
Refined Type Inference for ML�
(Abstract)

Manuel Fähndrichy and Alexander Aikeny
University of California, Berkeleyz

1 Introduction

Inclusion constraints over set-expressions [1, 4] provide
a general formalism to express a large class of program
analyses. Over the past two years, we have experimented
with inclusion constraints to model dataflow in type-based
analyses. One of our research goals is to determine how to
structure and implement precise constraint-based analyses
such that they scale to large programs. Program analyses
with O(n3) complexity bounds often exhibit their worst-
case complexity in practice and consequently do not scale
beyond programs of a few thousand lines. As a result,
coarser but faster analyses are usually used [2, 10].

Scaling behavior and precision are intimately con-
nected and in an ideal formalism, one can be traded
for the other. Unfortunately, inclusion constraints over
set-expressions do not provide enough control over this
precision-efficiency tradeoff. As an example, consider
Hindley-Milner type inference. The equality constraints
arising in the formulation of algorithm W [8] can be
solved as symmetric inclusion constraints using a standard
inclusion constraint solver. This approach results however
in an algorithm with cubic time complexity, instead of the
nearly linear time algorithm based on unification [7].

A key to the efficiency of Hindley-Milner type infer-
ence is that types are terms. Terms have unique head
constructors, whereas set expressions generally do not.
This property—whether a quantity has a unique head
constructor—is a prime determinant of the cost of solving
type constraints. We have designed an extended inclusion
constraint formalism in which values with unique head
constructors can be mixed with more general sets. The ex-
tended formalism retains the generality of inclusion con-
straints and set-expressions, but gives control over where
this generality is unneeded. Because inclusion constraints
over types with unique head constructors can be solved�This abstract is a short version of a full paper submitted for confer-
ence publication.ySupported in part by NSF Young Investigator Award CCR-9457812
and NSF Grant CCR-9416973zAuthors’ address: EECS Department, University of Califor-
nia, Berkeley, 387 Soda Hall #1776, Berkeley, CA 94720-1776
Email: fmanuel,aikeng@cs.berkeley.edu

nearly as efficiently as unification, constraints in our ex-
tended formalism can be solved more efficiently than pure
inclusion constraints.

Not only does the new formalism provide fine control
over the precision-efficiency tradeoff, it also enables novel
analyses. The rest of this abstract briefly describes one
such analysis: Uncaught exception inference for ML [9].
Our formulation of exception inference improves upon
earlier work by providing precise information at a cost
close to Hindley-Milner type inference.

2 Uncaught Exception Inference

We formulate our uncaught exception inference as an ef-
fect system [6] for Mini-ML, a typed lambda calculus with
exception constructors and raise and handle expres-
sions.e ::= x j fn x => e j e1 e2 j raise e je handle pi => eip ::= c j c(x)
Handle expressions use pattern matching to provide spe-
cialized handlers for different exceptions. The set of con-
stants and primitives of the language are accessed through
identifiers in an initial environment.

The type language used has two kinds of types, u-
types (with unique head constructors) and s-types (types
based on set-expressions). It differs from Hindley-Milner
types only in that exception constructors are differenti-
ated within the type system. The standard ML type sys-
tem assigns the type exn to each exception value. We re-
fine the exception type by making exn a unary construc-
tor of signature exn : s ! u. The signature specifies
that exn produces a u-type and takes as argument an s-
type. The argument type describes the set of exception
constructors. For example, the Match exception is given
the type exn(Match), where the name Match is reused
as a constant type constructor of kind s. Function types
must also be refined to capture the set of exceptions that
may be raised during an application. The function type
constructor has the signature � ��! � : u s u ! u, and

function types are written �1 ��! �2. The first argument
is a u-type describing the domain of the function, the sec-
ond argument is an s-type describing the set of exceptions
that may be raised during an application, and the third ar-
gument is again a u-type for the range. The kind for the do-
main is overlined u to indicate that the function type con-
structor is contravariant in this field. Variance of type con-
structors is needed because we use inclusion constraints
instead of equalities for type inference.

The type language is described by the following gram-
mar (� is used for u-types, � for s-types):� ::= � j b j � ��! � j exn(�)� ::= � j c j c(�) j � \ � j � [� j :fc1; : : : ; cng
Type variables are written � or �, depending on the kind.
Base types b 2 B are constants for simplicity. We usec 2 ExnCons for exception constructors. Note that ex-
ceptions may be constants or carry a value. An excep-
tion c carrying a value of type � has type exn(c(�)). Set-
types can furthermore be formed by intersection, union,
and complement. The type :fc1; : : : ; cng denotes the set
of all values except values obtained by applying construc-
tors ci. Because exceptions can carry values, the two kinds
of types are mutually recursive.

Figure 1 shows the type rules for exception inference.
Types for constants, exceptions and primitive operators
are assumed to be defined in an initial type environment.
Judgments have the form A ` e : � ! �, meaning that un-
der the type assumptions A, expression e has type � and
may raise the exceptions �. There are also judgments for
exception patterns `p p : (�; c; A) meaning that pattern p
matches exception � and binds variables x in the domain
of A to the type A(x). Furthermore, the judgment infers
the exception constructor c of the pattern, which is used
in forming the filter for unhandled exceptions. The rule
for handle expressions makes use of the full expressive
power of s-types. It uses intersection and complement to
form the set of exceptions that pass through the handler,
and union is used to combine the exceptions of all the han-
dlers.

A few examples illustrate the refined types. First con-
sider the primitive raise in ML, which is used to raise
an exception. Instead of making it a primitive, we could
treat raise as a function with type exn(�) ��! �. The
type expresses the fact that applying raise to an excep-
tion of type exn(�) causes the observable effect �.

Consider the functionsubstFail that calls a function
argument, and if the Fail exception is raised, raises the
alternate exception e.

exception Fail
fun substFail f e =

f () handle
Fail => raise e

A ` x : A(x) ! 0 [VAR]A[x 7! �] ` e : � ! �A ` fn x => e : (� ��! �) ! 0 [ABS]A ` e1 : �1 ! �1A ` e2 : �2 ! �2�1 � �2 ��! �A ` e1 e2 : � ! �1 [�2 [� [APP]A ` e : exn(�) ! �A ` raise e : � ! � [� [RAISE]A ` e0 : �0 ! �0`p pi : (�i; ci; Ai) for i = 1::nA+Ai ` ei : �i ! �0i for i = 1::n�0 � Si=1::n �i [�pass \ :fc1; : : : ; cng�i � � for i = 0::nA ` e0 handle pi => ei : � ! (�pass [Si=1::n �0i)[HANDLE]`p c : (c; c; []) [PCON]typeof(c) = � �! exn(c(�))`p c(x) : (c(�); c; [x 7! �]) [PAPP]

Figure 1: Type and exception inference rules.

The types inferred by our type system are

f : unit
�1�! �

e : exn(�2)
substFail : (unit �1�! �) �! exn(�2)�1\:fFailg [�2�����������! �

The types illustrate the dependencies between the excep-
tions carried by the function argumentf, the argument ex-
ception e, and the exceptions of substFail. Given a
function f : unit �1�! �, we know that the expression
f() has type � and effect �1. The handle expression
prevents the Fail exception from escaping the body of
substFail, but contributes the exception �2 from argu-
mente. Consequently, evaluatingsubstFail can result
in any exceptions from �2 or exceptions raised by the ar-
gument function, except Fail.

The theory needed to solve the inclusion constraints
arising during type inference is described in a forthcom-
ing paper.

3 Implementation

We have implemented the exception analysis on top of a
generic constraint solver written in SML/NJ. The proto-
type can analyze core SML, which requires the following
extensions:� Let-polymorphism is handled as described in [1].� Datatypes hide the internal structure of values. We

must ensure that exceptions do not “disappear” into
datatypes. To this end, we extend datatypes contain-
ing exception values (directly or through functions)
with a single extra s-type parameter to capture these
exceptions.� ML has mutable references. We treat inclusion con-
straints between reference types as equalities.

The largest program we have tested so far is the lexer
generator ml-lex (1200 lines of ML). The analysis time
for ml-lex is 3.9sec on a 200MHz Pentium with 64MB
of main memory. This compares well to the 0.9sec the
SML/NJ compiler requires to type-check the same pro-
gram. The analysis infers the following type for the main
function lexGen:

lexGen : string -(Match \/ eof \/
error \/ lex_error \/
Subscript)-> unit

The five uncaught exceptions correspond exactly to the re-
sults reported by Yi [12]. Our running time however im-
proves upon Yi’s approach by three orders of magnitude.

4 Related Work

Effect systems [6] naturally contain a mixture of Hindley-
Milner types and sets for effects. To our knowledge,
all published algorithms for effect systems are based on
equality constraints and solved using specialized unifica-
tion to deal with sets [5, 11]. As a result, effect sets that
are joined by dataflow paths have to be equal, an approx-
imation that does not arise in our formulation.

Two earlier approaches to uncaught exception detection
for ML are found in [3] and [12]. Guzmán and Suárez de-
scribe an extended type system for ML similar to, but less
powerful than, the one presented here. Their approach is
based on equality constraints, does not treat exceptions as
first class values, and ignores value-carrying exceptions.
Yi describes a collecting interpretation for estimating un-
caught exceptions in ML. His analysis handles the entire
ML language and is much finer grained than [3] or the sys-
tem described here, but is also slow in practice.

References

[1] A. Aiken and E. Wimmers. Type Inclusion Con-
straints and Type Inference. In Proceedings of the
1993 Conference on Functional Programming Lan-
guages and Computer Architecture, pages 31–41,
Copenhagen, Denmark, June 1993.

[2] L. O. Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994. DIKU
report 94/19.

[3] Juan Carlos Guzmán and Ascánder Suárez. An ex-
tended type system for exceptions. In Proceedings
of the ACM SIGPLAN Workshop on ML and its Ap-
plications, pages 127–135, June 1994.

[4] N. Heintze. Set Based Program Analysis. PhD thesis,
Carnegie Mellon University, 1992.

[5] Pierre Jouvelot and David K. Gifford. Algebraic re-
construction of types and effects. In Proceedings
of the 18th Annual ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages,
pages 303–310, January 1991.

[6] John M. Lucassen. Types and Effects —Towards the
Integration of Functional and Imperative Program-
ming. Ph.D. thesis, MIT Laboratory for Computer
Science, August 1987.

[7] David McAllester. Inferring Recursive Data Types.
http://www.ai.mit.edu/people/dam/rectypes.ps.

[8] R. Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sci-
ences, 17:348–375, 1978.

[9] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, 1990.

[10] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 32–41, January 1996.

[11] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value �-calculus using a stack of re-
gions. In Twenty-First Annual ACM Symposium on
Principles of Programming Languages, pages 188–
201, January 1994.

[12] Kwangkeun Yi. Compile-time detection of uncaught
exceptions for Standard ML programs. In Proceed-
ings of the 1st International Static Analysis Sympo-
sium, volume 864 of Lecture Notes in Computer Sci-
ence. Springer, 1994.

