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Abstract

Compilers for ML and Haskell use intermediate languages

that incorporate deeply-embedded assumptions about order

of evaluation and side e�ects. We propose an intermediate

language into which one can compile both ML and Haskell,

thereby facilitating the sharing of ideas and infrastructure,

and supporting language developments that move each lan-

guage in the direction of the other. Achieving this goal with-

out compromising the ability to compile as good code as a

more direct route turned out to be much more subtle than

we expected. We address this challenge using monads and

unpointed types, identify two alternative language designs,

and explore the choices they embody.

1 Introduction

Functional programmers are typically split into two camps:

the strict (or call-by-value) camp, and the lazy (or call-by-

need) camp. As the discipline has matured, though, each

camp has come more and more to recognise the merits of the

other, and to recognise the huge areas of common interest.

It is hard, these days, to �nd anyone who believes that lazi-

ness is never useful, or that strictness is always bad. While

there are still pervasive stylistic di�erences between strict

and lazy programming, it is now often possible to adopt lazy

evaluation at particular places in a strict language (Okasaki

[1996]), or strict evaluation at particular points in a lazy one

(for example, Haskell's strictness annotations (Peterson et

al. [1997])).

This rapprochement has not yet, however, propagated to

our implementations. The insides of an ML compiler look

pervasively di�erent to those of a Haskell compiler. Notably,

sequencing and support for side e�ects and exceptions are

usually implicit in an ML compiler's intermediate language

(IL), but explicit (where they occur) in a Haskell compiler

(Launchbury & Peyton Jones [1995]). On the other hand,

thunk formation and forcing are implicit in a Haskell com-

piler's intermediate language, but explicit in an ML com-

piler. These pervasive di�erences make it impossible to

share code, and hard to share results and analyses, between

the two styles.

To say that \support for side e�ects are implicit in an ML

compiler's IL" (for example) is not to say that an ML com-

piler will take no notice of side e�ects; on the contrary, an
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ML compiler might well perform a global analysis that iden-

ti�es pure sub-expressions (though in practice few do). How-

ever, one might wonder whether the analysis would discover

all the pure sub-expressions in a Haskell program translated

into the IL. In the same way, if an ML program were trans-

lated into a Haskell compiler's IL, the latter might not dis-

cover all the occasions in which a function argument was

guaranteed to be already evaluated. This thought motivates

the following question: could we design a common compiler

intermediate language (IL) that would serve equally well for

both strict and lazy languages? The purpose of this paper is

to explore the design space for just such a language.

We restrict our attention to higher order, polymorphically

typed intermediate languages. There is considerable interest

at the moment in type-directed compilation for polymorphic

languages, in which type information is maintained accu-

rately right through compilation and even on to run time

(Harper & Morrisett [1995]; Shao & Appel [1995]; Tarditi et

al. [1996]). Hence we focus on higher order, statically typed

source languages, represented in this paper by ML (Milner

& Tofte [1990]) and Haskell (Peterson et al. [1997]).

At �rst we expected the design to be relatively straight-

forward, but we discovered that it was not. In particular,

making sure that the IL has good operational properties for

both strict and lazy languages turns out to be rather subtle.

Identifying these subtleties is the main contribution of the

paper:

� We employ monads to express and delimit state, in-

put/output, and exceptions (Section 3). Using mon-

ads in this way is now well known to theorists (Moggi

[1991]) and to language designers (Launchbury & Pey-

ton Jones [1995]; Peyton Jones & Wadler [1993];

Wadler [1992a]), but, with one exception

1

, no compiler

that we know has monads built into its intermediate

language.

� We employ unpointed types to express the idea that

an expression cannot diverge (Section 3.1). We show

that the straightforward use of unpointed types does

not lead to a good implementation (Section 3.6). This

leads us to explore two distinct language designs. The

�rst, L

1

, is mathematically simple, but cannot be com-

piled well (Section 3). An alternative design, L

2

, adds

operational signi�cance to unpointed types, by guar-

anteeing that a variable of unpointed type is evaluated

(Section 4); this means L

2

can be compiled well, but

weakens its theory.

� We identify an interaction between unpointed types,

polymorphism, and recursion in L

1

(Section 3.5). In-

terestingly, the problem turns out to be more easily

solved in L

2

than L

1

(Section 4.2).

1
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None of these ingredients are new. Our contribution is to ex-

plore the interactions of mixing them together. We emerge

with the core of a practical IL that has something to o�er

both the strict and lazy community in isolation, as well as

o�ering them a common framework. Our long-term goal is

to establish an intermediate language that will enable the

two communities to share both ideas (analyses, transforma-

tions) and systems (optimisers, code generators, run-time

systems, pro�lers, etc) more e�ectively than hitherto.

2 The ground rules

We seek an intermediate language (IL) with the following

properties:

� It must be possible to translate both (core) ML and

Haskell into the IL. Extensions that add laziness to

ML, or strictness to Haskell, should be readily incor-

porated. We make no attempt to treat ML's module

system, though that would be a desirable extension.

� In order to accommodate ML and Haskell the IL's

type system must support polymorphism. This ground

rule turns out to have very signi�cant, and rather

unfortunate, impact upon our language designs (Sec-

tion 3.5), but it seems quite essential. Nearly all exist-

ing compilers generate polymorphic target code, and

although researchers have experimented with compil-

ing away polymorphism by type specialisation (Jones

[1994]; Tolmach & Oliva [1997]), problems with sepa-

rate compilation and potential code explosion remain

unresolved.

� The IL should be explicitly typed (Harper & Mitchell

[1993]). We have in mind a variant of System F (Gi-

rard [1990]), with its explicit type abstractions and

applications. The expressiveness of System F really

is required. For example, there are several reasons

for wanting polymorphic arguments to functions: the

translation of Haskell type classes creates \dictionar-

ies" with polymorphic components; we would like to be

able to simulate modules using records (Jones [1996]);

rank-2 polymorphism is required to express encap-

sulated state (Launchbury & Peyton Jones [1995]);

and data-structure fusion (Gill, Launchbury & Pey-

ton Jones [1993]).

IL programs can readily be type-checked, but there

is no requirement that one could infer types from a

type-erased IL program.

� The IL should have a single well-de�ned semantics. On

the face of it, compilers for both strict and lazy lan-

guages already use a common language, namely the

lambda calculus. But this similarity is only at the

level of syntax; the semantics of the two calculi di�er

considerably. In particular, the code generator from

a strict-language compiler would be completely unus-

able in a lazy-language compiler, and vice versa. Our

goal is to have a single, neutral, semantics, and hence

a single optimiser and code generator.

� ML (or Haskell) programs thus compiled should be

as e�cient as those compiled by a good ML (resp.

Haskell) compiler. In other words, compiling through

the common IL should not impose any unavoidable e�-

ciency penalty, either by way of loss of transformations

(especially when starting from Haskell) or by way of

a less e�cient basic evaluation model (especially when

starting from ML). Indeed, our hope is that we may

ultimately be able to generate better code through this

new route.

3 L

1

, a totally explicit language

It is clear that the IL must be explicit about things that are

implicit in \traditional" compiler ILs. Where are these im-

plicit aspects of a \traditional" IL currently made explicit?

Answer: in the denotational semantics of the IL. For ex-

ample, the denotational semantics of a call-by-value lambda

calculus looks something like this

2

E [[e

1

e

2

]]� = (E [[e

1

]]�) b; if a = b

?

?; if a = ?

where a = E [[e

2

]]�

Here, the two cases in the right-hand side deal with the pos-

sible non-termination of the argument. What is implicit in

the IL { the evaluation of the argument, in this case { be-

comes explicit in the semantics. An obvious suggestion is

therefore to make the IL re
ect the denotational semantics

of the source language directly, so that everything is explicit

in the IL, and nothing remains to be explicated by the se-

mantics. This is our �rst design, L

1

.

Figure 1 gives the syntax and type rules for L

1

. We note

the following features:

� As a compromise in the interest of brevity all our

formal material describes only a simply-typed calcu-

lus, although supporting polymorphism is one of our

ground rules. The extensions to add polymorphism,

complete with explicit type abstractions and applica-

tions in the term language, are fairly standard (Harper

& Mitchell [1993]; Peyton Jones [1996]; Tarditi et al.

[1996]). However, polymorphism adds some extra com-

plications (Section 3.5, 3.6).

� We omit recursive data types, constructors, and case

expressions for the sake of simplicity, being content

with pairs and selectors.

� let is simply very convenient syntactic sugar. It is not

there to introduce polymorphism, even in the polymor-

phic extension of the language; explicit typing removes

this motivation for let.

� letrec introduces recursion. Though we only give it

one binding here, our intention is that it should ac-

commodate multiple bindings. We use it rather than

a constant fix because the latter requires heavy en-

coding for mutual recursion that is not re
ected in

an implementation. We discuss recursion in detail in

Section 3.5, including the unspeci�ed side condition

mentioned in the rule.

� Following Moggi [1991], we express \computational ef-

fects" | such as non-termination, assignment, excep-

tions, and input/output | in monadic form. The type

M � is the type of M -computations returning a value

of type � , where M is drawn from a �xed family of

monads. The syntactic forms let

M

and ret

M

are

2

We use the following standard notation. If T is a complete partial

order (CPO), then the CPO T

?

, pronounced \T lifted", is de�ned

thus: T

?

= fa

?

j a 2 Tg [ f?g, with the obvious ordering.

2



Types �; � ::= Int j �

1

->�

2

j () j (�

1

,�

2

)

j Ref � jM �

Terms e ::= x j k j e

1

e

2

j \x:�.e j (e

1

,e

2

)

j let x:� = e

1

in e

2

j letrec x:� = e

1

in e

2

j let

M

x:� <- e

1

in e

2

j ret

M

e

Constants k ::= fst j snd j new j rd j wr j liftToST

j 0 j 1 j 2 j : : : j + j - j : : :

Monads M ::= Lift j ST

(V AR)

x : � 2 �

� ` x : �

(PAIR)

� ` e

1

: �

1

� ` e

2

: �

2

� ` (e

1

,e

2

) : (�

1

,�

2

)

(APP )

� ` e

1

: �->� � ` e

2

: �

� ` e

1

e

2

: �

(LAM)

�; x:� ` e : �

� ` �x:�:e : �->�

(LET )

� ` e

1

: � �; x:� ` e

2

: �

� ` let x:� = e

1

in e

2

: �

(REC)

�; x : � ` e

1

: � �; x : � ` e

2

: �

...plus a side condition...

� ` letrec x:� = e

1

in e

2

: �

(LETM)

� ` e

1

: M �

1

�; x : �

1

` e

2

: M �

2

� ` let

M

x:�

1

<- e

1

in e

2

:M �

2

(RET )

� ` e : �

� ` ret

M

e : M �

(FST ) � ` fst : (�

1

,�

2

) -> �

1

(SND) � ` snd : (�

1

,�

2

) -> �

2

(PLUS) � ` + : Int -> Int -> Int

(NEW ) � ` new : � -> ST (Ref � )

(RD) � ` rd : Ref � -> ST �

(WR) � ` wr : Ref � -> � -> ST ()

(LIFT ) � ` liftToST : Lift � -> ST �

Figure 1: Syntax and type rules for L

1

the bind and unit combinators of the monad M . The

only two monads we consider for now are the lifting

monad, Lift, and the combination of lifting with the

state transformer monad, ST. It is a straightforward

extension to include the monads of exceptions and in-

put/output as well.

This use of monads appears to contradict our goal that

L

1

should have a trivial semantics. We discuss the

reasons for this decision in Section 3.4.

Figure 2 gives the semantics of L

1

. The semantic function

T gives the meaning of types. If it looks somewhat boring,

that is the point! The function arrow in L

1

is interpreted by

function arrow in the underlying category of complete par-

tial orders (CPO), product is interpreted by (categorical, i.e.

T : Type ! CPO

T [[Int]] = Z

T [[�

1

->�

2

]] = T [[�

1

]]! T [[�

2

]]

T [[(�

1

,�

2

)]] = T [[�

1

]]� T [[�

2

]]

T [[()]] = 1

T [[Lift � ]] = T [[� ]]

?

T [[ST � ]] = State! (T [[� ]] � State)

?

T [[Ref � ]] = N

State = N ,!

S

�

T [[� ]]

E : Term

�

! Env ! T [[� ]]

E [[x]]� = �(x)

E [[k]]� = k

E [[e

1

e

2

]]� = (E [[e

1

]]�) (E [[e

2

]]�)

E [[\x.e]]� = �y:E [[e]]�[x := y]

E [[(e

1

,e

2

)]]� = (E [[e

1

]]�; E [[e

2

]]�)

E [[let x:� = e

1

in e

2

]]� = E [[e

2

]]�[x := E [[e

1

]]�]

E [[letrec x:� = e

1

in e

2

]]� = E [[e

2

]](rec[[x; e

1

]]�)

E [[let

M

x:� <- e

1

in e

2

]]� = bind

M

(E [[e

1

]]�)

(�y:E [[e

2

]]�[x := y])

E [[ret

M

e]]� = unit

M

(E [[e]]�)

rec[[x; e

1

]]� = fix(��

0

:�[x := E [[e

1

]]�

0

])

fst (a; b) = a

snd (a; b) = b

bind

Lift

m k = ?; if m = ?

k a; if m = a

?

unit

Lift

x = x

?

bind

ST

m k s = ?; if m s = ?

k r s

0

; if m s = (r; s

0

)

?

unit

ST

m s = (m; s)

?

new v s = (r; s[r 7! v])

?

where r 62 dom(s)

rd r s = (s r; s)

?

; if r 2 dom(s)

?; otherwise

wr r v s = ((); s[r 7! v])

?

; if r 2 dom(s)

?; otherwise

liftToST m s = (r; s)

?

; if m = r

?

?; otherwise

Figure 2: Semantics of L

1

un-lifted) product, and integers are interpreted by the inte-

gers. (If L

1

were expanded to have sum types, they would

be interpreted by (categorical, separated) sums.) Lastly,

each monad is speci�ed by an interpretation. The monad

of lifting is interpreted by lifting, while a state transformer

is interpreted by a function from the current \state" to a

result and the new state. The \state" is a �nite mapping

from location identi�ers (modeled by the natural numbers,

N ) to their contents.

The semantic function E gives the meaning of expressions.

Again, many of its equations are rather dull: application

is interpreted by application in the underlying category,

lambda abstraction by functional abstraction, and so on.

The semantics of the two monads is given by their bind and

unit functions. From the semantics one can prove that both

� and � are valid with respect to the semantics, and that

monadic expressions admit a number of standard transfor-

mations, given in Figure 3.

3



(M1) let

M

x <- ret

M

e in b = let x:� = e in b

(M2) let

M

x <- (let

M

y <- e

1

in e

2

) in b = let

M

y <- e

1

in (let

M

x <- e

2

in b) y 62 fv(b)

(M3) let

M

x <- (let y = e

1

in e

2

) in b = let y = e

1

in (let

M

x <- e

2

in b) y 62 fv(b)

(M4) let

M

x <- (letrec y = e

1

in e

2

) in b = letrec y = e

1

in (let

M

x <- e

2

in b) y 62 fv(b)

(M5) let

M

x <- e in ret

M

x = e

(M6) let x = e in ret

M

b = ret

M

(let x = e in b)

Figure 3: Monad transformations

3.1 Termination and non-termination

As we have mentioned, the interpretation of a type in L

1

is a complete partial order (CPO). However, the interpreta-

tion of a type is not necessarily a pointed CPO; that is, the

CPO does not necessarily contain a bottom element. For

example, the data type of integers, Int, is interpreted by

the unpointed CPO of integers, Z. That is, if an expression

has type Int, then it denotes an integer, and cannot denote

a non-terminating computation. How, then, do we express

the type of possibly-diverging integer-valued computations?

As we have seen, L

1

has an explicit type constructor for

each monadic (i.e. computation) type, of which lifting is

one. To express the type of a possibly-diverging integer we

use the lifting monad. A possibly-diverging integer-valued

expression therefore has type Lift Int.

So L

1

's type system can distinguish surely-terminating ex-

pressions from possibly-diverging ones. The main reason

for making this distinction in the type system is so that we

can express the idea that a function takes an evaluated argu-

ment. The L

1

lambda abstraction \x:Int.e expresses that

x cannot possibly be ?, and so is a suitable translation of a

lambda abstraction from a call-by-value language. On the

other hand \x:Lift Int.e expresses that x might perhaps

be ?, which �ts a call-by-name or call-by-need language.

A second motivation for distinguishing pointed types from

unpointed ones is that some useful program transforma-

tions that are not valid in general, hold unconditionally

when one has more control over pointedness. Several re-

searchers have explored languages that employ a distinc-

tion between pointed and unpointed types (Howard [1996];

Launchbury & Paterson [1996]), and others have explored

pure languages without pointed types altogether (Cockett

& Fukushima [1992]; Hagino [1987]; Turner [1995]). The

presence of unpointed types has consequences for recursion,

as we discuss in Section 3.5.

3.2 Stateful computations

In a similar way, we use the ST monad to express in the type

system the distinction between pure and stateful computa-

tions. For example, an expression of type Lift Int denotes

a pure (side-e�ect free), albeit possibly-divergent, computa-

tion; on the other hand, and expression of type ST Int de-

notes a computation that might diverge

3

, or might perform

some side e�ects on a global state and deliver an integer.

Further monads can readily be added to model exceptions,

or continuations, or input/output.

This use of monads is well known. Moggi pioneered the

idea of using monads to encapsulate computations (Moggi

[1991]; Wadler [1992a]). The lazy functional programming

3

ST combines lifting with state. It would be possible to separate

the two, as we discuss in Section 7.

Types S; T ::= Int j () j S � T j S ! T jRef S

Haskell only j ST S

Terms M;N ::= x j i jM N j �x :T:M jM + N

j letrec x :T =M in N

j let x :T =M in N

j pair M N j fst M j snd M

j new M j rd M jwr M N

Haskell only j let

ST

x :T M in N j ret

ST

M

Integers i ::= 0 j 1 j 2 j : : :

\ML" constants

new : 8�:�! Ref �

rd : 8�:Ref �! �

wr : 8�:Ref �! �! ()

\Haskell" constants

new : 8�:�! ST (Ref �)

rd : 8�:Ref �! ST �

wr : 8�:Ref �! �! ST ()

Figure 4: Syntax of S

community has been using monads very e�ectively to isolate

and encapsulate stateful computations and input/output

within pure, lazy programs (Launchbury & Peyton Jones

[1995]; Peyton Jones, Gordon & Finne [1996]; Peyton Jones

& Wadler [1993]; Wadler [1992b]). Nevertheless, there are

surprisingly subtle design choices to make, as we discuss in

Section 3.4.

3.3 Translating ML and Haskell into L

1

Before discussing its design any further, we �rst emphasise

L

1

's role as a target for both strict, stateful, and pure, lazy

languages by giving translations from both into L

1

. Figure 4

gives the syntax of a tiny generic source language, S. We

regard S as a prototype for either ML or Haskell, by giving

it a strict or lazy interpretation respectively. In either case,

S is assumed to have been explicitly annotated with type

information by a type inference pass.

The constants pair; fst; snd have the same (obvious) S

types in both interpretations. The constants new; rd;wr

create, read, and write a mutable variable. Unlike pair,

their types di�er in the two interpretations, as Figure 4

shows. In the lazy interpretation their types explicitly in-

volve the source-language ST monad, and S also includes

4



M[[Int]] = Int

M[[S � T ]] = (M[[S]],M[[T ]])

M[[()]] = ()

M[[S ! T ]] =M[[S]] -> STM[[T ]]

M[[Ref S]] = Ref (M[[S]])

M[[x]] = ret

ST

x

M[[i]] = ret

ST

i

M[[M N ]] = let

ST

f <-M[[M ]] in

let

ST

a <-M[[N ]] in

f a

M[[�x :T:M ]] = ret

ST

(\x:M[[T ]].M[[M ]])

M[[let x :T =M in N ]]

= let

ST

x:M[[T ]] <-M[[M ]] inM[[N ]]

M[[letrec f :S ! T = �x : S:M in N ]]

= letrec f:M[[S ! T ]] = \x:M[[S]]:M[[M ]] inM[[N ]]

M[[pair M N ]] = let

ST

a <-M[[M ]] in

let

ST

b <-M[[N ]] in

ret

ST

(a,b)

. . . and similarly wr;+

M[[fst M ]] = let

ST

a <-M[[M ]] in

ret

ST

fst a

. . . and similarly snd;new; rd

H[[Int]] = Lift Int

H[[S � T ]] = Lift (H[[S]],H[[T ]])

H[[()]] = Lift ()

H[[S ! T ]] = H[[S]] -> H[[T ]]

H[[ST T ]] = ST (H[[T ]])

H[[Ref S]] = Lift (Ref (H[[S]]))

H[[x]] = x

H[[i]] = ret

Lift

i

H[[M N ]] = H[[M ]] H[[N ]]

H[[�x :T:M ]] = \x:H[[T ]].H[[M ]]

H[[let x :T =M in N ]] = let x:H[[T ]] =H[[M ]] in H[[N ]]

H[[letrec x :T =M in N ]]

= letrec x:H[[T ]] =H[[M ]] in H[[N ]]

H[[pair M N ]] = ret

Lift

(H[[M ]],H[[N ]])

H[[M + N ]] = let

Lift

a <-H[[M ]] in

let

Lift

b <-H[[N ]] in

ret

Lift

(+ a b)

H[[fst M ]] = let

Lift

a <-H[[M ]] in fst a

. . . similarly snd

H[[wr M N ]] = let

ST

a <- liftToST H[[M ]] in

wr a H[[N ]]

. . . similarly new; rd

H[[let

ST

x :T M in N ]]

= let

ST

x:H[[T ]] <-H[[M ]] in H[[N ]]

H[[ret

ST

M ]] = ret

ST

H[[M ]]

Figure 5: Translations of \ML" and \Haskell" into L

1

let

ST

and ret

ST

, the unit and bind operations for ST. Mod-

ulo syntax, this is precisely how Haskell expresses stateful

computation (Launchbury & Peyton Jones [1995]).

Then Figure 5 gives two translations of S into L

1

:

� The \ML" translation,M

4

, gives the source language

a stateful, strict, semantics. The result of a term trans-

4

The translation given here introduces quite a few \administrative

lated by M is a computation in the ST monad, and

functions also return computations in ST. That is, if

the ML type system considers that � ` e : � , then

M[[�]] ` M[[e]] : STM[[� ]].

The rule for application uses let

ST

to evaluate both

the function and its argument, and to sequence any

state changes they contain, before applying the func-

tion to the argument. In expressions produced by

the M translation, each variable is bound to a non-

monadic type; that is, any e�ects (state or non-

termination) are performed before binding the vari-

able. When a variable, lambda, or pair is translated

we simply return the value using ret

ST

. Lastly, a re-

cursive ML declaration can only bind a function; hence

the rule for letrec.

� The \Haskell" translation, H, gives the source lan-

guage (minus the state-changing operations) a pure,

non-strict semantics. A key di�erence from the ML

translation is that the Haskell translation of data

types, such as integers, pairs, and lists, are lifted, be-

cause Haskell allows values of these types to be recur-

sively de�ned. Unlike the ML translation, the transla-

tion of Haskell's function type does not need to have

an explicit Lift on the codomain. Nor does the trans-

lation H necessarily return a Lift computation: if the

Haskell type system concludes that � ` e : � then

H[[�]] ` H[[e]] : H[[� ]].

H translates Haskell's ST-monad computations di-

rectly into L

1

's ST monad, just as you would hope

5

.

The only tiresome point is that the �rst argument of

wr has source-language type Ref � , and hence has

L

1

type Lift (Ref H[[� ]]). It must therefore be lifted

into the ST monad using liftToST so that it can be

evaluated in the ST monad.

It is interesting to compare the two type translations. M

uses exactly the call-by-value translation of Wadler [1992a],

with the computational e�ect at the end of the function

arrow. On the other hand H does not use Wadler's call-by-

name translation, as one might otherwise expect. Indeed,

there is no monadic e�ect in the translation of function types

at all; instead the Lift monad shows up in the translation

of data types.

This translation of Haskell function types assumes that

\x.bot and bot, where bot has value ?, denote the same

value in Haskell. Recent changes to Haskell are likely to al-

low these values to be distinguished, forcing a lifting of func-

tion types, and hence a more gruesome encoding of function

application.

3.4 Why not encode the monads?

We have said that L

1

is meant to make everything explicit,

so that there is nothing to be said when giving its semantics.

In apparent contradiction, we made the semantics of the

monads implicit | that is, explained only by the semantics

of L

1

. Why, for example, did we not make the ST monad

explicit by representing a value of type ST � as a state-

transforming function in L

1

, and representing let

ST

and

redexes"; a slightly more complex translation can avoid them (Sabry

& Wadler [1996]).

5

We do not treat the runST encapsulator of Launchbury & Pey-

ton Jones [1995] here, but it is easy to do so.
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ret

ST

using the other L

1

forms? For example, instead of

the L

1

term

let

ST

x <- e in b

we could write the L

1

term

bindST e (\x:b)

where bindST is de�ned (directly in L

1

) as follows

bindST = \m k s:let p =m s in k (fst p) (snd p)

Here, the state passing is made explicit, but the state itself

is still abstract, supporting the new, read and write oper-

ations. This is the approach advocated by Launchbury &

Peyton Jones [1995, Section 9]. It has the notable advantage

that we can simplify L

1

by getting rid of let

M

and ret

M

entirely.

We do not adopt that approach here, for three reasons:

� Encoding the monad in purely functional terms is a

reasonable way of giving its semantics, but it may not

be a reasonable way of giving its implementation. Con-

sider, for example, the monad of exceptions in a strict

language. The functional encoding would perform a

conditional test whenever a possibly-exceptional value

was bound; but the expected implementation is stack-

based with no tests. Instead, a whole chunk of stack

is popped when an exception is raised. Keeping the

monad explicit in L

1

allows the code generator to gen-

erate e�cient code.

� Even where an e�cient code-generation strategy does

exist, its correctness may be fragile. For exam-

ple, Launchbury & Peyton Jones [1995] describes an

update-in-place implementation of the primitive op-

erations (read and write) in the state monad. How-

ever, that implementation is only correct if the state

is single-threaded. That is certainly the case in the

terms produced by M, but it might not remain the

case after performing L

1

transformations. For exam-

ple, a �-expansion might duplicate the state.

It may be possible to preserve the single-threadedness

of the state by limiting the transformations performed

on the L

1

program. (For example, we believe that

using only transformations that are correct in a call by

need calculus is su�cient (Sabry [1997]).) Even where

this is true, it creates a complicated proof obligation.

� There may be useful transformations available that are

speci�c to a particular monad (for example, swapping

the order of non-interfering assignments), but which

become inaccessible, or hard to spot, when expressed

in a purely-functional encoding of the monad.

We �nd these reasons compelling. On the other hand, we

were concerned that by not translating the monadic code

into a core of L

1

we might lose valuable transformations. So

far, however, we have found no transformation that cannot

be expressed in the monadic version of L

1

, providing the

standard monad laws are implemented (Figure 3).

3.5 Recursion in L

1

One consequence of our decision to allow a type to be mod-

eled by an unpointed CPO is that we have to take care

with recursion. The rule (REC) in Figure 1 suggests that a

` (Lift � ) pointed

` (ST � ) pointed

` �

1

pointed

` (�

2

-> �

1

) pointed

` �

1

pointed ` �

2

pointed

` (�

1

,�

2

) pointed

Figure 6: Rules for pointed types

letrec can be constructed at any type. But that is not so.

Consider

letrec x:Int = : : : x : : : in : : :

Such a recursive de�nition is plainly nonsense, because Int

is an unpointed type and has no bottom element, so there

might be no solution, or many solutions, to the recursive

de�nition. We can only do recursion over pointed CPOs!

6

How, then, can we make sense of recursion? One solution

is to link recursion to the Lift monad, since Lift adds a

bottom to its argument domain:

(RECa)

�; x : Lift � ` e

1

: Lift � �; x : Lift � ` e

2

: �

� ` letrec x:� = e

1

in e

2

: �

This solution is not very satisfactory. For a start, it cannot

type:

letrec f = \x. : : : in : : :

because the type of a lambda abstraction has the form

� ! �, not Lift � , and lifting all functions raises the spec-

tre of having to force the de�nition on each recursive call.

Nor can it type recursive de�nitions of ST computations.

Furthermore, this loss of expressiveness is completely un-

necessary, since a function type whose result type is pointed

is itself pointed; and any ST computation is pointed. The

right solution is to �x (REC) by adding a side condition that

� must be pointed:

(RECb)

�; x : � ` e

1

: �

�; x : � ` e

2

: �

` � pointed

� ` letrec x:� = e

1

in e

2

: �

Figure 6 gives rules for determining when a type is pointed.

Unfortunately, the extension to a polymorphic type system

is problematic: is the type � pointed or not? There are three

possible choices:

� We could decide that type variables can only range

over pointed types. This is precisely the restriction

proposed by Peyton Jones & Launchbury [1991], but

it is unacceptable in our IL because we expect (the

translations of) most ML data types to be unpointed.

For example, an ordinary, non-recursive polymorphic

function such as the identity function could not be

applied to both 3 and ret

Lift

3, because one has a

lifted type and one does not.

6

There is a substantial literature on the categorical treatment of

recursion (for example, Pitts [1996]), but the discussion of this section

focuses on the speci�c setting of CPO.
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� We could allow type variables to range over all types,

but prohibit recursion at a type variable. This would

irritatingly reject recursive functions whose result type

is a type variable, such as the function nth that selects

the n'th element from a list.

nth : 8�:Int -> (List �) -> �

� Alternatively, we could employ quali�ed universal

quanti�cation, where type variables at which �xpoints

are taken are explicitly quali�ed:

nth : 8�2 Pointed :Int -> (List �) -> �

Launchbury & Paterson [1996] elaborate on this idea.

Since the �rst two choices are untenable, we conclude that

adding polymorphism to a language with both recursion and

unpointed types, requires the use of quali�ed universal quan-

ti�cation.

3.6 Controlling evaluation in L

1

While L

1

seems to be quite suitable from a theoretical point

of view, it su�ers from a serious practical drawback: L

1

is

vague about the timing and degree of evaluation. Consider

the L

1

expression:

let x : � = e in f x

What code should the code generator produce for such an

expression?

� An ML compiler writer would probably expect the

code to evaluate the right-hand side of the let, and

then call f passing the value thus computed. But this

eager strategy is incorrect in general if e diverges, and

f does not evaluate its argument, as a quick glance at

Figure 2 will con�rm.

� A safe strategy is to build a thunk (suspension) for

the right-hand side, bind x to this thunk, and call f

passing the thunk to it. That is precisely what the

code generator for a lazy language would do.

Now suppose that we are compiling code for f, and that

f has type Int -> Int. The major motivation for distin-

guishing Int from Lift Int was to allow the compiler to

treat values of type Int as certainly-evaluated, just as a

strict-language compiler would assume (Section 3.1). It is

unacceptable for f to test whether its argument is evaluated;

such a choice would guarantee that no ML compiler would

use this intermediate language! Alas, the safe strategy for

preparing the f's argument does indeed pass an unevaluated

thunk, so f must be prepared for this eventuality.

Can we instead use a hybrid strategy?

� A hybrid strategy for compiling let expressions might

use the type of the bound variable to decide what to

do: for types whose values are sure to converge (such

as Int) it can evaluate the right-hand side eagerly, oth-

erwise it can build a thunk. This strategy works for

a simply-typed language but fails (again!) when we

introduce polymorphism. What is the code generator

to do with a let that binds a value of type �? Either

the instantiating type must be passed as an argument,

or we must have two versions of the code, one for ter-

minating types and one for possibly-diverging ones.

We regard these complications as a very serious (and far

from obvious) objection to using L

1

for operational pur-

poses.

3.7 Summary

We expected it to be a routine matter to translate both

Haskell and ML into a common language built directly on

top of the standard mathematics for programming-language

semantics. To our surprise it was not, as Sections 3.5-3.6

describe.

L

1

may still be quite useful as a kernel language for rea-

soning about programs. However, as Section 3.6 has shown,

it is unsuitable as a compiler intermediate language. Thus

motivated, we now turn our attention to a second design

that is more suitable as an IL.

4 L

2

, a language of partial functions

Our second design starts from the problem we described in

Section 3.6. Operationally, it is essential to be able to con-

trol exactly when evaluation takes place, so that the recipi-

ent of a value knows for sure whether or not it is evaluated.

Since we want to control what evaluation is done when, the

obvious thing to do is to make let (and, of course, function

application) eager. That is, to evaluate let x:� = e in b

one evaluates e, binds it to x, and then evaluates b. (We

use the operational term \eager", rather than the semantic

term \strict" because the latter does not mean anything if

the type of e has no bottom element.) How, then, are we to

translate the lets and function applications of a lazy lan-

guage? There is a standard way to do so, namely by making

the construction and forcing of thunks explicit (Friedman &

Wise [1976]). This is what we do in L

2

.

Figure 7 gives the syntax and extra type rules for L

2

. There

is now only one monad, ST; the Lift monad is now implicit

in the semantics of L

2

so that let and function application

can be eager. There is a new syntactic form, <e>, that sus-

pends the evaluation of e, and a new constant, force, that

forces the suspension returned by its argument. There is

one new type, <�>, which is the type of <e> if e has type �.

The two new type rules, (DELAY ) and (FORCE) are just

as you would expect.

Another new feature is that types are divided into value

types, � , and computation types, �. Intuitively, an expression

has a computation type, while a variable is always bound to

a value type. Another way to say this is that the typing

judgement now has the form

fx

1

: �

1

; : : : ; x

n

: �

n

g ` e : �

The type rules of Figure 1 apply unchanged, because we

carefully used � and � in the right places, although they were

synonymous in L

1

. Function arguments and the right-hand

sides of let(rec) expressions all have value types, and are

evaluated eagerly. This separation of value types from com-

putation types neatly �nesses the awkward question of what

it means to \evaluate" an argument computation without

also \performing" it, which caused us some heart-searching

in earlier un-strati�ed versions of L

2

. For example, the ex-

pression (f (read r)) is ill-typed, and hence we do not

have to evaluate (read r) without also performing its state

changes. Indeed, expressions of type ST � can only occur as

7



Computation types � ::= M � j �

Value types � ::= Int j �->� j () j (�

1

,�

2

)

j <�> j Ref �

Terms e ::= x j k j e

1

e

2

j \x:e j (e

1

,e

2

) j <e>

j let x:� = e

1

in e

2

j letrec x:� = pv in e

j let

M

x:� <- e

1

in e

2

j ret

M

e

Constants k ::= : : : j force

Monads M ::= ST

V alues v ::= x j k j \x:�.e j <e> j (v

1

,v

2

)

PV alues pv ::= \x:�.e j <e>

The type rules from Figure 1, plus. . .

(DELAY )

� ` e : �

� ` <e> : <�>

(FORCE) � ` force : <�> -> �

Figure 7: Extra syntax and type rules for L

2

The translationM from ML to L

2

is textually the same as in Figure 5

H[[Int]] = Int

H[[S � T ]] = (<H[[S]]>,<H[[T ]]>)

H[[()]] = ()

H[[S ! T ]] = <H[[S]]> -> H[[T ]]

H[[ST T ]] = ST <H[[T ]]>

H[[Ref S]] = Ref <H[[S]]>

H[[x]] = force x

H[[i]] = i

H[[M N ]] = H[[M ]] <H[[N ]]>

H[[�x :T:M ]] = \x:<H[[T ]]>.H[[M ]]

H[[let x :T =M inN ]] = let x:<H[[T ]]> = <H[[M ]]> in

H[[N ]]

H[[letrec x :T =M inN ]] = letrec x:<H[[T ]]> = <H[[M ]]>

in H[[N ]]

H[[fst M ]] = force (fst H[[M ]])

H[[pair M N ]] = (<H[[M ]]>,<H[[N ]]>)

H[[M + N ]] = + H[[M ]] H[[N ]]

H[[wr M N ]] = wr H[[M ]] H[[N ]]

. . . similarly new; rd

H[[let

ST

x :T M in N ]] = let

ST

x:<H[[T ]]> <-H[[M ]]

in H[[N ]]

H[[ret

ST

M ]] = ret

ST

H[[M ]]

Figure 9: Translations of \ML" and \Haskell" into L

2

the right hand side of a let

ST

, the body of a function, or

as the value of the whole program. Finally, when polymor-

phism is introduced, type variables range over value types

only.

Figure 8 gives the semantics of L

2

in full. The crucial point

is that L

2

's function type arrow is now interpreted as the

CPO of partial functions, denoted \*", and the semantic

evaluation function E takes an expression to a partial func-

tion from environments to values. Many of the equations

are de�ned conditionally. For example, the equation for

E [[e

1

e

2

]]� says that if both E [[e

1

]]� and E [[e

2

]]� are de�ned

then the result is just the application of those two values;

otherwise there is no equation that applies for E [[e

1

e

2

]]�, so

it too is unde�ned.

The <_> type constructor is modeled using lifting; the se-

mantics of force and <_> move to and fro between lifted

CPOs and partial functions. It may seem odd that we use

two di�erent notations | Lift � in L

1

and <�> in L

2

| with

the same underlying semantic model, namely lifting. The

reason is that in L

1

we use lifting as a monad (with a bind

operation, for example), whereas in L

2

we use it to model

thunks (with a force operation but no bind).

The entire semantics of L

2

could instead be presented in the

CPO of total functions, using the isomorphism:

S * T

�

=

S ! T

?

Which to choose is just a matter of taste. What we like

about our presentation is that each L

2

type constructor cor-

responds directly to a single categorical type constructor,

whereas in the alternative presentation the L

2

function type

gets a more \encoded" translation. Launchbury & Baraki

[1996] use partial functions in essentially the same way.

The translation of \ML" into L

2

is exactly the same as the

translation of L

1

. The translation of \Haskell" is di�er-

ent, however, because we now have to be explicit about the

introduction of thunks (Figure 9). Concerning types, no-

tice the use of the type constructor <_> on the arguments

of functions and data constructors. Concerning terms, the

thunk-former <_> is used for function arguments and the

right-hand side of all let and letrec de�nitions. Thunks

are evaluated explicitly, using force, when returning a vari-

able or the result of fst or snd.

4.1 Controlling evaluation in L

2

The main bene�t of using L

2

is that its semantics permit

an eager interpretation of vanilla let; namely, \evaluate the

right-hand side, bind the value to the variable, and then

evaluate the body". A consequence is that any variable of

type other than <�>, or a type variable (which might be in-

stantiated to <�>), is sure to be fully evaluated, just as in

any ML implementation.

4.2 Recursion in L

2

Another advantage of L

2

is that we can solve our earlier

di�culties with recursion (Section 3.5) without requiring

bounded quanti�cation.

Firstly, we more or less have to restrict letrecs to bind

only syntactic values, because we cannot eagerly evaluate

the right-hand side. (Why not? Because we cannot con-

struct the environment in which to evaluate it.) That in

turn means that the meaning of the right-hand side is al-

ways de�ned, which is why there is no side condition in the

semantics of letrec.

But Figure 7 further restricts the right-hand side of a letrec

to be a particular sort of syntactic value, a pointed value, or

8



T : Type ! CPO

T [[Int]] = Z

T [[�

1

->�

2

]] = T [[�

1

]] * T [[�

2

]]

T [[(�

1

,�

2

)]] = T [[�

1

]] � T [[�

2

]]

T [[<�>]] = �

?

T [[ST � ]] = State* (T [[� ]] � State)

T [[Ref � ]] = N

E : Term

�

! Env * T [[� ]]

E [[x]]� = �(x)

E [[k]]� = k

E [[e

1

e

2

]]� = (E [[e

1

]]�) (E [[e

2

]]�); if E [[e

1

]]� and E [[e

2

]]� are de�ned

E [[\x.e]]� = �y:E [[e]]�[x := y]

E [[(e

1

,e

2

)]]� = (E [[e

1

]]�; E [[e

2

]]�); if E [[e

1

]]� and E [[e

2

]]� are de�ned

E [[let x:�=e

1

in e

2

]]� = E [[e

2

]]�[x := E [[e

1

]]�]; if E [[e

1

]]� is de�ned

E [[letrec x:� = pv in e]]� = E [[e]](fix(��

0

:�[x := E [[pv]]�

0

]))

E [[let

M

x:� <- e

1

in e

2

]]� = bind

M

(E [[e

1

]]�) (�y:E [[e

2

]]�[x := y]); if E [[e

1

]]� is de�ned

E [[ret

M

e]]� = unit

M

(E [[e]]�); if E [[e]]� is de�ned

E [[<e>]]� = (E [[e]]�)

?

; if E [[e]]� is de�ned

?; otherwise

fst (a; b) = a

snd (a; b) = b

force a

?

= a

bind

ST

m k s = k r s

0

; if m s = (r; s

0

)

?

unit

ST

m s = (m; s)

new v s = (r; s[r 7! v]) where r 62 dom(s)

rd r s = (s r; s); if r 2 dom(s)

wr r v s = ((); s[r 7! v]); if r 2 dom(s)

Figure 8: Semantics of L

2

PV alue. The syntactic category of PV alues is chosen so

that it can only denote a value from a pointed domain, and

hence a letrec de�nition always has a least �xpoint. To see

this, consider the forms that a PV alue can take:

� A lambda abstraction denotes a partial function, and

the CPO of partial functions is always pointed; its least

element is the everywhere unde�ned function.

� A thunk <e>, where e : � , is drawn from the pointed

CPO T [[� ]]

?

.

Fortunately, the syntactic restriction of letrec does not lose

any useful expressiveness. ML insists that letrecs bind only

functions (which are PV alues), while Haskell binds thunks

(which are also PV alues). So there is no di�culty with

translating the recursion arising in both ML and Haskell

into L

2

.

4.3 Why not have just one monad?

Now that we have eliminated the Lift monad, and made

vanilla let eager, there is another question we should ask:

why not give vanilla let the semantics of let

ST

, and elimi-

nate the latter altogether? To put it another way, we have

made eager evaluation implicit in the semantics of let; why

not add implicit side e�ects as well? After all, the code gen-

erated for let

ST

x <- e in b will be something like \the code

for e followed by the code for b", and that is just the same

as the code we now expect to generate for let x = e in b.

However, if we have just one form of let we lose valuable

optimising transformations. In particular, the sequence of

computations in ST must be maintained, whereas let bind-

ings can be re-ordered freely. Changing the order of evalua-

tion is fundamental to several useful transformations, in-

cluding common sub-expression, loop invariant computa-

tions, all kinds of code motion (Peyton Jones, Partain &

Santos [1996]), inlining, and strictness analysis (remember

we may be compiling a lazy language into L

1

). To take a

simple example, the following transformation is not in gen-

eral valid for let

ST

, but is valid for vanilla let (assuming

there are no name clashes):

let x

1

= e

1

in let x

2

= e

2

in b

=

let x

2

= e

2

in let x

1

= e

1

in b

Of course, one could do an e�ects analysis to determine

which sub-expressions were pure, as good ML compilers do,

. . . but that is e�ectively just what the monadic type system

records!

5 Assessment

5.1 L

1

vs L

2

What have we lost in the transition from L

1

to L

2

, apart

from a somewhat more complicated semantics? One loss is

L

1

's ability to describe types whose values are sure to termi-

nate. If a L

1

function has type Int->Int then a call to the

function cannot diverge; but the same is not true of L

2

. This

does not have much impact on a compiler, but it make pro-

grammer reasoning about L

2

programs more complicated.
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Another important di�erence is that L

2

has a weaker � rule.

L

1

has full �-conversion. That is, for any expressions e and

b:

let x = e in b = b[e=x]

(A similar rule holds for application, of course.) In L

2

, how-

ever, � does not hold in general. A particular case of this is

that if x is not mentioned in b then in L

1

the binding can

be discarded; in L

2

the binding can only be discarded if the

right-hand side is a value.

However �

V

| a restricted version form of � that allows

only values to be substituted | is valid in L

2

. Values are

de�ned in Figure 7, and include variables, constants, and

lambda abstractions, as usual. However, values also include

thunks. Hence any Haskell � reduction has a corresponding

�

V

reduction in its L

2

translation. Thus, the restriction to

�

V

will not prevent a Haskell compiler from doing anything

it can do in an implicitly lazy language with a full � rule.

Thus far we have assumed a call-by-name semantics, in

which we are content to duplicate arbitrary amounts of work

provided we do not change the overall result. In practice no

compiler would be so liberal; we desire a call-by-need se-

mantics in which work is not duplicated. As Ariola et al.

[1995] describes, we can give a call-by-need semantics to

L

1

by weakening � to �

V

and adding a garbage-collection

rule that allows an unused let binding to be discarded. An

analogous result holds in L

2

: we can obtain call-by-need se-

mantics by replacing <e> by <v> in the de�nition of values

in Figure 7.

5.2 L

2

vs Haskell and ML ILs

Our main theme is the search for an IL that can serve for

both ML- and Haskell-like languages. However, we believe

that a language like L

2

is attractive in its own right to either

community in isolation, because one might get better code

from an L

2

-based compiler.

For the Haskell compiler writer L

2

o�ers the ability to ex-

press in its type that a value is certainly evaluated. This

gives a nice way to express the results of strictness analysis:

a function argument of unpointed type must be passed by

value. Flat arrays and strict data structures also become

expressible.

For the ML compiler writer L

2

o�ers the ability to express

the fact that a computation is free from side e�ects, which

is a precondition for a raft of useful transformations (Sec-

tion 4.3). While this information can be gleaned from an

e�ects analysis, maintaining this information for every sub-

expression, across substantial program transformations is

not easy. In L

2

, however, local transformations can per-

form, and record the results of, a simple incremental e�ects

analysis. For example, consider the following ML function:

fun f x = fst (fst x)

If we translate this into L

2

we obtain:

f = ret

ST

(�x: let

ST

a2 <- let

ST

a1 <- ret

ST

x in

ret

ST

(fst a1)

in

ret

ST

(fst a2))

Simple application of the rules of Figure 3 allows this ex-

pression to simplify to:

f = ret

ST

(�x: let a1 = x in

let a2 = fst a1 in

ret

ST

(fst a2))

Now the ret

ST

can be 
oated outwards, to give:

f = ret

ST

(�x:ret

ST

(fst (fst x)))

In this form, the inner ret

ST

makes it apparent that f has

no side e�ects. We have, in e�ect, performed a sort of incre-

mental e�ects analysis. The same idea can be taken further.

If f is inlined at its call sites, then the ret

ST

may cancel

with let

ST

there, and so on. Even if f's body is big, we

can use the \worker-wrapper" technique of Peyton Jones &

Launchbury [1991] to split f into a small, inlinable wrapper

and a large, non-inlinable worker, fw, thus:

f =ret

ST

(�x:ret

ST

(fw x))

fw =�x:(: : : body of f : : :)

Blume & Appel [1997] describe a similar technique that they

call \lambda-splitting".

The point of all this is that there is a real payo� for an

ML compiler from making the ST monad explicit. Easy, in-

cremental transformations perform a local e�ects analysis;

at each stage the state of the analysis is recorded in the

program itself, rather than in some ad hoc auxiliary data

structures; and all other program transformations will au-

tomatically preserve (or exploit) the analysis.

5.3 Parametricity

Polymorphic functions have certain parametricity properties

that may be derived purely from their types (Mitchell &

Meyer [1985]; Reynolds [1983]; Wadler [1989]). For example,

in the pure polymorphic lambda calculus, a function f with

type 8�:�! �! � satis�es the theorem:

8A;B : 8h : A! B : 8x; y : A : h (f x y) = f (h x) (h y)

In fact, f satis�es something even stronger in which the

function h can be an arbitrary relation between A and B.

When we add \polymorphic" constants to the pure calculus,

the e�ect is that the choice of functions h becomes restricted.

For example, adding a �x point operator �x : 8�:(�! �)!

� forces the restriction that the h functions be strict (map ?

to ?) and inductive (i.e. continuous). This is the situation

in Haskell, for example.

Adding polymorphic sequencing, say through an operator

seq : 8�; �:� ! � ! � or by building it into the seman-

tics of function application, forces the restriction that the

h functions be bottom-re
ecting (i.e. de�ned on all de�ned

arguments). This is the basic situation in pure ML.

Adding polymorphic equality forces the h functions to be

at least one-to-one; and adding polymorphic state opera-

tions like !r seems to remove any last shreds of interesting

parametricity.

What, then, are the parametricity properties of L

1

and L

2

?

If parametricity properties are weakened by claiming various

primitives to be more polymorphic than they really are, then

by being more cautious in the types we assign them, we may

hope to restrengthen parametricity.
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In L

2

, for example, recursion is only done either at a func-

tion type, or at a suspension type. Recursion is never per-

mitted as a fully polymorphic type (unlike in Haskell). This

has the e�ect of allowing the strictness side condition to

be dropped, though inductiveness (or continuity) is still re-

quired. The same is achieved in L

1

through the use of the

pointed restriction (see Launchbury & Paterson [1996] for a

comparable situation). Furthermore, since all state opera-

tions are explicitly typed within the state monad, they also

do not interfere with parametricity in a negative way.

The main di�erence between L

1

and L

2

is to do with forcing

evaluation. L

1

has no polymorphic forcing operation, so has

no consequent weakening of its parametricity property. L

2

does, however | it is built into its eager function applica-

tion. Thus for L

2

the parametricity theorem demands the

h functions to be everywhere de�ned.

To see an example of this, consider the function K :

8�; �:�! � ! � which selects its �rst argument, discarding

its second. The parametricity theorem is

8A;A

0

; B;B

0

: 8h

1

: A! A

0

; h

2

: B ! B

0

: 8x : A; y : B :

h

1

(K x y) = K (h

1

x) (h

2

y)

Clearly this holds only if h

2

is total (de�ned everywhere),

otherwise the right hand side may not be de�ned when the

left hand side is.

There is a practical implication to this. A class of techniques

for removing intermediate lists called foldr-build relies on

parametricity for its correctness (Gill, Launchbury & Pey-

ton Jones [1993]). While a strictness side condition is not

damaging, a totality condition is too restrictive. The tech-

nique can no longer rely on the types to provide su�cient

guidance for correctness. This is disappointing, although

unsurprising. The compiler can still recover the short-cut

deforestation technique by re�ning L

2

's type system to use

quali�ed types along the lines of Launchbury & Paterson

[1996].

5.4 Side e�ects and polymorphism

It is well known that the ability to create polymorphic ref-

erences can lead to unsoundness in the type system (Tofte

[1990]). For example, if we are able to create a reference

r with type 8�:Ref � then we would be able to write the

following erroneous code:

let

ST

_:() <- wr (r Int) 2 in

let

ST

f:(Int->Int) <- rd (r (Int->Int)) in

ret

ST

(f 3)

However in both L

1

and L

2

any expression of type 8�:Ref �

is unde�ned in any environment! The only way to construct

a value of Ref type is with new, which returns a value of type

ST (Ref � ). The only way to strip o� the ST constructor is

with let

ST

. Looking at the typing rule for let

ST

, we can

see that bound variable must have type Ref � .

SML's so-called \value restriction" conservatively restricts

generalisation in let bindings precisely to avoid the con-

struction of such polymorphic references. We conjecture

(though we have not proved) that L

1

and L

2

are both sound

without any such side conditions.

5.5 ML thunks

One of the advantages of a language that supports both

strict and lazy evaluation is that it can accommodate source

languages that have such a mixture. Indeed, it is quite

straightforward to map Haskell's strictness annotations (Pe-

terson et al. [1997]) onto L

2

. Coming from the other direc-

tion, it has long been known that thunks can be encoded

explicitly in a strict, imperative language. For the sake of

concreteness we use the notation proposed for ML in Okasaki

[1996]. In this proposal delayed ML expressions are pre�xed

by a \$", thus:

let val x = $(f y) in b end

Here, assuming (f y) has type int, x is bound to a thunk

of type int susp that, when forced, evaluates (f y) and

overwrites the thunk with its value.

We expected that these \ML thunks" would map directly

onto L

2

's thunks, but that turned out not to be the case.

The semantics of ML thunks is considerably more compli-

cated than that of L

2

's thunks, because of the interaction

with state. Consider the following ML expression:

let val rec x = $(let val y = !r - 1 in

r:=y;

if y=0 then 0

else force x + force x

end)

in ... end

(This de�nes x recursively, which is not possible in ML, but

essentially the same thing can be done using another refer-

ence to \tie the knot". We use the recursive form to reduce

clutter.) When x is evaluated it decrements the contents of

the reference cell r; but then, if the new value is non-zero,

x evaluates itself! In e�ect, there can be multiple simulta-

neous activations of x, rather like the multiple activations

of a recursive function. (Indeed, a non-memoising imple-

mentation of ML thunks can be obtained by representing $e

by �():e.) Furthermore, these multiple activations can each

have a di�erent value, because they each read the state.

L

2

's thunks have a much simpler semantics. A thunk has

only one value, and there can be at most one activation

of the thunk

7

. The key insight is that evaluation of a L

2

thunk has no side e�ects, unlike the ML thunk above. But

what if the contents of the thunk performs side e�ects? For

example:

let x = <let

ST

v : Int <- rd r in wr (v+1)> in e

Here, if r : Ref Int, then x has type <ST ()>, not <()>.

Forcing the thunk (with force) causes no side e�ects (apart

from updating the thunk itself), and yields a computation

that, when subsequently performed (by a let

ST

), will incre-

ment the location r. The computation x may be performed

many times; for example, e might be

let

ST

a1 : () <- force x in let

ST

a2 : () <- force x in : : :

What this means, though, is that the more complicated se-

mantics of ML thunks have to be expressed explicitly in L

2

,

presumably by coding them up using explicit references.

7

More precisely, if there is more than one then the thunk's value

depends on its own value, so its value is unde�ned. This property

justi�es the well-known technique of \black-holing" a thunk, both

to avoid space leaks and to report certain non-termination (Jones

[1992]).
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6 Related work

The FLINT language has rather similar objectives to the

work described here, in that it aims to serve as a common

infrastructure for a variety of higher-order typed source lan-

guages (Shao [1997b]). However, FLINT has not (so far)

concentrated much on the issue of strictness and laziness,

which is the main focus of this paper. The ideas described

here could readily be incorporated in FLINT.

Both the Glasgow Haskell Compiler and the TIL ML com-

piler use a polymorphic strongly-typed internal language,

though the latter is considerably more sophisticated and

complex (Peyton Jones [1996]; Tarditi et al. [1996]). Nei-

ther, however seriously attempt to compile the other's main

evaluation-order paradigm.

7 Further work

In this paper we have concentrated on a core calculus. Some

work remains to extend it to a practical IL:

� Recursive data types and case expressions must be

added | we anticipate no di�culty here.

� A proof of type soundness is needed. As we note in

Section 5.4 its soundness is not obvious.

� We have a simple operational semantics for L

2

; we are

con�dent that it is sound and adequate, but have yet

to do the proofs.

� We are studying whether is is possible to combine L

1

's

ability to describe certainly-terminating computations

with L

2

's operational model.

Accommodating the ML module system is likely to involve

a signi�cant extension of the type system (Harper & Stone

[1997]); we have not yet studied such extensions.

In a separate paper we discuss how to use the framework of

Pure Type Systems to allow the language of terms, types,

and kinds to be merged into a single language and compiler

data type (Peyton Jones & Meijer [1997]). We hope to merge

the results of that paper and this one into a single IL.

We have made no attempt to address the tricky problem

of how to combine monads. For example, ML includes the

monad of state and exceptions. Is it advantageous to sepa-

rate them into the composition of two monads, or is it better

to have a single, combined monad? In the former case, what

transformations hold?

An important operational question is that of the represen-

tation of values, especially numbers. Quite a few papers

have discussed how to use unboxed representations for data

values, and it would be interesting to translate their work

into the framework of L

2

(Leroy [1992]; Peyton Jones &

Launchbury [1991]; Shao [1997a]).
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