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1 MotivationA great deal of software is coded in terms of concurrent processes and ob-jects. The purpose of our work is to develop a new formalism for expressing,typing, and reasoning about computations based on concurrent processes andobjects.We present a new formalism for expressing computations in terms of con-current processes and objects. Our concurrent object calculus concςm con-sists of Abadi and Cardelli's imperative object calculus impς extended withprimitives for parallel composition and for synchronisation via mutexes. Ourwork extends the analysis by Abadi and Cardelli (1996) of object-orientedfeatures to concurrent languages. At the heart of their work is a series oftype systems able to express a great variety of object-oriented idioms. Givenconcςm, we may smoothly and soundly extend these type systems to accom-modate concurrency.There are by now many formalisms capable of encoding objects and con-currency. Support of Abadi and Cardelli's type systems is one distinctivefeature of our calculus. Others are the following. Unlike most process cal-culi, the syntax of concςm includes sequential composition of expressions thatare expected to return results; there is no need to encode results in terms ofcontinuations. Rather than reducing concurrent objects to other concepts,concςm treats objects as primitive. Rather than introduce auxiliary notionsof stores or con�gurations or labelled transitions, we directly describe thesemantics of concςm in terms of a reduction relation on expressions.As evidence of the expressiveness of our calculus, we present a series ofexamples, including encodings of the �-calculus. Here are our main technicalresults:(1) We describe a semantics for concurrent objects based on a reductionrelation and a structural congruence relation in the style of Milner'sreduction semantics (Milner 1992) for the �-calculus (Milner, Parrow,and Walker 1992). We prove that our reduction semantics is equivalentto a classical structural operational semantics de�ned using auxiliarynotions of stores, threads, and con�gurations.(2) We identify a single-threaded subset of our calculus that is preservedby reduction and includes the impς-calculus.(3) The Ob1<: calculus is Abadi and Cardelli's �rst-order calculus with ob-jects and subtyping. Given a few simple rules for parallel compositionand restriction, we confer the typing rules of Ob1<: on our concurrent1



calculus. We prove subject reduction for this system without need-ing any notion of store typing separate from the notion of expressiontyping.1.1 Related workWe survey operational techniques for concurrent languages. We review workon formalisms based on functions as well as formalisms based on objects,since techniques suitable for functions are often applicable to objects.Plotkin's structural operational semantics (1981) is a standard techniquefor concurrent languages. A computation is described as sequence of con�gu-rations. A con�guration typically consists of a collection of runnable threads,a store, and other data such as the state of communication channels. Di Bla-sio and Fisher (1996) describe a concurrent version of the Fisher, Honsell, andMitchell lambda-calculus of objects in this style. Other languages treated inthis style include an actor language (Agha, Mason, Smith, and Talcott 1997)and CML (Reppy 1992) (Berry, Milner, and Turner 1992).Ferreira, Hennessy, and Je�rey (1995) avoid con�gurations in their op-erational semantics for CML by employing a CCS-style labelled transitionsystem. In their work, and in ours, the parallel composition a � b of twoexpressions a and b is an expression consisting of a and b running in parallel.Any result returned by b is returned by the whole composition; any resultreturned by a is discarded. So unlike the situation in most process calculi,parallel composition is not commutative: the e�ects of a � b and b � a aredi�erent. In implementation terms this is perfectly natural; running a � bamounts to forking o� a as a new thread and then running b. Another wayof dealing with forked processes was investigated by Havelund and Larsen(1993): they present a form of CCS based on a binary operator for sequen-tial composition and a unary operator that represents the forking of a parallelprocess.Our reduction semantics is directly inspired by Milner's (1992) presen-tation of the chemical abstract machine of Berry and Boudol (1992). Ina chemical semantics, a computation state is represented by a term of thecalculus; there is no need for the auxiliary notion of a con�guration. Pre-vious chemical semantics for concurrent languages use evaluation contextsto treat sequential composition of expressions (Amadio, Leth, and Thomsen1995) (Peyton Jones, Gordon, and Finne 1996) (Boudol 1997); instead, oursemantics exploits a non-commutative parallel composition.Di Blasio and Fisher's paper is the work most closely related to ours.Their principal results are the de�nition of a con�guration-based reductionsemantics for their calculus, a type soundness theorem, and the proof that2



certain guard expressions used for synchronisation have no side-e�ects. As intheir work, we prove the soundness of a type system for concurrent objects.Our chemical semantics has no need for the auxiliary notions of con�gurationsand reduction contexts used in theirs. Unlike their work, ours includes twoindependent but equivalent characterisations of our operational semantics.Various formalisms in the �-calculus family have been used to model im-perative or concurrent objects, for instance, in the work of Honda and Tokoro(1991), Jones (1993), Vasconcelos (1994), Pierce and Turner (1995), Walker(1995), Fournet and Gonthier (1996), Kleist and Sangiorgi (1998), and DalZilio (1998). All these models use formalisms based on processes, computa-tions with no concept of returning a result, instead of expressions. The op-eration of returning a result is translated using continuations into sending amessage on a result channel. Our concς-calculus is based on expressions thatreturn results because its precursor impς is based on expressions, becausewe do not wish to presuppose channel-based communication, and becauseexpressions with results are a fundamental aspect of many programming lan-guages and therefore deserve a semantics in their own right.1.2 Organisation of the paperIn Section 2 we present the syntax and semantics of a core calculus of con-current objects, the concς-calculus, and in Section 3 we add mutexes toobtain the concςm-calculus. Our syntax of terms uni�es auxiliary notions ofprocess, expression, store, and con�guration, and hence supports a particu-larly simple reduction semantics. In Section 4 we prove that our semanticscorresponds precisely to a more conventional, but more complex, semanticsphrased in terms of con�gurations. In Section 5 we demonstrate the sound-ness of the Ob1<: type system for concςm. Section 6 concludes the paper.
2 Concurrent ObjectsWe extend the imperative object calculus with primitives to assign a name toa stored object and to compose two terms in parallel. The resulting calculusallows us to express concurrent computations, but has no primitives to allowconcurrent computations to synchronise. In Section 3, we extend this corecalculus with mutex primitives for synchronisation.3



2.1 Primitives for Concurrent ObjectsWe assume there are disjoint in�nite sets of names, variables, and labels. Welet p, q, and r range over names. We let x, y, and z range over variables. Welet ` range over labels. We de�ne the sets of results, denotations, and termsby the grammars:Syntax of the concς-calculusu; v ::= resultsx variablep named ::= denotations[`i = ς(xi)bi i21::n] objecta; b; c ::= termsu resultp 7!d denominationu:` method selectu:`( ς(x)b method updateclone(u) cloninglet x=a in b leta � b parallel composition(�p)a restrictionSyntactic conventions:(�p)a � b is read ((�p)a) � bu:`( ς(x)b � c is read (u:`( ς(x)b) � clet x=a in b � c is read (let x=a in b) � cAbbreviations:(�~p)a �= (�p1)(�p2) : : : (�pn)a where ~p = p1; p2; : : : ; pnGiven an object [`i = ς(xi)bi i21::n] we say that each ς(xj)bj for j 2 1::nis a method, and that each `j = ς(xj)bj for j 2 1::n is a component of theobject.Here are the rules for scoping variables and names. In a method ς(x)b,the variable x is bound; its scope is b. In a term let x=a in b, the variablex is bound; its scope is b. In a restriction, (�p)a, the name p is bound; itsscope is a. Let fn(a) be the set of names free in the term a. Let fv(a) bethe set of variables free in the term a. We say that a term a is closed if and4



only if fv(a) = ?. We write affx vgg for the outcome of a capture-avoidingsubstitution of the result v for each free occurrence of x in term a.We write a = b to mean that the terms a and b are equal up to the renam-ing of bound names and bound variables, and the reordering of componentsin objects.As in the impς-calculus, our syntax distinguishes names, which representthe addresses of stored objects, from variables, which represent intermediatevalues. This is a helpful distinction but not essential; we believe it will beuseful when we come to treat observational equivalences. Results in our syn-tax are atomic names or atomic variables; our techniques would easily extendto structured results, such as tuples or �-abstractions. Our syntax separatesname scoping, by restrictions, from name de�nition, by denominations. Weseparated scoping from de�nition to allow cyclic dependencies between def-initions. An alternative is to use a single construct de�ning several namessimultaneously with mutually recursive scopes, as in the join-calculus (Four-net and Gonthier 1996) for example. Due to the generality of our syntax, weneed a simple type system, de�ned in Section 4.1, to rule out certain termsas not well-formed. For example, a process such as (p 7! [] � p 7! []) � p, thatcontains two denominations for the same name, is not well-formed.Starting with the terms of the imperative object calculus, we arrive atour calculus by labelling each object with a name, and adding parallel com-position a � b and restriction (�p)a from the �-calculus. As the next sectionexplains, we obtain the semantics of our calculus by combining the semanticsof the imperative object calculus with that of the �-calculus.2.2 Informal SemanticsWe may interpret a term of our object calculus either as a process or as anexpression. A process is simply a concurrent computation. An expressionis a concurrent computation that is expected to return a result. In fact, anexpression may be regarded as a process, since we may always ignore anyresult that it returns.The meanings of the �rst six primitives (result, denomination, methodselect, method update, cloning, and let) are much as in the impς-calculus:� A result u is an expression that immediately returns itself.� A denomination p 7! [`i = ς(xi)bi i21::n] is a process that confers thename p on the object [`i = ς(xi)bi i21::n]. We say that the object[`i = ς(xi)bi i21::n] is the denotation of the name p. Intuitively, theprocess represents an object stored at a memory location and the namep represents the address of the object.5



� A method select p:` is an expression that invokes the method labelled `of the object denoted by p. In the presence of a denomination p 7! [`i =
ς(xi)bi i21::n], where ` = `j for some j 2 1::n, the e�ect of p:` is to runthe expression bjffxj  pgg, that is, to run the body bj of the methodlabelled `, with the variable xj bound to the name of the object itself.� A method update p:`( ς(x)b is an expression that updates the methodlabelled ` of the object denoted by p. In the presence of a denominationp 7! [`i = ς(xi)bi i21::n], where ` = `j for some j 2 1::n, the e�ect ofp:` ( ς(x)b is to update the denomination to be p 7! [`j = ς(x)b; `i =
ς(xi)bi i2(1::n)�fjg], and to return p as its result.� A clone clone(p) is an expression that makes a shallow copy of theobject denoted by p. In the presence of a denomination p 7! [`i =
ς(xi)bi i21::n], the e�ect of clone(p) is to generate a fresh name q withdenomination q 7! [`i = ς(xi)bi i21::n] and to return q as its result. Aftera clone, the names p and q denote two separate copies of the samedenotation [`i = ς(xi)bi i21::n]; updates to one will not a�ect the other.� A let let x=a in b is an expression that �rst runs the expression a, andif it returns a result, calls it x, and then runs the expression b.The meanings of the last two primitives (parallel composition and restric-tion) are much as in the �-calculus:� A parallel composition a � b is either an expression or a process, de-pending on whether b is an expression or a process. In a � b the termsa and b are running in parallel. If b is an expression then a � b is anexpression, whose result, if any, is the result returned by b. Any resultreturned by a is ignored.� A restriction (�p)a is either an expression or a process, depending onwhether a is an expression or a process. A restriction (�p)a generatesa fresh name p whose scope is a.In this section, our intuitive explanations have depended on an informaldistinction between processes and expressions. We make this distinctionprecise via judgments a : Proc and a : Exp in Section 4.1.2.3 Formal SemanticsWe base our operational semantics on structural congruence and reductionrelations. Reduction represents individual computation steps, and is de�ned6



in terms of structural congruence. Structural congruence allows the rear-rangement of the syntactic structure of a term so that reduction rules maybe applied. We may regard our semantics as a concurrent extension of thesmall-step substitution-based semantics of impς described by Gordon, Han-kin, and Lassen (1997).The most interesting aspect of our formal semantics is the managementof concurrent expressions that return results. We intend that the result of anexpression be that returned from the right-hand side of the topmost parallelcomposition. Therefore, as we discussed in Section 1.1, in contexts expectinga result, parallel composition is not commutative. On the other hand, incontexts immediately to the left of a parallel composition, where any resultis discarded, parallel composition is commutative. Therefore, structural con-gruence identi�es (a � b) � c with (b � a) � c, since any results returned by aor b are discarded.The following two tables de�ne the structural congruence relation a � b.Structural congruence: congruence rules(Struct Re)a � a (Struct Symm)b � aa � b (Struct Trans)a � b b � ca � c(Struct Update)b � b0u:`( ς(x)b � u:`( ς(x)b0 (Struct Let)a � a0 b � b0let x=a in b � let x=a0 in b0(Struct Res)a � a0(�p)a � (�p)a0 (Struct Par)a � a0 b � b0a � b � a0 � b0(Struct Object)bi � b0i 8i 2 1::np 7! [`i = ς(xi)bi i21::n] � p 7! [`i = ς(xi)b0i i21::n]Structural congruence: basic axioms(Struct Par Assoc)(a � b) � c � a � (b � c) (Struct Par Comm)(a � b) � c � (b � a) � c (Struct Res Res)(�p)(�q)a � (�q)(�p)a7



(Struct Par 1)p =2 fn(a)(�p)(a � b) � a � (�p)b (Struct Par 2)p =2 fn(b)(�p)(a � b) � ((�p)a) � b(Struct Let Assoc) y =2 fv(c)let x=(let y=a in b) in c � let y=a in (let x=b in c)(Struct Res Let)p =2 fn(b)(�p)let x=a in b � let x=(�p)a in b(Struct Par Let)a � let x=b in c � let x=(a � b) in cWe explained (Struct Par Comm) earlier. The rules (Struct Par Assoc),(Struct Res Res), (Struct Par 1), and (Struct Par 2) are counterparts ofsimilar rules for the �-calculus. (Struct Let Assoc) is a standard rule forlet familiar from the computational �-calculus (Moggi 1989). (Struct ResLet) and (Struct Fork Let) allow the term a in let x=a in b to interact withparallel processes.The following table de�nes the reduction relation a! b:Reduction(Red Select)d = [`i = ς(xi)bi i21::n] j 2 1::n(p 7! d) � p:`j ! (p 7! d) � bjffxj  pgg(Red Update)d = [`i = ς(xi)bi i21::n] j 2 1::n d0 = [`j = ς(x)b; `i = ς(xi)bi i2(1::n)�fjg](p 7! d) � (p:`j ( ς(x)b)! (p 7! d0) � p(Red Clone)d = [`i = ς(xi)bi i21::n] q =2 fn(d)(p 7! d) � clone(p)! (p 7! d) � (�q)(q 7! d � q) (Red Let Result)let x=p in b! bffx pgg(Red Res)a! a0(�p)a! (�p)a0 (Red Par 1)a! a0a � b! a0 � b (Red Par 2)b! b0a � b! a � b08



(Red Let) a! a0let x=a in b! let x=a0 in b (Red Struct)a � a0 a0 ! b0 b0 � ba! bRules (Red Select), (Red Update), (Red Clone), and (Red Let Result)correspond to the basic computation steps of the impς-calculus. (Red Res),(Red Par 1), (Red Par 2), and (Red Let) are congruence rules. (Red Struct) isa standard rule allowing a term to be re-arranged up to structural congruenceduring reduction.2.4 Examples of Concurrent ObjectsWe illustrate the operational semantics of concς via examples drawn fromencodings of the impς-calculus and the call-by-value �-calculus.2.4.1 Imperative objectsWe may embed all the expressions of the impς-calculus in concς via thefollowing abbreviations. We show in Section 4.3 that the reductions of anyterm of impς embedded in concς are deterministic.The impς-calculusd (as a term) �= (�p)(p 7! d � p) for p =2 fn(d)a:` �= let x=a in x:` for a not a resulta:`( ς(x)b �= let y=a in y:`( ς(x)b for a not a result and y =2 fv(b)clone(a) �= let x=a in clone(x) for a not a resultHere is an example, from Abadi and Cardelli's book, of a computationinvolving method update and method select:[` = ς(x)x:`( ς(y)x]:`= let z=[` = ς(x)x:`( ς(y)x] in z:`= let z=(�p)(p 7! [` = ς(x)x:`( ς(y)x] � p) in z:`� (�p)(p 7! [` = ς(x)x:`( ς(y)x] � let z=p in z:`)! (�p)(p 7! [` = ς(x)x:`( ς(y)x] � p:`)! (�p)(p 7! [` = ς(x)x:`( ς(y)x] � p:`( ς(y)p)! (�p)(p 7! [` = ς(y)p] � p)9



Here is an example that illustrates the interaction between let and com-position:p 7! [` = ς(x)b] � let x=p:` in c � let x=(p 7! [` = ς(x)b] � p:`) in c! let x=(p 7! [` = ς(x)b] � bffx pgg) in c� p 7! [` = ς(x)b] � let x=bffx pgg in cWe may generate a cyclic dependency between denominations:let x1=[` = ς(y1)y1] in let x2=[` = ς(y2)x1] in x1:`( ς(y1)x2!� (�p1)(�p2)(p1 7! [` = ς(y1)p2] � p2 7! [` = ς(y2)p1] � p1)2.4.2 Concurrent procedure callsWe encode �-abstraction and application as in Gordon, Hankin, and Lassen(1997):The call-by-value �-calculus�(x)b �= [arg = ς(s)s:arg ; val = ς(s)let x=s:arg in b] for s =2 fv(b)b(a) �= (b:arg ( ς(x)a):valTo illustrate the action of procedure calls, let factp be an object repre-senting some procedure, for example, factorial.factp �= [arg = ς(x)p; val = ς(s)let y=s:arg in bodyfyg]We assume for the purpose of this example some implementation of numeralsas objects. We write the number n for the name of an object representing n.The following illustrates a procedure call:let f=fact0 in f(10)= let f=(�p)(p 7! fact0 � p) in f(10)� (�p)(p 7! fact0 � let f=p in f(10))! (�p)(p 7! fact0 � p(10))= (�p)(p 7! fact0 � (p:arg ( ς(x)10):val)! (�p)(p 7! fact10 � p:val)!2 (�p)(p 7! fact10 � bodyff10gg)� (�p)(p 7! fact10) � bodyff10ggA �rst try at writing two concurrent procedure calls is:let f=fact0 in (f(10) � f(20))10



Since there is no synchronisation between the applications f(10) andf(20), one may interfere with the other. To avoid this, we use clone:let f=fact0 in (clone(f)(10) � clone(f)(20))The code above returns the result of clone(f)(20) but discards the resultof clone(f)(10). The following example shows how a let may be used toprocess the results from both the calls.let f=fact0 in((let x1=clone(f)(10) in Q1) � (let x2=clone(f)(20) in Q2))Although the result of Q1 will ultimately be discarded, Q1 may still in-uence the result of the whole computation by communicating with Q2, forexample.3 SynchronisationDi�erent object-oriented languages use a variety of techniques to synchroniseconcurrent processes. We need some way to model process synchronisationwithin our calculus.One approach would be to encode synchronisation in terms of critical sec-tions. The mutual exclusion problem is the problem of enforcing mutuallyexclusive access to a critical section in the presence of several concurrent pro-cesses. Starting with Dijkstra (1965), many algorithms have been proposedto solve this problem in terms of primitives for atomic reads and writes ona shared memory. Since we can encode these primitives within the concς-calculus, we can also encode any of the solutions to the mutual exclusionproblem. Therefore, we could use critical sections to encode higher levelsynchronisation mechanisms like object locking or communication channelswithin the concς-calculus.We prefer not to use such an encoding for two reasons. First, the encodingis anachronistic since mutual exclusion is normally solved using hardwareprimitives (such as inhibition of interrupts) rather than reads and writes to ashared memory. Second, the encoding would lead to complicated calculationsabout the reduction behaviour of higher-level synchronisation mechanisms.Instead, we prefer to encode synchronisation mechanisms in a calculusconcςm obtained by extending the concς-calculus with mutexes (binarysemaphores). Unlike shared variable mutual exclusion algorithms, mutexesare commonly used in the runtime systems of object-oriented languages andhave simple reduction rules. We have de�ned a compositional translation of11



concςm into concς using a two process mutual exclusion algorithm (Lam-port 1985) to guarantee exclusive access to the objects representing mutexes.We conjecture that this translation is sound with respect to a suitable notionof observational equivalence, but not fully abstract.A third approach would be to add synchronisation mechanisms to theprimitive operations on objects, as in the calculus of Di Blasio and Fisher(1996). To keep the primitives of our calculus simple, we prefer not to inte-grate a speci�c synchronisation construct into the semantics of method selectand method update.3.1 Primitives for SynchronisationWe extend the concς-calculus with mutexes as follows:Syntax of the concςm-calculusd ::= denotation: : : as in Section 2.1locked locked mutexunlocked unlocked mutexa; b; c ::= term: : : as in Section 2.1acquire(u) mutex acquisitionrelease(u) mutex releaseAs in Section 2.4.1, we adopt a convention allowing denotations to be usedas terms. As a term, let locked be short for (�p)(p 7! locked � p). Similarly,let unlocked be short for (�p)(p 7! unlocked � p). Moreover, if a is not aresult, let acquire(a) and release(a) be short for let x=a in acquire(x) andlet x=a in release(x), respectively.3.2 Informal SemanticsWe may explain the semantics of mutexes as follows:� A denomination p 7! locked or p 7! unlocked represents a mutex, de-noted by p, whose state is locked or unlocked, respectively. Intuitively,the mutex is a bit stored at memory location p.� A mutex acquisition acquire(p) attempts to lock the mutex denoted byp. If a denomination p 7! unlocked is present, the acquisition acquire(p)changes its state to p 7! locked , and returns p as its result. Otherwisethe acquisition blocks. 12



� A mutex release release(p) unconditionally unlocks the mutex denotedby p. If a denomination p 7! d is present, for d 2 flocked ; unlockedg,the release release(p) sets its state to p 7! unlocked , and returns p asits result.3.3 Formal SemanticsWe de�ne the structural congruence relation � by exactly the same rules asin Section 2.3. The reduction relation! is de�ned by the rules in Section 2.3together with two new rules for mutex acquisition and release:Reduction(p 7! unlocked) � acquire(p)! (p 7! locked) � p (Red Acquire)(p 7! d) � release(p)! (p 7! unlocked) � pfor d 2 flocked ; unlockedg (Red Release)
3.4 Examples of Synchronisation3.4.1 Mutual exclusionWe may protect access to shared state with a mutex to prevent interferencebetween concurrent threads. The operation lock u in a blocks until it canacquire the mutex u, runs a, then releases u.a; b �= let x=a in block u in a �= acquire(u); let y=a in (release(u); y)In Section 2.4.2 we used cloning to prevent interference between two con-current calls to a shared procedure. We may protect access to the sharedprocedure with a mutex as follows:let x=unlocked in let f=fact0 in (lock x in f(10)) � (lock x in f(20))With this idiom for calling a shared procedure the calls f(10) and f(20)are serialised; the �rst to run must terminate before the second may run.Hence this idiom allows for less concurrency than the one in Section 2.4.2using clone. Serialisation is necessary if the shared procedure accesses somepersistent state. 13



3.4.2 Asynchronous channelsConsider an asynchronous communications channel as in Pict (Pierce andTurner 1997) or Concurrent Haskell (Peyton Jones, Gordon, and Finne 1996).Such a channel is an object named by p, that either contains a result or isempty, and has two methods read and write. If the object p is empty, theoperation p:write(v) updates p so that it contains v, while the operationp:read blocks. If the object p contains the result v, the operation p:readreturns v and updates p so that it is empty, while the operation p:write(u)blocks. We code this behaviour as follows, where nil is a name used toinitialise the channel. (Di Blasio and Fisher (1996) implement a similarabstraction in their calculus of concurrent objects.)Asynchronous channelschana urd uwr v �=[reader = urd ;writer = uwr ; val = v;read = ς(s)acquire(s:reader); let x=s:val in (release(s:writer) � x);write = ς(s)�(x)(acquire(s:writer); s:val ( ς(s)x; release(s:reader)) � x)]newChana �=let reader=locked in let writer=unlocked inchana reader writer nilThis code maintains the invariant that at any time at most one of thelocks reader and writer is unlocked. If reader is unlocked, the result in valis the contents of the channel. If writer is unlocked, the channel is empty.The body of the write method is a �-abstraction. Each call to this methodallocates a fresh object that represents the �-abstraction. Therefore concur-rent calls to write do not interfere with each other.We make the following de�nitions to represent states of a channel:p 7! channela drd dwr v �= (�qrd )(�qwr )(qrd 7! drd � qwr 7! dwr �p 7! chana qrd qwr v)p 7! empty u �= p 7! channela locked unlocked up 7! full u �= p 7! channela unlocked locked uWe can show that our implementation has the following properties:newChana !� (�p)(p 7! empty nil � p)p 7! empty q � p:write(q0) !� p 7! full q0 � q0p 7! full q � p:read !� p 7! empty q � q14



Given asynchronous channels, we can encode the asynchronous �-calculus:Encoding the asynchronous �-calculus[[x]] �= x[[xy]] �= x:write(y)[[x(y):P ]] �= let y=x:read in [[P ]][[!x(y):P ]] �= [rep = ς(s)let y=x:read in ([[P ]] � s:rep)]:repfor s =2 fx; yg [ fv(P )[[P j Q]] �= [[P ]] � [[Q]][[(new x)P ]] �= let x=newChana in [[P ]]We conjecture that this translation is sound with respect to a suitablenotion of observational equivalence. This particular translation is not fullyabstract, since the encoding of channels allows an observer to discover thelast message sent on a channel.3.4.3 Synchronous channelsThe implementation of channels in the previous section is asynchronous inthe sense that a writer p:write(v) returns as soon as it has deposited v inthe channel p, and does not wait until a reader p:read has obtained v. Inthe following code, a reader p:read signals to a writer p:write(v) that it hasobtained v by releasing the lock p:ack . To prevent races between multiplewriters, we serialise calls to the p:write method using a lock p:writeLock .Synchronous channelschans uch uack uwr v �=[ch = uch ; ack = uack ;writeLock = uwr ;read = ς(s)let x=s:ch:read in (release(s:ack) � x)write = ς(s)�(x)lock s:writeLock in (s:ch:write(x); acquire(s:ack); x)]newChans �=let ch=newChana in let ack=locked in let lock=unlocked inchans ch ack lock nilGiven synchronous channels, we can encode the choice-free synchronous�-calculus by revising and extending the previous translation:15



Encoding the choice-free synchronous �-calculus[[xy:P ]] �= x:write(y); [[P ]][[(new x)P ]] �= let x=newChans in [[P ]]We leave an encoding of guarded choice as future work.3.4.4 Fork and joinA common pattern of concurrency is to fork o� a thread to compute a re-sult, and later to await this result using a join operation. We may easilycode these operations in terms of mutexes, but there is a particularly simpleimplementation using asynchronous channels:fork b �= let ch=newChana in (let x=b in ch:write(x) � ch)join u �= u:readTo illustrate fork and join, suppose we have some binary operation u� von results. We can extend this to an operation a� b on arbitrary terms thatevaluates a and b in parallel:a� b �= let th=fork b in let x=a in let y=join th in x� y4 A Structural Characterisation of ReductionThe purpose of this section is to characterise our reduction semantics in termsof a more conventional structural operational semantics. This is desirablefor two reasons. First, it increases our con�dence in the correctness of oursemantics. Second, it provides a convenient way to enumerate all possiblereductions of a term.Section 4.1 describes the well-formed terms of concςm using a rudimen-tary type system that distinguishes expressions (terms expected to return aresult) from processes. In Section 4.2, we demonstrate that on well-formedterms our reduction semantics coincides with a structural operational se-mantics de�ned using con�gurations. Finally, in Section 4.3, we identify asingle-threaded fragment of concς by omitting a single rule from the rudi-mentary type system. We show this fragment is deterministic and includesthe impς-calculus. 16



4.1 Well-formed TermsWe present a type system for well-formed terms that distinguishes expressionsfrom processes. In this type system, there are only two types Proc and Exp,representing processes and expressions, respectively. Since we may alwaysignore the result of an expression, any term of type Exp is also a term oftype Proc. The type system is very liberal and provides only two guaranteesabout well-formed terms. First, it guarantees that a proper process does notoccur in a context expecting an expression. Second, it guarantees that thetop-level denominations of free names in a term represent a partial functionfrom names to objects whose domain is preserved by computation steps.Later, in Section 5, we study a stronger type system that prevents \messagenot understood" errors.The top-level denominations in a term play the role of locations in a store.It is convenient to de�ne the domain of a term a, dom(a), to be the set offree names named by top-level denominations in a:Domain of a termdom(p 7! d) �= fpgdom(let x=a in b) �= dom(a)dom(a � b) �= dom(a) [ dom(b)dom((�p)a) �= dom(a)� fpgdom(a) �= ? for any other kind of aLet T stand for either Proc or Exp. The well-formed terms are given bythe judgment a : T de�ned in the following table. We say that term a is aprocess if and only if a : Proc. Similarly, we say that a term a is an expressionif and only if a : Exp.Well-formed terms(Well Result)u : Exp (Well Object)bi : Exp dom(bi) = ? 8i 2 1::np 7! [`i = ς(xi)bi i21::n] : Proc (Well Mutex)d 2 flocked ; unlockedgp 7!d : Proc(Well Select)u:` : Exp (Well Update)b : Exp dom(b) = ?u:`( ς(x)b : Exp (Well Clone)clone(u) : Exp (Well Acquire)acquire(u) : Exp(Well Release)release(u) : Exp (Well Let)a : Exp b : Exp dom(b) = ?let x=a in b : Exp (Well Res)a : T p 2 dom(a)(�p)a : T17



(Well Par)a : Proc b : T dom(a) \ dom(b) = ?a � b : T (Well Concur)a : Expa : ProcResults, method selects and updates, clones, mutex acquisitions and re-leases, and lets are all expected to return a result, so the rules (Well Result),(Well Select), (Well Update), (Well Clone), (Well Acquire), (Well Release),and (Well Let) assign them all the type Exp. The rules (Well Object) and(Well Mutex) assign the type Proc to denominations, since they do not re-turn results. The conditions on method bodies in the rules (Well Object)and (Well Update) guarantee that method selects yield expressions, and thatmethod selects do not a�ect the domain of the term. In (Well Let), the con-dition dom(b) = ? guarantees that if b ever runs it will not alter the domainof the term.The rule (Well Res) allows a restriction (�p)a to be of either type, de-pending on the type of its body a. The condition p 2 dom(a) guarantees thatany selects, updates or clones of p within a cannot block because no objectis named by p. In other words, if we think of the name p as a pointer, and adenomination p 7!d as the memory location to which p points, the conditionp 2 dom(a) guarantees that no occurrence of p within a is a dangling pointer.The rule (Well Par) allows a composition a � b to be of either type,depending on the type of the term b. The condition dom(a) \ dom(b) = ?prevents there being a denomination of the same name in both a and b.Finally, the rule (Well Concur) allows an expression to be treated as a process.For example, we may derive (�p)(p 7! d � p:`) : Exp where d = [` =
ς(x)x:`]. By (Well Select), x:` : Exp. By (Well Object), this implies p 7! d :Proc. By (Well Select), p:` : Exp. By (Well Par), the latter two judgmentsimply (p 7! d � p:`) : Exp. By (Well Res), this implies (�p)(p 7! d � p:`) : Exp.Terms that are not well-formed include p 7! d1 � p 7! d2, let x=p 7! d in b,(�p)p, and p 7! [` = ς(x)q 7! d]. None of these receives a type.Structural congruence and reduction respect typing:Proposition 1(1) If a : T and a � b then b : T and dom(a) = dom(b).(2) If a : T and a! b then b : T and dom(a) = dom(b).4.2 A Structural Operational SemanticsA conventional technique for describing the semantics of concurrent lan-guages with state relies on a syntactic category of con�gurations, which con-18



sist of a store paired with a set of runnable threads. To mimic this technique,we identify sets of terms that represent threads, stores, and con�gurations.We begin with a grammar for threads, terms representing a single ow ofcontrol:Threadse ::= elementary threadsu resultu:` method selectu:`( ς(x)b method updateclone(u) cloningacquire(u) mutex acquisitionrelease(u) mutex releaset ::= e j let x=t in b threadsTo de�ne con�gurations, let � range over a sequence of denominationspi 7! di i21::n, which we call a store, and let � range over a sequence of threads,t1; : : : ; tn. Then let a con�guration, (�~q)hpi 7! di i21::m k t1; : : : ; tni, be anabbreviation for the term (�~q)(p1 7! d1 � � � � � pm 7! dm � t1 � � � � � tn). Thisnotation is well de�ned only if m + n > 0. Intuitively, a con�guration isa term consisting of a possibly multi-threaded computation a1 � � � � � aninteracting with a store p1 7! d1 � � � � � pm 7! dm, with the names ~q hiddenfrom its environment.We may transform any term into a con�guration as follows:Normalising terms to con�gurationsN (e) �= h? k eiN (p 7!d) �= hp 7! d k ?iN (let x=a in b) �= h� k �; let x=t in biwhere N (a) = (�~p)h� k �; ti and f~pg \ fn(b) = ?N ((�p)a) �= (�p)N (a)N (a � b) �= (�~p)(�~q)h�; �0 k �; �0iwhere N (a) = (�~p)h�; �i, N (b) = (�~q)h�0; �0i, andf~pg \ (fn(�0) [ fn(�0)) = f~qg \ (fn(�) [ fn(�)) = ?We can show by induction on the derivation of a : T , that a : T impliesthat N (a) is well de�ned and in particular that T = Exp implies that N (a)takes the form (�~p)h� k �; ti.The two interesting cases of the de�nition are for lets and parallel com-positions. When computing N (let x=a in b), we normalise a and b and pull19



the restrictions, store and extra threads from a outside the let. It is in thiscase that we need let x=a in b to be well-formed; if so, we have a : Exp,which implies that there is at least one thread in N (a). When computingN (a � b), we normalise a and b and concatenate the stores from N (a) andN (b) to produce the new store, and concatenate the thread lists to form thenew thread list. We pull the restrictions from N (a) and N (b) to the outside;the conditions on the restricted names ensure there are no name clashes inthe combined store.We can show that there is a con�guration structurally congruent to everyexpression, and normalisation is the identity function on con�gurations:Lemma 2 If a : Exp then N (a) � a.Lemma 3 N ((�~p)h� k �i) = (�~p)h� k �i.Having mimicked con�gurations within our syntax of terms, we may de-�ne a fairly conventional structural operational semantics, a SOS�! b, as follows:Structural operational semantics(SOS Select) (where f~pg \ fn(�; �1; �2) = ?)� = �1; p 7! [`i = ς(xi)bi i21::n]; �2 j 2 1::n N (bjffxj  pgg) = (�~p)h�0 k �0ih� k �1; p:`j; �2i SOS�! (�~p)h�; �0 k �1; �0; �2i(SOS Update)d = [`i = ς(xi)bi i21::n] d0 = [`j = ς(x)b; `i = ς(xi)bi i2(1::n)�fjg]h�1; p 7!d; �2 k �1; p:`j ( ς(x)b; �2i SOS�! h�1; p 7!d0; �2 k �1; p; �2i(SOS Clone) (where q =2 fn(�; �1; �2))d = [`i = ς(xi)bi i21::n] � = �1; p 7!d; �2h� k �1; clone(p); �2i SOS�! (�q)h�; q 7! d k �1; q; �2i(SOS Acquire)h�1; p 7!unlocked ; �2 k �1; acquire(p); �2i SOS�! h�1; p 7! locked ; �2 k �1; p; �2i(SOS Release) d 2 flocked ; unlockedgh�1; p 7!d; �2 k �1; release(p); �2i SOS�! h�1; p 7! unlocked ; �2 k �1; p; �2i(SOS Let Result) (where f~pg \ fn(�; �1; �2) = ?)N (bffx pgg) = (�~p)h�0 k �0ih� k �1; let x=p in b; �2i SOS�! (�~p)h�; �0 k �1; �0; �2i20



(SOS Let) (where f~pg \ fn(�1; b; �2) = ?)h� k ti SOS�! (�~p)h�0 k �0; t0ih� k �1; let x=t in b; �2i SOS�! (�~p)h�0 k �1; �0; let x=t0 in b; �2i(SOS Res)a SOS�! (�~p)(� k �)(�p)a SOS�! (�p)(�~p)(� k �) (SOS Norm)N (a) SOS�! (�~p)h� k �ia SOS�! (�~p)h� k �iThere are many examples of semantics of this kind in the literature, suchas the semantics by Di Blasio and Fisher (1996) for their calculus of con-current objects. We may show for any derivation of a SOS�! b that b is acon�guration; moreover, a is also a con�guration, unless the last rule in thederivation is (SOS Norm). The purpose of (SOS Norm) is to allow reductionof arbitrary terms. The other rules correspond to the reduction rules forthreads in Section 2.3 and Section 3.3, except that rules (SOS Select) and(SOS Let Result) use the normalisation function so that their outcome is acon�guration.Our main theorem about the structural operational semantics is that itcoincides with the reduction semantics up to structural congruence. We writea SOS�!� b to mean there is c such that a SOS�! c and c � b.Theorem 1 For all a; b : Exp, a! b if and only a SOS�!� b.This is instructive for two reasons. First, the theorem legitimates ourchemical-style reduction relation by demonstrating its correspondence, mod-ulo structural congruence, to a rather more conventional semantics. Second,the theorem suggests a procedure for discovering all possible reductions ofan expression: normalise the expression, then see what SOS�! reductions arederivable. It is not obvious how to use the! relation directly to discover allpossible reductions of an expression, since they are de�ned up to structuralcongruence.Theorem 1 fails to hold for processes that are not expressions. Considerthe process p:` � p 7! [` = ς(s)s]. This term has type Proc but not Exp. Ithas no reductions, because composition is not commutative. On the otherhand, it is normalised to a con�guration hp 7! [` = ς(s)s] k p:`i and we havehp 7! [` = ς(s)s] k p:`i SOS�! hp 7! [` = ς(s)s] k pi.The di�culty here is that the reduction relation a! b does not representall of the behaviour of processes that are running as subterms to the left of acomposition, where composition is commutative. To remedy this situation,21



we de�ne versions of structural congruence and reduction specialised to pro-cesses situated to the left of a composition. Let a Proc� b if and only if thereis p =2 fn(a) [ fn(b) such that a � p � b � p. Roughly, Proc� is the same as�, except that composition is commutative at the top level. Let a Proc! b ifand only if a Proc� a0, a0 ! b0, and b0 Proc� b. (An alternative de�nition is tospecify these relations by a set of inference rules, simultaneously with thede�nitions of a � b and a ! b.) We can show that a � b Proc� b � a and thatp:` � p 7! [` = ς(s)s] Proc! p � p 7! [` = ς(s)s]. Moreover, we have:Proposition 4 For all a; b : Proc, a Proc! b if and only if a SOS�!Proc� b.4.3 A Single-Threaded FragmentIn this section, we adapt the type system from Section 4.1 to identity adeterministic single-threaded fragment of concς, and show that it includesAbadi and Cardelli's impς-calculus.It is only the rule (Well Concur) from the type system in Section 4.1 thatallows for multi-threaded computations. To see this, let the single-threadedtype system for concς be the judgment a :1 T de�ned by the typing rulesfrom Section 4.1, omitting (Well Concur), (Well Mutex), (Well Acquire),and (Well Release). We can show for every thread t that t :1 T implies thatT = Exp. Therefore a binary composition of threads t1 � t2 cannot be typedin this system, since the rule (Well Par) requires t1 :1 Proc.The single-threaded type system enjoys the following properties:Lemma 5(1) If a :1 T and a � b then b :1 T .(2) If a :1 T and a! b then b :1 T .(3) For all a; b :1 Exp, a! b if and only a SOS�!� b.(4) If a :1 Proc then N (a) takes the form (�~p)h� k ?i.(5) If a :1 Exp then N (a) takes the form (�~p)h� k ti.Using the lemma, we obtain that unlike the full calculus, the fragmentspeci�ed by the single-threaded type system is deterministic:Theorem 2 Suppose a :1 Exp. If a! a0 and a! a00 then a0 � a00.22



Recall that any term of the imperative object calculus impς may beexpressed within concς using the abbreviations stated in Section 2.4.1.Proposition 6 If a represents a term of impς, we can derive a :1 Exp.All this establishes that we can embed impς within a deterministic frag-ment of concς closed under reduction.5 A First-Order Type SystemWe turn in this section to demonstrating that the typing rules for Abadiand Cardelli's type system Ob1<: simply and smoothly extend to typing ourconcurrent object calculus.5.1 TypingThe types of our type system consist of the �rst-order object types of Abadiand Cardelli's Ob1<: together with types for mutexes, processes, and expres-sions:Types and environmentsA;B ::= [`i : Ai i21::n] j Mutex j Proc j Exp typesE ::= ?; v1 : A1; : : : ; vn : An environmentsAs in the rudimentary type system, Exp is the type of expressions, termsexpected to return results, and Proc is the type of processes, terms thatmay not be expected to return results. As in Ob1<:, [`i : Ai i21::n] is thetype of objects with methods `1, . . . , `n returning results of types A1, . . . ,An, respectively; we identify object types up reordering of their components.Finally, Mutex is the type of mutexes.System Ob1<: is based on four judgments, which we de�ne inductivelyby the rules in the following table.JudgmentsE ` � E is a well-formed environmentE ` A given E, type A is well-formedE ` A<:B given E, A is a subtype of BE ` a : A given E, term a has type A23



Typing rules(Env ?)? ` � (Env u)E ` A u =2 dom(E)E; u : A ` � (Type Object) (`i distinct)E ` � E ` Bi<:Exp 8i 2 1::nE ` [`i : Bi i21::n](Type Mutex)E ` �E ` Mutex (Type Proc)E ` �E ` Proc (Type Exp)E ` �E ` Exp(Sub Re)E ` AE ` A<:A (Sub Trans)E ` A<:B E ` B<:CE ` A<:C(Sub Object) (`i distinct)E ` � E ` Bi<:Exp 8i 2 1::n +mE ` [`i : Bi i21::n+m]<:[`i : Bi i21::n] (Sub Exp)E ` A A 6= ProcE ` A<:Exp(Sub Proc)E ` �E ` Exp<:Proc (Val Subsumption)E ` a : A E ` A<:BE ` a : B (Val u)E; u : A;E 0 ` �E; u : A;E 0 ` u : A(Val Object) (where A = [`i : Bi i21::n])E = E1; p : A;E2 E; xi : A ` bi : Bi dom(bi) = ? 8i 2 1::nE ` p 7! [`i = ς(xi)bi i21::n] : Proc(Val Mutex)E ` p : Mutex d 2 flocked ; unlockedgE ` p 7! d : Proc (Val Select)E ` u : [`i : Bi i21::n] j 2 1::nE ` u:`j : Bj(Val Update) (where A = [`i : Bi i21::n])E ` u : A j 2 1::n E; x : A ` b : Bj dom(b) = ?E ` u:`j ( ς(x)b : A(Val Clone)E ` u : [`i : Bi i21::n]E ` clone(u) : [`i : Bi i21::n](Val Acquire)E ` u : MutexE ` acquire(u) : Mutex (Val Release)E ` u : MutexE ` release(u) : Mutex24



(Val Let)E ` a : A E; x : A ` b : B dom(b) = ? E ` A<:Exp E ` B<:ExpE ` let x=a in b : B(Val Par) (where dom(a) \ dom(b) = ?)E ` a : Proc E ` b : BE ` a � b : B (Val Res)E; p : A ` a : B p 2 dom(a)E ` (�p)a : BThis type system combines Abadi and Cardelli's Ob1<: and the rudimen-tary type system from Section 4.1. The rules for well-formed environmentsare standard. (Type Object) is the only noteworthy rule for deriving well-formed types. It insists that the type of every method is a subtype of Exp;this corresponds to the restriction in (Well Object) that methods be of typeExp. There are two non-standard subtyping rules: (Sub Exp) ensures thatobject types and the type Mutex are subtypes of Exp, and (Sub Proc) en-sures that every type is a subtype of Proc. The rules for typing terms area straightforward combination of the rules of Ob1<: and the rules from Sec-tion 4.1.This type system re�nes the rudimentary type system of Section 4.1 inthe following sense:Lemma 7 If E ` a : A and E ` A<:T then a : T .Our typing rules respect structural congruence and reduction:Theorem 3(1) If E ` a : A and a � b then E ` b : A.(2) If E ` a : A and a! b then E ` b : A.To prove such a subject reduction theorem for typed forms of impς, Abadiand Cardelli need to introduce the standard auxiliary notion of store typing.Since the terms of our calculus include both sequential threads and stores,we have no need to separate the notion of store typing from the notion of atypable term. The outcome is a crisper statement of subject reduction thanfor the imperative form of Ob1<: in Abadi and Cardelli's book.5.2 Examples of Typing and SubtypingLet A ! B be short for [arg : A; val : B], as usual in object calculi. If wemake the de�nitions,ChansA �= [reader : Mutex ;writer : Mutex ;val : A; read : A;write : A! A]25



ChanaA �= [ch : Chans; ack : Mutex ;writeLock : Mutex ;val : A; read : A;write : A! A]we may derive: ?; nil : A ` newChans : ChansA?; nil : A ` newChana : ChanaAThese typings expose more of the internal state of channels than is desir-able. Let lA be the type [read : A;write : A! A]. Since both ChansA<:lAand ChansA<:lA, we may use subsumption to derive:?; nil : A ` newChans : lA?; nil : A ` newChana : lATo further re�ne usage of these channel types we de�ne a type of write-only channels, "A = [write : A ! A], and a type of read-only channels,#A = [read : A], as in the work of Pierce and Sangiorgi (1996). The inclusionslA<:"A and lA<:#A are part of the de�nition of Pierce and Sangiorgi'ssystem but are derivable in ours.6 ConclusionsWe described a concurrent extension of Abadi and Cardelli's imperative ob-ject calculus, impς. The syntax of our calculus is essentially that of impς to-gether with parallel composition and restriction from the �-calculus, and newprimitives for synchronisation via mutexes. This syntax is extremely expres-sive; in a precise sense it uni�es notions of expression, process, store, thread,and con�guration. We presented a novel reduction semantics for concurrentexpressions, without any need for evaluation contexts, and proved that itcorresponds to a more conventional structural operational semantics de�nedin terms of con�gurations. We exhibited translations of the asynchronous�-calculus and the impς-calculus into our calculus.One of Abadi and Cardelli's notable achievements in their theory of ob-jects is a range of type systems that allow type-checking of various styles ofobject-oriented programming. By studying one of their standard type sys-tems we demonstrated that our semantic techniques allow their type systemsto be smoothly extended to encompass concurrency.An important avenue for future work is the study of observational equiv-alence for our calculus. Another avenue to investigate is the encoding ofother concurrency primitives, like monitors, condition variables, and namedthreads. Finally, it would be valuable to extend our semantics of expression-based concurrency to handle the mobile processes found in object-orientedlanguages like Telescript or Obliq. 26
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A ProofsIn this appendix we prove all the results stated in the body of the paper.We de�ned the structural congruence relation a � b and the reductionrelation a ! b by rules in Sections 2.3 and 3.3. In Section 4.2 we de�nedProc-indexed relations a Proc� b and a Proc! b. For stating some results in thisappendix, it is convenient to introduce the notations a Exp� b and a Exp! b asshorthands for a � b and a! b respectively. The following table summarisesthese T -indexed notations for structural congruence and reduction:Relations T� and T! where T ::= Exp j Proca Exp� b �= a � ba Proc� b �= 9p =2 fn(a) [ fn(b)(a � p � b � p)a Exp! b �= a! ba Proc! b �= 9a0; b0(a Proc� a0; a0 ! b0; b0 Proc� b)A.1 Facts about Structural CongruenceThe main body of the paper relies on an operation, bffy  vgg, which denotesthe outcome of substituting the result v for each free occurrence of the vari-able y in the term b. To state the following lemma we extend this operationto allow the substitution of a term for a result (either a name or a variable).Substitution of a term for a result: bffv  cgguffv  cgg �= c if u = v or u if u 6= v(p 7! [`i = ς(xi)bi i21::n])ffv  cgg �= p 7! [`i = ς(xi)(biffv  cgg) i21::n]for xi =2 fvg [ fv(c)(p 7! locked)ffv  cgg �= p 7! locked(p 7! unlocked)ffv  cgg �= p 7! unlocked(u:`)ffv cgg �= (uffv  cgg):`(u:`( ς(x)b)ffv  cgg �= (uffv  cgg):`( ς(x)(bffv  cgg)for x =2 fvg [ fv(c)(clone(u))ffv cgg �= clone(uffv  cgg)(let x=a in b)ffv  cgg �= let x=affv  cgg in (bffv  cgg)for x =2 fvg [ fv(c)(a � b)ffv  cgg �= (affv  cgg) � (bffv  cgg)((�p)a)ffv  cgg �= (�p)(affv  cgg) for p =2 fvg [ fn(c)30



This de�nition depends on the shorthands a:`, a:` ( ς(x)b, clone(a),acquire(a) and release(a) for an arbitrary term a, de�ned in Sections 2.4.1and 3.1. For example, clone(x)ffx  p: g̀g is de�ned to be clone(p:`), whichis a shorthand for let y=p:` in clone(y).Lemma 8(1) If a T� b then affu vgg T� bffu vgg.(2) The relation Proc� is reexive, symmetric, and transitive.(3) If a Proc� b then (�p)a Proc� (�p)b.(4) If a � b then affv  cgg � bffv  cgg.(5) If a Proc� a0 and b T� b0 then a � b T� a0 � b0.(6) a Proc� b if and only if, for all p =2 fn(a) [ fn(b), a � p � b � p.Proof(1) In the case T = Exp, we may prove the lemma by an easy inductionon the derivation of a � b.In the case T = Proc, we have a � p � b � p for some p =2 fn(a; b). Pickq =2 fn(a; b) [ fu; vg. Then by the Exp case we have (a � p)ffp qgg �(b � p)ffp  qgg, that is, a � q � b � q. Using the Exp case again, weget (a � q)ffu vgg � (b � q)ffu vgg, that is, affu vgg � q � bffu vgg � q. Since q =2 fn(affu vgg; bffu vgg) we have a Proc� b as required.(2) Reexivity and symmetry are clear. For transitivity, suppose a Proc� band b Proc� c. This means a � p � b � p and b � q � c � q for some namesp and q where p =2 fn(a; b) and q =2 fn(b; c). Pick r =2 fn(a; b; c). Thenby part (1), (a � p)ffp  rgg � (b � p)ffp  rgg, that is, a � r � b � r.We may similarly infer that b � r � c � r. By (Struct Trans) we deducea � r � c � r, so a Proc� c.(3) If a Proc� b then a � q � b � q for some q =2 fn(a; b). Pick r such thatr =2 fn(a; b) [ fpg. Then (a � q)ffq  rgg � (b � q)ffq  rgg by part (1).This means a � r � b � r. Then by (Struct Res), (�p)(a � r) � (�p)(b �r). Since r 6= p we have by (Struct Par 1), (�p)(a � r) � (�p)a � rand (�p)(b � r) � (�p)b � r. By (Struct Trans), (�p)a � r � (�p)b � r.Since r =2 fn((�p)a) [ fn((�p)b), we have (�p)a Proc� (�p)b.31



(4) An easy induction on the derivation of a � b.(5) If T = Exp, we have a � p � a0 � p for some p =2 fn(a; a0), and b � b0.By (4), a � b � a0 � b. By (Struct Par), a0 � b � a0 � b0. Henceby (Struct Trans), a � b � a0 � b0. Otherwise, if T = Proc, we geta � p � a0 � p and b � p � b0 � p for some p such that p =2 fn(a; a0; b; b0).Then we compute:a � b � p � a � b0 � p by (Struct Par)� b0 � a � p by (Struct Par Comm)� b0 � a0 � p by (Struct Par)� a0 � b0 � p by (Struct Par Comm)Hence by (Struct Trans), a � b � p � a0 � b0 � p and hence a � b Proc�a0 � b0.(6) If a Proc� b then there is q =2 fn(a; b) such that a � q � b � q. Nowsuppose p =2 fn(a; b). By (4) we have (a � q)ffq  pgg � (b � q)ffq  pggand hence a � p � b � p. The converse, namely that a � p � b � p forall p =2 fn(a; b) implies a � p � b � p for some p =2 fn(a; b) is clear. 2The last part of the lemma allows us to derive a � p � b � p for anyfresh p when we know a Proc� b. We will use this implicitly in proofs withoutreferencing the lemma.A.2 Proof of Proposition 1Our aim in this section is to prove Proposition 1, subject reduction for therudimentary type system. We begin with two preliminary lemmas.Lemma 9(1) For all terms a, dom(a) � fn(a).(2) If a � b then a Proc� b.(3) If a! b then a Proc! b.(4) If a � b then dom(a) = dom(b).(5) If a! b then dom(a) = dom(b).(6) If a : T then affx ugg : T . 32



Proof(1) By induction on the structure of a.(2) The relation Proc� is de�ned by a Proc� b if and only if a � p � b � p forsome p =2 fn(a). Now, if a � b then a � p � b � p by (Struct Par) sincep � p by (Struct Re).(3) The relation Proc! is de�ned by a Proc! b if and only if a Proc� a0 ! b0 Proc� b.If a! b then by reexivity of Proc� , a Proc� a! b Proc� b, so a Proc! b.(4) By induction on the derivation of a � b.(5) By induction on the derivation of a! b.(6) By induction on the derivation of a : T . 2Lemma 10(1) If a � b : T then a : Proc, b : T and dom(a) \ dom(b) = ?.(2) If let x=a in b : T then a : Exp, b : Exp and dom(b) = ?.(3) If (�p)a : T then a : T and p 2 dom(a).(4) If p 7! [`i = ς(xi)bi i21::n] : T then T = Proc, bi : Exp and dom(bi) = ?for all i 2 1::n.(5) If u:`( ς(x)b : T then b : Exp and dom(b) = ?.Proof Each of these statements follows by an easy induction on the deriva-tion of the typing derivation. 2The next two lemmas furnish the two parts of Proposition 1.Lemma 11 If a : T and a � b then b : T .Proof We �rst symmetrise the lemma:(1) If a : T and a � b then b : T .(2) If b : T and a � b then a : T .We prove this by induction on the derivation of a � b. We consider each ofthe rules which may derive a � b in turn:33



(Struct Re) We have a � a, and the result is trivial.(Struct Symm) We have a � b obtained from b � a. Because of thesymmetrised form of the lemma, the result is trivial.(Struct Trans) We have a � c obtained from a � b and b � c. If a : T thenthe induction hypothesis applied to a � b gives b : T . The inductionhypothesis applied to b � c gives c : T . Conversely, if c : T then wededuce b : T from b � c. Similarly, we deduce a : T from a � b.(Struct Update) We have u:` ( ς(x)b � u:` ( ς(x)b0 obtained fromb � b0. For part (1), if u:` ( ς(x)b : T then by Lemma 10(5) we haveb : Exp and dom(b) = ?. The induction hypothesis applied to b � b0gives b0 : Exp and Lemma 9(4) gives dom(b0) = dom(b) = ?. Hence by(Well Update) and (Well Concur) we deduce u:`( ς(x)b0 : T for eitherT . Part (2) follows by symmetry.(Struct Let) We have let x=a in b � let x=a0 in b0 obtained from a � a0and b � b0. For part (1), if let x=a in b : T then by Lemma 10(2) weget a : Exp, b : Exp and dom(b) = ?. The induction hypothesis appliedto a � a0 gives a0 : Exp and Lemma 9(4) gives dom(a) = dom(a0). Theinduction hypothesis applied to b � b0 gives b0 : Exp and Lemma 9(4)gives dom(b0) = dom(b) = ?. Rules (Well Let) and (Well Concur) givelet x=a0 in b0 : T for either T . Part (2) follows by symmetry.(Struct Res) We have (�p)a � (�p)a0 obtained from a � a0. For part (1),if (�p)a : T then by Lemma 10(3), a : T and p 2 dom(a). The induc-tion hypothesis applied to a � a0 gives a0 : T and Lemma 9(4) givesdom(a0) = dom(a). Rule (Well Res) gives (�p)a0 : T since p 2 dom(a0).Part (2) follows by symmetry.(Struct Par) We have a � b � a0 � b0 obtained from a � a0 and b � b0.For part (1), if a � b : T then by Lemma 10 we have a : Proc, b :T and dom(a) \ dom(b) = ?. The induction hypothesis applied toa � a0 gives a0 : Proc and Lemma 9(4) gives dom(a0) = dom(a). Theinduction hypothesis applied to b � b0 gives b0 : T and Lemma 9(4) givesdom(b) = dom(b0). Now, dom(a0) \ dom(b0) = dom(a) \ dom(b) = ?.Hence by (Well Par), a0 � b0 : T . Part (2) follows by symmetry.(Struct Object) We have p 7! [`i = ς(xi)bi i21::n] � p 7! [`i = ς(xi)b0i i21::n]obtained from bi � b0i and dom(bi) = ? for all i 2 1::n. For part (1),if p 7! [`i = ς(xi)bi i21::n] : T then by Lemma 10(4) we have T = Proc,dom(bi) = ? and bi : Exp for each i 2 1::n. The induction hypothesis34



applied to bi � b0i gives b0i : Exp for each i 2 1::n, and Lemma 9(4) givesdom(bi) = ? for each i 2 1::n.By (Well Object), p 7! [`i = ς(xi)b0i i21::n] : Proc, and dom(p 7! [`i =
ς(xi)b0i i21::n]) = fpg = dom(p 7! [`i = ς(xi)bi i21::n]).Part (2) follows by symmetry.(Struct Par Assoc) We have (a � b) � c � a � (b � c). For part (1), if(a � b) � c : T then by Lemma 10(1) we have (a � b) : Proc, c : Tand dom(a � b) \ dom(c) = ?. Similarly, Lemma 10(1) applied to(a � b) : Proc gives a : Proc, b : Proc and dom(a) \ dom(b) = ?.Since dom(a � b) = dom(a) [ dom(b) we have that the sets dom(a),dom(b) and dom(c) are pairwise disjoint. Rule (Well Par) applied tob : Proc, c : T and dom(b) \ dom(c) = ? gives b � c : T . Rule (WellPar) applied to a : Proc, (b � c) : T and dom(a)\dom(b � c) = ? givesa � (b � c) : T . Part (2) follows by a similar argument.(Struct Par Comm) We have (a � b) � c � (b � a) � c. For part (1),if (a � b) � c : T we argue as in the (Struct Par Assoc) case, todeduce a : Proc, b : Proc, c : T and that the sets dom(a), dom(b) anddom(c) are pairwise disjoint. Applying (Well Par) twice we deduce(b � a) � c : T . Part (2) of the proposition follows by symmetry.(Struct Res Res) We have (�p)(�q)a � (�q)(�p)a. Assume for part (1)(�p)(�q)a : T . By renaming bound variables, we can assume withoutloss of generality that p 6= q. Applying Lemma 10(3) we get a : T andfp; qg � dom(a). Since p 6= q, q 2 dom(a) and p 2 (dom(a) � fqg).Hence by (Well Res) (applied twice), (�q)(�p)a : T . Part (2) followsby symmetry.(Struct Par 1) We have (�p)(a � b) � a � (�p)b obtained from p =2 fn(a).For part (1), assume (�p)(a � b) : T . Parts (1) and (3) of Lemma 10applied to this judgment yield a : Proc, b : T , dom(a)\dom(b) = ? andp 2 dom(a) [ dom(b). Lemma 9(1) and p =2 fn(a) imply p =2 dom(a).Since p 2 dom(a) [ dom(b) we must have p 2 dom(b). By (Well Res),(�p)b : T . Now, dom(a)\dom((�p)b) = dom(a)\ (dom(b)�fpg) = ?,since dom(a) \ dom(b) = ?. Hence (Well Par) gives a � (�p)b : T .Part (2) follows similarly. If a � (�p)b : T then by Lemma 10, a : Proc,b : T , p 2 dom(b) and dom(a) \ (dom(b) � fpg) = ?. Hence (�p)(a �b) : T .(Struct Par 2) Similar to (Struct Par 1).35



(Struct Let Assoc) If y =2 fn(c) we have let x=(let y=a in b) in c �let y=a in (let x=b in c).For part (1), assume let x=(let y=a in b) in c : T . Lemma 10(2) giveslet y=a in b : Exp, c : Exp and dom(c) = ?. Applying Lemma 10(2)to let y=a in b : Exp gives a : Exp, b : Exp and dom(b) = ?. Fromthe de�nition of dom we have dom(let x=b in c) = dom(b) = ?. Nowwe can deduce from (Well Let) and (Well Concur) that for either T ,let y=a in let x=b in c : T .For part (2), we assume let y=a in let x=b in c : T . As before, wededuce a : Exp, b : Exp, c : Exp, dom(b) = ? and dom(c) = ?. Hencefrom (Well Let), let x=(let y=a in b) in c : T .(Struct Res Let) We have (�p)let x=a in b � let x=(�p)a in b obtainedfrom p =2 fn(b). For part (1), we assume (�p)let x=a in b : T . FromLemma 10(2) and (3) we deduce a : Exp, b : Exp, dom(b) = ? andp 2 dom(a). Finally, rules (Well Let), (Well Res) and (Well Concur)give let x=(�p)a in b : T for either T .For part (2), we assume let x=(�p)a in b : T . Similarly to before, wededuce a : Exp, b : Exp, p 2 dom(a) and dom(b) = ?. Hence we get(�p)let x=a in b : T .(Struct Par Let) We have a � let x=b in c � let x=(a � b) in c. Forpart (1), we assume a � let x=b in c : T . By Lemma 10(1) and (2) weget a : Proc, b : Exp, c : Exp, dom(c) = ? and dom(a) \ dom(b) = ?.Rule (Well Par) implies a � b : Exp, and rule (Well Let) and (WellConcur) gives let x=(a � b) in c : T for either T .For part (2), we assume let x=(a � b) in c : T . Much as before, wededuce a : Proc, b : Exp, c : Exp, dom(c) = ? and dom(a) \ dom(b) =?. From these we deduce a � let x=b in c : T . 2Lemma 12 If a : T and a! b then b : T .Proof We prove this by induction on the derivation of a! b. We considereach of the rules which may derive a! b in turn:(Red Select) We have (p 7! d) � p:`j ! (p 7! d) � bjffxj  pgg whered = [`i = ς(xi)bi i21::n] and j 2 1::n. If (p 7! d) � p:`j : T then byLemma 10(1), p 7! d : Proc and p:`j : T . Lemma 10(4) tells us bi : Expand dom(bi) = ? for each i 2 1::n. Lemma 9(6) applied to bj : Expgives bjffxj  pgg : Exp. By (Well Concur), bjffxj  pgg : T for eitherT . It is easy to see that dom(bjffxj  pgg) = ?, since dom(bj) = ?.Hence, (p 7!d) � bjffxj  pgg : T .36



(Red Update), (Red Clone), (Red Acquire), (Red Release) In eachcase, the proof is similar to that of (Red Select).(Red Let Result) We have let x=p in b ! bffx  pgg. If let x=p in b :T then by Lemma 10(2), p : Exp, b : Exp and dom(b) = ?. ByLemma 9(6), bffx pgg : Exp, and it is easy to see that if dom(b) = ?then dom(bffx pgg) = ?.(Red Res) We have (�p)a ! (�p)a0 obtained from a ! a0. If (�p)a : Tthen by Lemma 10(3), a : T , and p 2 dom(a). By induction, a0 : Tand Lemma 9(5) implies dom(a0) = dom(a), so p 2 dom(a0). Hence(�p)a0 : T .(Red Par 1) We have a � b ! a0 � b from a ! a0. If a � b : T then byLemma 10(1) we have a : Proc, b : T and dom(a)\dom(b) = ?. Henceby induction, a0 : Proc, and Lemma 9(5) gives dom(a) = dom(a0). Rule(Well Par) gives a0 � b : T .(Red Par 2) Similar to (Red Par 1).(Red Let) We have let x=a in b! let x=a0 in b obtained from a! a0. Iflet x=a in b : T then by Lemma 10(2), a : Exp, b : Exp and dom(b) =?. By induction, we have a0 : Exp and dom(a) = dom(a0). Hence by(Well Let), and (Well Concur), let x=a0 in b : T for either T .(Red Struct) We have a ! b obtained from a � a0, a0 ! b0 and b0 � b. Ifa : T then by Lemma 11, a0 : T . The induction hypothesis applied toa0 ! b0 gives b0 : T . Finally, by Lemma 11 again, b : T . 2Proof of Proposition 1(1) If a : T and a � b then b : T and dom(a) = dom(b).(2) If a : T and a! b then b : T and dom(a) = dom(b).Proof Combine Lemmas 9, 11, and 12. 2We can generalise this proposition to hold for the T -indexed forms ofstructural congruence and reduction:Proposition 13(1) If a : T and a T� b then b : T and dom(a) = dom(b).(2) If a : T and a T! b then b : T and dom(a) = dom(b).37



Proof Since Proposition 1 already covers the case T = Exp we need onlyconsider the case for T = Proc.For part (1) we need to show a : Proc and a Proc� b implies b : Proc anddom(a) = dom(b). Now, a Proc� b means a � p � b � p for some p. If a : Procthen a � p : Exp. Applying Lemma 11 to a � p � b � p, we get b � p : Expand dom(b) = dom(b � p) = dom(a � p) = dom(a). Lemma 10(1) applied tob � p : Exp gives b : Proc as required.For part (2) we must prove that if a Proc! b and a : Proc then b : Procand dom(a) = dom(b). We recall that a Proc! b means a Proc� a0 ! b0 Proc� b.Assume a : Proc. From part (1), a0 : Proc and dom(a0) = dom(a). ApplyingLemma 12 to a0 ! b0 gives b0 : Proc and dom(b0) = dom(a0) = dom(a).Finally, by part (1) again, b : Proc and dom(b) = dom(b0) = dom(a). 2A.3 Reformulating the Semantics of Section 4.2When proving Theorem 1 in the next section, it is convenient ot have refor-mulated the structured operational semantics rules of section 4.2. We factorout of each of the rules the part that extracts a fragment of store and asingle thread, and make this a new rule, (SOS0 Con�g). This makes the rulesde�ning the SOS reductions closer to those specifying the reduction relation.We refer to the rules given here as the SOS0 rules and those of section 4.2 asSOS rules to disambiguate between the two rule sets.Lemma 14 shows that the two presentations of the structural operationalsemantics are equivalent.We de�ne the relation a SOS0�! b as follows:Alternative structural operational semantics(SOS0 Select) (where f~pg \ fn(p 7!d) = ?)d = [`i = ς(xi)bi i21::n] j 2 1::n N (bj)ffxj  pgg = (�~p)h�0 k �0ihp 7! d k p:`ji SOS0�! (�~p)hp 7!d; �0 k �0i(SOS0 Update)d = [`i = ς(xi)bi i21::n] d0 = [`j = ς(x)b; `i = ς(xi)bi i2(1::n)�fjg] j 2 1::nhp 7!d k p:`j ( ς(x)bi SOS0�! hp 7! d0 k pi(SOS0 Clone) (where q =2 fn(p 7!d))d = [`i = ς(xi)bi i21::n]hp 7! d k clone(p)i SOS0�! (�q)hp 7! d; q 7! d k qi38



(SOS0 Acquire)hp 7!unlocked k acquire(p)i SOS0�! hp 7! locked k pi(SOS0 Release)d 2 flocked ; unlockedghp 7!d k release(p)i SOS0�! hp 7!unlocked k pi(SOS0 Let Result)h? k let x=p in bi SOS0�! N (b)ffx pgg(SOS0 Let) (where f~pg \ fn(b) = ?)h� k ti SOS0�! (�~p)h�0 k �0; t0i length(�) � 1h� k let x=t in bi SOS0�! (�~p)h�0 k �0; let x=t0 in bi(SOS0 Con�g) (where f~pg \ fn(�1; �3; �1; �2) = ?)h�2 k ti SOS0�! (�~p)h�0 k �0i length(�2) � 1h�1; �2; �3 k �1; t; �2i SOS0�! (�~p)h�1; �0; �3 k �1; �0; �2i(SOS0 Res)a SOS0�! (�~p)h� k �i(�p)a SOS0�! (�p)(�~p)h� k �i (SOS0 Norm)N (a) SOS�! (�~p)h� k �ia SOS0�! (�~p)h� k �iLemma 14 For all a and b, a SOS�! b if and only if a SOS0�! b.Proof The proof of equivalence will take the following four steps:(1) If h� k ti SOS�! (�~p)h�0 k �0i then � = �1; �2; �3, �0 = �1; �02; �3 whereh�2 k ti SOS�! (�~p)h�2 k �0i, f~pg \ fn(�1; �3) = ? and length(�2) � 1.(2) If a SOS�! b then a SOS0�! b.(3) If h� k �i SOS�! (�~p)h�0 k �0i and f~pg \ fn(�1; �2; �1; �2) = ? thenh�1; �; �2 k �1; �; �2i SOS�! (�~p)h�1; �0; �2 k �1; �0; �2i.(4) If a SOS0�! b then a SOS�! b.The proofs of (1{4) are as follows: 39



(1) An easy induction on the derivation of a SOS�! b.(2) From (1), we note that we can rewrite the derivation of any a SOS�! bjudgment so that any instance of (SOS Let) is of the form: h�1; �2; �3 k�1; let x=t in b; �2i SOS�! (�~p)h�1; �02; �3 k �1; �0; let x=t 0in b; �2i derivedfrom h�2 k ti SOS�! (�~p)h�02 k �0; t0i where f~pg \ fn(�1; �2; �1; b; �2) = ?and length(�2) � 1.We can now easily prove (3) by induction on the (rewritten) derivationof a SOS�! b. In all of the non-trivial cases, the SOS rule can be derivedfrom the corresponding SOS0 rule and (SOS0 Con�g). Hence if a SOS�! bthen a SOS0�! b.(3) We prove (3) by induction on the derivation of h� k �i SOS�! (�~p)h�0 k �0i.The proof is straightforward in every case.(4) We need to show that a SOS0�! b implies a SOS�! b. We prove this byinduction on the derivation of a SOS0�! b. All the cases are easy with theexception of (SOS0 Con�g), which follows from the induction hypothesisand part (3). 2Now we have shown that SOS�! and SOS0�! are the same relation we use thenotation a SOS�! b for both in the remainder of this appendix, and all proofsabout a SOS�! b relation depend on the SOS0 rules given in this section.A.4 Proof of Theorem 1In this section we prove Theorem 1 and Proposition 4 of Section 4.2 whichprovide a correspondence between the reduction semantics and the structuraloperational semantics. We use Theorem 1 in the next section to prove factsfrom Section 5.An important result in the proof of Theorem 1 is a lemma, Lemma 22,which states that structural congruence preserves SOS reductions. The proofof Lemma 22 relies on an explicit characterisation of structural congruenceon con�gurations provided by Lemmas 19 and 20. The main result of thesection is Proposition 26. Theorem 1 is an immediate corollary.We �rst prove some facts about normalisation.Lemma 15(1) If a : T then N (a) exists. 40



(2) If a : Exp then N (a) = (�~q)h� k �; ti for some ~q; �; � and t.Proof These two facts can be proved simultaneously by induction on thederivation of a : T . 2Lemma 16 For all a : T , a T� N (a).Proof There are two cases, when T = Exp and when T = Proc. Bothcases follow by induction on the structure of a.When T = Exp, the only di�cult case is when a = b � c. ThenN (b � c) =(�~p)(�~q)h�; �0 k �; �0i where N (b) = (�~p)h� k �i, N (c) = (�~q)h�0 k �0i,f~pg \ (fn(�0) [ fn(�0)) = f~qg \ (fn(�) [ fn(�)) = ?. From Lemma 10(1) wehave that c : Exp and b : Proc and hence by Lemma 15, �0 6= ?. Then wecompute: (�~p)(�~q)h�; �0 k �; �0i� (�~p)(�~q)(h� k �i � h� k �0i) by (Struct Par Comm)� (�~p)(h� k �i � (�~q)h�0 k �0i) by (Struct Par 2)� ((�~p)h� k �i) � ((�~q)h�0 k �0i) by (Struct Par 1)= N (b) � N (c)HenceN (b � c) � N (b) � N (c) and since by induction we haveN (b) Proc� band N (c) � c, by Lemma 8, b � c � N (b) � N (c) � N (b � c).When T = Proc, again the only di�cult case is when a = b � c. Then,we have by Lemma 10(1) that b : Proc and c : Proc. We pick a fresh r, andcompute much as before:N (b � c) � r= (�~p)(�~q)h�; �0 k �; �0; ri� (�~p)(�~q)(h� k �i � h�0 k �0i � r) by (Struct Par Comm)� ((�~p)(�~q)(h� k �i � h�0 k �0i)) � r by (Struct Par 1)� ((�~p)(h� k �i � (�~q)h�0 k �0i)) � r by (Struct Par 2)� ((�~p)h� k �i) � ((�~q)h�0 k �0i) � r by (Struct Par 1)= N (a) � N (b) � rHence by Lemma 8, b � c Proc� N (b) � N (c) Proc� N (b � c). 2We can now prove two lemmas stated in section 4.2:Proof of Lemma 2 If a : Exp then N (a) � a.Proof This is an immediate corollary of Lemma 16. 241



The normalisation function is the identity on con�gurations:Proof of Lemma 3 N ((�~p)h� k �i) = (�~p)h� k �i.Proof By inspection of the normalisation function. 2Lemma 17 If t : Proc then t : Exp. If a SOS�! a0 and a : Proc then N (a) :Exp.Proof The �rst part follows by inspection of the (Well) rules. For thesecond, we note that every (SOS0) reduction involves a thread, soN (a) has atleast one thread. Hence, N (a) has a right-most thread, say N (a) = (�~p)(a0 �t). Since N (a) : Proc we have a0 : Proc and t : Proc by Lemma 10. Applyingthe �rst part of this lemma we deduce t : Exp, and hence N (a) : Exp by(Well Par) and (Well Res). 2To state the following lemmas, we extend structural congruence to se-quences of terms. Let the relations ai i21::n T�s bi i21::n for T 2 fProc;Expgbe inductively de�ned as follows:Structural Congruence on Sequences(Seq Exp)ai i21::n Proc�s a0i i21::n b � b0ai i21::n; b Exp�s a0i i21::n; b0 (Seq Proc Swap)ai i21::n; bi i21::m Proc�s bi i21::m; ai i21::n(Seq Proc Concat)ai i21::n Proc�s a0i i21::n bi i21::m Proc�s b0i i21::mai i21::n; bi i21::m Proc�s a0i i21::n; b0i i21::m (Seq Proc �)ai � a0i 8i 2 1::nai i21::n Proc�s a0i i21::n(Seq Proc Trans)ai i21::n Proc�s bi i21::n Proc�s ci i21::nai i21::n Proc�s ci i21::nIt is easy to see that both of these relations are symmetric, reexive andtransitive. We also have the following important property of the Proc�s relation:Lemma 18 If ai i21::n Proc�s bi i21::n then for all j 2 1::n there is k 2 1::n suchthat aj � bk and ai i21::n�fjg Proc�s bi i21::n�fkg.42



Proof By induction on the derivation of ai i21::n Proc�s bi i21::n. 2Lemma 19 If a � b, a : T and b : T then N (a) = (�~p)hpi 7! di i21::n ktj j21::mi and N (b) = (�~q)hqi 7! d0i i21::n k t0j j21::mi where:(1) The ~p are pairwise distinct, the ~q are pairwise distinct, and f~pg = f~qg.(2) pi 7! di i21::n Proc�s qi 7! d0i i21::n.(3) ti i21::m T�s t0i i21::m.Conversely, if a; b : Exp and N (a);N (b) satisfy properties (1{3) then a � b.Proof We prove this by induction on the derivation of a � b. We considereach rule that may derive a � b in turn. In many cases, it is necessary toshow that subterms are well-typed; we can use Lemma 10 for this, but weomit the details for clarity.(Struct Re) We have a � a. The result is trivial.(Struct Symm) We have a � b derived from b � a. The induction hypoth-esis applied to b � a gives N (b) = (�~p)hpi 7! di i21::n k tj j21::mi andN (a) = (�~q)hqi 7! d0i i21::n k t0j j21::mi satisfying properties (1{3). SinceExp�s and Proc�s are symmetric, the result follows easily.(Struct Trans) We have a � c derived from a � b and b � c. The resultfollows from the transitivity of Exp�s and Proc�s .(Struct Update) We have u:` ( ς(x)b � u:` ( ς(x)b0 obtained from b �b0. Since N (u:`( ς(x)b) = h? k u:` ( ς(x)bi and N (u:`( ς(x)b0) =h? k u:`( ς(x)b0i we see that (1) is trivial, (2) is immediate from (SeqProc �) and (3) follows from (Struct Update), (Seq Proc �) and (SeqExp).(Struct Let) We have let x=a in b � let x=a0 in b0 obtained from a � a0and b � b0. Applying the induction hypothesis to a � a0 (noting thata; a0 : Exp) gives N (a) = (�~p)hpi 7! di i21::n k ti i21::mi and N (a0) =(�~q)hqi 7! d0i i21::n k t0i i21::mi satisfying properties (1{3). Now:N (let x=a in b) = (�~p)hpi 7! di i21::n k ti i21::m�1; let x=tm in biSimilarly:N (let x=a0 in b0) = (�~q)hqi 7! d0i i21::n k t0i i21::m�1; let x=t0m in bi43



We obtain properties (1) and (2) from the induction hypothesis appliedto a � a0. For (3), we may deduce from ti i21::m Exp�s t0i i21::m that tm � t0mand ti i21::m�1 Proc�s t0i i21::m�1. Then, from (Struct Let) let x=tm in b �let x=t0m in b0, so rule (Seq Exp) gives us property (3).(Struct Res) Here (�p)a � (�p)a0 obtained from a � a0. By induction wehave: N (a) = (�~p)hpi 7! di i21::n k ti i21::miN (b) = (�~q)hqi 7! d0i i21::n k t0i i21::misatisfying (1{3).Now, N ((�p)a) = (�p)N (a) and N ((�p)b) = (�p)N (b). By renamingthe bound name p, we may assume p =2 f~p; ~qg. So p; ~p and p; ~q satisfy(1), since f~pg = f~qg by induction. Properties (2) and (3) follow fromthe induction hypothesis.(Struct Par) Here a � b � a0 � b0 obtained from a � a0 and b � b0. Forsimplicity, we consider only the T = Exp case in detail; the T = Proccase is similar. We have a; a0 : Proc and b; b0 : Exp. Applying theinduction hypothesis to a � a0 and b � b0 gives:N (a) = (�~p)hpi 7! di i21::n k ti i21::miN (a0) = (�~q)hqi 7! d0i i21::n k t0i i21::miN (b) = (�~r)hri 7! d00i i21::n0 k t00i i21::m0iN (b0) = (�~s)hsi 7! d000i i21::n0 k t000i i21::m0isatisfying (1{3). By renaming bound variables, we may assume f~pg \f~rg = ?. From the de�nition of the normalisation function, we com-pute N (a � b) and N (a0 � b0):N (a � b) = (�~p;~r)hpi 7! di i21::n; ri 7! d00i i21::n0 k ti i21::m; t00i i21::m0iN (a0 � b0) = (�~q; ~s)hqi 7! d0i i21::n; si 7! d000i i21::n0 k t0i i21::m; t000i i21::m0iFirst we note that (1) holds. By induction, f~pg = f~qg and f~rg = f~sgso f~p;~rg = f~q; ~sg.We deduce (2) from pi 7! di i21::n Proc�s qi 7! d0i i21::n, ri 7! d00i i21::n0 Proc�ssi 7! d000i i21::n0 and (Seq Proc Concat).For property (3), we note that from t00i i21::m0 Exp�s t000i i21::m0 we can deducet00i i21::m0�1 Proc�s t000i i21::m0�1 and t00m0 � t000m0 . Then by (Seq Proc Concat)and (Seq Exp) with ti i21::m Proc�s t0i i21::m we can derive ti i21::n; t00i i21::n0 Exp�st0i i21::n; t000i i21::n0 as required. 44



(Struct Object) Here p 7! [`i = ς(xi)bi i21::n] � p 7! [`i = ς(xi)b0i i21::n] ob-tained from bi � b0i for each i 2 1::n. We have:N (p 7! [`i = ς(xi)bi i21::n]) = hp 7! [`i = ς(xi)bi i21::n k ?iN (p 7! [`i = ς(xi)b0i i21::n]) = hp 7! [`i = ς(xi)b0i i21::n] k ?iWe note that we must have T = Proc, since neither side of the congru-ence can have type Exp. Properties (1) and (3) are trivial, and (2) canbe derived from (Seq Proc �) and (Struct Object).(Struct Par Assoc) We have (a � b) � c � a � (b � c). This case is easy,since N ((a � b) � c) = N (a � (b � c)).(Struct Par Comm) We have (a � b) � c � (b � a) � c.Suppose: N (a) = (�~p)hpi 7! di i21::n k ti i21::miN (b) = (�~q)hqi 7! d0i i21::n0 k t0i i21::m0iN (c) = (�~r)hri 7! d00i i21::n00 k t00i i21::m00iThen: N ((a � b) � c) = (�~p; ~q; ~r)hpi 7! di i21::n; qi 7! d0i i21::n0; ri 7! d00i i21::n00 kti i21::m; t0i i21::m0 ; t00i i21::m00iSimilarly: N ((b � a) � c) = (�~q; ~p; ~r)hqi 7! d0i i21::n0; pi 7! di i21::n; ri 7! d00i i21::n00 kt0i i21::m0 ; ti i21::m; t00i i21::m00iBy renaming the bound variables, we may assume the names in f~p; ~q; ~rgare pairwise distinct and hence we get property (1). Properties (2) and(3) follow straightforwardly from (Seq Proc Concat), (Seq Proc Swap)and (Seq Exp).(Struct Par 1) Here (�p)(a � b) � a � (�p)b. The result is immediate,since N ((�p)(a � b)) = N (a � (�p)b).(Struct Par 2) Similar to (Struct Par 1).(Struct Let Assoc) If y =2 fv(c) we have here let x=(let y=a in b) in c �let y=a in (let x=b in c). Suppose N (a) = (�~p)hpi 7! di i21::n k ti i21::mi.Then:N (let x=(let y=a in b) in c) =(�~p)hpi 7! di i21::n k ti i21::m�1; let x=(let y=tm in b) in ci45



Similarly:N (let y=a in (let x=b in c)) =(�~p)hpi 7! di i21::n k ti i21::m�1; let y=tm in (let x=b in c)iProperties (1) and (2) are trivial. Property (3) follows much as in the(Struct Let) case.(Struct Par Let) Here a � let x=b in c � let x=(a � b) in c. Again, theresult is easy, since N (a � let x=b in c) = N (let x=(a � b) in c).This completes the proof of the �rst part of the lemma.The converse of the lemma, that is, a � b if a : Exp and N (a) and N (b)satisfy (1{3) holds by inspection of the (Struct) rules | we may use (StructRes Res) to permute restrictions, and (Struct Par Comm) to permute thestore and threads. 2As a corollary to Lemma 19 we have the following lemma:Lemma 20 If a : Proc, b : Proc and a Proc� b then N (a) = (�~p)hpi 7! di i21::n ktj j21::mi and N (b) = (�~q)hqi 7! d0i i21::n k t0j j21::mi where:(1) The names ~p are pairwise distinct, the names ~q are pairwise distinctand f~pg = f~qg.(2) pi 7! di i21::n Proc�s qi 7! d0i i21::n.(3) tj j21::m Proc�s t0j j21::m.Conversely, if a; b : Proc and N (a);N (b) satisfy properties (1{3) then a Proc�b.Proof This follows easily from the previous lemma, because a Proc� b meansthat there is a fresh p with a � p � b � p. If a; b : Proc then a � p; b � p : Exp.Applying the previous lemma to a � p and b � p gives the conditions (1{3)above.For the converse, we note that if N (a) and N (b) satisfy (1{3) thenN (a � p) and N (b � p) (where p is fresh) satisfy (1{3) of the previous lemma.Hence, a � p � b � p and by the de�nition of structural congurence for Procterms, a Proc� b. 2
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Lemma 21(1) If a SOS�! b then a � p SOS�! b0 where b0 � b � p.(2) If a � p SOS�! b0 then a SOS�! b where b0 � b � p.Proof(1) If N (a) = (�~p)h� k �i then N (a � p) = (�~p)h� k �; pi where p =2 f~pg.If a SOS�! b = (�~q)h�0 k �0i then by (SOS0 Con�g) we deduce a � p SOS�!(�~q)h�0 k �0; pi � (�~q)h�0 k �0i � p.(2) Suppose N (a) = (�~p)h� k �i. Then N (a � p) = (�~p)h� k �; pi wherep =2 f~pg. By inspection of the (SOS0) rules, we see that the only deriva-tions that can occur are via (SOS0 Res) to remove the restrictions ~p,then (SOS0 Con�g) choosing a thread from � (and possibly a denomina-tion from �), say deriving (�~p)h�1; �2; �3 k �1; t; �2; pi SOS�! b0 (where b0 =(�~p)(�~q)h�1; �0; �3 k �1; �0; �2; pi) from h�2 k ti SOS�! (�~q)h�0 k �0i where� = �1; �2; �3 and � = �1; t; �2. But now we can derive from (SOS0 Con-�g) and (SOS0 Res), (�~p)h� k �i SOS�! b, (where b = (�~p)(�~q)h�1; �0; �2 k�1; �0; �2i). Finally we note b � p � b0. 2Lemma 22 If a : T, a SOS�! b and a0 T� a then a0 SOS�! b0 where b0 T� b.Proof We �rst prove the case when T = Exp by induction on the derivationof a SOS�! b. All the cases apart from (SOS0 Con�g) are similar, so we considerthe case (SOS0 Con�g) and the case (SOS0 Select) as a representative of theother cases.(SOS0 Select) Here hp 7!d k p:`ji SOS�! (�~p)hp 7! d; �0 k �0i where d = [`i =
ς(xi)bi i21::n], j 2 1::n, N (bj)ffp  xjgg = (�~p)h�0 k �0i and f~pg \fn(p 7! d) = ?. If a0 � hp 7! d k p:`ji then by Lemma 19 N (a0) =hp 7!d0 k p:`ji where p 7! d � p 7! d0. Hence d0 = [`i = ς(xi)b0i i21::n]where bi � b0i for each i 2 1::n. Then by (SOS0 Select), hp 7! d0 kp:`ji SOS�! (�~q)hp 7!d0; �00 k �00i where N (b0j)ffxj  pgg = (�~q)h�00 k �00i,and f~qg \ fn(p 7! d0) = ?. Since bj � b0j we have N (bj) � N (b0j)By Lemma 8(1) we have N (bj)ffxj  pgg � N (b0j)ffxj  pgg, that is,(�~p)h�0 k �0i � (�~p)h�00 k �00i. By (Struct Par), p 7! d � (�~p)h�0 k�0i � p 7! d0 � (�~q)h�00 k �00i. Finally by (Struct Par 1) (applied severaltimes), (�~p)hp 7!d; �0 k �0i � (�~q)hp 7!d0; �00 k �00i.47



(SOS0 Con�g) We have h�1; �2; �3 k �1; t; �2i SOS�! (�~p)h�1; �0; �3 k �1; �0; �2iwhere f~pg \ fn(�1; �3; �1; �2) = ?, length(�2) � 1 obtained from h�2 kti SOS�! (�~p)h�0 k �0i. By Lemma 19 we deduce N (b) = h�00 k �00iwhere �00 Proc�s �1; �2; �3 and �00 Exp�s �1; t; �2. Either by Lemma 18 (iflength(�2) = 1) or trivially (if length(�2) = 0), we can decompose �00as �001 ; �002 ; �003 where �002 Proc�s �2 and �001 ; �003 Proc�s �1; �3. By Lemma 18and analysis of the derivation of the judgment �00 Exp�s �1; t; �2 we candecompose �00 as �001; t0; �002 where:� If �2 = ? then t0 � t, �001 Proc�s �1 and �002 = ?.� If �2 6= ? then t0 � t and �001; �002 Exp�s �1; �2.Then h�2 k ti � h�002 k t0i so by the induction hypothesis applied toh�2 k ti SOS�! (�~p)h�0 k �0i we have h�002 k t0i SOS�! b0 where b0 � (�~p)h�0 k�0i. By Lemma 19 we have b0 = (�~q)h�000 k �000i where the names ~pare pairwise distinct, the names ~q are pairwise distinct, f~pg = f~qg,�0 Proc�s �000 and �0 Exp�s �000. Applying rule (SOS0 Con�g) to the reductionh�002 k t0i SOS�! b0 we get h�001 ; �002 ; �003 k �001; t0; �002i SOS�! (�~q)h�001 ; �000; �003 k�001; �000; �002i where f~qg \ fn(�001 ; �003 ; �001; �002) = ?. We can now deduce�001 ; �000; �003 Proc�s �1; �0; �3 from (Seq Proc Concat). Similarly, we candeduce �001; t0; �002; Exp�s �1; t; �2 from (Seq Exp), (Seq Proc Concat) and therelations between �001; �1; �002 and �2 above. This su�ces for the result bythe converse of Lemma 19.When T = Proc we apply Lemma 21(1) to get that a � p SOS�! a00 wherea00 � a0 � p. We apply the T = Exp case to a � p SOS�! a00 to obtain a b00with b � p SOS�! b00 and b00 � a00. By Lemma 21(2) we have b SOS�! b0 whereb0 � p � b00. Now, b0 � p � b00 � a00 � a0 � p. Hence b0 Proc� a0 as required. 2Lemma 23 If (�p)a SOS�! b then b = (�p)a0 with a SOS�! a0.Proof We prove this by induction on the derivation of (�p)a SOS�! b. Theonly two rules that can apply are (SOS0 Res) and (SOS0 Norm). In theformer, the result is immediate. In the latter, the result follows from notingthat N ((�p)a) = (�p)N (a), and then the induction hypothesis applies. 2We now have a lemma which makes explicit the intuition that every re-duction involves only a single thread.48



Lemma 24 If h� k t1; : : : ; tni SOS�! (�~p)h�0 k �0i then there is i 2 1::n withh� k tii SOS�! (�~p)h�0 k �i, �0 = t1; : : : ; ti�1; �; ti+1; : : : tn and f~pg \ fn(tj) = ?for every j 2 1::n� fig.Proof We prove this by induction on the derivation of h� k t1; : : : ; tni SOS�!(�~p)h�0 k �0i. For rules (SOS0 Select), (SOS0 Update), (SOS0 Clone), (SOS0Acquire), (SOS0 Release), (SOS0 Let Result) and (SOS0 Let) the result istrivial, since only one thread reacts in the rule. Rule (SOS0 Res) is not ap-plicable, since the term h� k t1; : : : ; tni is not restricted. Rule (SOS0 Norm)is trivial, since N (a) = a on con�gurations. In rule (SOS0 Con�g) we de-rive h�1; �2; �3 k �1; t; �2i SOS�! (�~p)h�1; �0; �3 k �1; �0; �3i from h�2 k ti SOS�!(�~p)h�0 k �0i. The result now follows, since we let t1; : : : ; ti�1 = �1, ti = tand ti+1; : : : ; tn = �2. 2We generalise the previous lemma:Lemma 25 If h� k �1; �2i SOS�! (�~p)h�0 k �i then either h� k �1i SOS�!(�~p)h�0 k �0i, � = �0; �2 and f~pg \ fn(�2) = ? or h� k �2i SOS�! (�~p)h�0 k �0i,� = �1; �0 and f~pg \ fn(�1) = ?.Proof This is an easy corollary of Lemma 24. 2Proposition 26 For all a; b : T , a T! b if and only if a SOS�! T� b.Proof To prove a; b : T , a T! b implies a SOS�! T� b we adopt the followingproof strategy. We �rst show that a : T and a! b implies a SOS�!Exp� b. Afterproving this, we deduce a : Proc and a Proc�! b implies a SOS�!Proc� b.We �rst prove that a : T and a! b implies a SOS�!� b by induction on thederivation of a! b. We consider each rule which may derive a! b in turn:(Red Select) Here (p 7! d) � p:`j ! (p 7! d) � bjffxj  pgg where d =[`i = ς(xi)bi i21::n] and j 2 1::n. Now, N ((p 7!d) � p:`j) = hp 7!d kp:`ji. From rule (SOS0 Select), hp 7!d k p:`ji SOS�! (�~q)hp 7! d; � k �iwhere (�~q)h� k �i = N (bj)ffxj  pgg and f~qg \ fn(p 7! d) = ?. FromLemma 10(4) applied to (p 7! d) � p:`j : T we have bj : Exp. Lemma 16impliesN (bj) � bj. Lemma 8(1) impliesN (bj)ffxj  pgg � bjffxj  pgg,that is (�~q)h� k �i � bjffxj  pgg. We can assume f~qg \ f~p; pg = ? byrenaming the bound ~q if necessary. We compute:(p 7! d) � bjffxj  pgg� (p 7! d) � (�~q)h�ffxj  pgg k �ffxj  pggi by (Struct Par)� (�~q)hp 7! d; �ffxj  pgg k �ffxj  pggi by (Struct Par 2)49



(Red Update) Here (p 7! d) � p:`j ( ς(x)b! (p 7! d0) � p where d = [`i =
ς(xi)bi i21::n], d0 = [`j = ς(x)b; `i = ς(xi)bi i21::n] and j 2 1::n. Here theresult is immediate, since N ((p 7!d) � p:`j ( ς(x)b) = hp 7! d k p:`j (
ς(x)bi and by rule (SOS0 Update), hp 7!d k p:`j ( ς(x)bi SOS�! hp 7!d0 kpi = (p 7!d0) � p.(Red Clone) Here (p 7!d) � clone(p) ! (p 7! d) � (�q)((q 7! d) � q) whered is an object, and q =2 fn(p 7!d). Now, N ((p 7!d) � clone(p)) =hp 7!d k clone(p)i and by rule (SOS0 Clone), hp 7! d k clone(p)i SOS�!(�q)hp 7!d; q 7! d k qi. By (Struct Par 2), (�q)hp 7! d; q 7! d k qi �(p 7!d) � (�q)((q 7! d) � q).(Red Let Result) Here let x=p in a! affx pgg. From the de�nition ofnormalisation, N (let x=p in a) = h? k let x=p in ai. By rule (SOS0Let Result), h? k let x=p in ai SOS�! (�~q)h�ffx pgg k �ffx pggi whereN (a) = (�~q)h� k �i and p =2 f~qg. By Lemma 8(1) affx pgg � (�~q)h� k�iffx pgg and since p =2 f~qg, (�~q)h� k �iffx pgg = (�~q)h�ffx pgg k�ffx pggi.(Red Res) Here (�p)a! (�p)b obtained from a! b. Lemma 10(3) meansa : T , so we may apply the induction hypothesis to a ! b to geta SOS�! b0 � b. Now by (SOS0 Res), (�p)a SOS�! (�p)b0 and by rule (StructRes), (�p)b0 � (�p)b.(Red Par 1) Here a � b ! a0 � b obtained from a ! a0. Lemma 10(1)applied to a � b : T means a : Proc. Hence we may apply the inductionhypothesis to a ! a0 to get a SOS�! a1 � a0. Suppose N (a) = (�~p)h�a k�ai and N (b) = (�~q)h�b k �bi. Then N (a � b) = (�~p)(�~q)h�a; �b k�a; �bi. Since a SOS�! a1 we know N (a) = (�~p)h�a k �ai SOS�! a1 ApplyingLemma 23 we get h�a k �ai SOS�! (�~r)h�0 k �0i where a1 = (�~p)(�~r)h�0 k�0i. Hence we can apply rule (SOS0 Con�g) to get:h�a; �b k �a; �bi SOS�! (�~r)h�0; �b k �0; �biHence by rule (SOS0 Res):(�~p)(�~q)h�a; �b k �a; �bi SOS�! (�~p)(�~q)(�~r)h�0; �b k �0; �biWe now compute:(�~p)(�~q)(�~r)h�0; �b k �0; �bi� (�~p;~r)(�~q)h�0; �b k �0; �bi by (Struct Res Res)� (�~p;~r)h�0 k �0i � (�~q)h�b k �bi by (Struct Par 1 and 2)� a0 � b by (Struct Par)50



(Red Par 2) Similar to (Red Par 1).(Red Let) Here let x=a in b ! let x=a0 in b obtained from a ! a0.Lemma 10(2) applied to let x=a in b : T gives a : Exp. Hence wemay apply the induction hypothesis to a ! a0 to get a SOS�! a1 � a0.Let N (a) = (�~p)h� k �i. If a SOS�! a1 then N (a) = (�~p)h� k �i SOS�! a1.We apply Lemma 23 as in the (Red Par 1) case to get h� k �i SOS�!(�~r)h�0 k �0i where a1 = (�~p;~r)h�0 k �0i. Since a; a0 : Exp we haveby Lemma 15, � = �1; t and �0 = �01; t0. We apply Lemma 25 toh� k �1; ti SOS�! (�~r)h�0 k �0i to deduce one of:(1) h� k �1i SOS�! (�~r)h�0 k �01i and �0 = �01; t(2) h� k ti SOS�! (�~r)h�0 k �02; t0i and �0 = �1; �02; t0.In case 1 we compute:N (let x=a in b)= (�~p)h� k �1; let x=t in biSOS�! (�~p)(�~r)h�0 k �01; let x=t in bi by (SOS0 Con�g)� (�~p;~r)let x=h�0 k �01; ti in b by (Struct Par Let)� let x=(�~p;~r)h�0 k �01; ti in b by (Struct Res Let)= let x=a1 in b� let x=a0 in b by (Struct Let)In case 2 we compute:N (let x=a in b)= (�~p)h� k �1; let x=t in biSOS�! (�~p)(�~r)h�0 k �1; �02; let x=t0 in bi by (SOS0 Let)� (�~p;~r)let x=h�0 k �0i in b by (Struct Par Let)� let x=(�~p;~r)h�0 k �0i in b by (Struct Res Let)= let x=a1 in b� let x=a0 in b by (Struct Let)(Red Struct) Here a ! b obtained from a � a0, a0 ! b0 and b0 � b. Ifa : T then by Proposition 13, a0 : T , b0 : T and b : T . Hence we mayapply the induction hypothesis to a0 ! b0 to get a0 SOS�!� b0. We applyLemma 22 to get that a SOS�! b00 where b00 � b0. Hence, a SOS�! b00 � b0 � band by (Struct Trans), a SOS�! b00 � b.51



(Red Acquire) Here (p 7! unlocked) � acquire(p) ! (p 7! locked) � p. Theresult follows immediately in this case from the two observations:N ((p 7!unlocked) � acquire(p)) = hp 7!unlocked k acquire(p)ihp 7! unlocked k acquire(p)i SOS�! hp 7! locked k pi = (p 7! unlocked) � p(Red Release) Similar to (Red Acquire).This completes the proof of a : T and a ! b implies a SOS�!� b. It remainsto show that if a : Proc and a Proc! b then a SOS�! b0 Proc� b. If a Proc! b thena Proc� a1 ! b1 Proc� b. By the result just proven, a1 ! b1 means a1 SOS�!� b1.Lemma 22 gives a SOS�! b01 Proc� b001 � b1. So a SOS�! b01 Proc� b001 � b1 Proc� b. Since� � Proc� and Proc� is transitive, a SOS�!Proc� b.This completes the proof of forwards implication, that a : T and a T�! bimplies a SOS�! T� b.For the other half of this theorem, we prove that a : T and a SOS�! b impliesa T! b by induction on the derivation of a SOS�! b. The rules (SOS0 Update),(SOS0 Acquire) and (SOS0 Release) are special cases of the respective (Red)rules, so we consider the other (SOS0) rules which may derive a SOS�! b in turn.We note that in cases (SOS0 Select), (SOS0 Clone) and (SOS0 Let Result) weshow that a! b; this is su�cient since ! �Proc! .(SOS0 Select) Here hp 7! d k p:`ji SOS�! (�~p)hp 7!d; � k �i where d = [`i =
ς(xi)bi i21::n], j 2 1::n, N (bj)ffxj  pgg = h� k �i and f~qg\ fn(p 7!d) =?. By (Red Select), hp 7! d k p:`ji ! (p 7! d) � bjffxj  pgg.Lemma 10(1) and (4) give bj : Exp, so N (bj) � bj. Lemma 8(1)gives N (bj)ffxj  pgg � bjffxj  pgg. Hence (p 7! d) � bjffxj  pgg �(�~p)hp 7!d; � k �i by (Struct Par 2) and (Struct Par).(SOS0 Clone) Here hp 7! d k clone(p)i SOS�! (�q)hp 7! d; q 7! d k qi where dis an object and q =2 fn(p 7!d). Now, (p 7!d) � clone(p) ! (p 7! d) �(�q)(q 7! d � q) � (�q)((p 7! d) � (q 7! d) � q) as required.(SOS0 Let Result) Here h? k let x=p in bi SOS�! (�~p)h�ffx  pgg k �ffx  pggi where N (b) = (�~p)h� k �i and p =2 f~pg. Now by (Red Let Result),h? k let x=p in bi ! bffx  pgg. Since let x=p in b : T we have byLemma 10 b : Exp. Hence, by Lemma 16, b � N (b) = (�~p)h� k �i. ByLemma 8(1), bffx pgg � (�~p)h�ffx pgg k �ffx pggi (since p =2 f~pg).52



(SOS0 Let) Here h? k let x=t in bi SOS�! (�~p)h�0 k �0; let x=t0 in bi obtainedfrom h� k ti SOS�! (�~p)h�0 k �0; t0i where fvecpg \ fn(b) = ?. Sincelet x=t in b : T we have from Lemma 10(2) that t : Exp. Hence byinduction, t ! (�~p)h�0 k �0; t0i. By rule (Red Let), let x=t in b !let x=(�~p)h�0 k �0; t0i in b and by (Struct Par Let) and (Struct ResLet), let x=(�~p)h�0 k �0; t0i in b � (�~p)h�0 k �0; let x=t0 in bi.(SOS0 Con�g) Here h�1; �2; �3 k �1; t; �2i SOS�! (�~p)h�1; �0; �3 k �1; �0; �2iobtained from h�2 k ti SOS�! (�~p)h�0 k �0i where f~pg\ fn(�1; �3; �1; �2) =?. By induction we have h�2 k ti T! b0 where b0 = (�~p)h�0 k �0i.Applying rules (Red Par Comm), (Red Par 1) and (Red Par 2) we candeduce h�1; �2; �3 k �1; t; �2i T! �1 � �3 � �1 � b0 � �2. Rule (StructPar) gives �1 � �3 � �1 � b0 � �2 � �1 � �3 � �1 � (�~p)h�0 k �0i � �2.Rules (Struct Par 1) and (Struct Par 2) give �1 � �3 � �1 � (�~p)h�0 k�0i � �2 � (�~p)(�1 � �3 � �1 � �0 � �0 � �2). Finally, (Struct Par Comm)gives (�~p)(�1 � �3 � �1 � �0 � �0 � �2) � (�~p)h�1; �0; �3 k �1; �0; �2i.Since �� T� for T = Exp or Proc and T� is transitive, we are done.(SOS0 Res) Here (�p)a SOS�! (�p)b obtained from a SOS�! b. Since (�p)a : T ,by Lemma 10(3), a : T so by induction, a T! b. If T = Exp, thenby (Red Res), (�p)a ! (�p)b. Otherwise, a Proc� a0 ! b0 Proc� b. By(Red Res), (�p)a0 ! (�p)b0. Lemma 8 implies (�p)a Proc� (�p)a0 and(�p)b0 Proc� (�p)b0. Hence, (�p)a Proc! (�p)b as required.(SOS0 Norm) Here a SOS�! b obtained from N (a) SOS�! b. Since a : T wehave a T� N (a). The induction hypothesis applied to N (a) SOS�! b givesN (a) T! b. Since a T� N (a) T! b we have a T! b as required. 2Proof of Theorem 1 For all a; b : Exp, a! b if and only a SOS�!� b.Proof An immediate corollary of Proposition 26. 2A.5 Proof of Theorem 2In this section we prove some facts about the single-threaded fragment of thelanguage de�ned in Section 5. In particular, we prove Lemma 5, Theorem 2,and Proposition 6.We begin with a lemma similar to Lemma 10 for the deterministic typesystem, a :1 A: 53



Lemma 27(1) If a � b :1 T then a :1 Proc, b :1 T and dom(a) \ dom(b) = ?.(2) If let x=a in b :1 T then T = Exp, a : Exp, b : Exp and dom(b) = ?.(3) If (�p)a :1 T then a :1 T and p 2 dom(a).(4) If p 7! [`i = ς(xi)bi i21::n] : T then T = Proc, bi : Exp and dom(bi) = ?for all i 2 1::n.(5) If u:`( ς(x)b :1 T then T = Exp, b : Exp and dom(b) = ?.Proof Each of these statements follows by an easy induction on the deriva-tion of the typing derivation. 2Lemma 28 If t :1 T then T = Exp.Proof By inspection of the typing rules. 2Proof of Lemma 5(1) If a :1 T and a � b then b :1 T .(2) If a :1 T and a! b then b :1 T .(3) For all a; b :1 Exp, a! b if and only a SOS�!� b.(4) If a :1 Proc then N (a) takes the form (�~p)h� k ?i.(5) If a :1 Exp then N (a) takes the form (�~p)h� k ti.Proof(1), (2) These may be proved by similar inductions to those found in theproof of Proposition 1.(3) Since a :1 Exp implies a : Exp, we have from Theorem 1 that a ! b ifand only if a SOS�!� b.(4) Suppose a :1 Proc. Therefore we may derive a : Proc. By Lemma 15,N (a) exists. Suppose that N (a) = (�~p)h� k t1; : : : ; tni for names~p, store �, and threads t1, . . . , tn. By Lemma 16, a � (�~p)h� kt1; : : : ; tni. By part (1), a :1 Proc implies (�~p)h� k t1; : : : ; tni :1 Proc.By Lemma 27, t1; : : : ; tn :1 Proc. By Lemma 27, it must be that n = 0.54



(5) Suppose a :1 Exp. Much as in the previous case, we have that N (a) =(�~p)h� k t1; : : : ; tni, and that (�~p)h� k t1; : : : ; tni :1 Exp. By Lemma 27,it must be that n = 1. 2Proof of Theorem 2 Suppose a :1 Exp. If a ! a0 and a ! a00 thena0 � a00.Proof By applying Lemma 5, we can normalise a to N (a) and considerreductions in the SOS0 semantics rather than the reduction semantics. Itis a simple induction to prove that SOS0 reductions are unique for terms inthe single-threaded fragment, because, by Lemma 5, single-threaded termshave only one thread in their con�guration. This fact su�ces to prove thistheorem, because if a! a0 and a! a00 then a SOS�! b � a0 and a SOS�! b0 � a00.But by the fact that SOS0 reductions are unique, b = b0 and a00 � a0. 2Proof of Proposition 6 If a represents a term of impς, we can derivea :1 Exp.Proof This can be proved by induction on the structure of a. 2A.6 Proof of Theorem 3In this section we prove the subject reduction result of Section 5, Theorem 3.Lemma 29(1) If E ` A then E ` �.(2) If E ` a : A then E ` A.(3) If E ` A<:B then E ` A and E ` B.Proof By inductions on derivations. 2Proof of Lemma 7 If E ` a : A and E ` A<:T then a : T .Proof By induction on the derivation of E ` a : A.(Val Subsumption) Here E ` a : B obtains from E ` a : A and E `A<:B. If E ` B<:T then E ` A<:T by (Sub Trans). Hence byinduction, a : T . 55



(Val Object) Here E ` p 7! [`i = ς(xi)bi i21::n] : Proc obtains from E; xi :A ` bi : Bi with E = E1; p : A;E2 and dom(bi) = ? for i 2 1::n, whereA = [`i : Bi i21::n]. By Lemma 29, E ` �. By (Val u) E ` p : A,and hence E ` A. From (Type Object) we get E ` Bi<:Exp forall i 2 1::n. Hence by induction, bi : Exp and from (Well Object),p 7! [`i = ς(xi)bi i21::n] : Proc as required.(Val Let) Here E ` let x=a in b : B obtains from E ` a : A and E; x :A ` b : B, dom(b) = ?, E ` A<:Exp and E ` B<:Exp. By inductiona : Exp and b : Exp and hence by (Well Let), let x=a in b : Exp.The cases for the other rules are similar. 2Lemma 30(1) If E ` a � b : A then E ` a : Proc, E ` b : A and dom(a)\dom(b) = ?.(2) If E ` let x=a in b : B then there are A;B0 with E ` A<:Exp,E ` B0<:Exp such that E ` a : A, E; x : A ` b : B0, dom(b) = ? andE ` B0<:B.(3) If E ` (�p)b : B then there is an A such that E; p : A ` b : B andp 2 dom(b).(4) If E ` u : A then E = E1; u : A0; E2 where E ` A0<:A.(5) If E ` u:`j ( ς(x)b : A then there is an A0 = [`i : Bi i21::n] such thatE ` u : A0, j 2 1::n, dom(b) = ?, E; x : A0 ` b : Bj and E ` A0<:A.(6) If E ` p 7! [`i = ς(xi)bi i21::n] : A then A = Proc and there is anA0 = [`i : Bi i21:::n] such that E = E1; p : A0; E2, dom(bi) = ? andE; xi : A0 ` bi : Bi for all i 2 1::n.(7) If E ` acquire(u) : A then E ` u : Mutex .(8) If E ` release(u) : A then E ` u : Mutex .(9) If E ` clone(u) : A then E ` u : A.(10) If E ` u:`j : A then there is an A0 = [`i : Bi i21::n] such that E ` u : A0,j 2 1::n and E ` Bj<:A.Proof Each of these facts can be proved by an induction on the appropriatejudgment. 256



We use the notation E ` J for an arbitrary judgment, where J standsfor the fragments �, A, a : A and A<:B.We need the following standard lemmas in the proof of subject reduction:Lemma 31 If E; x : B;E 0 ` J and E ` v : B then E;E 0 ` J ffx vgg.Proof By induction on the derivation of E; x : B;E 0 ` J . 2Lemma 32 If E; x : D;E 0 ` J and E ` D0<:D then E; x : D0; E 0 ` J .Proof This is by an induction on the derivation of E; x : D;E 0 ` J . 2We note that this lemma is not valid if we generalise it to allow boundweakening for names as well as variables in the environment. For example,?; p : [] ` (p 7! []) : Proc holds, but the weakened judgment ?; p : [` : []] `(p 7! []) : Proc does not.Lemma 33 If E; u : A;E 0 ` J and u =2 fn(J ) [ fv(J ) then E;E 0 ` J .Proof By induction on the derivation of E; u : A;E 0 ` J . 2Lemma 34 If E;E 0 ` J and u =2 dom(E;E 0) and E ` A then E; u : A;E 0 `J .Proof By induction on the derivation of E;E 0 ` J . 2Lemma 35 If E; u : A; v : B;E 0 ` a : C then E; v : B; u : A;E 0 ` a : C.Proof By induction on the derivation of E; u : A; v : B;E 0 ` J . 2We show that structural congruence preserves typings:Lemma 36 If E ` a : A and a � b then E ` b : A.Proof We �rst symmetrise the lemma:(1) If E ` a : A and a � b then E ` b : A.(2) If E ` b : A and a � b then E ` a : A.We prove this by induction on the derivation of a � b. We consider each ofthe rules which may derive a � b in turn:(Struct Re) We have a � a, and the result is trivial.57



(Struct Symm) We have a � b obtained from b � a. Because of thesymmetrised form of the lemma, the result is trivial.(Struct Trans) We have a � c obtained from a � b and b � c. If E ` a : Athen the induction hypothesis applied to a � b gives E ` b : A. Theinduction hypothesis applied to b � c gives E ` c : A. Conversely,if E ` c : A then we deduce E ` b : A b � c. Similarly, we deduceE ` a : A from a � b.(Struct Update) We have u:`j ( ς(x)b � u:`j ( ς(x)b0 obtained fromb � b0. If E ` u:`j ( ς(x)b : A then by Lemma 30(5) we have anA0 = [`i : Bi i21::n] with j 2 1::n, E; x : A0 ` b : Bj, E ` u : A0,dom(b) = ? and E ` A0<:A. The induction hypothesis applied tob � b0 gives E; x : A0 ` b0 : Bj. By Lemma 9(4), dom(b0) = ?. Henceby (Val Update) E ` u:`j ( ς(x)b0 : A0. Since E ` A0<:A we have by(Val Subsumption) E ` u:`j ( ς(x)b0 : A as required. Part (2) followsby symmetry.(Struct Let) We have let x=a in b � let x=a0 in b0 obtained from a � a0and b � b0. If E ` let x=a in b : B then by Lemma 30(2) we haveA;B0 with E ` A<:Exp and E ` B0<:Exp such that E ` a : A,E; x : A ` b : B0, dom(b) = ? and E ` B0<:B. The inductionhypothesis applied to a � a0 gives E ` a0 : A. The induction hypothesisapplied to b � b0 gives E; x : A ` b0 : B0. Hence by (Val Let) and (ValSubsumption), E ` let x=a0 in b0 : B. Part (2) follows by symmetry.(Struct Res) We have (�p)a � (�p)a0 obtained from a � a0. If E ` (�p)a :A then by Lemma 30(3), E; p : B ` a : A for some B, and p 2 dom(a).The induction hypothesis applied to a � a0 gives E; p : B ` a0 : A.Lemma 9(4) gives dom(a0) = dom(a), and so p 2 dom(a0). Hence, by(Val Res), E ` (�p)a0 : A. Part (2) follows by symmetry.(Struct Par) We have a � b � a0 � b0 obtained from a � a0 and b � b0. IfE ` a � b : A then by Lemma 30(1) we have E ` a : Proc, E ` b : Aand dom(a)\dom(b) = ?. The induction hypothesis applied to a � a0gives E ` a0 : Proc. The induction hypothesis applied to b � b0 givesE ` b0 : A. By Lemma 9(4), dom(a0) = dom(a) and dom(b0) = dom(b).Hence by (Well Par), E ` a0 � b0 : A. Part (2) follows by symmetry.(Struct Object) We have p 7! [`i = ς(xi)bi i21::n] � p 7! [`i = ς(xi)b0i i21::n]obtained from bi � b0i and dom(bi) = ? for all i 2 1::n. If E `p 7! [`i = ς(xi)bi i21::n] : A then by Lemma 30(6) we have A = Procand there is an A0 = [`i : Bi i21::n] such that E = E1; p : A0; E2,58



dom(bi) = ? and E; xi : A0 ` bi : Bi for each i 2 1::n. The inductionhypothesis applied to bi � b0i gives E; xi : A0 ` b0i : Bi for i 2 1::n.Lemma 9(4) gives dom(bi) = ? for each i 2 1::n. Hence by (ValObject), E ` p 7! [`i = ς(xi)b0i i21::n] : Proc as required.(Struct Par Assoc) We have (a � b) � c � a � (b � c). If E ` (a � b) �c : A then by Lemma 30(1) we have E ` (a � b) : Proc, E ` c : Aand dom(a � b) \ dom(c) = ?. Similarly, Lemma 30(1) applied toE ` (a � b) : Proc gives E ` a : Proc, E ` b : Proc and dom(a) \dom(b) = ?. Since dom(a � b) = dom(a) [ dom(b) we have that thesets dom(a), dom(b) and dom(c) are pairwise disjoint. Rule (Val Par)applied to E ` b : Proc, E ` c : A and dom(b) \ dom(c) = ? givesE ` b � c : A. Rule (Val Par) applied to E ` a : Proc, E ` (b � c) : Aand dom(a) \ dom(b � c) = ? gives E ` a � (b � c) : A. Part (2)follows by a similar argument.(Struct Par Comm) We have (a � b) � c � (b � a) � c. If E ` (a �b) � c : A we argue much as in the (Struct Par Assoc) case, to deduceE ` a : Proc, E ` b : Proc, E ` c : A and that the sets dom(a), dom(b)and dom(c) are pairwise disjoint. Applying (Val Par) twice we deduceE ` (b � a) � c : A. Part (2) follows by symmetry.(Struct Res Res) We have (�p)(�q)a � (�q)(�p)a.Suppose E ` (�p)(�q)a : A. By renaming bound variables, we canassume without loss of generality that p 6= q. Applying Lemma 30(3)we get E; p : B; q : C ` a : A for some B and C and fp; qg � dom(a).By Lemma 35, E; q : C; p : B ` a : A. Hence by (Val Res), E; q :C ` (�p)a : A. Applying (Val Res) again, E ` (�q)(�p)a : A. Part (2)follows by symmetry.(Struct Par 1) We have (�p)(a � b) � a � (�p)b obtained from p =2 fn(a).Assume E ` (�p)(a � b) : A. Lemma 10(1) and (4) applied to thisjudgment gives (for some B), E; p : B ` a : Proc, E; p : B ` b : A,dom(a) \ dom(b) = ? and p 2 dom(a) [ dom(b). Lemma 9(1) andp =2 fn(a) imply p =2 dom(a). Since p 2 dom(a)[ dom(b) we must havep 2 dom(b). By (Val Res), E ` (�p)b : A. Since p =2 fn(a), E ` a : Procby Lemma 33. Now, dom(a)\dom((�p)b) = dom(a)\(dom(b)�fpg) =?, since dom(a)\dom(b) = ?. Hence (Val Par) gives E ` a � (�p)b : A.Part (2) follows similarly. If E ` a � (�p)b : A then by Lemma 30, E `a : Proc, E; p : B ` b : A, p 2 dom(b) and dom(a)\(dom(b)�fpg) = ?for some B. By Lemma 34, E; p : B ` a : Proc since p =2 fn(a).59



Hence by (Val Par), E; p : B ` a � b : A. Finally, (Val Res) givesE ` (�p)(a � b) : A.(Struct Par 2) Similar to (Struct Par 1).(Struct Let Assoc) If y =2 fn(c) we have let x=(let y=a in b) in c �let y=a in let x=b in c. Assume E ` let x=(let y=a in b) in c :C. Lemma 30(2) gives B;C 0 with E ` B<:Exp, E ` C 0<:Exp, E `let y=a in b : B, E; x : B ` c : C 0, dom(c) = ? and E ` C 0<:C.Applying Lemma 30(2) to E ` let y=a in b : B gives us A;B0 withE ` A<:Exp, E ` B0<:Exp, E ` a : A, E; y : A ` b : B0, dom(b) = ?and E ` B0<:B. By (Val Subsumption) we have E; y : A ` b : B.Since y =2 fn(c) we have E; y : A; x : B ` c : C 0 from Lemma 34. By(Val Let) E; y : A ` let x=b in c : C 0. Applying (Val Let) again,E ` let y=a in let x=b in c : C 0. Finally by (Val Subsumption),E ` let y=a in let x=b in c : C.Part (2) follows much as Part (1).(Struct Res Let) We have (�p)let x=a in b � let x=(�p)a in b obtainedfrom p =2 fn(b). For Part (1), we assume E ` (�p)let x=a in b : B.Lemma 30(2) and (3) gives A and C such that E; p : C ` a : A, E `A<:Exp, E; p : C; x : A ` b : B, dom(b) = ? and p 2 dom(a). From(Val Res) we deduce E ` (�p)a : A. Since p =2 fn(b), E; x : A ` b : Bby Lemma 33. Hence by (Val Let), E ` let x=(�p)a in b : B.Part (2) follows much as Part (1).(Struct Par Let) We have a � let x=b in c � let x=(a � b) in c. ForPart (1), we assume E ` a � let x=b in c : C. By Lemma 30(1) and(2) we get E ` a : Proc, dom(a) \ dom(b) = ? and B;C 0 such thatE ` B<:Exp, E ` C 0<:Exp, E ` b : B, E; x : B ` c : C 0, dom(c) = ?and E ` C 0<:C. Rule (Val Par) implies E ` a � b : B and rule (ValLet) gives E ` let x=(a � b) in c : C 0. Finally, (Val Subsumption)allows us to infer E ` let x=(a � b) in c : C.For Part (2), we assume E ` let x=(a � b) in c : C. Much as before,we deduce that E ` a : Proc, dom(a) \ dom(b) = ? and there areB;C 0 such that E ` B<:Exp, E ` C 0<:Exp, E ` b : B, E; x : B `c : C 0, dom(c) = ? and E ` C 0<:C. From (Val Par) and (Val Let)we deduce E ` a � let x=b in c : C 0 and from (Val Subsumption),E ` a � let x=b in c : C. 2We show that reduction preserves typings:60



Lemma 37 If E ` a : A and a! b then E ` b : A.Proof We prove this by induction on the derivation of a! b. We considereach of the rules which may derive a! b in turn:(Red Select) We have (p 7! d) � p:`j ! (p 7!d) � bjffxj  pgg where d =[`i = ς(xi)bi i21::n] and j 2 1::n. If E ` (p 7! d) � p:`j : A then byLemma 30(1), E ` p 7! d : Proc and E ` p:`j : A. Lemma 30(6)applied to E ` p 7! d : Proc gives a B = [`i : Bi i21::n] such thatE = E1; p : B;E2, dom(bi) = ? and E; xi : B ` bi : Bi for eachi 2 1::n. Lemma 30(4) applied to E ` p:`j : A gives a B0 = [`i :B0i i21::n0] such that E ` p : B0, j 2 1::n0 and E ` B0j<:A. FromLemma 31 applied to E1; p : B;E2; xi : B ` bj : Bj we get E1; p :B;E2 ` bjffxj  pgg : Bj. From Lemma 30(4) we deduce E ` B<:B0and hence from (Sub Object) that n0 < n and B0j = Bj. Hence by (ValSubsumption) E ` bjffxj  pgg : A. Finally, from (Val Par) we deduceE ` (p 7! d) � bjffxj  pgg : A.(Red Update) We have (p 7! d) � p:`j ( ς(x)b ! (p 7! d0) � p whered = [`i = ς(xi)bi i21::n] and d0 = [`j = ς(x)b; `i = ς(xi)bi i21::n�fjg]. IfE ` (p 7!d) � p:`j ( ς(x)b : A then by Lemma 30(1) and (6) we geta B = [`i : Bi i21::n] such that E = E1; p : B;E2, dom(bi) = ? andE; xi : B ` bi : Bi for each i 2 1::n. From Lemma 30(1), (4) and (5) weget a B0 = [`i : B0i i21::n0] such that E ` p : B0, j 2 1::n0, dom(b) = ?,E; x : B0 ` b : B0j, E ` B0<:A and E ` B<:B0. From E ` B<:B0 and(Sub Object) we see that n0 < n and Bj = B0j.From Lemma 32 applied to E; x : B0 ` b : Bj and E ` B<:B0 wecan deduce E; x : B ` b : Bj. From this with E = E1; p : B;E2 andE; xi : B ` bi : Bi for i 2 1::n�fjg we can deduce E ` (p 7! d0) : Proc.The judgment E ` p : A follows from (Val u) and (Val Subsumption).Finally we deduce E ` (p 7! d0) � p : A from (Val Par).(Red Clone) We have (p 7! d) � clone(p) ! (p 7! d) � (�q)((q 7! d) � q),where d = [`i = ς(xi)bi i21::n] and q =2 fn(p 7! d). Suppose E ` (p 7! d) �clone(p) : B. Then by Lemma 30(1, 6, 9) we deduce E = E1; p : A;E2,E ` A<:B and E; x : A ` bi : Bi for i 2 1::n, where A = [`i : Bi i21::n].From Lemma 34 we can deduce E; q : A; xi : A ` bi : Bi for each i 2 1::nand hence from (Val Object) we derive E; q : A ` q 7! d : Proc. From(Val u), (Val Par) and (Val Subsumption) we get E; q : A ` (q 7! d) �q : B. Hence by (Val Res), E ` (�q)((q 7! d) � q) : B. Finally by (ValPar), E ` (p 7! d) � (�q)((q 7! d) � q) : B as required.61



(Red Let Result) We have let x=p in b ! bffx  pgg. If we have E `let x=p in b : B then by Lemma 30(2), there are A;B0 such thatE ` A<:Exp, E ` B0<:Exp, E ` p : A, E; x : A ` b : B0, dom(b) = ?and E ` B0<:B. By Lemma 31, E ` bffx pgg : B0 since E ` p : A andE; x : A ` b : B0. Finally by (Val Subsumption), E ` bffx pgg : B.(Red Res) We have (�p)a! (�p)a0 obtained from a! a0. If E ` (�p)a : Athen by Lemma 30(3) there is B such that E; p : B ` a : A, andp 2 dom(a). By induction, E ` a0 : A. Lemma 9(5) gives dom(a0) =dom(a), so p 2 dom(a0). Hence E ` (�p)a0 : A.(Red Par 1) We have a � b ! a0 � b obtained from a ! a0. If E ` a �b : A then by Lemma 30(1) we have E ` a : Proc, E ` b : A anddom(a)\dom(b) = ?. Hence by induction, E ` a0 : Proc. Lemma 9(5)gives dom(a0) = dom(a). Rule (Val Par) gives E ` a0 � b : A.(Red Par 2) Similar to (Red Par 1).(Red Let) We have let x=a in b ! let x=a0 in b obtained from a ! a0.If E ` let x=a in b : B then by Lemma 30(2), there are A;B0 suchthat E ` A<:Exp, E ` B0<:Exp, E ` a : A, E; x : A ` b : B0,dom(b) = ? and E ` B0<:B. By induction, we have E ` a0 : A. Henceby (Val Let), E ` let x=a0 in b : B0. By (Val Subsumption) we deduceE ` let x=a0 in b : B.(Red Struct) We have a! b obtained from a � a0, a0 ! b0 and b0 ! b. IfE ` a : A then by Lemma 36, E ` a0 : A. The induction hypothesisapplied to a0 ! b0 gives E ` b0 : A. Finally, applying Lemma 36 again,E ` b : A. 2Proof of Theorem 3(1) If E ` a : A and a � b then E ` b : A.(2) If E ` a : A and a! b then E ` b : A.Proof Part (1) follows immediately from Lemma 36. Part (2) followsimmediately from Lemma 37. 2A proposition analogous to Theorem 3 holds for Proc-indexed structuralcongruence and reduction:
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Proposition 38 Suppose E ` a : Proc. Then:(1) If a Proc� b then E ` b : Proc.(2) If a Proc! b then E ` b : Proc.Proof(1) If a Proc� b then there is a fresh p with a � p � b � p. By (Val Par)and Lemma 34, E; p : [] ` a � p : []. (Our choice of the type [] for thename p is somewhat arbitrary.) By Lemma 36, E; p : [] ` b � p : []. ByLemma 30(1), E; p : [] ` b : Proc. Since p =2 fn(b), E ` b : Proc byLemma 33.(2) If a Proc! b then a Proc� a0 ! b0 Proc� b. From Part (2), E ` a0 : Proc. FromPart(3), E ` b0 : Proc. Finally, Part (2) gives E ` b : Proc. 2
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