
A Bisimulation Method for

Cryptographic Protocols

Mart��n Abadi

1

and Andrew D. Gordon

2

1

Digital Equipment Corporation, Systems Research Center

2

University of Cambridge, Computer Laboratory

Abstract. We introduce a de�nition of bisimulation for cryptographic

protocols. The de�nition includes a simple and precise model of the

knowledge of the environment with which a protocol interacts. Bisim-

ulation is the basis of an e�ective proof technique, which yields proofs of

classical security properties of protocols and also justi�es certain protocol

optimisations. The setting for our work is the spi calculus, an extension

of the pi calculus with cryptographic primitives. We prove the soundness

of the bisimulation proof technique within the spi calculus.

1 Introduction

In reasoning about a reactive system, it is necessary to consider not only the

steps taken by the system but also the steps taken by its environment. In the

case where the reactive system is a cryptographic protocol, the environment may

well be hostile, so little can be assumed about its behaviour. Therefore, the envi-

ronment may be modelled as a nondeterministic process capable of intercepting

messages and of sending any message that it can construct at any point. This

approach to describing the environment is fraught with di�culties; the result-

ing model can be somewhat arbitrary, hard to understand, and hard to reason

about.

Bisimulation techniques [Par81,Mil89] provide an alternative approach. Ba-

sically, using bisimulation techniques, we can equate two systems whenever we

can establish a correspondence between their steps. We do not need to describe

the environment explicitly, or to analyse its possible internal computations.

Bisimulation techniques have been applied in a variety of areas and under

many guises. Their application to cryptographic protocols, however, presents

new challenges.

{ Consider, for example, a secure communication protocol P (M), where some

cleartext M is transmitted encrypted under a session key. We may like to

argue that P (M) preserves the secrecy of M , and may want to express this

secrecy property by saying that P (M) and P (N) are equivalent, for everyM

and N . This equivalence may be sensible because, although P (M) and P (N)

send di�erent messages, an attacker that does not have the session key cannot

identify the cleartext. Unfortunately, a standard notion of bisimulation would

require that P (M) and P (N) send identical messages. So we should relax

the de�nition of bisimulation to permit indistinguishable messages.

{ In reasoning about a protocol, we need to consider its behaviour in reaction

to inputs from the environment. These inputs are not entirely arbitrary.

For example, consider a system P (M) which discloses M when it receives a

certain password. Assuming that the password remains secret, P (M) should

be equivalent to P (N). In order to argue this, we need to characterise the set

of possible inputs from the environment, and to show that it cannot include

the password.

{ Two messages that are indistinguishable at one point in time may become

distinguishable later on. In particular, the keys under which they are en-

crypted may be disclosed to the environment, which may then inspect the

cleartext that these keys were concealing. Thus, the notion of indistinguisha-

bility should be sensitive to future events.

Conversely, the set of possible inputs from the environment grows with time,

as the environment intercepts messages and learns values that were previ-

ously secret.

In short, a de�nition of bisimulation for cryptographic protocols should ex-

plain what outputs are indistinguishable for the environment, and what inputs

the environment can generate at any point in time. In this paper we introduce a

de�nition of bisimulation that provides the necessary account of the knowledge

of the environment. As we show, bisimulation can be used for reasoning about

examples like those sketched informally above. More generally, bisimulation can

be used for proving authenticity and secrecy properties of protocols, and also for

justifying certain protocol optimisations.

We develop our bisimulation proof technique in the context of the spi cal-

culus [AG97a,AG97b,AG97c,Aba97], an extension of the pi calculus [MPW92]

with cryptographic primitives. For simplicity, we consider only shared-key cryp-

tography, although we believe that public-key cryptography could be treated

through similar methods. Within the spi calculus, we prove the soundness of our

technique. More precisely, we prove that bisimulation yields a su�cient condi-

tion for testing equivalence, the relation that we commonly use for speci�cations

in the spi calculus.

We have developed other proof techniques for the spi calculus in earlier work.

The one presented in this paper is a useful addition to our set of tools. Its

distinguishing characteristic is its kinship to bisimulation proof techniques for

other classes of systems. In particular, bisimulation proofs can often be done

without creativity, essentially by state-space exploration.

The next section is a review of the spi calculus. Section 3 describes our proof

method and Section 4 illustrates its use through some small examples. Section 5

discusses related work. Section 6 concludes.

2 The Spi Calculus (Review)

This section reviews the spi calculus, borrowing from earlier presentations. It

gives the syntax and informal semantics of the spi calculus, introduces the main

notations for its operational semantics, and �nally de�nes testing equivalence.

2.1 Syntax

We assume an in�nite set of names and an in�nite set of variables. We let c,

m, n, p, q, and r range over names, and let w, x, y, and z range over variables.

When they represent keys, we let k and K range over names too.

The set of terms is de�ned by the grammar:

L;M;N ::= terms

n name

(M;N) pair

0 zero

suc(M) successor

fMg

N

encryption

x variable

Intuitively, fMg

N

represents the ciphertext obtained by encrypting the term

M under the key N using a shared-key cryptosystem such as DES [DES77]. In

examples, we write 1 as a shorthand for the term suc(0).

The set of processes is de�ned by the grammar:

P;Q;R ::= processes

MhNi:P output

M(x):P input (scope of x is P)

P j Q composition

(�n)P restriction (scope of n is P)

!P replication

[M is N] P match

0 nil

let (x; y) =M in P pair splitting (scope of x, y is P)

case M of 0 : P suc(x) : Q integer case (scope of x is Q)

case L of fxg

N

in P decryption (scope of x is P)

We abbreviateMhNi:0 toMhNi. We write P [M=x] for the outcome of replacing

each free occurrence of x in process P with the term M , and identify processes

up to renaming of bound variables and names. Intuitively, processes have the

following meanings:

{ An output process MhNi:P is ready to output N on M , and then to behave

as P . The output happens only when there is a process ready to input from

M . An input process M(x):Q is ready to input from M , and then to behave

as Q[N=x], where N is the input received.

{ A composition P j Q behaves as P and Q running in parallel.

{ A restriction (�n)P is a process that makes a new, private name n, which

may occur in P , and then behaves as P .

{ A replication !P behaves as in�nitely many replicas of P running in parallel.

{ A match [M is N] P behaves as P provided that M and N are the same

term; otherwise it is stuck, that is, it does nothing.

{ The nil process 0 does nothing.

{ A pair splitting process let (x; y) =M in P behaves as P [N=x][L=y] if M is

a pair (N;L), and it is stuck if M is not a pair.

{ An integer case process case M of 0 : P suc(x) : Q behaves as P if M is 0,

as Q[N=x] if M is suc(N) for some N , and otherwise is stuck.

{ A decryption process case L of fxg

N

in P attempts to decrypt L with

the key N . If L has the form fMg

N

, then the process behaves as P [M=x].

Otherwise the process is stuck.

For example, P

�

= m(x):case x of fyg

K

in mhf0g

y

i is a process that is ready

to receive a message x on the channel m. When the message is a ciphertext of

the form fyg

K

, process P sends 0 encrypted under y on the channel m. This

process may be put in parallel with a process Q

�

= mhfK

0

g

K

i, which sends the

name K

0

encrypted under K on the channel m. In order to restrict the use of

K to P and Q, we may form (�K)(P j Q). The environment of (�K)(P j Q)

will not be able to construct any message of the form fyg

K

, since K is bound.

Therefore, the component P of (�K)(P j Q) may output f0g

K

0

, but not f0g

z

for any z di�erent from K

0

. Alternatively, the component P of (�K)(P j Q) may

produce no output: for example, were it to receive 0 on the channel m, it would

get stuck.

We write fn(M) and fn(P) for the sets of names free in term M and process

P respectively, and write fv (M) and fv (P) for the sets of variables free in M

and P respectively. A term or process is closed if it has no free variables.

2.2 Operational Semantics

An abstraction is an expression of the form (x)P , where x is a bound variable

and P is a process. Intuitively, (x)P is like the process p(x):P minus the name

p. A concretion is an expression of the form (�m

1

; : : : ;m

k

)hMiP , where M is a

term, P is a process, k � 0, and the names m

1

, . . . , m

k

are bound in M and P .

Intuitively, (�m

1

; : : : ;m

k

)hMiP is like the process (�m

1

) : : : (�m

k

)phMiP minus

the name p, provided p is not one of m

1

, . . . , m

k

. We often write concretions

as (� ~m)hMiP , where ~m = m

1

; : : : ;m

k

, or simply (�)hMiP if k = 0. Finally, an

agent is an abstraction, a process, or a concretion. We use the metavariables A

and B to stand for arbitrary agents, and let fv (A) and fn(A) be the sets of free

variables and free names of an agent A, respectively.

A barb is a name m (representing input) or a co-name m (representing out-

put). An action is a barb or the distinguished silent action � . The commitment

relation is written P

�

�! A, where P is a closed process, � is an action, and A

is a closed agent. The exact de�nition of commitment appears in earlier papers

on the spi calculus [AG97b,AG97c]; informally, the de�nition says:

{ P

�

�! Q means that P becomes Q in one silent step (a � step).

{ P

m

�! (x)Q means that, in one step, P is ready to receive an input x on m

and then to become Q.

{ P

m

�! (�m

1

; : : : ;m

k

)hMiQ means that, in one step, P is ready to create the

new names m

1

, . . . , m

k

, to send M on m, and then to become Q.

2.3 Testing Equivalence

We say that two closed processes P and Q are testing equivalent, and write

P ' Q, when for every closed process R and every barb �, if

P j R

�

�!

�

P

0

�

�! A

for some P

0

and A, then

Q j R

�

�!

�

Q

0

�

�! B

for some Q

0

and B, and vice versa.

For example, the processes (�K)mhf0g

K

i and (�K)mhf1g

K

i are testing

equivalent. We may interpret this equivalence as a security property, namely

that the process (�K)mhfxg

K

i does not reveal to its environment whether x

is 0 or 1. In the examples contained in Section 4 and in earlier papers, various

other properties (including, in particular, secrecy properties) are formulated in

terms of testing equivalence.

In this paper we develop a sound technique for proving testing equivalence:

we introduce a de�nition of bisimulation and show that if two closed processes

are in one of our bisimulation relations then they are testing equivalent.

3 Framed Bisimulation

This section de�nes our notion of bisimulation, which we call framed bisimula-

tion.

3.1 Frames and Theories

Our de�nition of bisimulation is based on the notions of a frame and of a theory.

A bisimulation does not simply relate two processes P and Q, but instead relates

two processes P and Q in the context of a frame and a theory. The frame and

the theory represent the knowledge of the environment of P and Q.

{ A frame is a �nite set of names. Intuitively, a frame is a set of names available

to the environment of the processes P and Q. We use fr to range over frames.

{ A theory is a �nite set of pairs of terms. Intuitively, a theory that includes a

pair (M;N) indicates that the environment cannot distinguish the data M

coming from process P and the data N coming from process Q. We use th

to range over theories.

Next we de�ne the predicate (fr; th) `M $ N inductively, by a set of rules.

Intuitively, this predicate means that the environment cannot distinguish M

coming from P and N coming from Q, and that the environment has (or can

construct) M in interaction with P and N in interaction with Q.

(Eq Frame)

n 2 fr

(fr; th) ` n$ n

(Eq Theory)

(M;N) 2 th

(fr; th) `M $ N

(Eq Variable)

(fr; th) ` x$ x

(Eq Pair)

(fr; th) `M $M

0

(fr; th) ` N $ N

0

(fr; th) ` (M;N)$ (M

0

; N

0

)

(Eq Zero)

(fr; th) ` 0$ 0

(Eq Suc)

(fr; th) `M $M

0

(fr; th) ` suc(M)$ suc(M

0

)

(Eq Encrypt)

(fr; th) `M $M

0

(fr; th) ` N $ N

0

(fr; th) ` fMg

N

$ fM

0

g

N

0

For example, if fr = fng and th = f(f0g

K

; fng

K

)g, where n and K are

distinct names, then we have (fr; th) ` n$ n and (fr; th) ` f0g

K

$ fng

K

, and

also (fr; th) ` (n; f0g

K

)$ (n; fng

K

), but we have neither (fr; th) ` K $ K nor

(fr; th) ` fng

K

$ f0g

K

.

We say that the pair (fr; th) is ok, and write (fr; th) ` ok , if two conditions

hold:

(1) whenever (M;N) 2 th:

{ M is closed and there are terms M

1

and M

2

such that M = fM

1

g

M

2

and there is no N

2

such that (fr; th) `M

2

$ N

2

;

{ N is closed and there are terms N

1

and N

2

such that N = fN

1

g

N

2

and

there is no M

2

such that (fr; th) `M

2

$ N

2

;

(2) whenever (M;N) 2 th and (M

0

; N

0

) 2 th, M =M

0

if and only if N = N

0

.

Intuitively, the �rst condition requires that each term in a pair (M;N) in a the-

ory be formed by ciphertexts that the environment cannot decrypt. For example,

the requirement that there be no N

2

such that (fr; th) ` M

2

$ N

2

means that

the environment cannot construct M

2

for decrypting M . The second condition

guarantees that no ciphertext is equated to two other ciphertexts. This condi-

tion is essential because the environment can compare ciphertexts even when it

cannot decrypt them (see Example 2 of Section 4).

3.2 Ordering Frame-Theory Pairs

We de�ne an ordering between pairs of frames and theories as follows: we let

(fr; th) � (fr

0

; th

0

) if and only if for all M and N , (fr; th) ` M $ N implies

(fr

0

; th

0

) ` M $ N . This relation is reexive and transitive. It is not the same

as the pairwise ordering induced by subset inclusion; fr � fr

0

and th � th

0

imply

(fr; th) � (fr

0

; th

0

), but the converse implication does not hold.

Proposition 1. Suppose (fr

0

; th

0

) ` ok . Then (fr; th) � (fr

0

; th

0

) if and only if

fr � fr

0

and (fr

0

; th

0

) `M $ N for each (M;N) 2 th.

As indicated above, we view a pair (fr; th) as a representation for the knowl-

edge of an environment. With this view, and assuming that (fr

0

; th

0

) ` ok ,

the relation (fr; th) � (fr

0

; th

0

) means that the environment may go from the

knowledge represented in (fr; th) to the knowledge represented in (fr

0

; th

0

). The

de�nition of (fr; th) � (fr

0

; th

0

) implies that the set of names and terms that the

environment has (or can construct) grows in this transition. It also implies that

any indistinguishable pair of terms remains indistinguishable after the transi-

tion. So, if ever we assert that (fr; th) characterises an environment, we should

take care that (fr; th) does not imply that the environment cannot distinguish

two terms M and N if later information would allow the environment to distin-

guish these terms. For example, if fr

0

includes the name n, then th should not

contain (f0g

n

; f1g

n

). Intuitively, the acquisition of the name n would allow the

environment to distinguish f0g

n

and f1g

n

, so (fr

0

; th

0

) ` f0g

n

$ f1g

n

would

not hold. On the other hand, th may contain (f0g

n

; f0g

n

); in that case, th

0

could

not contain (f0g

n

; f0g

n

), but we would at least have (fr

0

; th

0

) ` f0g

n

$ f0g

n

.

3.3 Framed Relations and Bisimulations

For a theory th, we let fn(th) =

S

ffn(M) [fn(N) j (M;N) 2 thg. We let

�

1

(th) = fM j (M;N) 2 thg and �

2

(th) = fN j (M;N) 2 thg, and write

fn(�

1

(th)) and fn(�

2

(th)) for the sets of names

S

ffn(M) j M 2 �

1

(th)g and

S

ffn(N) j N 2 �

2

(th)g respectively.

A framed process pair is a quadruple (fr; th; P;Q) such that P and Q are

closed processes, fr is a frame, and th is a theory. When R is a set of framed

process pairs, we write (fr; th) ` P R Q to mean (fr; th; P;Q) 2 R. A framed

relation is a set R of framed process pairs such that (fr; th) ` ok whenever

(fr; th) ` P R Q.

A framed simulation is a framed relation S such that, whenever (fr; th) `

P S Q, the following three conditions hold.

{ If P

�

�! P

0

then there is a process Q

0

with Q

�

�! Q

0

and (fr; th) ` P

0

S Q

0

.

{ If P

c

�! (x)P

0

and c 2 fr then there is an abstraction (x)Q

0

with Q

c

�!

(x)Q

0

and, for all sets f~ng disjoint from fn(P) [fn(Q) [fr [fn(th) and all

closed M and N , if (fr[f~ng; th) `M $ N then (fr[f~ng; th) ` P

0

[M=x] S

Q

0

[N=x].

{ If P

c

�! (� ~m)hMiP

0

, c 2 fr, and the set f~mg is disjoint from fn(P) [

fn(�

1

(th))[fr then there is a concretion (�~n)hNiQ

0

with Q

c

�! (�~n)hNiQ

0

and the set f~ng is disjoint from fn(Q)[fn(�

2

(th))[fr, and there is a frame-

theory pair (fr

0

; th

0

) such that (fr; th) � (fr

0

; th

0

), (fr

0

; th

0

) ` M $ N , and

(fr

0

; th

0

) ` P

0

S Q

0

.

We may explain these conditions as follows.

{ The �rst condition simply requires that if P can take a � step then Q can

match this step.

{ The second condition concerns input steps where the channel c on which

the input happens is in fr (that is, it is known to the environment). In this

case, we must consider the possible inputsM from the environment to (x)P

0

,

namely the terms M that the environment can construct according to (fr [

f~ng; th). The names in ~n are fresh names, intuitively names just generated

by the environment. Correspondingly, we consider the possible inputs N

for (x)Q

0

, for an appropriate (x)Q

0

obtained from Q. We then require that

giving these inputs to (x)P

0

and (x)Q

0

, respectively, yields related processes

P

0

[M=x] and Q

0

[N=x].

The choice of (x)Q

0

is independent of the choices of M and N . So, in the

technical jargon, we may say that S is a late framed simulation.

{ The third condition concerns output steps where the channel c on which

the output happens is in fr (that is, it is known to the environment). In

this case, P outputs the term M while creating the names ~m. The condition

requires that Q can output a corresponding term N while creating some

names ~n. It also constrainsM and N , and the resulting processes P

0

and Q

0

.

The constraints concern a new frame-theory pair (fr

0

; th

0

). Intuitively, this

pair represents the knowledge of the environment after the output step. The

requirement that (fr

0

; th

0

) ` M $ N means that the environment obtains

M in interaction with P and N in interaction with Q, and that it should

not be able to distinguish them from one another.

Because we do not impose a minimality requirement on (fr

0

; th

0

), this pair

may attribute \too much" knowledge to the environment. For example, fr

0

may contain names that are neither in fr nor in M or N , so intuitively the

environment would not be expected to know these names. On the other hand,

the omission of a minimality requirement results in simpler de�nitions, and

does not compromise soundness.

A framed bisimulation is a framed relation S such that both S and S

�1

are framed simulations. Framed bisimilarity (written �

f

) is the greatest framed

bisimulation. By the Knaster-Tarski �xpoint theorem, since the set of framed

relations ordered by subset inclusion forms a complete lattice, framed bisimilarity

exists, and equals the union of all framed bisimulations.

Our intent is that our de�nition of framed bisimulation may serve as the

basis for an algorithm, at least for �nite-state processes. Unfortunately, the de�-

nition contains several levels of quanti�cation. The universal quanti�ers present

a serious obstacle to any algorithm for constructing framed bisimulations. In

particular, the condition for input steps concerns all possible inputs M and N ;

these inputs are of unbounded size, and may contain an arbitrary number of

fresh names. However, we conjecture that the inputs can be classi�ed according

to a �nite number of patterns|intuitively, because the behaviour of any �nite-

state process can depend on at most a �nite portion of its inputs. An algorithm

for constructing framed bisimulations might consider all inputs that match the

same pattern at once. We leave the invention of such an algorithm for future

work.

3.4 Soundness (Summary)

Our main soundness theorem about framed bisimulation is that it is a su�cient

condition for testing equivalence.

Theorem 2. Consider any closed processes P and Q, and any name n 62 fn(P)[

fn(Q). Suppose that (fn(P) [fn(Q) [fng; ;) ` P �

f

Q. Then P ' Q.

This theorem implies that if we want to prove that two processes are testing

equivalent, then we may construct a framed bisimulation S such that (fn(P) [

fn(Q)[fng; ;) ` P S Q where n is a single, arbitrary new name. (The addition

of the name n is technically convenient, but may not be necessary.) The next

section illustrates this approach through several examples.

The proof of this theorem requires a number of auxiliary notations, de�ni-

tions, and lemmas. We omit the details of the proof, and only indicate its main

idea. In the course of the proof, we extend the relation$ to processes: we de�ne

the predicate (fr; th) ` P $ Q by the following rules.

(Eq Out)

(fr; th) `M $M

0

(fr; th) ` N $ N

0

(fr; th) ` P $ P

0

(fr; th) `MhNi:P $M

0

hN

0

i:P

0

(Eq In)

(fr; th) `M $M

0

(fr; th) ` P $ P

0

(fr; th) `M(x):P $M

0

(x):P

0

(Eq Repl)

(fr; th) ` P $ P

0

(fr; th) ` !P $!P

0

(Eq Par)

(fr; th) ` P $ P

0

(fr; th) ` Q$ Q

0

(fr; th) ` P j Q$ P

0

j Q

0

(Eq Res) (where n =2 fr [fn(th))

(fr [fng; th) ` P $ P

0

(fr; th) ` (�n)P $ (�n)P

0

(Eq Match)

(fr; th) `M $M

0

(fr; th) ` N $ N

0

(fr; th) ` P $ P

0

(fr; th) ` [M is N] P $ [M

0

is N

0

] P

0

(Eq Nil)

(fr; th) ` 0$ 0

(Eq Let)

(fr; th) `M $M

0

(fr; th) ` P $ P

0

(fr; th) ` let (x; y) =M in P $ let (x; y) =M

0

in P

0

(Eq IntCase)

(fr; th) `M $M

0

(fr; th) ` P $ P

0

(fr; th) ` Q$ Q

0

(fr; th) ` case M of 0 : P suc(x) : Q$ case M

0

of 0 : P

0

suc(x) : Q

0

(Eq Decrypt)

(fr; th) `M $M

0

(fr; th) ` N $ N

0

(fr; th) ` P $ P

0

(fr; th) ` case M of fxg

N

in P $ case M

0

of fxg

N

0

in P

0

The core of the proof depends on a relation, S, de�ned so that P S Q if and

only if there is a frame fr, a theory th, and processes P

1

, P

2

, Q

1

, Q

2

, such that

P = (�~p)(P

1

j P

2

) Q = (�~q)(Q

1

j Q

2

)

and (fr; th) ` ok , (fr; th) ` P

1

�

f

Q

1

, and (fr; th) ` P

2

$ Q

2

, where f~pg =

(fn(P

1

) [fn(�

1

(th))) � fr and f~qg = (fn(Q

1

) [fn(�

2

(th))) � fr. By a detailed

case analysis, we may show that S satis�es the de�nition of a standard notion of

bisimulation|a barbed bisimulation up to restriction and barbed equivalence.

Given some auxiliary lemmas about testing equivalence, the theorem then follows

easily. The construction of S also yields that framed bisimilarity is a su�cient

condition for a strong equivalence called barbed congruence.

The converse of soundness|completeness|does not hold. The failure of com-

pleteness follows from the fact that framed bisimilarity is a su�cient condition

for barbed congruence. (Barbed congruence and a fortiori framed bisimilarity

are sensitive to � steps and to branching structure, while testing equivalence is

not.) Incompleteness may be somewhat unfortunate but, in our experience, it

seems to be compatible with usefulness.

4 Examples

This section shows how bisimulations can be exploited in proofs through some

small examples. These examples could not be handled by standard notions of

bisimulation (like that of our earlier work [AG97b,AG97c]). We have worked

through further examples, including some examples with more steps. In all cases,

the proofs are rather straightforward.

Throughout this section, c, K, K

1

, and K

2

are distinct names, and n is any

name di�erent from c. Moreover, M , M

0

, M

00

, M

1

, M

2

, N

1

, and N

2

are closed

terms; it is convenient to assume that no name occurs in them.

Example 1 As a �rst example, we show that the processes (�K)chfMg

K

i and

(�K)chfM

0

g

K

i are in a framed bisimulation, so they are testing equivalent.

Intuitively, this means that these processes do not revealM andM

0

, respectively.

For this example, we let S be the least relation such that:

{ (fc; ng; ;) ` (�K)chfMg

K

i S (�K)chfM

0

g

K

i

{ (fc; ng; f(fMg

k

; fM

0

g

k

)g) ` 0 S 0

for all names k =2 fc; ng

Since (fc; ng; ;) ` ok and (fc; ng; f(fMg

k

; fM

0

g

k

)g) ` ok , S is a framed relation.

Next we show that S is a framed simulation; symmetric reasoning establishes

that S

�1

is one too. Assuming that (fr; th) ` P S Q, we need to examine the

commitments of P and Q. We consider two cases, which correspond to the two

clauses of the de�nition of S.

{ Suppose that P = (�K)chfMg

K

i and Q = (�K)chfM

0

g

K

i. In this case,

we have fr = fc; ng and th = ;. Up to renaming of the bound name K,

the only commitment of P is P

c

�! (�K)hfMg

K

i0. To establish that S is

a framed simulation, we need only consider the case where K is renamed

to some k =2 fn(P) [fn(�

1

(;)) [fc; ng, that is, k =2 fc; ng. By renaming,

we have Q

c

�! (�k)hfM

0

g

k

i0. We let th

0

= f(fMg

k

; fM

0

g

k

)g. We have

(fr; th) � (fr; th

0

), (fr; th

0

) ` fMg

k

$ fM

0

g

k

, and (fr; th

0

) ` 0 $ 0. Thus,

Q can match P 's commitment.

{ Suppose that P = 0 and Q = 0. This case is trivial, since 0 has no commit-

ments.

In short, (fc; ng; ;) ` (�K)chfMg

K

i S (�K)chfM

0

g

K

i, and S is a framed bisim-

ulation, as desired.

Example 2 As a small variant of the �rst example, we consider the processes

(�K)ch(fMg

K

; fMg

K

)i and (�K)ch(fM

0

g

K

; fM

00

g

K

)i.

When M

0

= M

00

, the argument of the �rst example works for this example

too, with only trivial modi�cations. We de�ne S as the least relation such that:

{ (fc; ng; ;) ` (�K)ch(fMg

K

; fMg

K

)i S (�K)ch(fM

0

g

K

; fM

00

g

K

)i

{ (fc; ng; f(fMg

k

; fM

0

g

k

); (fMg

k

; fM

00

g

k

)g) ` 0 S 0

for all names k =2 fc; ng

This relation is a framed bisimulation when M

0

=M

00

. On the other hand, it is

not a framed bisimulation when M

0

6=M

00

. In fact, in that case it is not even a

framed relation, because (fc; ng; f(fMg

k

; fM

0

g

k

); (fMg

k

; fM

00

g

k

)g) ` ok does

not hold (because condition (2) of the de�nition of ok is not satis�ed).

The fact that S is not a framed bisimulation in this case should not be

a concern. It is actually necessary: the processes (�K)ch(fMg

K

; fMg

K

)i and

(�K)ch(fM

0

g

K

; fM

00

g

K

)i are not testing equivalent when M

0

6= M

00

. The en-

vironment c(z):let (x; y) = z in [x is y] ch0i distinguishes them. Thus, this ex-

ample illustrates that two ciphertexts that cannot be decrypted can still be

compared, and justi�es part of the de�nition of framed bisimulation.

Example 3 As a further variant, we study an example with nested encryption. We

consider the processes (�K

1

)(�K

2

)chfM

1

; fM

2

g

K

2

g

K

1

i:chK

1

i and (�K

1

)(�K

2

)

chfN

1

; fN

2

g

K

2

g

K

1

i:chK

1

i. Each of these processes creates two keys K

1

and K

2

,

sends a ciphertext, and then reveals K

1

. Anyone who receives K

1

can partially

decrypt the ciphertext.

In order to analyse these processes, we let S be the least relation such that:

{ (fc; ng; ;) ` (�K

1

)(�K

2

)chfM

1

; fM

2

g

K

2

g

K

1

i:chK

1

i S

(�K

1

)(�K

2

)chfN

1

; fN

2

g

K

2

g

K

1

i:chK

1

i

{ (fc; n; k

1

g; f(fM

2

g

k

2

; fN

2

g

k

2

)g) ` chk

1

i S chk

1

i

for all names k

1

, k

2

with k

1

6= k

2

and fk

1

; k

2

g \ fc; ng = ;

{ (fc; n; k

1

g; f(fM

2

g

k

2

; fN

2

g

k

2

)g) ` 0 S 0

for all names k

1

, k

2

with k

1

6= k

2

and fk

1

; k

2

g \ fc; ng = ;

Note how, between the �rst and the second clauses, the frame has been enlarged

with k

1

, although the processes considered in the second clause have not yet sent

k

1

; this simpli�es the construction of S and is permitted by the de�nitions of

Section 3. The assumptions guarantee that (fc; n; k

1

g; f(fM

2

g

k

2

; fN

2

g

k

2

)g) ` ok

and hence that S is a framed relation. Moreover, S is a framed bisimulation if

and only if the following condition holds:

(fc; n; k

1

g; f(fM

2

g

k

2

; fN

2

g

k

2

)g) ` fM

1

; fM

2

g

k

2

g

k

1

$ fN

1

; fN

2

g

k

2

g

k

1

In turn, this condition holds if and only if M

1

= N

1

. Intuitively, the equality

M

1

= N

1

becomes necessary only when the two processes send the key k

1

, since

M

1

and N

1

are not visible in the �rst message. Our de�nition of � guarantees

that the necessity of M

1

= N

1

is propagated correctly.

Example 4 While all the examples above concern the secrecy of certain outputs,

this one concerns the impossibility of certain inputs. We consider the processes

(�K)chf0g

K

i:c(x):[x isK] chf0g

K

i and (�K)chf0g

K

i:c(x):0. The former process

creates a key K, sends f0g

K

, listens for an input, and if it receives K then it

sends f0g

K

again. However, we would expect that K will never arrive as an

input to this process, since the process never discloses K (but only f0g

K

, from

which K itself cannot be deduced). Therefore, we would expect this process to

be equivalent to the latter process, which simply stops upon receipt of a message.

For this example, we let S be the least relation such that:

{ (fc; ng; ;) ` ((�K)chf0g

K

i:c(x):[x is K] chf0g

K

i) S ((�K)chf0g

K

i:c(x):0)

{ (fc; ng; f(f0g

k

; f0g

k

)g) ` (c(x):[x is k] chf0g

k

i) S (c(x):0)

for all names k with k =2 fc; ng

{ (fc; n; ~mg; f(f0g

k

; f0g

k

)g) ` ([N is k] chf0g

k

i) S 0

for all names k with k =2 fc; ng, for all sets f~mg disjoint from fc; n; kg,

and all closed terms N and N

0

with (fc; n; ~mg; f(f0g

k

; f0g

k

)g) ` N $ N

0

(We are not assuming that no names occur in the closed terms N and N

0

.)

Since (fc; n; ~mg; f(f0g

k

; f0g

k

)g) ` N $ N

0

and k =2 fc; n; ~mg, the term N is not

k, so [N is k] chf0g

k

i

�

�! A is not true for any � and A. In other words, the

process [N is k] chf0g

k

i is stuck. It follows easily that S is a framed bisimulation.

Example 5 In cryptographic protocols, some keys are generated by consulting

sources of randomness, but it is also common to generate keys by applying

one-way functions to other keys. (Whereas many one-way functions are quite

e�cient, randomness and key agreement can be relatively expensive [Sch96b].)

As a �nal example, we consider a simple protocol transformation inspired by

a common method for generating keys. We compare the process (�K

1

)(�K

2

)

chfM

1

g

K

1

i:chfM

2

g

K

2

i, which generates and uses two keys, with the process (�K)

chfN

1

g

f0g

K

i:chfN

2

g

f1g

K

i, which generates the master key K and then uses the

derived keys f0g

K

and f1g

K

.

In order to show that these processes are testing equivalent, we construct

once more a framed bisimulation. We let S be the least relation such that:

{ (fc; ng; ;) ` (�K

1

)(�K

2

)chfM

1

g

K

1

i:chfM

2

g

K

2

i S

(�K)chfN

1

g

f0g

K

i:chfN

2

g

f1g

K

i

{ (fc; ng; f(fM

1

g

k

1

; fN

1

g

f0g

k

)g) ` (�K

2

)chfM

2

g

K

2

i S chfN

2

g

f1g

k

i

for all names k and k

1

with fk; k

1

g \ fc; ng = ;

{ (fc; ng; f(fM

1

g

k

1

; fN

1

g

f0g

k

); (fM

2

g

k

2

; fN

2

g

f1g

k

)g) ` 0 S 0

for all names k and k

1

with fk; k

1

g \ fc; ng = ;

and all names k

2

with k

2

=2 fc; n; k

1

g

It is somewhat laborious but not di�cult to check that S is a framed bisimula-

tion, much as in the examples above.

5 Related Work

Park [Par81] �rst suggested the bisimulation proof technique, in the context

of Milner's CCS. After Park's work, bisimulation became a cornerstone of the

theory of CCS [Mil89]. Milner, Parrow, and Walker [MPW92] extensively studied

a variety of forms of bisimulation for the pi calculus, their generalisation of CCS

with name-passing and mobile restrictions. Our de�nition of framed bisimulation

generalises (and relaxes) the de�nition of strong bisimulation from earlier work

on the spi calculus [AG97b,AG97c]. We can show that if processes P and Q

are strongly bisimilar, then, for all frames fr, (fr; ;) ` P �

f

Q. The converse

implication fails.

According to most other de�nitions, a bisimulation is a set of pairs of pro-

cesses. According to our de�nition, a framed bisimulation is a set of quadruples

consisting of a pair of processes grouped with a frame and a theory. According to

a de�nition of Pierce and Sangiorgi [PS96] for a typed pi calculus, a bisimulation

is a set of pairs of processes indexed by a type assumption that binds types to

channel names. Our use of a frame is a little like their use of typing assumptions,

in that both a frame and a typing assumption delimit the channels on which the

environment may observe the processes in the bisimulation. On the other hand,

the spi calculus is untyped, and our use of a theory to represent compound terms

possessed but not decomposable by the environment seems to be new.

There are also parallels with the work of Pitts and Stark [PS93] on the �-

calculus, a simply-typed �-calculus enriched with dynamic allocation of names.

Pitts and Stark de�ne a logical relation on programs, parameterised by a partial

bijection on the names free in related programs. Their logical relation is sound

for proving observational equivalence; it is incomplete but more generous than

the usual notion of applicative bisimilarity for the �-calculus. A logical relation

is one in which two abstractions are related if and only if they send related

arguments to related results. Given the clause for inputs in the de�nition of

framed bisimulation, which requires the bodies of two abstractions (x)P

0

and

(x)Q

0

to be related on all related terms M and N , we may say that the relations

(fr; th) ` M $ N and (fr; th) ` P �

f

Q form a parametric logical relation

on the terms and processes of the spi calculus. Like Pitts and Stark's logical

relation, our logical relation is sound for proving testing equivalence. Further, it

is incomplete but more generous than the usual notion of strong bisimilarity; it

has parameters (the frame and the theory) that serve to identify certain processes

that are distinguished by the usual relation of strong bisimilarity. However, the

analogy with Pitts and Stark's work is not perfect; in particular, their use of

partial bijections on names is di�erent from our use of frames and theories.

In the last few years, several methods for analysing cryptographic protocols

have been developed within action-based or state-based models (see for exam-

ple [MCF87,Mil95,Kem89,Mea92,GM95,Low96,Sch96a,Bol96,Pau97]). Some of

these models are presented as process algebras, others in logical forms. Often,

the analysis of a protocol requires de�ning a particular attacker (an environment)

for the protocol; recently, there has been promising progress towards automat-

ing the construction of this attacker. Bisimulation techniques do appear in the

security literature (as in the work of Focardi and Gorrieri [FG95]), but rarely,

and without special tailoring to cryptographic applications.

6 Conclusions

When reasoning about a cryptographic protocol, we must take into account the

knowledge of the environment with which the protocol interacts. In our de�nition

of bisimulation, this knowledge is represented precisely as a set of names that

the environment has obtained, and as a set of pairs of ciphertexts that the

environment has received but cannot distinguish. This precise representation of

the knowledge of the environment is the basis for an e�ective and sound proof

technique. Using this technique, we can construct proofs for small but subtle

cryptographic protocols. The proofs are fairly concise and do not require much

creativity. Therefore, although we have not yet attempted to mechanise our

proofs, we believe that such a mechanisation is possible, and that it may enable

the automatic veri�cation of substantial examples.

Acknowledgements

Discussions with Davide Sangiorgi were helpful at the start of this work. Andy

Pitts made useful comments.

Gordon held a Royal Society University Research Fellowship at the University

of Cambridge Computer Laboratory for most of the time we worked on this

paper. He now holds a position at Microsoft Research.

References

[Aba97] M. Abadi. Secrecy by typing in security protocols. In Theoretical Aspects

of Computer Software, volume 1281 of Lecture Notes in Computer Science,

pages 611{638. Springer-Verlag, 1997.

[AG97a] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi

calculus. In Proceedings of the Fourth ACM Conference on Computer and

Communications Security, pages 36{47, 1997.

[AG97b] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The

spi calculus. Technical Report 414, University of Cambridge Computer Lab-

oratory, January 1997.

[AG97c] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the

spi calculus. In CONCUR'97: Concurrency Theory, volume 1243 of Lecture

Notes in Computer Science, pages 59{73. Springer-Verlag, 1997.

[Bol96] D. Bolignano. An approach to the formal veri�cation of cryptographic pro-

tocols. In 3rd ACM Conference on Computer and Communications Security,

pages 106{118, March 1996.

[DES77] Data encryption standard. Fed. Inform. Processing Standards Pub. 46, Na-

tional Bureau of Standards, Washington DC, January 1977.

[FG95] R. Focardi and R. Gorrieri. A classi�cation of security properties. Journal

of Computer Security, 3(1), 1995.

[GM95] J. Gray and J. McLean. Using temporal logic to specify and verify crypto-

graphic protocols (progress report). In Proceedings of the 8th IEEE Computer

Security Foundations Workshop, pages 108{116, 1995.

[Kem89] R. A. Kemmerer. Analyzing encryption protocols using formal veri�cation

techniques. IEEE Journal on Selected Areas in Communications, 7, 1989.

[Low96] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol

using FDR. In Tools and Algorithms for the Construction and Analysis of

Systems, volume 1055 of Lecture Notes in Computer Science, pages 147{166.

Springer-Verlag, 1996.

[MCF87] J. K. Millen, S. C. Clark, and S. B. Freedman. The Interrogator: Protocol se-

curity analysis. IEEE Transactions on Software Engineering, SE-13(2):274{

288, February 1987.

[Mea92] C. Meadows. Applying formal methods to the analysis of a key management

protocol. Journal of Computer Security, 1(1):5{36, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International,

1989.

[Mil95] J. K. Millen. The Interrogator model. In IEEE Symposium on Security and

Privacy, pages 251{260, 1995.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts

I and II. Information and Computation, pages 1{40 and 41{77, September

1992.

[Par81] D. Park. Concurrency and automata on in�nite sequences. In P. Deussen,

editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, volume

104 of Lecture Notes in Computer Science, pages 167{183. Springer-Verlag,

March 1981.

[Pau97] L. Paulson. Proving properties of security protocols by induction. In Pro-

ceedings of the 10th IEEE Computer Security Foundations Workshop, pages

70{83, 1997.

[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order func-

tions that dynamically create local names, or: What's new? In Mathematical

Foundations of Computer Science, Proc. 18th Int. Symp., Gda�nsk, 1993,

volume 711 of Lecture Notes in Computer Science, pages 122{141. Springer-

Verlag, 1993.

[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409{453, October 1996.

[Sch96a] S. Schneider. Security properties and CSP. In IEEE Symposium on Security

and Privacy, pages 174{187, 1996.

[Sch96b] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code

in C. John Wiley & Sons, Inc., second edition, 1996.

