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Abstract

Recursive graphical models usually under�
lie the statistical modelling concerning prob�
abilistic expert systems based on Bayesian
networks� This paper de�nes a version of
these models� denoted as recursive exponen�
tial models� which have evolved by the de�
sire to impose sophisticated domain knowl�
edge onto local fragments of a model� Besides
the structural knowledge� as speci�ed by a
given model� the statistical modelling may
also include expert opinion about the values
of parameters in the model� It is shown how
to translate imprecise expert knowledge into
approximately conjugate prior distributions�
Based on possibly incomplete data� the score
and the observed information are derived for
these models� This accounts for both the tra�
ditional score and observed information� de�
rived as derivatives of the log�likelihood� and
the posterior score and observed information�
derived as derivatives of the log�posterior dis�
tribution� Throughout the paper the special�
ization into recursive graphical models is ac�
counted for by a simple example�

Keywords� Bayesian networks� contingency
tables� missing data� probabilistic expert sys�
tems� recursive graphical models� exponential
models� gradient� Hessian� multivariate nor�
mal prior� Dirichlet prior�

� Introduction

The recursive exponential models �REMs� of this pa�
per have evolved from the recursive graphical models

�This work was primarily done at Aalborg University�
Department of Mathematics and Computer Science� Den�
mark� Final preparation was done at Microsoft Research�
Redmond� WA �������	���

of Wermuth and Lauritzen �	
���� which usually un�
derlie the statistical modelling concerning probabilis�
tic expert systems �Pearl 	
��
 Andreassen et al� 	
�


Spiegelhalter et al� 	

�� based on Bayesian networks�

For a recursive graphical model the structural rela�
tions between variables are represented by a directed
acyclic graph� where each node represents a variable�
Xv� and directed edges signify for each variable the
existence of direct causal in�uence from variables rep�
resented by parent nodes� Xpa�v�� Markov properties
with respect to the graph �Kiiveri et al� 	
��
 Lau�
ritzen et al� 	

�� imply that any distribution� which is
structurally de�ned by the model� can be represented
by tables of conditional distributions� p�Xv jXpa�v���
which for each possible value of Xpa�v� hold the local
conditional distribution for Xv�

The REMs have evolved from these models by the de�
sire to model the local conditional distributions in fur�
ther detail� One may visualize the REMs as recursive
graphical models� where local conditional distributions
are de�ned by individual regular exponential models�
denoted as local models� Any exponential model can
be used as a local model� whereby it is possible to
accomodate very sophisticated structural restrictions�

In situations it may happen that the same fragments
of the model recur at di�erent sites in the model� as
is often the case in e�g� pedigree analysis� To deal
with such cases� the REMs also allow di�erent tables
of conditional distributions to be modelled by a generic
component�

A matching Bayesian interpretation of the modelling
is considered� Besides the structural knowledge as
speci�ed by a given model� experts may also specify
imprecise knowledge about parameters in the model�
This knowledge can then be used for the construction
of a conjugate prior distribution of parameters� The
matching prior distribution for a REM factorizes into
individual local priors associated for each local model�
Hence� local priors can be considered independently�



In the general case the conjugate prior for a local expo�
nential model is approximated by a multivariate nor�
mal distribution� If the local model is not restricted
beyond being a probability distribution� the natural
conjugate prior is de�ned by a Dirichlet distribution
of probabilities�

In particular REMs can be used for the construction
of Bayesian networks� A Bayesian network resembles
a quanti�ed model� that is� a particular distribution
belonging to the set of distributions as de�ned by the
model� Given a database of observations� the maxi�
mum likelihood estimate is the usual candidate for a
such quanti�cation� If expert knowledge on parame�
ters is also available� the largest posterior mode be�
comes a natural alternative�

In situations of incomplete data� the determination of
the maximum likelihood estimate or the largest poste�
rior mode may call for iterative methods� The present
paper has primarily been motivated by the need of
providing the �rst and second order derivatives of the
log�likelihood and log�posterior distribution to be used
for iterative estimation methods� and for interfacing
a sequential updating method �Spiegelhalter and Lau�
ritzen 	

�a� 	

�b� to follow up on a quanti�ed model
as new observations occur� An application of �rst or�
der derivatives for estimation with incomplete data in
REMs is demostrated in a companion paper �Thiesson
	

��� For recursive graphical models without local re�
strictions a similar derivation of �rst order derivatives
was proposed in Spiegelhalter et al� �	

�� and Lau�
ritzen �	

�� and given in Russell et al� �	

�� with a
gradient�descent application for estimation� In a study
on methods for learning the structural relations be�
tween variables Chickering and Heckerman �	

�� have
applied the second order derivatives from this paper�

The �rst order and the negative second order deriva�
tives of the log�likelihood are in the following denoted
as the score and observed information� whereas the
�rst order and the negative second order derivatives of
the log�posterior distribution are denoted as the pos�
terior score and observed information�

Section � de�nes the recursive exponential models�
This includes the important notion of global and local
variation independence of parameters� local exponen�
tial modelling� and how to relax the global variation
independence to allow for parsimonious modelling of
recurring fragments in the model� Section � and Sec�
tion � derive the traditional score and observed infor�
mation in the situation of a single incomplete obser�
vation� In Section � the expressions for the score and
observed information are extended to apply for sam�
ples of independent observations� Section � covers the
posterior score and observed information� It is sug�

gested that a prior distribution obeys assumptions of
relaxed global and local independence of parameters
considered as random variables� which match the as�
sumptions of variation independence� Section � inves�
tigates conjugate prior distributions and how to con�
struct these from imprecise expert knowledge� Finally�
Section � indicates further aspects of modelling� An�
nulment of local variation independence and so�called
block recursive exponential models are proposed�

A simple extension of a recursive graphical model
serves as a ongoing example throughout this paper�

� Recursive exponential models

Let X � XV � �Xv�v�V be a �nite set of classi�cation
variables� each de�ned on a �nite set of levels Iv � Let
A � V � then IA � �v�AIv and the variables XA �
�Xv�v�A take on values xA � �xv�v�A � IA� For A �
V we omit the subscript� For a particular value � � �
of the parameter space � the joint distribution of X
is denoted p�X j ��� in which case the likelihood based
on a complete observation x � X is denoted p�x j ���
The number of parameters in a model� also called the
dimension� is denoted j�j� Likewise� jIv j is the number
of levels for Xv� and jIAj �

Q
v�A jIv j denotes the

number of con�gurations of levels for XA�

Given the recursive graphical structure� as argued in
the introduction� a REM holds two assumptions on
the parameter space� to be described below� Read�
ers familiar with Spiegelhalter and Lauritzen �	

�a�
	

�b� and the line of work reported in Heckerman
et al� �	

�� may recognize the assumptions� as as�
sumptions of variation independence between parame�
ters in di�erent local components of the model� which
are used in these papers but not explicitly named�

By global variation independence the graphical struc�
ture re�ects the assumption that any distribution of
a given model factorizes into a product of conditional
distributions� each parametrized by variation indepen�
dent components of the total parametrization� That
is�

p�X j �� �
Y
v�V

p�Xv jXpa�v�� �v�� �	�

where � � �v�V�v� and �v � �v completely speci�es
the relationship between the variableXv and its condi�
tional set of variablesXpa�v�� and p�Xv jXpa�v�� �v� de�
notes a table of conditional distributions� which holds
a local distribution p�Xv j�v � �v� for each parent con�
�guration of levels �v � Ipa�v��

In some applications� particularly pedigree analysis�
it is typical to restrain the tables of local conditional
distribution by knowledge about some of these tables
being equal� In order to allow this type of applications



the global variation independence is relaxed in a cer�
tain way� Let �v � V specify a set of variables� which
associate equal tables of conditional distributions� and
denote by �V the total set of these equivalence classes�
Equal tables must be parametrized by the same pa�
rameters� Hence�

p�X j �� �
Y
�v� �V

Y
v��v

p�Xv jXpa�v�� ��v�� ���

where ��v � ��v speci�es the relationship between Xv

and Xpa�v� for any v � �v� If equal tables are rep�
resented by a single generic table� as will be assumed
from now on� this is a more appropriate representation�
which re�ects the reduction of the parameter space
into � � ��v� �V��v�

Let �i�v � ��v� � I�v � Ipa��v�� where I�v � Ipa��v� � Iv �
Ipa�v� for any v � �v� index a generic table� By lo�

cal variation independence the parametrization of a
table additionally factorizes into components associ�
ated for each local distribution in the table� Hence� by
local variation independence ��v � ���v�Ipa��v���vj��v �
whereby the table of local distributions is assembled
by probabilities p�i�v j��v � ��vj��v��

Now� consider the likelihood of a single observation
x� The simplifying assumptions of variation indepen�
dence between local components of parameters then
has the e�ect of breaking this likelihood into the prod�
uct of local likelihoods� where each local likelihood
function is given by the distribution as picked from
the appropriate generic table by setting ��v � xpa�v��
Hereby� the likelihood of a single observation becomes

p�x j �� �
Y
�v� �V

Y
v��v

p�xv jxpa�v�� ��vjxpa�v��� ���

This concludes the simplifying assumptions of varia�
tion independence� By lingering on the more prag�
matic e�ect hereof concerning the issue of modelling�
we notice that the assumptions break down the statis�
tical modelling into more tractable local constructions
of
P

�v� �V jIpa��v�j models for conditional distributions�
These models are denoted as local models�

The statistical modelling by REMs does not stop at
this point� though� To completely qualify as a REM�
each local model must be structurally de�ned by a
regular exponential model� The local likelihoods in
��� are therefore represented in the form

p�xv jxpa�v�� ��vjxpa�v��

� b�xv � xpa�v�� exp
�
���vjxpa�v� t�vjxpa�v��xv�� ����vjxpa�v��

�
���

where � denotes the matrix transpose� t denotes the
statistics� � the normalizing function� and b the carry�
ing density�

Readers familiar with the recursive graphical models
may realize how the REMs relate to these models� Dis�
regarding the possibility of specifying equal tables� the
local exponential modelling makes the di�erence� A lo�
cal model of a usual recursive graphical model is not
restricted beyond the fact that it is a model of proba�
bility distributions� In contrast� the local exponential
modelling by REMs allows sophisticated structural re�
strictions to be placed on each local model� if desired�

The following example illustrates the representation of
an unrestricted local model in the framework of REMs�

X�

X�

X�

X�

X� X�

Figure 	� Graphical representation of the recursive re�
sponse structure for the model considered in the ex�
ample�

Example� Consider a model with recursive response
structure as represented by the graph in Figure 	� As�
sume that this model obeys the assumptions of global
and local variation independence except for domain
knowledge� which dictates that the tables of condi�
tional distributions are equal for the variables X� and
X�� In this case we loosen up the assumption of global
variation independence by assuming that ��� � �� � ���
Hence� � � ���� ��� ���� ��� ��� and the likelihood of a
single observation x � �x�� x�� x�� x�� x�� x�� becomes

p�x j ��

� p�x� j ���p�x� j ���p�x� jx�� ���jx��p�x� jx�� ���jx��

�p�x� jx�� x�� ��jx��x��p�x� jx�� ��jx���

Consider variable X�� which has a �nite set of lev�
els I� � fi	� i�� � � � � iRg
 the observed value x� be�
ing one of these� In this case� the last factor of
the likelihood is picked from the local distribution
p�X� jx�� ��jx�� � �p	� p�� � � � � pR�� Assume that the
model for this distribution does not hold structural
restrictions other than positivity constraints� An ex�
ponential representation of the local likelihood is then
constructed as follows� Choose an index of reference�
say i	� Then� take as canonical parameters ��jx� �
���� � � � � �R��� where

�r � log
pr

	�
PR

r
� p
r
� log

pr

p	
�

and take as canonical statistics t�jx��x�� �
�t��x��� � � � � t

R�x���
�� where



tr�x�� �

�
	 for x� � ir

� otherwise�

A minimal exponential representation is then given by

p�x� jx�� ��jx�� � exp
�
���jx�t�jx��x��� ����jx��

�
�

with normalizing function

����jx�� � log

�
	 �

RX
r
�

exp��r�

�
�

�

� Score of incomplete observation

Suppose for a given model that a complete observation
x is only observed indirectly through the incomplete

observation y� The observation may be incomplete
due to missing values according to a complete obser�
vation on X or due to imprecise values� An imprecise
value appears if the collector of data cannot distin�
guish between a set of possible values for a variable
and therefore reports this set instead of a single value�
Denote by X �y� the set of possible completions that
are obtainable by augmenting the incomplete observa�
tion y� Under the condition that the observation is
incomplete in an un�informative way the likelihood for
the incomplete observation becomes

p�y j �� �
X

x�X �y�

p�x j ��

�
X

x�X �y�

Y
�v� �V

Y
v��v

p�xv jxpa�v�� ��vjxpa�v��� ���

where � � ���vj��v��v� �V ���v�Ipa��v�
denotes the vector of

all parameters for the model�

Let S�y j �� � �
��
log p�y j �� denote the score of an in�

complete observation� In accordance with the parti�
tioning of the parameter vector into variation inde�
pendent components� ��vj��v � we describe the score by
local components of dimension j��vj��v j given by

S�vj��v�y j �� �
�

���vj��v
log p�y j ��

�
	

p�y j ��

�

���vj��v
p�y j ��

�
	

p�y j ��

X
x�X �y�

�

���vj��v
p�x j ��� ���

where the last equality follows from ����

Consider the local derivatives of the likelihood for a
complete observation� As

�

���vj��v
p�xv jxpa�v�� ��vjxpa�v��

� p�xv jxpa�v�� ��vjxpa�v��

�
�

���vj��v
log p�xv jxpa�v�� ��vjxpa�v��

the chain rule for di�erentiation implies

�

���vj��v
p�x j ��

�
X
v��v

h
���v�xpa�v��

p�x j ��

p�xv jxpa�v�� ��vjxpa�v��

�
�

���vj��v
p�xv jxpa�v�� ��vjxpa�v��

i

� p�x j ��
X
v��v

���v �xpa�v��
�

���vj��v
log p�xv j��v � ��vj��v��

���

where ���v �xpa�v�� is the indicator function

���v �xpa�v�� �

�
	 for xpa�v� � ��v

� otherwise�

Thus� by the exponential representation ��� of the lo�
cal likelihood for a complete observation� the partial
derivatives of the likelihood become

�

���vj��v
p�x j ��

� p�x j ��
X
v��v

���v �xpa�v��
�
t�vj��v�xv�� ����vj��v �

�
� ���

where ����vj��v� � E�t�vj��v�Xv� j��v� ��vj��v �� the expected
value of the canonical statistic for the conditional dis�
tribution p�� j��v� ��vj��v��

By inserting ��� into the expression for the local score
of an incomplete observation� as given in ���

S�vj��v�y j ��

�
X

x�X �y�

p�x j ��

p�y j ��

X
v��v

���v�xpa�v��
�
t�vj��v�xv�� ����vj��v�

�
�

Applying that

p�x j y� �� �

�
p�x j ��
p�y j �� for x � X �y� and p�y j �� � �

� otherwise�

�
�
we hereby obtain the �nal expression for local compo�
nents of the score

S�vj��v �y j ���
X
v��v

X
ifa�v��Ifa�v�

h
p�ifa�v� j y� ��

����v�ipa�v��
�
t�vj��v �iv�� ����vj��v�

�i
��	��



where fa�v� is a short notation for the family v�pa�v��

The Lauritzen�Spiegelhalter �L�S� procedure for prob�
ability propagation �Lauritzen and Spiegelhalter 	
���
can be used as an e�cient method for calculating the
posterior probabilities p�ifa�v� j y� ��� A concise de�
scription of this dedication of the L�S procedure can
be found in Lauritzen �	

��� The remaining parts of
�	�� are either directly extracted or easily calculated
from the exponential representation of the local model�

Example �continued�� Consider a situation where in�
completeness is caused by an imprecise observation�
Say� that X� has four possible values I� � �i	� i�� i�� i��
for which the collector of data could not decide on one
of the two values x� � i� or x� � i�� In this case
X �y� � f�x�� x�� x�� x�� x�� i��� �x�� x�� x�� x�� x�� i��g�
As p�X� jx�� �� � �p	� p�� p�� p��� the support of
p�X�� X� j y� �� is given by the non�zero values

� p�

p��p� �
p�

p��p� � obtained for �X�� X�� � �x�� i
�� and

�X�� X�� � �x�� i
��� Realize also that ���� �

�p�� p�� p��� By equation �	��� the local score is then
easily calculated as

S�jx��y j �� �
p�

p� � p�
��p�� 	� p���p��

�
p�

p� � p�
��p���p�� 	� p���

�

� Observed information in incomplete

observation

Let I�y j �� � � ��

���
log p�y j �� denote the observed in�

formation in the incomplete observation y� We divide
the information into local information matrices of di�
mension j��uj��u

j�j��vj��v j� where each local matrix rep�
resents the part of the information matrix as de�ned by
the local components ��uj��u

and ��vj��v � �u� �v �
�V � Con�

sider the local information

I�uj��u��vj��v �y j ��

� �
��

���uj��u
���vj��v

log p�y j ��

� S�uj��u
�y j ��S�vj��v �y j ��

�
	

p�y j ��

X
x�X �y�

��

���uj��u
���vj��v

p�x j ��� �		�

The �rst term in �		� is just the product of local scores�
Hence� the aim is now to derive a calculable expression
for the second term� De�ne the Kronecker delta

	�uj��u��vj��v �

�
	 for �u � �v and ��u � ��v

� otherwise�

By straightforward di�erentiation of ��� with respect
to the local component ��uj��u

��

���uj��u
���vj��v

p�x j ��

� p�x j ��

�X
u��u

���u�xpa�u��
�
t�uj��u

�xu�� ����uj��u
�
�

�
X
v��v

���v �xpa�v��
�
t�vj��v�xv�� ����vj��v�

�

�	�uj��u��vj��v

X
v��v

���v�xpa�v��
���vj��v�

�
�

where 
���vj��v� � V�t�vj��v�X�v� j��v � ��vj��v �� the covari�
ance matrix for the canonical statistic in the exponen�
tial representation of p�� j��v � ��vj��v��

Using �
�� the second part of the local information is
hereby derived as

	

p�y j ��

X
x�X �y�

��

���uj��u
���vj��v

p�x j ��

�
X
u��u

X
v��v

X
ifa�u��fa�v�

h
p�ifa�u��fa�v� j y� ��

����u�ipa�u���
��v �ipa�v��

�
�
t�uj��u

�iu�� ����uj��u
�
� �

t�vj��v�iv�� ����vj��v�
��i

�	�uj��u��vj��v

X
v��v

X
ipa�v�

p�ipa�v� j y� ���
��v �ipa�v��
���vj��v��

�	��

By realizing that

p�ifa�u��fa�v� j y� �� � p�ifa�u� j ifa�v�� y� ��p�ifa�v� j y� ���

the dedication of the L�S procedure can be used for
the calculation of the posterior probabilities in �	���
The remaining part is directly extracted or easily cal�
culated from the local exponential models� Hence� a
�nal calculable expression for local informations can
now be obtained by inserting �	�� and �	�� into �		��

To discuss the e�ect that incompleteness of data im�
poses on structural characteristics for the observed in�
formation we reorganize the �nal expression as

I�uj��u��vj��v�y j ��

�
X
u��u

X
v��v

X
ifa�u��fa�v�

h�
p�ifa�u� j y� ��p�ifa�v� j y� ��

�p�ifa�u��fa�v� j y� ��
�
���u�ipa�u���

��v �ipa�v��

�
�
t�uj��u

�iu�� ����uj��u
�
� �

t�vj��v�iv�� ����vj��v�
�� i

�	�uj��u��vj��v

X
v��v

X
ipa�v�

p�ipa�v� j y� ���
��v�ipa�v��
���vj��v��

�	��



Consider a complete observation x� The posterior
probabilities on a subset XA� A � V of variables are
then given by

p�iA jx� �� �

�
	 for iA � xA

� otherwise�
�	��

In this case the local information in �	�� reduces to

I�uj��u��vj��v�x j �� � 	�uj��u��vj��v

X
ipa�v�


���vj��v ��

Hence� for a complete observation the information ma�
trix will be block�diagonal on local components of the
parameter vector� For an incomplete observation this
is not the case� The fact that the adjustment of the
information due to incompleteness of the observation
will undermine the block�diagonality is easily seen by
realizing that �	�� is no longer valid�

Example �continued�� Consider the local information
I�jx���jx��y j ��� Given a complete observation y � x �
�x�� x�� x�� x�� x�� x��� the local information equals

I�jx���jx��x j ���
���jx��

�

�
��	

p� � p�p� �p�p� �p�p�

�p�p� p� � p�p� �p�p�

�p�p� �p�p� p� � p�p�



���

Actually� this result only depends on the fact that x�
and x� are observed�

Now� say that x� was not observed� In this case� the
�rst part of the local information� as given by the prod�
uct of scores in �		�� is �� Calculations on �	�� show
that the second part equals 
���jx�� � 
���jx�� � ��
Hence� the observed local information is �� This
is in agreement with the fact that we do not have
any information about the conditional distribution
p�X� jx�� ��jx��� when X� is unobserved�

We emphasize that this result is a concequence of the
fact that the non�zero values for p�Xfa�v� j y� �� equals
p�Xv jxpa�v�� ��� which is not true in general if Xv has
observed descendants� �

� Sample score and observed

information

Let y � �y�� y�� � � � � yL� denote a sample of possibly
incomplete observations which are mutually indepen�
dent� The likelihood then factorizes over each obser�
vation

p�y j �� �
LY
l
�

p�yl j �� �
LY
l
�

X
xl�X �yl�

p�xl j ���

As the likelihood is proportional to the product of
likelihoods for the individual observations� the sample
score and observed sample information are obtained by
simply adding the individual scores and informations�
respectively� Denote by n��iA� �

PL
l
� p�iA j y

l� �� the
expected marginal count of observations for the mar�
ginal con�guration of levels iA � IA� By adding the
local scores� as given in �	��� the sample score S�y j ��
has local components

S�vj��v�y j ���
X
v��v

X
ifa�v�

h
n��ifa�v��

����v�ipa�v��
�
t�vj��v �iv�� ����vj��v�

�i
� �	��

Similarly� by adding the observed informations� the
observed sample information I�y j �� has local compo�
nents

I�uj��u��vj��v�y j ��

�
LX
l
�


X
u��u

X
ifa�u�

h
p�ifa�u� j y

l� ��

����u�ipa�u��
�
t�uj��u

�iu�� ����uj��u
�
�i

�
X
v��v

X
ifa�v�

h
p�ifa�v� j y

l� ��

����v�ipa�v��
�
t�vj��v�iv�� ����vj��v �

��i�

�
X
u��u

X
v��v

X
ifa�v��fa�u�

h
n��ifa�v��fa�u��

����u�ipa�u���
��v �ipa�v��

�
�
t�uj��u

�iu�� ����uj��u
�
� �
t�vj��v�iv�� ����vj��v �

�� i
�	�uj��u��vj��v

X
v��v

X
ipa�v�

n��ipa�v���
��v �ipa�v��
���vj��v��

�	��

The expression �	�� is organized so that the �rst term
should be easy to identify as the sum of the products
of local scores for each observation� Hence� in case
the local scores of each observation have already been
calculated� one might replace the �rst term of �	�� by

LX
l
�

�
S�uj��u

�yl j ��S�vj��v�y
l j ���

�
�

Notice that a lot of posterior probabilities p�iA j y� ���
A � V have to be calculated to complete the calcu�
lations� Hence computational e�ciency demands an
e�cient method for calculating these� as e�g� the L�S
procedure�



� Posterior score and observed

information

Suppose that we have information about � in the form
of a prior distribution of parameters considered as ran�
dom variables� p���� The posterior distribution given
an incomplete sample �or single observation� is then
de�ned as

p�� jy� �
p�y j ��p���

p�y�
� �	��

Here we consider a Bayesian interpretation of the score
and information� In analogy with the traditional score
and observed information� let S�� jy� � �

��
log p�� jy�

and I�� jy� � � ��

���
log p�� jy� be denoted as the pos�

terior score and observed information� and let S��� �
�
��
log p��� and I��� � � ��

���
log p��� be denoted as the

prior score and information� From �	�� it is easily seen
that the posterior score and information are obtained
by simply adding� respectively� the traditional score
and information onto the prior score and information�
Hence�

S�� jy� � S�y j �� � S��� �	��

and

I�� jy� � I�y j �� � I���� �	
�

Now� consider the prior distribution of parameters�
The construction simpli�es considerably by matching
assumptions of variation independence with indepen�
dence of the parameters considered as random vari�
ables� Hence� by relaxed global independence we as�
sume that ��v� �v � �V are mutually independent� and by
local independence we assume that local components
��vj��v � ��v � Ipa��v� are mutually independent� The no�
tion of global and local independence can also be found
in Spiegelhalter and Lauritzen �	

�a� 	

�b� and the
line of work as reported in Heckerman et al� �	

���

Under the assumptions of relaxed global and local in�
dependence the distribution of parameters factorizes
as

p��� �
Y
�v� �V

Y
��v�Ipa��v�

p���vj��v ��

By this factorization the local components for the prior
score

S�vj��v��� �
�

���vj��v
log p���vj��v �

and the local components for the prior information

I�uj��u��vj��v ��� � �	�uj��u��vj��v

��

����vj��v
log p���vj��v�

are derived from local prior distributions�

� Speci�c prior distributions on

parameters

To complete the speci�cation for the posterior score
and observed information� we consider parametriza�
tions for the prior distribution of parameters�

Intending a uni�cation of a batch method for quanti�
fying probabilistic expert systems by the mode which
maximizes the posterior distribution� as described in
Thiesson �	

��� and a method for sequential updating
of conditional probabilities� as described in Spiegelhal�
ter and Lauritzen �	

�a� 	

�b�� we are especially in�
terested in conjugate distributions �or approximately
conjugate�� By the intended uni�cation� a system
can be initialized by the batch learning method� and
following� as new data accumulates� the system can
be updated and improved by the sequential updating
method�

��� Conjugate prior for local exponential

models

For the general setting we consider the prior distribu�
tion of parameters as a member of the conjugate model
for the likelihood as de�ned by a recursive exponential
model�

Let x � �x�� � � � � xn� denote a sample of n complete
observations� The observed count for con�guration
iA � IA� A � V is then de�ned as

n�iA� �

nX
l
�

�iA�xl��

where

�iA�xl� �

�
	 for xlA � iA

� otherwise�

For independent observations and by the assumptions
of variation independence the likelihood factorizes as

p�x j ���
Y
i�I

p�i j ��n�i�

�
Y
�v� �V

Y
v��v

Y
�v�Ipa�v�

Y
iv�Iv

p�iv j�v � ��vj��v�
n�iv ��v�

�
Y
�v� �V

Y
��v�Ipa��v�

Y
i�v�I�v

p�i�v j��v � ��vj��v�
P

v��v
n�iv��v��

where the last equality follows from the fact that con�
ditional probability tables are equal for all v � �v� We
observe that the likelihood factorizes into a product of
local likelihoods

p�vj��v �x j ��vj��v � �
Y
i�v�I�v

p�i�v j��v� ��vj��v �
P

v��v
n�iv��v��



each de�ned by the exponential model ���� The nat�
ural local conjugate priors are therefore de�ned by
conjugate exponential models �Diaconis and Ylvisaker
	
�
�

p���vj��v � � exp
�
���vj��v�� �����vj��v�

�
�

where � is a vector of same dimension as ��vj��v and �
is a scalar�

Let ���vj��v denote the value which maximizes p���vj��v ��
In the neighbourhood of ���vj��v a Taylor series expansion
implies that

log p���vj��v � �

log p����vj��v��
�

�
���vj��v � ���vj��v�

�
����vj��v����vj��v � ���vj��v��

Hence� a conjugate local prior is approximately pro�
portional to the multivariate normal distribution

N
�
���vj��v �

�
�

����vj��v�

��
�
in a neighbourhood of ���vj��v �

Local prior scores for this approximation are derived
as

S�vj��v��� � ��
����vj��v ����vj��v � ���vj��v��

and local prior informations as

I�uj��u��vj��v ��� � 	�uj��u��vj��v�
��
�
�vj��v

��

The mean ���vj��v and the parameter � are unknown
factors of the approximately conjugate multivariate
normal distribution� which have to be extracted from
expert knowledge� For this task it seems reason�
able to request domain experts to give a �best guess�
�p�Xv j ipa�v�� on each conditional distribution with an
assessment of imprecision �or con�dence� on each of
the probabilities in the form of an interval of vari�
ation� Here it should be noticed that if the expert
speci�cation is not the same for each table of condi�
tional distributions� �p�Xv jXpa�v��� where v � �v� these
should be forced equal or the expert should reconsider
the equality of these tables� If the partitioning into
equal tables is indisputable one should only request
for generic �best guess� tables �p�X�v jXpa��v��� �v � �V
with assessments of imprecision�

The mean ���vj��v is derived as the value of ��vj��v which
minimizes the Kullback�Leibler discrepancy between
�p�X�v j��v� and p�X�v j��v � ��vj��v�

KL
�
�p�X�v j��v�� p�X�v j��v � ��vj��v�

�
�

X
i�v�I�v

�p�i�v j��v� log
�p�i�v j��v�

p�i�v j��v� ��vj��v �
�

Here� we use the convention � log��
a� � � for a � �
and a log�a
�� �	 for a � ��

The �rst and second order derivatives of the discrep�
ancy can be found as respectively

�

���vj��v
KL

�
�p�X�v j��v�� p�X�v j��v � ��vj��v�

�
� �

X
i�v�I�v

�p�i�v j��v�
�
t�vj��v�i�v�� ����vj��v �

�

and

��

���uj��u
���vj��v

KL
�
�p�X�v j��v�� p�X�v j��v � ��vj��v�

�
� 	�uj��u��vj��v
���vj��v��

Besides the �best guess� these expressions do not in�
volve statistics which are not already in demand for
the implementation of the traditional score and ob�
served information� Hence� with little additional e�ort
in implementation� the minimizing ���vj��v can be found

numerically �if not analytically� by e�g� a Newton�
Raphson method�

Ideally the discrepancy is �� In situations� however�
the discrepancy may be non�zero� which re�ects in�
consistency between the speci�ed �best guess� distri�
bution and the structural restrictions as speci�ed for
the distribution� In this case we choose the nearest
distribution �by the discrepancy�� which obeys the re�
strictions� If the discrepancy is very large� this should
a�ect the con�dence in the speci�ed distribution or
the restrictions�

The parameter � that adjusts the variance for the mul�
tivariate normal distribution is determined from the
intervals of variation as speci�ed for each probability�
By assuming that an interval of variation for a proba�
bility equals twice the standard derivation for the mar�
ginal distribution of the probability� the adjustment
factor is derived as follows�

Let SD�i�v j��v� denote half the interval of variation
for p�i�v j��v � ��vj��v�� and denote by V

�
p�i�v j��v� ��vj��v �

�
the variance of that probability� By the delta method
the variance matrix for probabilities can be approxi�
mated from the variance matrix for parameters� If we
consider the variances for the marginal distributions
of probabilities only� these are approximated by the
diagonal elements

V
�
p�i�v j��v� ��vj��v�

�
�
�p�i�v j��v � ��vj��v�

����vj��v

�
	

�

����vj��v�

�� �p�i�v j��v � ��vj��v�

����vj��v
�

����
where

�p�i�v j��v� ��vj��v �

����vj��v
� p�i�v j��v� �

�
�vj��v

�
�
t�vj��v�i�v�� �����vj��v�

�
�



The adjustment factor ��i�v�� associated for the margi�
nal distribution of p�i�v j��v� ��vj��v �� can now be derived
from equation ���� by utilizing that SD�i�v j��v�� �
V
�
p�i�v j��v � ��vj��v�

�
� In case of inconsistency between

the calculated adjustment factors for di�erent i�v � I�v
we choose the factor which implies the lowest precision
for the normal distribution� Hence�

� � minf��i�v� j i�v � I�vg�

Example �continued�� Assume that the local dis�
tribution p�X� j��� �� �� � �p	� p�� p�� p�� is restricted
by the log�linear form log p�X� j��� �� �� � � � X���
where the levels for X� are real�valued quantities� say
I� � �i	� i�� i�� i�� � ��� 	� �� ���

Let ��j�� and s�j���X�� denote the parameter vector
and the statistic for the exponential representation of
the local distribution without structural restrictions�
as derived earlier in this example �page ��� Then
p�X� j��� �� �� can be represented as the distribution
p�X� j��� ��j��� formed by the exponential sub�model
of order 	� with parameter ��j�� � � given by the

a�ne transformation ��j�� � �log p�

p	
� log p�

p	
� log p�

p	
� �

T��j�� � where T
� � �i� � i	� i� � i	� i� � i	� � �	� �� ���

For this representation t�j���X�� � T �s�j���X���
����j��� � T �����j�� �� and 
���j��� � T �
���j���T �

Now� say that the opinion about the local distribu�
tion has been imprecisely speci�ed as ���������� �
������ ��	������ � ��	��� ��������� � ������ ��������� �
������� where each interval denotes the imprecision of
the �best guess� in front of it�

The �best guess�� �p�Xv jxpa�v�� � ������ ��	�� �����
������ almost satis�es the structural restriction� How�
ever� a simple check reveals that log�odds disagree
on the value for ��j�� which parameterizes the ex�
ponential representation of the distribution� There�
fore we use a Newton�Raphson method to determine
the parameter value ���j�� � which implies the lowest
KL�discrepancy between the �best guess� and a dis�
tribution of the correct functional form� For this
task� �rst and second order derivatives are derived as

�
���j��

KL � �p� � �p� � �p�� � ��� and ��

���
�j��

KL �

�p� � �p� � 
p��� �p� � �p� � �p���p� � �p� � �p���

Now� starting from an initial value ��j�� � log p�

p	
�

log �� �ve Newton�Raphson iterations given by

��j�� 
 ��j�� �

�
��

����j��
KL

���
�

���j��
KL

move the parameter value into an acceptable value
���j�� � ����	��� as displayed in table 	�

Consider now the variance for the approximate conju�
gate normal distribution� Except from the adjustment

	
�� it falls right out of the last Newton�Raphson it�

eration as



��

����
�j��

��KL

���
� 	������

Let p�r denote the probability p�ir j��� ���j���� r �

�� 	� �� �� Then
�p�ir j�����j�� �

���
�j��

� irp�r�p�r�p����p���

�p���� which for r � �� 	� �� � equals respectively
���	����� ���	�
��� ���	���	� and �����
�� For each
interval of variation we can now use ���� to calculate
the individual adjustment factors ��ir�� r � �� 	� �� ��
as respectively 	��
� 	���� ���� and 	���� Being the
smallest� ��� is chosen as the adjustment factor for the
variance�

Hence� the local conjugate distribution p���j��� is ap�
proximated by N �����	� �������

�

��� Conjugate prior for local multinomial

models

In most real situations some of the local models will
not hold structural restrictions� In case of multino�
mial sampling with respect to variables for a local
likelihood the natural local conjugate prior distribu�
tion of parameters is de�ned by a Dirichlet distribu�
tion� Consider a generic local distribution and assume
that the probabilities a priori are Dirichlet distributed
D���i�v � ��v�
 i�v � I�v� with a total number of jI�v j pa�
rameters
 a parameter for each index of I�v� Hence� the
prior distribution of probabilities is in the form

p
�
p�i�v j��v� ��vj��v �� i�v � I�v

�
�Y

i�v�I�v

p�i�v j��v � ��vj��v�
��i�v ���v����

By a transformation� as given by the exponential
representation of probabilities� the prior becomes a
distribution of ��vj��v � The distribution is given by�
noting that the determinant of the Jacobian for the

local distribution d
d��vj��v

p�� j��v � ��vj��v� is proportional

to
Q

i�v�I�v
p�i�v j��v � ��vj��v�

�
p���vj��v � �Y
i�v�I�v

exp
h�
���vj��vt�vj��v �i�v�� ����vj��v�

�
��i�v � ��v�

i
���	�

From ��	� the local prior score and information are
easily derived as

S�vj��v���vj��v � �
X
i�v�I�v

��i�v� ��v�
�
t�vj��v �i�v�� ����vj��v�

�
����

and

I�uj��u��vj��v���vj��v� � 	�uj��u��vj��v����v�
���vj��v �� ����



� �
��
KL ��

���
KL p	 p� p� p�

���
�	� ���	���� ������� ������� ��	���� ������� �������

������	 �����

� �����
� ������� ��	���� ������� ���
	��

����	�	 �������� ������� ������� ��	���� ������� ���
���

����	�	 ������� �����
� �����

 ��	���
 ������� ���
��


����	�� ������� �����
� ������� ��	���
 ������� ���
���

Table 	� Newton�Raphson iterates for the example� The �rst column displays the parameter values for each
iteration� The second and third column display the �rst and second derivatives of the KL discrepancy evaluated
at the parameter values� Column four through seven show the associated distributions�

where ����v� �
P

i�v�I�v
��i�v � ��v��

The similarity of ���� and ���� with the expressions for
the traditional local score and information� �	�� and
�	��� leads to the observation that the prior Dirichlet
distribution has the e�ect of adding its parameters as
imaginary counts to get the posterior expressions�

Depending on the domain expert� naturally� it may in
situations seem unreasonable to request a prior opin�
ion about local distributions directly in the form of
imaginary counts giving the parameters of a Dirichlet
distribution� Again we overcome the problem by let�
ting the domain expert specify a �best guess� on local
distributions with an interval of variation on each of
the probabilities�

As also suggested in Spiegelhalter et al� �	

�� and
Heckerman et al� �	

��� the parameters of a Dirich�
let distribution can then be calculated from the ex�
pressions of individual means and variances for each
random variable of the distribution

E
�
p�i�v j��v � ��vj��v�

�
�

��i�v � ��v�

����v�

V
�
p�i�v j��v � ��vj��v�

�
�

�����v�� ��i�v � ��v����i�v � ��v�

����v�� �����v� � 	�
�

Assume for the conditional probability p�i�v j��v� ��vj��v �
that the mean equals the �best guess� �p�i�v j��v� and
that the standard deviation is equal to half the interval
of variation SD�i�v j��v�� The equivalent sample size
�i�v ���v�� associated for the probability p�i�v j��v� ��vj��v ��
is now derived as

�i�v ���v� �
�	� �p�i�v j��v�� �p�i�v j��v�

SD�i�v j��v��
� 	�

In case of very large intervals �i�v ���v� may become neg�
ative� This is regarded as a token of non�informative
prior knowledge� in which case �i�v ���v� is set to the
non�informative sample size ��

A consistent speci�cation of the prior distribution re�
quires that �i�v ���v� has the same value for all i�v � I�v �

In case of inconsistency between the calculated sam�
ple sizes from di�erent interval speci�cations we choose
the smallest� Hence�

����v� � minf�
i�v ���v� j i�v � I�vg�

By the assumption that the means are given by
the �best guess� distribution� the parameters of the
Dirichlet distribution are then calculated as

��i�v � ��v� � �p�i�v j��v�����v��

Example �continued�� Say that the opinion about the
conditional distribution without structural restrictions
p�X� j��� ���j��� � p�X� j��� ���j���� �� � �� has been

imprecisely speci�ed as ���	������� ��	��� �������	��
������ ���������� ������ �������	�� ������� For each im�
precisely stated conditional probability we calculate
the associated equivalent sample size as respectively
��� 	�� ��� and 	�� Being the smallest� 	� is chosen as
the equivalent sample size for the Dirichlet distribution
of p�X� j��� ��j��� and p�X� j��� ��j���� The imaginary
counts �the parameters that specify the Dirichlet dis�
tribution� then become �	��� ���� ���� ����� �

� Further issues on modelling

An obvious possibility of even more sophisticated mod�
elling is to relax or annul the assumption of local
variation independence� Spiegelhalter and Lauritzen
�	

�a� suggest �for recursive graphical models� an in�
teresting possibility as follows�

Consider the parameter vector for a generic table
of local distributions� ��v� This parameter vector
is restricted by assuming that each local vector�
��vj��v � is de�ned by linear combinations of functions
u��v���v�� � � � � u

r
�v���v� on parent con�gurations� Hence�

for any parent con�guration

��vj��v � ��vu�v���v��



where u�v���v� �
�
u��v���v�� � � � � u

r
�v���v�

��
is a vector hold�

ing given values of the functions and ��v is a j��vj��v j� r
dimensional matrix of parameters�

Another interesting prospect on modelling would be
to extend the recursive exponential model into mod�
els� which we denote as block recursive exponential
models� These models may evolve from recursive ex�
ponential models by allowing that a block �or group�
of variables are sitting at each node of the graphical
DAG representation of the model� Relations between
variables in di�erent blocks are then causal in the di�
rection of arrows� whereas relations between variables
within a block are symmetric� A block may contain
variables which are not direct causes to any of the
variables within a response block� and vice versa�

The class of recursive graphical models is an important
specialization of recursive exponential models� Simi�
larly� the block recursive exponential models should
admit a specialization into the block recursive graph�
ical models or chain graph models of Lauritzen and
Wermuth �	
��� 	
�
�� which demands an annulment
of local variation independence as proposed above�
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