original patternarguments.As an example, the pattern call Cons(3,Cons(y,_)) isreplaced by a call to a specialized version of Cons, namelyCons3ConsY_(y). Assuming the de�nition of Cons given ear-lier, Figure 3 shows the specializations involved.Besides recursion, specialization is complicated by where-patterns. To handle node creation, we essentially partiallyevaluate the pattern matching against created nodes. Thisevaluation is possible due to the absence of recursion in ar-gument patterns and cycles in top-level call graphs (restric-tions 5 and 6 in Section 3.1). Due to the matching performedduring translation, fail patterns (which never match) maybe introduced. Fail patterns can always be removed fromcanonical patterns, but it is simpler to deal with them dur-ing the automata construction and the source translation toML.

pat Cons3ConsY_(y) = Append(Nil(),Cons3ConsY_(y))| Append(Cons3ConsY_(y),_)| Append(Cons3Nil(),ConsY_(y))and Cons3Nil() = Single(3)| Append(Nil(),Cons3Nil())| Append(Cons3Nil(),Nil())and ConsY_(y) = Single(y)| Append(Nil(),ConsY_(y))| Append(ConsY_(y),_)Figure 3: Canonicalization of Cons(3,Cons(y,_)).A cache of ongoing substitutions is used to limit thenumber of specializations to a �nite number. The detailsof the translation are given in Appendix A. While the worstcase expansion of patterns during the translation is exponen-tial, we believe the algorithm will prove tractable for normalcases. For example, patterns using chains of Cons patternsyield cubic-size canonical patterns.5 From Patterns to Tree AutomataIn this section, we show how to construct non-deterministicbottom-up tree automata for patterns. The problems of ex-haustion and redundancy then reduce to deciding inclusionbetween regular tree languages.5.1 De�nitionsA non-deterministic bottom-up tree automaton is a triple� = (A; �; F) where A is a set of states, � is a set oftransitions of the forms c(a1; ::; an) �! a, (a1; a2) �̂! a ora1 ��! a2, where c is an n-ary constructor from Cons , anda1; : : : ; an; a are states from A. The set F � A is the set ofaccepting states.An epsilon transition a1 ��! a2 states that the automatoncan enter state a2 if it can enter state a1. An and transition(a1; a2) �̂! a states that the automaton can enter state a if itcan enter both a1 and a2. In order to capture the semanticsof these transitions, we de�ne the closure of a set of statesA w.r.t. transitions �, (denoted closure�(A)) as the smallestset satisfyinga 2 closure�(A) , a 2 A _a0 2 closure�(A) ^ a0 ��! a 2 � _a0; a00 2 closure�(A) ^ (a0; a00) �̂! a 2 �Given a tree t over Cons, a run of � is an assignment ofsubsets of A to each subtree in t (written �(t)) de�ned ina bottom-up fashion: �(c(t1; : : : ; tn)) = closure�(fa j ai 2�(ti); c(a1; : : : ; an) �! a 2 �g). A run is successful if one ofthe states at the root of the tree t is in F (�(t) \ F 6= ;).� accepts all trees for which there is a successful run.An automaton � = (A; �; F) is deterministic if � containsno � or ^ transitions and moreover, when it contains twotransitions for the same constructor c(a1; ::; an) �! a 2 �and c(a1; ::; an) �! a0 2 � then a = a0. In a run of a de-terministic automaton, all the sets A(t) have at most oneelement. We include � and ^ transitions in our automata tomake the construction simpler. Such transitions can alwaysbe eliminated. Appendix B shows how a nondeterministic5

automaton can be transformed into a deterministic automa-ton.5.2 ConstructionGiven a canonical pattern p, we show how to construct atree-automaton �p recognizing the same forest as p. Sincecanonical pattern de�nitions are only called with patternvariables, parameters are only used for binding and do nota�ect pattern matching. As a result, we can ignore param-eters during the automata construction.Let ap be a (unique) state for every sub-pattern p inthe program, and af be a (unique) state for every patternde�nition f . Furthermore, let a� be a (unique) state forevery type � used in the program. Let A� be the completeset of all these states. In the following discussion, we assumeeach � is a monomorphic datatype. We believe our resultscan be extended to polymorphic types.We de�ne a transition set �� among the states A�. First,for each datatype � declared as follows:datatype � = c1 of �11*: : :*�1m1| : : : | cn of �n1*: : :*�nmnwe add edgesfc1(a�11 ;: : :; a�1m1) �! a� ; : : : ; cn(a�n1 ;: : :; a�nmn) �! a�gNext for every pattern de�nition pat f(: : :) = p, weadd the edge ap ��! af .Then for each kind of pattern p of inferred type � , weadd additional edges:_ a� ��! apx a� ��! apfailc(p1,: : : ,pn) c(ap1 ; : : : ; apn) �! apf(x1,: : : ,xn) af ��! app1 as p2 (ap1 ; ap2) �̂! app1 | p2 ap1 ��! ap; ap2 ��! app0 where : : : ap0 ��! apThe automaton for any pattern p, �p is (A�; ��; fapg).Of course, many of the states and edges will be irrelevant toa run which must eventually contain ap. One can de�ne A�pto be those states from which ap is reachable, and ��p to be�� restricted to this set and then de�ne �p as (A�p; ��p ; fapg).5.3 Checking Exhaustion and RedundancyWe can decide exhaustiveness of a set of patterns (pi) oftype � by forming the union of the automata �pi , and veri-fying that (A�� ; ��� ; fa�g) � Si�pi . For redundancy, one cantest whether �p � Si�pi holds, in which case p is redun-dant w.r.t. (pi). With the transformation to deterministicbottom-up tree automata in Appendix B, these relations areall decidable [7]. The complexity of the decision procedure isworst-case exponential in the size of the canonical patterns(due to the subset construction for deterministic automata).6 ImplementationEach pattern abstraction f is implemented as a function fthat takes a tree and either returns bindings for the param-eters, or raises a reserved exception Fail. For a patternde�nition of the form

pat f(x1,: : :,xn) = pwe generate a function de�nition of the formfun f(node) = Tp [(p; node)] (x1,: : :,xn)As an example, Figure 4 shows how the pattern de�nitionCons3ConsY from Section 4 is translated.fun Cons3ConsY_(node) =(case nodeof Append(v1,v2) =>(let () = Nil(v1)in let (y) = Cons3ConsY_(v2)in (y))| _ => raise Fail)handle Fail =>(case nodeof Append(v1,v2) =>(let (y) = Cons3ConsY_(v1)in (y))| _ => raise Fail)handle Fail =>(case nodeof Append(v1,v2) =>(let () = Cons3Nil(v1)in let (y) = ConsY_(v2)in (y))| _ => raise Fail)Figure 4: Translation of Cons3ConsY_ from a pattern to afunction.Figure 5 gives the translation of patterns to StandardML. The translation function Tp for patterns takes a listof pattern-variable pairs and code to be generated if thematch succeeds. A pair (p; v) represents a match of v againstp. At runtime, v will be bound to the tree to be matchedagainst p. In the translation for or-patterns we catch theFail exception and try the next alternative.To implement an expression of the formcase e ofp1 => e1: : :| pn => enwe rewrite it tolet v = e in(Tp [(p1; v)] e1)handle Fail => (Tp [(p2; v)] e2)...handle Fail => (Tp [(pn; v)] en)handle Fail => raise MatchThe simple translation given here does not make use ofthe many sophisticated techniques for improving the e�-ciency of pattern-matching, such as jump tables, or Ses-toft's technique for using information known from previousmatches [13]. Adapting these techniques to handle recur-sive pattern de�nitions is one interesting area for furtherresearch.6

Tp : (p�Vars)� �! Exp �! ExpTp [] e = eTp [(_; v) : r] e = Tp r eTp [(x; v) : r] e = Tp r [[let x = v in e]]Tp [(fail; v) : r] e = [[raise Fail]]Tp [(c(p1, : : : ,pn); v) : r] e = [[case vof c(v1, : : : ,vn) => Tp [(p1; v1) : : : : : (pn; vn) : r] e| _ => raise Fail]](vi fresh)Tp [(f(x1, : : : ,xn); v) : r] e = [[let (x1; : : : ; xn) = f(v)in (Tp r e)]](vi fresh)Tp [(p1 as p2; v) : r] e = Tp [(p1; v) : (p2; v) : r] eTp [(p1 | p2; v) : r] e = [[(Tp [(p1; v) : r] e) handle Fail => (Tp [(p2; v) : r] e)]]Tp [(p where x1 = s1 and : : : and xn = sn; v) : r] e = Tp [(p; v) : r] [[let x1 = s1 and : : : and xn = sn in e]]Figure 5: Translation of canonicalized patterns to Standard ML.7 Related WorkA class of work extends Ho�man and O'Donnell's [9] sim-ple matchers with complex operations such as the subtreeoperator of Trafola [8], the vertical iterator of Dora [2, 6],and Queinnec and Ge�roy's recursive tree operator [12]. Allthese extensions match recognizable forests, but do not ad-dress pattern abstraction per se.Aitken and Reppy's abstract value constructors (AVC) [1]form a subclass of our named patterns without alternation,recursion or node creation. But unlike our patterns, someAVCs can also be used as values. The authors do not addressstatic checking of AVCs.Wadler's views [14] de�ne alternative, free data typesthat are isomorphic to the underlying representation. Theisomorphism is described using in and out functions withgeneral computation. Views naturally admit exhaustivenessand redundancy checks, but whether something constitutesa view can in general not be checked by the compiler. Incontrast to our patterns, views can also be used as values.Burton and Cameron [4] drop views as values and obtaina system similar to ours. However, their implementationrequires translation via the in function from the underlyingdata type to the view before matching can be performed.Such a translation is not necessary in our framework.Palao Gostanza et al [11] propose pattern abstractionsthat completely separate patterns from data types, Boy-land [3] implements named patterns with recursion using�rst-match semantics, and Erwig has a proposal for activepatterns [5] in which patterns are parameterized by valuesas well as patterns. All of these mechanisms permit arbi-trary computation in patterns and thus cannot be staticallyanalyzed.8 ConclusionsWe have described an extension to ML: pattern abstractionswith recursion, alternation, and node creation. Patterns us-ing these abstractions can be checked at compile time for

exhaustiveness and redundancy using �nite-state tree rec-ognizers. Implementation of the patterns is based on a sim-plifying substitution that partially evaluates the patternsagainst nodes created in patterns. The result of the substi-tution can be translated in a straight-forward manner to aset of ML patterns and ML functions.The size of the translation is worst-case exponential inthe size of the original pattern de�nitions, and the determin-istic automata needed for the compile time checking may bedoubly-exponential. While the theoretical complexity looksdiscouraging, we believe|based on experience with a pro-totype implementation|that these worst-case bounds areonly met for contrived examples.AcknowledgmentsWe thank Alex Aiken, Chris Okasaki, Pedro Palao Gostanza,David Gay, Zhendong Su, and the anonymous referees fortheir helpful and insightful comments on earlier drafts of thepaper.References[1] William E. Aitken and John H. Reppy. Abstract valueconstructors. In ACM SIGPLAN Workshop on ML andits Applications, pages 1{11. 1992.[2] John Boyland, Charles Farnum, and Susan L. Gra-ham. Attributed transformational code generation fordynamic compilers. In R. Giegerich and S. L. Gra-ham, editors, Code Generation - Concepts, Tools, Tech-niques. Workshops in Computer Science, pages 227{254. Springer-Verlag, Berlin, 1992.[3] John Tang Boyland. Descriptional Composition ofCompiler Components. PhD thesis, University of Cal-ifornia, Berkeley, 1996. Available as technical reportUCB//CSD-96-916.7

[4] F. Warren Burton and Robert D. Cameron. Patternmatching with abstract data types. Journal of Func-tional Programming, 3(2):171{190, April 1993.[5] Martin Erwig. Active patterns. In 8th InternationalWorkshop on the Implementation of Function Lan-guages. 1996.[6] Charles Farnum. Pattern-based languages for prototyp-ing compiler optimizers. PhD thesis, Computer Sci-ence Division|EECS, University of California, Berke-ley, December 1990. Available as technical reportUCB//CSD-90-608.[7] Ferenc G�ecseg and Magnus Steinby. Tree Automata.Akad�emiai Kiad�o, Budapest, 1984.[8] Reinhold Heckmann. A functional language for thespeci�cation of complex tree transformations. In Har-ald Ganzinger, editor, European Symposium on Pro-gramming (ESOP '88), volume 300 of Lecture Notesin Computer Science, pages 175{190. Springer-Verlag,Berlin, 1988.[9] Christoph M. Ho�mann and Michael J. O'Donnell. Pat-tern matching in trees. Journal of the ACM, 29(1):68{95, January 1982.[10] Robin Milner, Mads Tofte, and Robert Harper. TheDe�nition of Standard ML. The MIT Press, Cambridge,MA, 1990.[11] Pedro Palao Gostanza, Ricardo Pe~na, and ManuelN�u~nez. A new look at pattern matching in abstractdata types. In Proceedings of the ACM SIGPLAN Inter-nation Conference on Functional Programming (ICFP'96), ACM SIGPLAN Notices, 31(6):110{121, 1996.[12] Christian Queinnec and Jean-Marie Ge�roy. Partialevaluation applied to symbolic pattern matching withintelligent backtrack. In Workshop for Static Analysis.October 1992.[13] P. Sestoft. ML pattern match compilation and partialevaluation. In O. Danvy, R. Gluck, and P. Thiemann,editors, Partial Evaluation. International Seminar. Se-lected Papers, pages 446{464. Springer-Verlag, Berlin,February 1996.[14] Philip Wadler. Views: A way for pattern matching tocohabit with data abstraction. In Conference Record ofthe Fourteenth ACM Symposium on Principles of Pro-gramming Languages, pages 307{313. ACM Press, NewYork, January 1987.A Reduction to Canonical PatternsThis appendix describes the translation of patterns to canon-ical form in detail. We translate a mutually recursive groupof pattern de�nitions together. We assume that patternsoccurring in case expressions are �rst factored out into pat-tern de�nitions so that patterns outside pattern de�nitionsare canonical. Hence, we only have to deal with patternde�nitions. In the course of the translation process, we gen-erate new pattern de�nitions, these are added to the set ofmutually recursive de�nitions currently being analyzed.Figure 7 de�nes four functions that perform the transla-tion at compile-time:

Sp This function takes a cache of specializations, an environ-ment and a pattern. The environment binds parameternames to patterns. The function returns a canonicalpattern, one in which all calls to pattern de�nitionshave only pattern variables for arguments. Translationstarts by calling this function with an empty cache andan identity environment for free pattern variables.Sw This function takes a node expression (from a whereclause) and a pattern. It returns a set of pairs: eachan environment and a set of bindings of variables tonode expressions.Ss This function takes a set of bindings of variables to nodeexpressions, and a single node expression. It returns asubstitution of the latter using the given bindings.Sf This function takes the cache of specializations, and apattern call. It returns a pattern call with only thefree variables as parameters.We also make use of an auxiliary function:free This function (not shown) returns the free variables ofa pattern or used variables of a node expression.We use some operations on environments and patterns. Theseoperations are de�ned in Figure 6:+ This operation joins two environments together. If theyeach provide a binding for the same pattern variable,a conjunction of the two bindings is produced. (Herewe require unrestricted as patterns.)� This operation joins pairs of an environment and a setof node bindings. It is extended to operate on sets ofsuch pairs. We use it to combine results of compile-time pattern matching against node creations._ This operation joins patterns together in alternation. Ifthe set of patterns to join is empty, it returns the spe-cial pattern fail that doesn't match anything.B Nondeterministic to Deterministic AutomataGiven a nondeterministic tree automaton, as de�ned in Sec-tion 5, we show that an equivalent deterministic automa-ton can be created. If we did not include `and' transi-tions in our nondeterministic automata, we could have re-ferred to G�ecseg and Steinby's standard de�nition of treeautomata [7] for the proof.Let � = (A; �; F) be a (nondeterministic) tree automa-ton. We construct a deterministic automaton �0 = (A0; �0; F 0)as follows: A0 = P(A)F 0 = fa0 2 A0 j a0 \ F 6= ;gwith a transition in �0 de�ned for every c 2 Cons with arityn and every n-tuple (a01; : : : ; a0n) 2 A0n:c(a01; : : : ; a0n) �! closure�(fa j ai 2 a0i; c(a1; : : : ; an) �! a 2 �g)By construction, we have therefore that �0 is deterministicand moreover, runs of the two automata are closely related:8t �0(t) = f�(t)gFurthermore, � accepts t if and only if �(t) \ F 6= ; if andonly if �(t) 2 F 0. Thus we see the two automata accept thesame tree language.8

(e+ e0)(x) = e(x) as e0(x) e(x); e0(x) de�ned(e+ e0)(x) = e(x) e(x) de�ned(e+ e0)(x) = e0(x) e0(x) de�ned(e; w)� (e0; w0) = (e+ e0; w [w0)f(ei; wi) j 0 < i � ng � f(e0j ; w0j) j 0 < j � mg = f(ei; wi)� (e0j ; w0j) j 0 < i � n; 0 < j � mgMfg = f([]; fg)g_fg = fail_fpg = p_fp0; p1; : : : ; png = p0 | _fp1; : : : ; pngFigure 6: De�nitions of +, �, and _

9

Env = Vars 7! pBindings = P(Vars � s)Cache = (Funcs � (p � : : :� p)) 7! FuncsSp : Cache �! Env �! p �! pSpC e _ = _Sp C ex = e(x)SpC e fail = failSp C e c(p1, : : : ,pn) = c(Sp C ep1, : : : ,Sp C epn)SpC e f(p1, : : : ,pn) = Sf C f(Sp C ep1, : : : ,Sp C epn)Sp C e (p1 | p2) = SpC e p1 | SpC e p2SpC e (p1 as p2) = SpC e p1 as SpC e p2Sp C e (p where x1 = s1 and : : : and xn = sn) = _f(Sp C (e nfx1;::: ;xng +e0) p) where w0 j (e0; w0) 2Mi Sw si e(xi)gSw : s �! p �! P(Env � Bindings)Sw xp = f([x 7! p]; fg)gSw s _ = f([x 7! _ j x 2 free(s)]; fg)gSw s y = f([x 7! x j x 2 free(s)]; fy = sg)gSw s fail = fgSw c(s1, : : : ,sn) c(p1, : : : ,pn) = Mi Sw si piSw c(s1, : : : ,sn) c0(p1, : : : ,pn0) = fg (c 6= c0)Sw s f(p1, : : : ,pn) = Sw s (Sp[] [xi 7! pi] p)where f declared as pat f(x1,: : : ,xn) = pSw s (p1 | p2) = Sw s p1 [Sw s p2Sw s (p1 as p2) = Sw s p1 � Sw s p2Sw s (p where x1 = s1 and : : : and xn = sn) = f(e; w nU [fxi = Ss w si j 0 < i � ng) j (e;w) 2 Sw s pgwhere U =[i free(si)Ss : Bindings �! s �! sSs f: : : ; x = s; : : : gx = sSs fxi = sigx = x 8ixi 6= xSs w c(s1, : : : ,sn) = c(Ss w s1, : : : ,Ss w sn)Sf : Cache �! p �! pSf C f(~x) = f(~x) xi are pattern variablesSf C f(~p) = C(f; ~p)(free(~p)) (if C(f; ~p) exists)Sf C f(~p) = g(free(~p)); (g fresh)add declaration pat g(~y) = Sp C0 [xi 7! pi] pwhereC0 = C[(f; ~p) 7! g]~y = free(~p)f declared as pat f(~x) = pFigure 7: Translation to canonical patterns.10

