Tracking down Exceptions in Standard ML Programs

Manuel Fahndrich Jeffrey S. Foster Alexander Aiken Jason Cu

Report No. UCB/CSD-98-996
February 1998

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Tracking down Exceptions in Standard ML Programs

Manuel Fahndrich*

Jeffrey S. Foster!

Alexander Aiken' Jason Cu

EECS Department
University of California, Berkeley
Berkeley, CA 94720-1776
{manuel, jfoster, aiken}@cs.berkeley.edu
(510)-642-6509

Abstract

We describe our experiences with an exception anal-
ysis tool for Standard ML. Information about excep-
tions gathered by the analysis is visualized using PAM,
a program visualization tool for EMACS. We study the
results of the analysis of three well-known programs,
classifying exceptions as assertion failures, error excep-
tions, control-flow exceptions, and pervasive exceptions.
Even though the analysis is often conservative and re-
ports many spurious exceptions, we have found it useful
for checking the consistency of error and control-flow
exceptions. Furthermore, using our tools, we have un-
covered two minor exception-related bugs in the three
programs we scrutinized.

1 Introduction

The ML type system guarantees that ML programs
never terminate abnormally. Normal termination, how-
ever, may be caused by an exception, which is often un-
desirable. ML compilers infer a type for each expression
in a program, but compute no information about excep-
tions produced or raised by an expression. In [FA97] we
proposed an exception inference system to fill this gap.
It subsumes the type inference by inferring ML types
annotated with exceptions.

Based on this exception inference, we have built an
exception analysis tool (EAT) that allows the program-
mer to display uncaught exceptions at certain program
points while browsing code. The implementation of
EAT is based on two components, called BANE and PAM
that we have developed over the last few years. BANE

*Supported in part by NSF Young Investigator Award CCR-
9457812, NSF Grant CCR-9416973, an NDSEG fellowship, and a
gift from Rockwell Corporation.

(Berkeley ANalysis Engine) is a general framework for
implementing constraint-based program analyses. PAM
(Program Analysis Mode) is a point-and-click hyper-
text system based on EMACS for viewing the results of
program analyses.

This paper describes our experience applying
the exception analysis tool EAT to three Stan-
dard ML [MTH90] programs distributed with the
SML/NJ [App92] compiler. With the help of PaAM, we
classify the exceptions used in ML-LEX, ML-YACC, and
ML-BURG into four categories and study the precision
of the exception analysis with respect to the uncaught
exceptions reported for the main function of each pro-
gram. Any sound exception analysis is necessarily con-
servative in that it may report exceptions that cannot
be raised in any actual run of the program. It is thus
necessary to resolve every exception that is reported as
potentially uncaught to an actual uncaught exception by
exhibiting some input to the program that causes the
uncaught exception, or to a spurious exception by show-
ing that the raise expression in question constitutes
dead code. PAM helps in the resolution of uncaught ex-
ceptions by allowing the programmer to view exception
information at each lambda expression, function appli-
cation, and exception handler. Using this technique, we
found two minor undocumented bugs, one in ML-LEX,
and one in ML-BURG.

We divide exceptions raised by ML programs into
four general categories:

1. Assertion failures: Exceptions raised when a pro-
gram enters an unexpected state, e.g., when an in-
ternal data-structure is found to be inconsistent;

2. Error exceptions: Exceptions raised after reporting
an error, e.g., a parser may report a syntax error
and then raise an exception;

3. Control-flow exceptions: Exceptions raised without
any error reporting, e.g., Fifo.Empty for a get op-
eration on an empty queue; and

4. Pervasive exceptions: Exceptions raised by prim-
itives or predefined functions, e.g., Subscript
raised by Array.sub when the array index is out
of bounds.

These categories are approximate, and not every ex-
ception corresponds exactly to one of them. Assertion
failures correspond roughly to errors that would be sig-
naled in C programs using the assert macro. A typical
example appears in MI-LEX, whose scanner can be in
one of three integer modes, 0, 1, or 2. If the scanner
finds itself in any other mode (i.e., in the default branch
of a particular case expression), an assertion failure ex-
ception is raised. The user of a program does not expect
to see any assertion failures. Instead, assertion failures
alert the programmer during development about miss-
ing cases or violations of invariants.

Error exceptions are used to terminate execution and
correspond to non-zero integers returned to the operat-
ing system by a C program. These exceptions should
be documented in the interface as possible results of the
program.

Control-flow exceptions should always be caught at
some level. Otherwise, uncaught control-flow excep-
tions terminate the program without an error message.
Note that some programs turn control-flow exceptions
into error exceptions using a top-level catch-all handler
that prints out the name of the uncaught exception and
then reraises the exception.

Pervasive exceptions are control-flow exceptions
raised by built-in routines. Common examples are
Overflow and range errors. Since our exception analy-
sis does not model integer constants or arithmetic, such
exceptions are assumed to arise from any call to partic-
ular built-in routines.

The rest of this paper is organized as follows. Sec-
tion 2 informally describes the exception analysis we
use. Section 3 outlines the pAM visualization mode for
EMACS. We discuss our experience using EAT in Sec-
tion 4. Related work appears in Section 5, and Section 6
concludes.

2 Exception Inference

This section informally describes the exception infer-
ence used in our study and discusses some issues in
working with real programs. A more formal treatment
for a subset of SML can be found in [FA97].

The analysis is structured as a type and effect sys-
tem [LG88]. For every expression e in the program, the

analysis infers a type 7 and an effect 0. The type 7
corresponds closely to the SML type of e, except that
exception types, datatypes, and function types carry
extra type parameters for exception sets. Effects o de-
scribe the set of exceptions that are potentially raised
during evaluation of e. For example, the SML basis
function List.hd returning the first element of a list

val hd = fn 1 =>

case 1 of
nil => raise Empty
[(x::y) => x

. Empty@p . .
has type ’a list ——— ’a, i.e., a function whose

domain is lists of element type ’a, whose range is ’a,
and whose possible exceptions are Empty raised at po-
sition p. Effects are modeled as a pair containing an
exception name (or set of names) and a position in the
source code. The lambda expression for hd has no effect
itself, since evaluating the expression cannot raise any
exceptions.

The next example is an excerpt from the hash table
functor of the SML/NJ library.

datatype ’a hash_table =
HT of {not_found : exn,
table HEIN
n_items S |

fun mkTable (sizeHint,notFound) =
(HT {not_found = notFound,
table = ...,
n_items = ref 0})

The function mkTable is used to create an empty hash
table. It takes an exception argument notFound, which
is stored as part of the hash table data structure. This
exception is raised during lookup and remove opera-
tions on keys that are not part of the table. In order
to correctly report the exception raised by lookup or
remove, we need to attach the exception used when cre-
ating the hash table to the type of the hash table. In
general, we augment types with exception information
by parameterizing types with an extra exception argu-
ment. In the example, the hash_table type constructor
takes a second argument denoting the set of exceptions
potentially stored in the hash table structure. Thus,
the type of mkTable is

int x exn(e) — (’a,¢) hash_table

which states that mkTable can be applied to a pair con-
sisting of an integer and an exception (whose excep-
tion names are bound to €), and it returns a hash table
data structure containing elements of type ’a and ex-
ceptions €. The ezception variable € can be instantiated

to any set of exception names. The dependency between
the hash_table type and the exceptions raised by the
lookup function appears clearly in the type of lookup:

(’a,€) hash_table — key LA

Any exceptions carried by the hash table may be raised
at position p when calling lookup (p is the position of
the raise expression within lookup).

In general, we infer for each datatype whether or not
it carries any exception names and effects. Our infer-
ence conflates all exceptions carried by a datatype. It is
possible to relax this restriction, and in fact we have an-
alyzed programs other than the ones reported on here,
where this restriction causes severe loss of precision.

Standard ML has parameterized modules called func-
tors. Our exception inference cannot directly analyze
functors due to unresolved exception aliasing. We use
a tool to expand all functor applications prior to per-
forming the analysis.

Readers familiar with SML may wonder about the
generativity of exception declarations, which in general
makes it impossible to statically name all exceptions.
Generativity only comes into play if exception decla-
rations appear within functions. Our analysis reports
such declarations and treats these exceptions very con-
servatively by never filtering them in exception han-
dlers.

2.1 Basis Library

In order to produce meaningful results, any exception
inference must know the exception signatures of prim-
itive (pervasive) functions. For example, in our sys-

tem the array indexing function Array.sub has type
Subscript@array-sig.sml:20.52-20.56

’a array * int

We have manually generated signatures annotated
with exceptions for large parts of the SML basis library.
To make this tedious job significantly easier, we make
use of the signatures already provided in the SML/NJ
compiler source. Functions of type ’d — ’r are manu-
ally given new signatures (’d, ’r, ’e) efun, where efun
is a new primitive type constructor for function types
carrying exceptions. The last element of the type, ’e,
is an exception constructor C that stands for the ex-
ception type exn(C). For example, the specification for
Array.sub is transformed to

signature ARRAY =

sig
val sub : (’a array * int, ’a,

Subscript) efun

end

Notice that not only is the change relatively minor, but
the signature is still parseable by the front end.

A number of pervasive exceptions are not modeled by
our inference, in particular Overflow due to its omni-
presence. It would however be trivial to add it to the
pervasive signatures.

2.2 Implementation

We have implemented our exception inference on top
of the Berkeley ANalysis Engine.! BANE is a frame-
work for writing program analyses based on a mixture
of constraints [FA97], including set-constraints [AW93].
BANE separates the specification (constraint generation)
of an analysis from its implementation (constraint solv-
ing). Our exception inference traverses the source code
of the input program, generating type constraints and
constraints that capture the local flow of exceptions.
BANE handles the representation and resolution of con-
straints.

The solutions to the constraints model the global
flow of exceptions. We extract the set of uncaught ex-
ceptions for functions, applications, and handle expres-
sions. This information is then written into a descrip-
tion file suitable for visualization with PAM.

3 Visualization

PAM is a program analysis mode for EMACS, provid-
ing a textual point-and-click interface for displaying the
results of a program analysis. PAM takes as input a
program analysis description file, which contains a se-
quence of overlays onto the source text of the program.
Each overlay specifies a character range, a highlight
color for the region, and a pointer to the information
shown when this overlay is selected. When a source file
is opened in PAM mode, the text is colored according
to the overlays. A key press or mouse click on an over-
lay displays the associated text in a separate EMACS
window. The textual information associated with an
overlay can also contain hypertext cross-links to other
information or to positions in the source text file.

Besides the overlays, description files also contain a
report section, which is the text shown first when view-
ing a PAM description file. For our exception inference,
the report contains

e the list of declared exceptions, cross-linked to their
positions in the source text,

e a list of handlers, each cross-linked to the source
text and showing the set of exceptions handled,

Thttp://bane.cs.berkeley.edu

Program Assertion Failures Error Excep- | Control-flow Pervasive Ex- | Unused
tions Exceptions ceptions
ML-LEX LexError Match Error eof LOOKUP Chr Io Size ParseError
(3.58) notfound Subscript
SyntaxError
ML-YACC Bind Find FindNth Goto ParseError Done List.Empty
(28.1s) Lalr LexerError Semantic Fifo.Empty Io Size
LexHackingError Match LexError Subscript
MkTable mlyAction select_arb
ParseImpossible
ParseInternal Produces
Shift
ML-BURG Compiler FindNth Goto BurgError Fifo.Empty List.Empty
(14.7s) LexerError ParseError Forced Found | Io Option
LexHackingError LexError Size
mlyAction NotSamePat Subscript
ParseImpossible NotSameSize
Parselnternal NotThere

Table 1: Declared or used exceptions and their classification

Buffers Files Tools Edit Search Help

Handlers:

tests/Faburg, suls 591 31-534,62
LrParser.Fifa,Enp

testsiFa burg.smls 21 33-034.70
General . Subseript

tests/Fa_burg,sml:1934,13-1934,64
BurgEmit,Found

tests/Fa_burg.sml:2192,38-2154,74
BurgEmit.NatSaneSize

tests/Fa_burg, sml:0201,33-2201, 84
BurgEmit, NotSancPat

tests/Fa_burg.sml: 2255 227889
BurgEmit.NatSaneSiz

testerfa.biira. aml-2200, 47-2260,91]
BurgEmit,Farced{utype}

tests/Fa_burg.sml 22962, 25-2968, 41
Gereral.Subscript General.Size Option.Option List.Ewpty
10, lat{causesexn{0), functionistring, name:stringh)
LrTable,Cotatstate * nonterm) LrParser,ParseError
LrParser.Farselnpossiblefint} LrParser.Fifo,Enpty ¢CEN}LrParser.Findith
(GEW)LrParser.Parselnterral Errorfisa,Conpi lar
Parse, Burglriials,ParserData, Actions, mlyfct iond int)
(CENPerac Burpl ol Porsarllate fctiorg Poarscinternal
£ *o o 4:450m fail (p

local
fun uniftupe CENT _),ENT 3} = Sameb
| uniftype (ENT 3 (T 3} = Firsths
| uniftups (€T _3,(NT 3} = SecondhG
| uniftups (ET {t1,spatl}y, (T (£2,5pat2)}) =
Gf L < a2

en
raise (Forced MotUnif?

{let wal sonsg = map2 {uniftupe.spatl,spat2)

fun addson {Motlnif,_} = raise {Forced MotUnif:
addson {_ Motlnify = raise (Forced MatUnif)
addson (NoHG,_» = HotG
addson {_,HoMG} = HoMG
addson {Sameb,x} = x
addson {x,SameB) = x
addson (FirstHG, Firsths) = Firsths
addson {SecondG, SecondMG} = SecondiG
addson _ = NolG

in
List, foldl addson SameG sonsg
end handle MotSameSize => (error "bug @ uniftype"})}

in
fun unify (sLe2) = (Cniftups tpLp2)) handle (Forced 1) =)

Fun clustermatches ((Elem 23 loat
—i%-Emacs! fa_burg.sml*fa_bura.sml.pa {

NlnCUSt naxcost Lhesi)
San-view

Handled;
BurgEmit Forcedi{utypelBtests/fa_burg.sml 12267, 72-2267,08
BurgEmit.Forced{utype Btests/fa_burg,sml : 2268, 72-2268,58
BurgEnit,Forced{utupe) Btests/Fa_burg, snl :2264,42-2264,58
Passed: 10, Io{{causezexnt0},
functiontstring,
nanestring}}Bpervasivess/text-lo-sig.snl:30,57-30,61
10, In{causesexni0)
functionistring,
nametstringt@pervasives/text-io-sig.enl 132,48-32,52
BurgEnit. BurgError@tests/fa_burg,snl:1957,53-1957 68

Figure 1: Screen shot of PAM viewing ML-BURG

e a list of function declarations, cross-linked to the
source text, and

e a list of exceptions that the inference reports as
potentially uncaught during compile/load time.

Overlays are generated for all lambda expressions, func-
tion declarations, applications, and handle expressions.
Exceptions are displayed in the form Name@p, where p
is the position in the source file where the exception is
potentially raised. The position part is cross-linked to
the source file for easy navigation. PAM allows back-
tracking, similarly to a web browser.

By using this system it is easy to start at the body
of the main function of a program and follow the un-
caught exceptions backwards to see where they were
raised. In this way one can decide whether the inferred
exceptions are errors or whether they are results of the
conservatism of the analysis.

Figure 1 shows a screen shot of PAM viewing the anal-
ysis result of ML-BURG. The top window shows the re-
port section, focused on the list of handle expressions.
The middle window shows the source text as it would
be displayed when clicking on the second to last handler
in the report section (cursor position). The handler in
question appears near the bottom of the middle win-
dow, handling Forced. The bottom window shows the
result of clicking on the handle keyword of the handler
in the middle window. This display shows that the han-
dled Forced exception is raised at three positions (also
visible in the middle window). Two Io exceptions and
the BurgError exception (raised by the call to error
visible in the middle window) fall through the handler.

Program | Assertion Failures Error Excep- | Control Flow Pervasive

tions

ML-LEX LexError— Match? Error+ eof+ Chr? TIo+

Size—
Subscript?

ML-YACC || Bind? Find? FindNth? ParseError+ | Fifo.Empty— | List.Empty—
Goto? Lalr? Semantic+ LexError— Io+ Size—
LexerError— Match? Subscript?
MkTable— mlyAction?

ParseImpossible?
ParseInternal?
Produces— Shift?

ML-BURG Compiler— FindNth? BurgError+ Fifo.Empty— List.Empty—
Goto? LexerError— ParseError+ LexError+ Io+ Option—
mlyAction? Size—
ParseImpossible? Subscript?
ParseInternal?

Table 2: Exceptions reported for the main function of each program

4 Results

We have applied EAT to three programs distributed with
version 109.31 of the SML/NJ compiler: the lexer gen-
erator ML-LEX, the parser generator ML-YACC, and the
tree-rewrite generator ML-BURG. Table 1 categorizes
the set of exceptions declared in each program as well
as the pervasive exceptions used indirectly through pre-
defined functions.? The number below each program
name is the time in seconds needed to perform the ex-
ception inference on an UltraSparc. ML-LEX contains
a declaration of exception ParseError that is subse-
quently never used. Note the large number of asser-
tion failure exceptions for ML-YACC and ML-BURG. The
majority of them are part of the automatically gener-
ated lexer and parser contained in ML-YACC and ML-
BURG. There are relatively few error exceptions in all
programs.

Table 2 lists the uncaught exceptions reported by our
analysis for the main function of each program. For
each category, the reported uncaught exception name
is annotated with one of the symbols {4+, —,7}. A (+)
symbol means that the exception can actually be raised
by providing suitable parameters to the program. We
have verified these using suitable example inputs. A (—)
symbol means that the exception cannot be raised in
any execution of the program, i.e. the analysis reports
a spurious exception. We identified these exceptions
by inspecting the code. Finally, a (7) means that the
exception is likely not raised, but proving so requires

2We have manually moved four exception declarations from
within functions to outer scopes to improve the precision of the
analysis.

more than a simple code inspection.

In the category of assertion failures, EAT reports all
exceptions as uncaught. This is not surprising, since
these exceptions are never handled in the code. Show-
ing that such exceptions do not occur requires proving
that the respective raise expressions are dead code.
Our analysis cannot tell which branches of a case or
if expression are taken and is thus very conservative in
this respect. Constant propagation or simple set-based
analysis could be used to remove a few of the spuri-
ous exceptions (marked by —). Similarly, our analy-
sis is conservative with respect to pervasive exceptions.
For example, showing that the Subscript exception is
never raised requires range analysis [SI77).

On the other hand, EAT is useful for detecting prob-
lems with control flow exceptions, and to infer the set
of error exceptions. It helped us detect a minor bug
in the ML-LEX program: the eof (end-of-file) exception
can escape if the lexer generator is supplied with a lex
specification that contains no occurrence of the % sign.
One could argue that the eof exception is therefore an
error exception, but looking at the code, this does not
seem to be the programmer’s intention, since no error
message is printed in this case.

For ML-YACCQ, EAT reports the spurious control-flow
exceptions Fifo.Empty and LexError, neither of which
can actually escape. Code inspection shows that the call
to Fifo.get that potentially raises Fifo.Empty is called
with a non-empty queue. The absence of LexError is
more subtle, since it rests on the fact that the lexer used
in ML-YACC handles all input characters.

For ML-BURG, EAT reports the same control-flow ex-
ceptions as for ML-YACC, but in this case only the

Fifo.Empty exception is spurious. The lex specifica-
tion for BURG files does not handle all input characters
and raises LexError on an invalid character (e.g. on
@).? Since the LexError exception is raised without
any error message, we claim that this uncaught excep-
tion constitutes a programming bug.

EAT also reports exceptions that are potentially raised
at compile/load time. For ML-LEX, our analysis proves
the absence of such exceptions. For ML-YACC and ML-
BURG, a few spurious exceptions are reported, e.g.,
LexHackingError.

Although our exception analysis is very conservative
and reports many spurious exceptions, it has proven
useful in uncovering two minor bugs in long-standing
programs. Qur visualization mode PAM has been key
in understanding the flow of exceptions discovered by
our analysis. Without a good visualization tool, results
of program analyses are very difficult to interpret and
validate.

5 Related Work

There are several other exception inference systems for
ML. Yi [Yi94] uses an abstract interpretation [CC79]
framework to perform a much more precise analysis
than ours. Unfortunately, it scales poorly, requiring
many hours of analysis time on ML-YACC, and the anal-
ysis results are very difficult to inspect. The systems
described in [GS94, YR97] are simpler analyses than
our own, and are in general less precise. To study the
precision trade-off, we have also implemented a varia-
tion of [FA97] similar to [GS94]. On the three programs
studied in this paper, the two versions produced iden-
tical results. However, for programs using more higher
order features, the loss of precision in the second ap-
proach can be significant.

One problem with EAT is that it isn’t useful to prove
the absence of assertion failures. To do so requires prov-
ing that certain raise expressions constitute dead code.
Several techniques can be used to improve the analysis
in this area. [Yi94] models variants of datatypes and
integers such that impossible branches can be pruned.
Similarly, set-based analysis [Hei94] can also provide in-
formation to prune branches. Refinement types [FP91]
are another approach to proving that certain branches
of case statements are not needed. If datatypes are
viewed as defining regular tree languages, then refine-
ment types specify sub-languages of datatypes. Re-
finement types have potential to express complex data
structure invariants.

3Due to a yet unresolved problem in the compiler, ML-BURG
hangs instead of raising the exception.

Pervasive exceptions like Subscript are also modeled
very conservatively by our analysis. In general, proving
the absence of Subscript exceptions is equivalent to
proving that no runtime check on array indexing is re-
quired. A long line of work on range-checking for array
subscripts starts with [SI77].

Finally, in Java [GJS96], methods must declare the
set of exceptions that might be thrown during a call.
This allows Java compilers to perform a similar (al-
though non-polymorphic) exception verification. That
approach however has the same shortcomings as the one
described here with respect to assertion failures and cer-
tain pervasive exceptions. As a result, such exceptions
are called unchecked in Java and need not be listed in
method signatures.

PAM is in part inspired by MrSpidey [FFK'96], a
static debugger for Scheme. MrSpidey performs set-
based analysis on Scheme programs and presents the
information to the programmer as graphical overlays
over the source code.

6 Conclusions and Future Work

We have evaluated the precision and utility of an ex-
ception inference for Standard ML. Although the anal-
ysis cannot prove the absence of exceptions raised as a
result of a failed assertion, it is useful to check the con-
sistency of control-flow exceptions and to infer the set
of error exceptions. Applying the analysis to three pro-
grams distributed with the SML/NJ compiler, we have
discovered two minor exception related bugs.

We are also currently applying EAT to a very
large program, a points-to analysis for C written in
BANE [FFA97]. Two problems arose in this context.
First, although the inference does scale, the description
file of the analysis results uses more than 100MB of disk
space. As a result, the visualization becomes impracti-
cal. Factoring repeated information in the description
file might help curb this blowup. Second, the program
we are looking at contains many higher order functions
and stores functions in data structures. Due to the way
we model datatypes carrying exceptions, the exceptions
of many distinct functions are conflated, yielding very
imprecise results. We are experimenting with ways to
increase the precision of our analysis to make the results
more useful.

References

[App92] A. Appel. Compiling with Continuations.

Cambridge University Press, 1992.

[AW93)]

[CCT9]

[FA97]

[FFA97]

[FFK+96]

[FP91]

[GIS96]

[GS94]

[Hei%4]

[LG8S]

A. Aiken and E. Wimmers. Type Inclusion
Constraints and Type Inference. In Proceed-
ings of the 1993 Conference on Functional
Programming Languages and Computer Ar-
chitecture, pages 31 41, Copenhagen, Den-
mark, June 1993.

P. Cousot and R. Cousot. Systematic De-
sign of Program Analysis Frameworks. In
Sizth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 269—
282, January 1979.

M. Fahndrich and A. Aiken. Program Anal-
ysis Using Mixed Term and Set Constraints.
In Proceedings of the 4th International Static
Analysis Symposium, 1997.

J. Foster, M. Fihndrich, and A. Aiken.
Flow-Insensitive Points-to Analysis with
Term and Set Constraints. Technical Re-
port UCB//CSD-97-964, University of Cali-
fornia, Berkeley, July 1997.

C. Flanagan, M. Flatt, S. Krishnamurthi,
S. Weirich, and M. Felleisen. Catching
Bugs in the Web of Program Invariants.
In Proceedings of the 1996 ACM SIGPLAN
Conference on Programming Language De-
sign and Implementation, pages 23-32, May
1996.

T. Freeman and F. Pfenning. Refinement
Types for ML. In Proceedings of the ACM
SIGPLAN 91 Conference on Programming
Language Design and Implementation, pages

268 277. ACM Press, June 1991.

J. Gosling, B. Joy, and G. Steele. The
Java Language Specification. Addison Wes-
ley Longman, Inc., 1996.

J. C. Guzméan and A. Sudrez. An Extended
Type System for Exceptions. In Proceedings
of the ACM SIGPLAN Workshop on ML
and its Applications, pages 127-135, June
1994.

N. Heintze. Set Based Analysis of ML Pro-
grams. In Proceedings of the 1994 ACM
Conference on LISP and Functional Pro-
gramming, pages 306 17, June 1994.

J. Lucassen and D. Gifford. Polymorphic Ef-
fect Systems. In Proceedings of the 15th An-
nual ACM SIGACT-SIGPLAN Symposium

[MTH90)]

[SI77]

[Yi94]

[YR97]

on Principles of Programming Languages,
pages 47-57, 1988.

R. Milner, M. Tofte, and R. Harper. The
Definition of Standard ML. MIT Press,
1990.

N. Suzuki and K. Ishihata. Implementation
of an Array Bound Checker. In Fourth An-
nual ACM Symposium on Principles of Pro-
gramming Languages, pages 132-143, Jan-
uary 1977.

K. Yi. Compile-Time Detection of Uncaught
Exceptions for Standard ML Programs. In
Proceedings of the 1st International Static
Analysis Symposium, volume 864 of Lecture
Notes in Computer Science. Springer, 1994.

K. Yi and S. Ryu. Towards a Cost-Effective
Estimation of Uncaught Exceptions in SML
Programs. In Proceedings of the 4th Inter-
national Static Analysis Symposium, 1997.

