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RÉSUMÉ

Cet article propose une méthode basée sur l’analyse dis-
criminative non-linéaire pour extraire et sélectionnerun
ensemble de vecteurs acoustiques utilisés pour l’identi-
fication de locuteurs. L’approche consiste à mesurer et
grouper un grand nombre de mesures acoustiques (corre-
spondant à plusieurs trames de données consécutives), et
à réduire la dimensionalité du vecteur résultant au moyen
d’un reseau de neurones artificielles. Le critère utilisé
pour optimiser les poids du réseau consiste à maximiser
une mesure de la séparation entre les locuteurs d’une base
de données d’apprentissage. L’architecture du reseau est
telle que l’une de ses couches intermédiaires représentela
projection des vecteurs acoustiques d’entrée sur un espace
de dimensionalité inferieure. Après la phase d’apprentis-
sage, cette partie du réseau peut etre isolée et utiliséepour
projeter les vecteurs acoustiques d’une base de données
de test. Les vecteurs acoustiques projetés peuvent alors
être classifiés. Combiné à un classificateur cepstral, le
classificateur utilisant ces nouveaux vecteurs acoustiques
réduit de 15% le taux d’erreur de classification de la base
de données définie par NIST en 1997 pour l’évaluation des
systèmes de reconnaissance du locuteur.

ABSTRACT

We study a nonlinear discriminant analysis (NLDA) tech-
nique that extracts a speaker-discriminant feature set. Our
approach is to train a multilayerperceptron (MLP) to max-
imize the separation between speakers by nonlinearly pro-
jecting a large set of acoustic features (e.g., several frames)
to a lower-dimensional feature set. The extracted features
are optimized to discriminate between speakers and to be
robust to mismatched training and testing conditions. We
train the MLP on a development set and apply it to the
training and testing utterances. Our results show that by
combining the NLDA-based system with a state of the
art cepstrum-based system we improve the speaker verifi-
cation performance on the 1997 NIST Speaker Recogni-
tion Evaluation set by 15% in average compared with our
cepstrum-only system.

1. INTRODUCTION

Our goal is to extract and select features that are more in-
variant to non-speaker-related conditions such as handset
type, sentence content, and channel effects. Such fea-
tures will be robust to mismatched training and testing
conditions of speaker verification systems. With current
feature sets (e.g., cepstrum) there is a big performance
gap between matched and mismatched tests [8] even af-
ter applying standard channel compensation techniques
[4]. In order to find these features, the feature extraction
step should be directly optimized to increase discrimina-
tion between speakers, and to filter out the non-relevant
information.

Our proposed solution is to train a multilayer percep-
tron (MLP) to nonlinearly project a large set of acoustic
features to a lower-dimensional feature set, such that it
maximizes speaker separation. We train the MLP on a
development set that includes several realizations of the
same speakers under different conditions. We then apply
the learned transformation (MLP in feed-forward mode)
to the training and testing utterances. Finally, we use the
resulting features for training the speaker recognition sys-
tem, e.g., Bayesian adapted Gaussian mixture system [9].

We begin by reviewing related studies in Section 2. We
describe the proposed feature extraction technique in Sec-
tion 3. The Development database is described in Section
4. In Section 5, we report the experimental results on the
1997 NIST evaluation set. We continue with analysis of
the results in Section 6. Finally, we conclude and describe
directions for future work in Section 7.

2. RELATED STUDIES

The related studies to the NLDA technique can be di-
vided into two main categories: robust speaker verification
systems, and data-driven feature extraction techniques.
Previously proposed approaches to increase robustness to
mismatched training and testing conditions, especially to
handset variations, include handset-dependent background



models [3], and a handset-dependent score normaliza-
tion procedure known as Hnorm [9]. Data-driven feature
extraction techniques were mainly suggested for speech
recognition tasks. Rahim, Bengio and LeCun suggested
optimizing a set of parallel class specific (e.g., phones) net-
works performing feature transformation based on mini-
mum classification (MCE) criterion [7]. Fontaine, Ris and
Boite used 2-hidden layer MLP to perform NLDA for iso-
lated word, large vocabulary speech recognition task [2].
The training criterion for the MLPs was phonetic classi-
fication. Bengio and his colleagues suggested a global
optimization of a neural network-hidden Markov (HMM)
hybrid, where the outputs of the neural network constitute
the observation sequence for the HMM [1].

3. NONLINEAR DISCRIMINANT ANALYSIS
(NLDA)

We explore a nonlinear discriminant analysis (NLDA)
technique that finds a nonlinear projection of the original
feature space into a lower dimensional space that maxi-
mizes speaker recognition performance. This maximiza-
tion problem can be expressed asA� = argmaxA JfA(X)g (1)

WhereA(X) is a nonlinear projection of the original fea-
ture spaceX onto a lower dimensional space, andJfg is
a closed-set speaker identification performance measure.
To find the bestA we train a 5 layer multilayer perceptron
(MLP) to discriminate between speakers in a carefully se-
lected development set (as described below). The MLP
is constructed from a large input layer, a first large non-
linear hidden unit, a small (“bottleneck”) second linear
hidden layer, a large third nonlinear hidden layer, and a
softmax output layer (see Figure 1). The idea is thatA is
the projection of the input features speaker onto the “bot-
tleneck” layer. After training the 5-layer MLP (denoted
‘MLP5’) we can remove the last hidden layer and the out-
put layer, and use the remaining 3-layer MLP to project
the target speaker data. Then, we use the transformed fea-
tures to train the speaker verification system, for example,
a Bayesian adapted GMM system (see Figure 2). The
underlying assumption is that the transformation as found
in the development set will be invariant across different
speaker populations.

4. DEVELOPMENT DATABASE

To train the 5-layer MLP, we chose 855 Switchboard sen-
tences (about 2 hours) from 31 speakers with a balanced
mix of carbon and electret handsets, and balanced across
gender. The input consists of 17 cepstral coefficients
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Figure 1: MLP5 for Speaker Recognition
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Figure 2: MLP3 for Feature Transformation

and an estimate of the pitch for the current frame, four
past frames and four future frames, resulting in a 162-
dimension vector. The first hidden layer has 500 sigmoidal
units, the bottleneck layer has 34 linear units, the third hid-
den layer has 500 sigmoidal units, and a softmax output
layer has 31 outputs (one for each speaker in the develop-
ment set). After training the MLP5, we chopped the upper
two layers. The resulting MLP (‘MLP3’) has one hidden
layer and was used to transform the data of the target and
impostor speakers in a test set as described above.

5. EXPERIMENTAL RESULTS

We used the 1997 NIST Speaker Recognition Evaluation
corpus for testing. We report results for three different
systems: (1) our best cepstrum system, which is our imple-
mentation of the state of the art in text independent speaker
verification systems [6]) with 33 input features comprised
of 10 cepstral coefficients, energy term, and first and sec-
ond time derivatives (2) the NLDA based system described
in this paper, (3) a combination of the cepstrum and the



Test Cepstrum NLDA Combined
female 3 18.4% 23.0% 16.7%
female 10 12.1% 14.6% 10.8%
female 30 10.5% 12.4% 9.0%
male 3 14.9% 19.4% 14.4%
male 10 13.2% 12.9% 11.1%
male 30 7.9% 11.0% 7.1%

Table 1: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1h condition

Test Cepstrum NLDA Combined
female 10 13.5% 17.0% 12.5%
male 10 11.3% 14.4% 10.5%

Table 2: Equal Error Rate (EER) Results of the 1997 NIST
Eval., 1s condition

NLDA systems. The third system is a linear combination
of the normalized scores with weights of 0.7 for the cep-
strum system scores and 0.3 for the NLDA system scores
(expect for the 3 second cases, where we used 0.6 for the
cepstrum system and 0.4 for the NLDA system). We use
the equal error rate (EER) between misses and false alarms
as a performance measure for reporting results. In Table
1, we summarize the results for the 1h condition in the
NIST evaluation. In this condition the training consists
of 2 phone calls from the same handset, each 1 minute in
duration. There are three different test lengths: 3, 10, and
30 seconds. We report the results for each gender sepa-
rately, by pooling all the test data together (matched and
mismatched telephone number).

The results show a consistent win for the combined
system over our state of the art cepstrum system. We
observe the same consistent win for another condition,
1s, in the 1997 NIST Speaker Recognition Evaluation as
demonstrated for the 10 second case in Table 2, and across
all regions of the DET (false alarm probability versus miss
probability) curves as illustrated in Figure 3 for the male,
10 seconds (1h condition) for the cepstrum only system
and the combined system. These results are consistent
with our initial results for the 1998 Evaluation corpus.

6. RESULT ANALYSIS

In this section, we examine our “black box” approach,
provide insight to its success and give directions for po-
tential improvements. In order to examine the importance
of the pitch input, the 9 frame temporal window, and the
degradation loss as a result of the dimension reduction
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Figure 3: DET Curve for male, 1h, 10 seconds

Inputs Name Frame Correct
9 frames+ pitch MLP3 37.2%
9 frames+ pitch MLP5-34 28.9%
9 frames+ pitch MLP5-50 29.0%
9 frames, no pitch MLP5-NO 25.9%
1 frame+ pitch MLP5-1fr 18.6%

Table 3: Frame-level results on the cross-validation set

from 162 inputs to 34 hidden units in the bottleneck layer,
we trained several MLPs and tested their cross-validation,
frame-level performance on a close set speaker recogni-
tion (our development set as described above). In the
development phase we found a strong correlation between
these frame-level results and the “full cycle” results of the
speaker verification system. The results are summarized
in Table 3.

We trained two types of MLPs: a 5-layer MLP, and
a "vanilla” MLP with three layers including one hidden
layer (denoted ‘MLP3’). As mentioned above there were
31 speakers in our development set, 687156 frames for
training and 77904 for cross-validation. Our baseline MLP
is the MLP5 described above with 162 inputs and 3 hidden
layers with 500, 34, and 500 units (named ‘MLP5-34’).
The output layer of all our nets has 31 outputs, one output
for each speaker in our development set. The MLP5 named
‘MLP5-NO’ is the same as the baseline but without pitch
information (only 153 inputs). The MLP5 named ‘MLP5-
1’ is the same as the baseline but with only one input frame
(as compared to the 9 frames used in the other systems)

Training a 5-layer MLP is difficult given the complex



nonlinear error surface and requires a lot of training data
preferably a ratio of at least 10 between frames than free
parameters. In these experiments the ratio was around 4.7
(700k frames to 150k parameters). This might explain the
disparity in performance between the MLP3 to the MLP5.
This is not due to the bottleneck size as shown by the result
of the MLP5 named ‘MLP5-50’ (the same as ‘MLP5-34’
but with 50 hidden units in the bottleneck layer). In our
speech recognition experiments [5] with NLDA, with the
right ratio between frames to free parameters, we did not
observe any performance loss because of the dimension
reduction at the bottleneck layer. Thus, we plan to increase
the size of the development set and hopefully improve
the performance of the MLP5 and the overall technique.
Additionally comparing the second row to the fourth and
fifth rows in Table 3, we observe from these results that
that we get a 3% absolute gain from the pitch information,
and 10.3% absolute gain from the temporal window.

Another set of interesting results is the correlation be-
tween the cepstrum and the NLDA scores on 1997 Eval.
set, 1h condition, as summarized in Table 4. From these
results, we observe that the NLDA technique contribute
a significant amount of new information, especially for
the shorter test lengths. This is consistent with the results
previously shown in Table 1.

Test Length Male Female
3 0.61 0.47
10 0.68 0.71
30 0.76 0.77

Table4: Correlation Coefficients between NLDA and Cep-
strum systems on 1997 Eval. set, 1h condition

7. CONCLUSIONS AND FUTURE WORK

We presented a nonlinear discriminant analysis (NLDA)
technique that extracts a speaker-discriminant feature set.
Our results on the 1997 NIST evaluation show a consis-
tent (across 12 different tests) and significant (around 15%
in relative error) improvement when combining the sys-
tem trained with the NLDA features with cepstrum based
system. Our initial results on 1998 NIST evaluation are
consistent with 1997 results. Furthermore, our analysis
suggests that there is a potential for performance improve-
ment given more development data. We also plan to exper-
iment with other types of input data such as speech over
cellular phones and speaker-phone speech. In addition,
we plan to extend this study by using a wider range of
input representations and resolutions such as first and sec-
ond derivatives of cepstrum, filter-bank energy levels, and

different analysis windows. Finally we want to note that
although the training of the MLP with 5 layers is compu-
tationally expensive (25 x real time), the application of the
MLP3 in a feed forward mode is very fast (less than 0.4
real-time), thus the NLDA approach is feasible in realistic
settings.
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