
B. Steffen (Ed.): TACAS 98

LNCS 1384, pp. 184–200, 1998. c© Springer–Verlag Berlin Heidelberg 1998

Detecting Races in Relay Ladder Logic Programs

Alexander Aiken?, Manuel Fähndrich, and Zhendong Su

EECS Department
University of California, Berkeley

387 Soda Hall #1776, Berkeley, CA 94720-1776
{aiken,manuel,zhendong}@cs.berkeley.edu

Abstract. Relay Ladder Logic (RLL) [4] is a programming language
widely used for complex embedded control applications such as manu-
facturing and amusement park rides. The cost of bugs in RLL programs
is extremely high, often measured in millions of dollars (for shutting
down a factory) or human safety (for rides). In this paper, we describe
our experience in applying constraint-based program analysis techniques
to analyze production RLL programs. Our approach is an interesting
combination of probabilistic testing and program analysis, and we show
that our system is able to detect bugs with high probability, up to the
approximations made by the conservative program analysis. We demon-
strate that our analysis is useful in detecting some flaws in production
RLL programs that are difficult to find by other techniques.

1 Introduction

Programmable logic controllers (PLC’s) are used extensively for complex embed-
ded control applications such as factory control in manufacturing industries and
for entertainment equipment in amusement parks. Relay Ladder Logic (RLL) is
the most widely used PLC programming language; approximately 50% of the
manufacturing capacity in the United States is programmed in RLL [5].

RLL has long been criticized for its low level design, which makes it difficult
to write correct programs [18]. Moreover, validation of RLL programs is ex-
tremely expensive, often measured in millions of dollars (for factory down-time)
or human safety (for rides). One solution is to replace RLL with a higher-level,
safer programming language. An alternative is to provide better programming
support directly for RLL. Since there are many existing RLL applications, and
many more will be written in this language, we consider the latter approach in
this paper.

? Supported in part by the National Science Foundation, Grant No. CCR-9416973, by
NSF Infrastructure Grant No. CDA-9401156, and a gift from Rockwell Corporation.
The information presented here does not necessarily reflect the position or the policy
of the Government and no official endorsement should be inferred.

185

PR: 50

AR: xx

TB: 0.1 sec

XIO (C)

XIC (B)

OTE (B)

OTE (C)

EN

DN

XIC (A)

TON

Fig. 1. An example RLL program.

We have designed and implemented a tool for analyzing RLL programs. Our
analyzer automatically detects some common programming mistakes that are
extremely difficult to detect through inspection or testing. The information in-
ferred by the analyzer can be used by RLL programmers to identify and correct
these errors. Our most interesting result is an analysis to detect certain race
conditions in RLL programs. Tested on real RLL programs, the analysis found
several such races, including one known bug that originally costed approximately
$750,000 in factory down-time [5].

Our analysis is constraint-based, meaning that the information we wish to
know about a program is expressed as constraints [16,2,3]. The solutions of these
constraints yield the desired information. Our analysis is built using a general
constraint resolution engine, which allows us to implement the analysis directly
in the same natural form it is specified. Constraint-based program analysis is
discussed further in Section 2.

Our system has two components: (a) a conservative data and control flow
analysis captures information about a program in an initial system of constraints
and (b) additional constraints binding program inputs to actual values are added
to the initial constraint system, which is then solved to obtain the desired in-
formation. Part (a) is done only once, but part (b) is done many times for
randomly chosen inputs. Our underlying constraint resolution engine solves and
simplifies the initial constraints generated by (a), thereby greatly improving the
performance of (b).

Beyond the particular application to RLL programs, this system architecture
has properties that may be of independent interest. First, the use of constraints
greatly simplifies the engineering needed to factor out the information to be
computed once from that which must be reevaluated repeatedly—we simply add
new constraints to the initial system. Second, our system is (to the best of our
knowledge) a unique blend of conservative program analysis (part (a), which
approximates certain aspects of computation) and software testing (part (b),
which “executes” the abstraction for concrete inputs). Third, we are able to

186

prove that classes of program errors are detected with high probability, up to
the approximations made by the conservative analysis.

We expect that the engineering advantages of using constraints will carry over
to other static analysis tools. The latter two results apply directly only if the
programming language has a finite domain of values (RLL has only booleans).
Thus, our approach is suitable for some other special-purpose languages (e.g.,
other control languages) but not necessarily for general purpose languages.

1.1 A More Detailed Overview

By any standard RLL is a strange language, combining features of boolean
logic (combinatorial circuits), imperative programming (assignment, goto, pro-
cedures, conditionals), and real-time computation (timers, counters) with an
obscure syntax and complex semantics. Although widely used, RLL is not well-
known in the research community. We give a brief overview of RLL together
with a more detailed, but still high level, description of our analysis system.

RLL programs are represented as ladder diagrams, which are a stylized form
of a circuit or data flow diagram. A ladder diagram consists of a set of ladder
rungs with each rung having a set of input instructions and output instructions.
We explain this terminology in the context of the example RLL program in
Figure 1. In the example, there are two vertical rails. The one on the left supplies
power to all crossing rungs of the ladder. The three horizontal lines are the ladder
rungs of this program. This example has four kinds of RLL instructions: input
(two kinds), outputs, and timer instructions. The small vertical parallel bars | |
and |/| represent input instructions, which have a single bit associated with them.
The bit is named in the instruction. For example, the | | instruction (an XIC for
“Normally Closed Contact” instruction) in the upper-left corner of the diagram
reads from the bit named A, and the |/| instruction (an XIO for “Normally
Opened Contact” instruction) in the lower-left corner of the diagram reads from
the bit named C. The small circles represent output instructions that update the
value of their labeled bits. The bits named in input and output instructions are
classified into external bits, which are connected to inputs or outputs external to
the program, and internal bits, which are local to the program for temporarily
storing program states. External inputs are generally connected to sensors, while
external outputs are used to control actuators. The rectangular box represents a
timer instruction (a TON for “Timer On-Delay” instruction), where PR (preset)
is an integer representing a time interval in seconds, AR (accumulator) keeps the
accumulated value, and TB (time base) is the step of each increment of the AR.
The timer instructions are used to turn an output on or off after the timer has
been on for a preset time interval (the PR value).

Instructions are connected by wires, the horizontal lines between instructions.
We say a wire is true if power is supplied to the wire, and the wire is false
otherwise.

An RLL program operates by first reading in all the values of the external
input bits and executing the rungs in sequence from top to bottom and left to
right. Program control instructions may cause portions of the program to be

187

skipped or repeatedly executed. After the last rung is evaluated, all the real
output devices connected to the external output bits are updated. Such a three
step execution (read inputs, evaluate rungs, update outputs) of the program is
called a scan. Programs are executed scan after scan until interrupted. Between
scans, the input bit values might be changed, either because the inputs were
modified by the previous scan (bits can be inputs, outputs, or both) or because
of state changes in external sensors attached to the inputs. Subsequent scans use
the new input values.

RLL has many types of instructions: relay instructions, timer and counter
instructions, data transfer instructions, arithmetic operations, data comparison
operations, and program control instructions. Examples of relay instructions are
XIC, XIO, and OTE. We briefly describe how these three instructions work for
the explanation of our analysis. Let w1 and w2 be the wires before and after an
instruction respectively. Further, let b be the bit referenced by an instruction.

XIC: if w1 and b are true, w2 is true; otherwise, w2 is false.
XIO: if w1 is true, and b is false, w2 is true; otherwise, w2 is false.
OTE: the bit b is true if and only if w1 is true.

In this paper, we describe the design and implementation of our RLL program
analyzer for detecting relay races. In RLL programs, it is desirable that the values
of outputs depend solely on the values of inputs and the internal states of timers
and counters. If under fixed inputs and timer and counter states, an output x
changes from scan to scan, then there is a relay race on x. For example, in the
program in Figure 1, we will see later that the bit B changes value each scan
regardless of its initial value. Relay races are particularly difficult to detect by
traditional testing techniques, as races can depend on the timing of external
events and the scan rate.

Our analysis generalizes traditional data flow analyses [1]. Instead of data flow
equations, set constraints [16,2,3] are used. Set constraints are more expressive
than data flow equations because the constraints can model not only data flow
but also control flow of a program.

Our analysis consists of two steps. In the first step, we generate constraints
that describe the data and control flow dependencies of an RLL program. The
constraints are generated in a top-down traversal of the program’s abstract syn-
tax tree (AST). According to a set of constraint generation rules (see Section 3),
appropriate constraints are generated for each AST node. These data and con-
trol flow constraints are solved to yield another system of simplified constraints,
the base system. The base system models where and how a value flows in the
program. The base system is a conservative approximation of the program: if
during program execution, a wire or a bit can be true (false), then true (false)
is in the set that denotes the values of the wire or the bit in the base system;
however, false (true) may be a value in that set, too.

The second step of the relay race analysis simulates multiple scans and looks
for racing outputs. We choose a random assignment of inputs and add the cor-
responding constraints to the base system. The resulting system is solved; its
minimum solution describes the values of the outputs at the end of the scan.

188

Since some output bits are also inputs, the input assignment of the next scan
is updated using the outputs from the previous scan. Again, we add this input
assignment to the base system and solve to obtain the minimum solution of the
outputs after the second scan. If an output changes across scans, a relay race
is detected. For example, consider the example program in Figure 1. Since the
bottom two rungs do not interfere with the first rung, consider these two rungs
only. Assume that B has initial value true. Then C also is true, and so in the
last rung, B becomes false. Thus, in the next scan, B is initially false. Thus, C
becomes false, which makes B true at the end of this scan. Consequently, we
have detected a relay race on B: after the first scan B is false, and after the
second scan B is true.

The race analysis is conservative in the sense that it cannot detect all of
the relay races in a program. However, any relay races the analyzer detects are
indeed relay races, and we can prove that a large class of relay races is detected
with high probability.

We have implemented the race analysis in Standard ML of New Jersey (SML)
[20]. Our analyzer is accurate and fast enough to be practical—production RLL
programs can be analyzed. The relay race analysis not only detected a known
bug in a program that took an RLL programmer four hours of factory down-
time to uncover, it also detected many previously unknown relay races in our
benchmark programs.

The rest of the paper is structured as follows. First, we describe the constraint
language used for the analysis (Section 2). The rules for generating the base
system come next (Section 3), followed by a description of the relay race analysis
(Section 4). Finally, we present some experimental results (Section 5), followed
by a discussion of related work (Section 6) and the conclusion (Section 7).

2 Constraints

In this section, we describe the set constraint language we use for expressing
our analysis. Our expression language consists of set variables, a least value ⊥,
a greatest value >, constants T and F, intersections, unions, and conditional
expressions. The syntax of the expression language is

E ::= v | ⊥ | > | c | E1 ∪ E2 | E1 ∩ E2| E1 ⇒ E2,

where c is a constant (either T or F) and v ∈ V is a set variable.
The abstract domain consists of four elements: ∅ (represented by ⊥), {T}

(represented by T), {F} (represented by F), {T,F} (represented by >) with
set inclusion as the partial order on these elements. The domain is a finite lat-
tice with ∩ and ∪ being the meet and join respectively. The semantics of the
expression language is given in Figure 2.

Conditional expressions deserve some discussion. Conditional expressions are
used for accurately modeling flow-of-control (see e.g., [3]). In the context of RLL,
they can be used to express boolean relations very directly. For example, we can
express the boolean expression v1∧v2 with the following conditional expression:

((v1 ∩ T) ⇒ (v2 ∩T) ⇒ T) ∪ ((v1 ∩F) ⇒ F) ∪ ((v2 ∩ F) ⇒ F)

189

ρ(⊥) = ∅
ρ(>) = {T,F}
ρ(T) = {T}
ρ(F) = {F}

ρ(E1 ∩ E2) = ρ(E1) ∩ ρ(E2)

ρ(E1 ∪ E2) = ρ(E1) ∪ ρ(E2)

ρ(E1 ⇒ E2) =

�
ρ(E2) if ρ(E1) 6= ∅
∅ otherwise

Fig. 2. Semantics of set expressions.

To see this expression does model the ∧ operator, notice that if v1 = T and
v2 = T, the above expression simplifies to

((T ∩ T) ⇒ (T ∩ T) ⇒ T) = ((T ⇒ T) ⇒ T) = T.

One can easily check that the other three cases are also correct.
We use set constraints to model RLL programs instead of boolean logic for

two reasons. First, although the core of RLL is boolean logic, other instructions
(e.g., control flow instructions) are at best difficult to express using boolean logic.
Second, RLL programs are large and complex, so approximations are needed
for performance reasons. Set constraints give us the flexibility to model certain
instructions less accurately and less expensively than others, thus, making the
analysis of RLL programs more manageable.

3 Constraint Generation

In this section, we describe how we use inclusion constraints to model RLL
programs. Because of the scan evaluation model of RLL programs, it is natural
to express the meaning of a program in terms of the meaning of a single scan.
The constraint generation rules model the meaning of a single scan of RLL
programs. In the rules set variables denote the values of bits and wires. Thus,
a bit or wire may be assigned the abstract values ∅ (meaning no value), {T}
(definitely true), {F} (definitely false) or {T,F} (meaning either true or false,
i.e., no information). Rules have the form

E, I 7→ E′, S, v1, v2

where:

– E and E′ are mappings of bits to their corresponding set variables. The oper-

ator + extends the mapping such that (E + {b, v})(b′) =
{

v, if b′ = b
E(b′), otherwise

– I is the current instruction;
– S is the set of constraints generated for this instruction;

190

– v1 and v2 are set variables associated with the wires before and after instruc-
tion I and are used to link instructions together.

In this section, w1 and w2 denote the wires preceding and following an in-
struction respectively. Furthermore, b denotes the bit referenced by an instruc-
tion unless specified otherwise. Figure 3 gives some example inference rules for
generating the constraints describing the data and control flow of RLL programs.
Below, we explain these rules in more detail.

Contacts
The instruction XIC is called “Normally Closed Contact.” If w1 is true, then
b is examined. If b is true, then w2 is true. Otherwise, w2 is false. In the rule
[XIC], two fresh set variables v1 and v2 represent the two wires w1 and w2.
The set variable vct represents the referenced bit b. The constraints express
that w2 is true if and only if both w1 and b are true.
The instruction XIO, called “Normally Opened Contact,” is the dual of XIC.
The wire w2 is true if and only if w1 is true and the referenced bit b is false.
The rule for XIO is similar to the rule [XIC].

Energise Coil
The instruction OTE is called “Energise Coil.” It is programmed to control
either an output connected to the controller or an internal bit. If the wire
w1 is true, then the referenced bit b is set to true. Otherwise, b is set to
false. Rule [OTE] models this instruction. The set variables v1 and v2 are
the same as in the rule [XIC]. The set variable vct is fresh, representing a
new instance1 of the referenced bit b. The new instance is recorded in the
mapping E′. Later references to b use this instance. The constraints express
that b is true if and only if w1 is true.

Latches
The instructions OTL and OTU are similar to OTE. OTL is “Latch Coil,”
and OTU is “Unlatch Coil.” These two instructions appear in pairs. Once
an OTL instruction activates its bit b, then b remains true until it is cleared
by an unlatch instruction OTU, independently of the wire w1 which acti-
vated the latch. The unlatch coil (OTU) instruction is symmetric. In the
rule [OTL], the set variable v′ct represents the value of the b prior to the
instruction, while the variable vct denotes the new instance of b. The con-
straint expresses that b is true if and only the wire w1 is true or b is true
before evaluating this instruction. The rule for OTU is similar.

Timers
Timers (TON) are instructions that activate an output after an elapsed
period of time. Three status bits are associated with a timer: the done bit
(DN), the timing bit (TT), and the on bit (EN). The DN bit is true if the
wire w1 has remained true for a preset period of time. The bit remains true
unless w1 becomes false. The TT bit is true if the wire w1 is true and the

1 Due to the sequential evaluation of rungs, a particular bit can take on distinct values
in different parts of a program. An instance of a bit captures the state of a bit at a
particular program point.

191

v1 and v2 are fresh variables
vct = E(b)

S = {((v1 ∩ T) ⇒ (vct ∩ T) ⇒ T) ∪ ((v1 ∩ F) ⇒ F) ∪ ((vct ∩ F) ⇒ F) ⊆ v2}
E, XIC(b) 7→ E, S, v1, v2

[XIC]

v1, v2, and vct are fresh variables
E′ = E + {(b, vct)}

S = {((v1 ∩ T) ⇒ T) ∪ ((v1 ∩ F) ⇒ F) ⊆ vct}
E, OTE(b) 7→ E′, S, v1, v2

[OTE]

v1, v2, and vct are fresh variables
v′

ct = E(b)
E′ = E + {(b, vct)}

S = {((v′
ct ∩ T) ⇒ T) ∪ ((v1 ∩ T) ⇒ T) ∪ ((v1 ∩ F) ⇒ (v′

ct ∩ F) ⇒ F) ⊆ vct}
E, OTL(b) 7→ E′, S, v1, v2

[OTL]

v1, v2, vdn, ven, and vtt are fresh variables
E′ = E + {(DN, vdn), (EN, ven), (TT, vtt)}

S =

8<
:

((v1 ∩ T) ⇒ T ∪ F) ⊆ vdn,
((v1 ∩ T) ⇒ (vdn ∩ F) ⇒ T) ∪ ((v1 ∩ F) ⇒ F) ∪ ((vdn ∩ T) ⇒ F) ⊆ vtt,

((v1 ∩ T) ⇒ T) ∪ ((v1 ∩ F) ⇒ F) ⊆ ven

9=
;

E, TON 7→ E′, S, v1, v2

[TON]

B = the set of bits in the program
v1, v2, nvb (for all b ∈ B) are fresh variables

Rfname = the rungs in the file fname
E,Rfname 7→ E′, S0

E′′ = {(b, nvb) | b ∈ B}
S = ((v1 ∩ T) ⇒ S0) ∪ {(v1 ∩ T) ⇒ E′(b) ∪ (v1 ∩ F) ⇒ E(b) ⊆ nvb | b ∈ B }

E, JSRfname 7→ E′′, S, v1, v2

[JSR]

v is a fresh variable
E, R1 7→ E′, S0, v1, v2

E′, R2 7→ E′′, S1, v
′
1, v

′
2

S = {(v2 ∩ T) ⇒ T ∪ (v′
2 ∩ T) ⇒ T ∪ (v2 ∩ F) ⇒ (v′

2 ∩ F) ⇒ F ⊆ v}
E, R1||R2 7→ E′′, S ∪ S0 ∪ S1 ∪ {v1 = v′

1}, v1, v
[PAR]

Fig. 3. Some rules for generating constraints.

192

DN bit is false. It is false otherwise, i.e., it is false if the wire w1 is false or
the DN bit is true. The EN bit is true if and only if the wire w1 is true.
In the rule [TON], vdn, vtt and ven are fresh set variables representing new
instances of the corresponding bits. The constraint for the DN bit is

((v1 ∩ T) ⇒ T) ∪ F ⊆ vdn.

The constraint approximates timer operation while ignoring elapsed time.
The DN bit can be false (the timer has not reached its preset period), or if the
wire w1 is true, then the DN bit can be true (the timer may have reached its
preset period). The constraints for the TT and EN bits are straightforward.

Remark 1. For the relay race analysis, we assume that the DN bit does not
change value across scans. This assumption is reasonable since the scan time,
compared with the timer increments, is infinitesimal. The DN bit essentially
becomes an input bit in the race analysis, and the constraint is accordingly
simplified to E(DN) ⊆ vdn.

Subroutines
JSR is the subroutine call instruction. If the wire w1 evaluates to true, the
subroutine (a portion of ladder rungs with label fname as specified in the
JSR instruction) is evaluated up to a return instruction, after which ex-
ecution continues with the rung after the JSR instruction. If w1 is false,
execution continues immediately with the rung after the JSR instruction. In
the rule [JSR], B denotes the set of all bits in a program. IF S is a set of
constraints and τ a set expression, then the notation τ ⇒ S abbreviates the
set of constraints

{τ ⇒ τ0 ⊆ τ1 | (τ0 ⊆ τ1) ∈ S}
The fresh variables nv b represent new instances of all bits b ∈ B. Constraints
S0 are generated for the ladder rungs of the subroutine together with a
modified mapping E′. The constraints

{(v1 ∩ T) ⇒ E′(b) ∪ (v1 ∩ F) ⇒ E(b) ⊆ nvb | b ∈ B}
merge the two instances of every bit b from the two possible control flows. If
the wire w1 (modeled by v1) is true, then E′(b) (the instance after evaluating
the subroutine) should be the value of the current instance, otherwise, E(b)
is the value of the current instance.

Parallel Wires
The rule [PAR] describes the generation of constraints for parallel wires.
Parallel wires behave the same as the disjunction of two boolean variables,
i.e., the wire after the parallel wires is true if any one of the two input wires
is true. In the rule v1 = v′1 is an abbreviation for the two constraints v1 ⊆ v′1
and v′1 ⊆ v1. The fresh variable v is used to model the wire after the parallel
wires. The constraint

(v2 ∩ T) ⇒ T ∪ (v′2 ∩T) ⇒ T ∪ (v2 ∩ F) ⇒ (v′2 ∩ F) ⇒ F ⊆ v

193

says that the wire after the parallel wires is true if one of the parallel wires
is true. There are other rules for linking instructions together. These rules
are similar to [PAR] and are also straightforward.

All solutions of the generated constraints conservatively approximate the
evaluation of RLL programs. However, the best approximation is the least so-
lution (in terms of set sizes). We now present a theorem which states that the
constraints generated from an RLL program together with constraints for re-
stricting the inputs have a least solution.

Theorem 1 (Existence of Least Solution). For any RLL program P, let S
be the constraint system generated by the rules given in Figure 3. Further let
c be an input configuration for P. The constraint system S together with the
corresponding constraints of c has a least solution, Solleast.

Next, we state a soundness theorem of our model of RLL programs, namely
that our model is a safe approximation of RLL.

Theorem 2 (Soundness). Let P be an RLL program and S be the constraint
system generated by the rules given in Figure 3. Further let c be an input con-
figuration for P. The least solution Solleast to the constraint system S together
with the constraints restricting the inputs safely approximates the values of the
wires and bits in one scan, meaning that if an instance of a bit or a wire is true
(false) in an actual scan, then true (false) is a value in the set representing this
instance.

Theorem 1 and Theorem 2 are proven in [21].

4 Relay Race Analysis

In this section, we describe our analysis for detecting relay races in RLL pro-
grams. In RLL programs, it is desirable if the values of outputs depend solely
on the values of inputs and the internal states of timers and counters. If under
fixed inputs and timer and counter states, an output b changes from scan to
scan, then there is a relay race on b.

Before describing our analysis, we give a more formal definition of the prob-
lem. Consider an RLL program P . Let IN denote the set of inputs, and let OUT
denote the set of outputs2. Let C be the set of all possible input configurations.
Further, let Ψi : OUT → {T,F} be the mapping from the set of outputs to
their corresponding values at the end of the ith scan.

Definition 1. An RLL program P is race free if for any input configurations
c ∈ C, by fixing c, it holds that for all i ≥ 1, Ψi = Ψ1. Otherwise, we say the
program has a race.

2 Note that IN = set of external inputs + internal bits, and OUT = set of external
outputs + internal bits.

194

Definition 1 states under what conditions a program exhibits a race. Note
that this definition assumes that outputs should stabilize after a single scan.

Definition 2. Let P be an RLL program. An approximation A of P is an ab-
straction of P such that, for any configuration c and bit b of P , at the end of
any scan, the following condition holds: Pc(b) (the value of b in the program P)
is contained in Ac(b) (the value of b in the abstraction A), i.e., Pc(b) ∈ Ac(b).

Let A be an approximation of P . Let Φi : OUT → ℘({T,F}) be the
mapping from the set of outputs to their corresponding values at the end of the
ith scan in A, where ℘({T,F}) denotes the powerset of {T,F}.
Definition 3. An approximation A of an RLL program P is race free if for
any fixed initial input configuration c ∈ C, and the resulting infinite sequence
of abstract scans S1, S2, S3, . . . , there exists Ψ∗ : OUT → {T,F} such that
Ψ∗(b) ∈ Φi(b), for all b ∈ OUT and i ≥ 1.

Lemma 1. Let P be an RLL program and A an approximation of P . If P is
race free, then so is A. In other words, if A exhibits a race, so does P .

Proof. Since P is race free, by Definition 1, we have Ψi = Ψ1 for all i ≥ 1. Since
A is an approximation of P , by Definition 2, Ψi(b) ∈ Φi(b) for all i ≥ 1. Thus,
Ψ1(b) ∈ Φi(b) for all i ≥ 1, and by Definition 3, the approximation A is also race
free.

Lemma 1 states that if our analysis detects a race under some input c, then
the program will exhibit a race under input c. We now deal with the problem of
detecting races in our approximation of RLL programs.

Theorem 3. For any approximation A of an RLL program P and input c ∈ C,
the approximation A races under c if and only if there exists b ∈ OUT such that⋂

i≥1 Φi(b) = ∅.
Proof. Let b ∈ OUT be an output such that

⋂
i≥1 Φi(b) = ∅. Since A is an

approximation of the program P , we have Φi(b) 6= ∅. Thus, there exist positive
integers i 6= j such that Φi(b) = {T} and Φj(b) = {F}. Therefore, there does
not exist a Ψ∗ : OUT → {T,F} such that Ψ∗(b) ∈ Φi(b) for all b ∈ OUT and
for all i ≥ 1. Hence, A has a race under c.

Conversely, suppose for all b ∈ OUT, we have
⋂

i≥1 Φi(b) 6= ∅. Then, let
Φ(b) =

⋂
i≥1 Φi(b) for all b ∈ OUT. Clearly there exists a Ψ∗ : OUT → {T,F}

such that Ψ∗(b) ∈ Φ(b) for all b ∈ OUT. Therefore, A does not race under input
c.

In principle, for any given input assignment, it is necessary to simulate scans
until a repeating sequence of output configurations is detected, which may re-
quire a number of scans exponential in the number of inputs. However, the fol-
lowing lemma shows that two scans are sufficient to uncover the common case.

195

1 for every output b
2 Bsum(b) := {T,F};
3 Sinput := random assignment;
4 for Scan := 1 to 2
5 Bcurrent := Solleast(Sbase ∪ Sinput);
6 Sinput := GetInput(Bcurrent);
7 Bsum := Bsum ∩ Bcurrent;
8 if Bsum(b) = ∅ for some output b
9 then output b is racing;

Fig. 4. Algorithm for detecting races.

Lemma 2. Let A be an approximation of a program P . If A has a race of bit b
under input configuration c, such that Φi(b) ∩ Φi+1(b) = ∅ for some scan i, then
there exists another input configuration c′ such that Φ1(b) ∩ Φ2(b) = ∅ under c′,
i.e., it is sufficient to use two scans on every input configuration to uncover the
race on b.

Proof. Let Φc
i (b) denote the value of b at the end of the ith scan starting with

input configuration c. Without loss of generality, assume Φc
i (b) = {T} and

Φc
i+1(b) = {F}. Consider the values of the inputs ci prior to scan i. Now choose

any configuration c′, s.t. c′(b) ⊆ ci(b) for all b. Since our analysis is monotone
in the input (Theorem 1), we have Φc′

1 (b) = {T} and Φc′
2 (b) = {F}. Hence, the

race on bit b can be detected within two scans, starting from a configuration c′.

We have verified experimentally that performing only two scans works well;
an experiment in which we performed ten scans per initial input configuration
detected no additional races. Theorem 3 and Lemma 2 thus lead naturally to
the algorithm in Figure 4 for detecting relay races. The general strategy for the
analysis is:

1. Generate the base system using the constraint generation rules presented in
Section 3.

2. Add constraints that assign random bits to the inputs.
3. Check whether the program races under this input assignment.
4. Repeat 2.

We make the assumption that all input assignments are possible. In practice,
there may be dependencies between inputs that make some input configurations
unrealizable. Our analysis can be made more accurate if information about these
dependencies is available.

We use the example in Figure 1 to demonstrate how the race detection al-
gorithm works. Consider the last two rungs in the example RLL program in
isolation. The base system for these two rungs is given in the top of Figure 5.
Assume the bit B is initially true. Adding the constraint T ⊆ bB0 to the base
system and solving the resulting system, we obtain its least solution at the end
of the first scan (column 3 in Figure 5). We see that at the end of the first scan,

196

T ⊆ w0

((T ∩ bB0) ⇒ T) ∪ ((F ∩ bB0) ⇒ F) ⊆ w1

((T ∩ w1) ⇒ T) ∪ ((F ∩ w1) ⇒ F) ⊆ w2

((T ∩ w2) ⇒ T) ∪ ((F ∩ w2) ⇒ F) ⊆ bC

T ⊆ w3

((T ∩ bB0) ⇒ F) ∪ ((F ∩ bB0) ⇒ T) ⊆ w4

((T ∩ w4) ⇒ T) ∪ ((F ∩ w4) ⇒ F) ⊆ w5

((T ∩ w5) ⇒ T) ∪ ((F ∩ w5) ⇒ F) ⊆ bB1

bit or wire variable value after the first scan value after the second scan

wire preceding XIC(B) w0 T T

wire following XIC(B) w1 T F

wire preceding OTE(C) w2 T F

wire preceding XIO(C) w3 T T

wire following XIO(C) w4 F T

wire preceding OTE(B) w5 F T

first instance of B bB0 T F

last instance of B bB1 F T

the bit C bC T F

Fig. 5. Base system for the last two rungs of the example program in Figure 1
with the least solutions at the end of the first and the second scans given in the
table.

the bit B is false. In the second scan, we add the constraint F ⊆ bB0 to the
base system. The resulting system is solved, and its least solution is shown in
column 4 of Figure 5. We intersect the values of the output bits, i.e., bits B (the
last instance) and C, in the least solutions from the first two scans. Since the
intersections are empty, we have detected a race.

If our analysis finds a race, then the program does indeed exhibit a race.
The absence of races cannot be proven by our analysis due to approximations
and due to the finite subspace of input assignments we sample. However, we can
analyze the coverage of our random sampling approach using the well-known
Coupon Collector’s Problem: Consider a hat containing n distinct coupons. In a
trial a coupon is drawn at random from the hat, examined, and then placed back
in the hat. We are interested in the expected number of trials needed to select
all n coupons at least once. One can show that the expected number of trials
is n ln n + O(n), and that the actual number of trials is sharply concentrated
around this expected value (for any constant c > 0, the probability that after
n(lnn+ c) trials there are still coupons not selected is approximately 1−e−e−c

).
Notice that 1 − e−e−c ≈ 0.05 when c = 3, and this probability is independent of
n.

197

Program Size #Vars. Secs/Scan Ext. Races Int. Races #Samples Time (s)

Mini Factory 9,267 4,227 0.4 55 186 1000 844

Big Bak 32,005 21,596 4 4 6 1000 7466

Wdsdflt(1) 58,561 22,860 3 8 163 1000 7285

Wdsdflt(2) 58,561 22,860 3 7 156 1000 7075

Fig. 6. Benchmark programs for evaluating our analysis.

Theorem 4. Using the Coupon Collector’s problem, after approximately 2k ln(2k+
3) random samples, any race depending on a fixed set of k or fewer inputs has
been detected with high probability (95%), up to the approximations due to con-
servative analysis and performing only two scans.

Note that the expected number of trials depends only on the number of inputs
participating in the race, not on the total number of inputs. For example, the
number of trials required to find races involving 5 inputs with 95% probability
is 200 whether there are 100, 1000, or 10,000 inputs to the program.

5 Experimental Results

We have implemented our analysis using a general constraint solver [13]. Inputs
to our analysis are abstract syntax tree (AST) representations of RLL programs.
The ASTs are parsed into internal representations, and constraints are generated
using the rules in Figure 3. The resulting constraints are solved and simplified
to obtain the base system.

5.1 Benchmarks

Four large RLL programs were made available to us in AST form for evaluating
our analysis.

– Mini Factory
This is an example program written and used by RLL programmers and
researchers working on tools for RLL programming.

– Big Bak
This is a production RLL program.

– Wdsdflt(1)
Another production application, this program has a known race.

– Wdsdflt(2)
This program is a modified version of Wdsdflt(1) with the known race elim-
inated. The program is included for comparing its results with the results
from the original program.

Figure 6 gives a table showing the size of each program as number of lines
in abstract syntax tree form, number of set variables in the base system, and
the time to analyze one scan. All measurements reported here were done on a

198

Sun Enterprise-5000 with 512MB of main memory (using only one of the eight
processors).

Our analysis discovered many relay races in these programs. The results are
presented in Figure 6. For each program, we show the number of external racing
bits (bits connected to external outputs), the number of internal racing bits (bits
internal to the program), the number of samples, and the total analysis time in
seconds. By Theorem 4, 1000 trials are sufficient to uncover races involving 7 or
fewer inputs.

No relay races were known for the Mini Factory program. Our analysis de-
tected 55 external races, some of which were subsequently verified by running
a model factory under the corresponding inputs. Fewer races were found in Big
Bak, even though it is a much larger program. Two likely reasons for this sit-
uation are that Big Bak uses arithmetic operations heavily (which our analysis
approximates rather coarsely) and that Big Bak is a production program and
has been more thoroughly debugged than Mini Factory. Our analysis discovered
the known relay race in Wdsdflt(1) (fixed in Wdsdflt(2)) among 8 external and
163 internal races. Note that some of the reported races may be unrealizable if
they depend on input configurations that cannot occur in practice.

6 Related Work

In this section, we discuss the relationship of our work to work in data flow
analysis, model checking, and testing.

Data Flow Analysis Data flow analysis is used primarily in optimizing
compilers to collect variable usage information for optimizations such as dead
code elimination and register allocation [1]. It has also been applied for ensuring
software reliability [14,15]. Our approach differs from classical data flow analysis
in two points. First, we use conditional constraints [3], which are essential for
modeling both the boolean instructions and control flow instructions. Second,
the use of constraints gives us the flexibility to analyze many input configurations
by adding constraints to a base system, instead of performing a global dataflow
analysis repeatedly. Our approach is more efficient because the base system
can be solved and simplified once and then used repeatedly on different input
configurations.

Model Checking Model checking [9,10] is a branch of formal verifica-
tion that can be fully automated. Model checking has been used successfully
for verifying finite state systems such as hardware and communication proto-
cols [6,7,12,17,11]. Model checkers exploit the finite nature of these systems by
performing exhaustive state space searches. Because even these finite state spaces
may be huge, model checking is usually applied to some abstract models of the
actual system. These abstract systems are symbolically executed to obtain in-
formation about the actual systems. Our analysis for RLL programs is similar to
model checking in that our abstract models are finite, whereas RLL programs are
in general infinite state systems. Similar to model checking, we make the trade-
offs between modeling accuracy and efficiency. Our abstraction approximates
timers, counters, and arithmetic. It is through these approximations that we ob-

199

tain a simpler analysis that is practical for production codes. On the other hand,
due to these approximations our analysis cannot guarantee the absence of errors.
However, our approach differs from model checking in the way abstract models
are obtained. In model checking, abstract models are often obtained manually,
while our analysis automatically generates the model.

Testing Testing is one of the most commonly used methods for assur-
ing hardware and software quality. The I/O behaviors of the system on input
instances are used to deduce whether the given system is faulty or not [19].
Testing is non-exhaustive in most cases due to a large or infinite number of test
cases. One distinction of our approach from testing is that we work with an
abstract model of the actual system. There are advantages and disadvantages
to using an abstract model. A disadvantage is that there is loss of information
due to abstraction. As a result, the detection of an error may be impossible,
whereas testing the actual system would show the incorrect I/O behavior. Ab-
stract models have the advantage that a much larger space of possible inputs
can be covered, which is important if the set of inputs exhibiting a problem is
a tiny fraction of all possible inputs. An abstract model is also advantageous
when it is very difficult or very expensive to test the actual system. Both of
these advantages of abstract modeling apply in the case of detecting relay races
in RLL programs. [8] discusses some other tradeoffs of using the actual system
and abstract models of the system for testing.

7 Conclusion

In this paper, we have described a relay race analysis for RLL programs to
help RLL programmers detect some common programming mistakes. We have
demonstrated that the analysis is useful in statically catching such programming
errors. Our implementation of the analysis is accurate and fast enough to be
practical — production RLL programs can be analyzed. The relay race analysis
not only detected a known bug in a program that took an RLL programmer
four hours of factory down-time to uncover, it also detected many previously
unknown relay races in our benchmark programs.

Acknowledgments

We would like to thank Jim Martin for bringing RLL to our attention and for
making this work possible. We would also like to thank Anthony Barrett for
information on RLL, providing us with abstract syntax trees of RLL programs,
and running some experiments to validate our results. Finally, we thank the
anonymous referees for the helpful comments.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. A. Aiken and E. Wimmers. Type inclusion constraints and type inference. In
Proceedings of the 1993 Conference on Functional Programming Languages and
Computer Architecture, pages 31–41, Copenhagen, Denmark, June 1993.

200

3. A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In
Twenty-First Annual ACM Symposium on Principles of Programming Languages,
pages 163–173, Portland, Oregon, January 1994.

4. Allen–Bradley, Rockwell Automation. SLC 500 and MicroLogix 1000 Instruction
Set.

5. A. Barrett. Private communication.
6. M. Browne, E.M. Clarke, and D. Dill. Checking the correctness of sequential

circuits. In Proc. IEEE Internat. Conf. on Computer Design, pages 545–548, 1985.
7. M. Browne, E.M. Clarke, D. Dill, and B. Mishra. Automatic verification of se-

quential circuits using temporal logic. IEEE Trans. Comput., 35(12):1035–1044,
1986.

8. R.H. Carver and R. Durham. Integrating formal methods and testing for con-
current programs. In Proceedings of the Tenth Annual Conference on Computer
Assurance, pages 25–33, New York, NY, USA, June 1995.

9. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. Workshop on Logics of Programs,
volume 131, pages 52–71, Berlin, 1981. Springer.

10. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

11. E.M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and
L.A. Ness. Verification of the futurebus+ cache coherence protocol. In L. Claesen,
editor, Proceedings of the Eleventh International Symposium on Computer Hard-
ware Description Languages and their Applications, North-Holland, April 1993.

12. D. Dill and E.M. Clarke. Automatic verification of asynchronous circuits using
temporal logic. In Proceedings of the IEEE, volume 133, pages 276–282, 1986.

13. M. Fahndrich and A. Aiken. Making set-constraint based program analyses scale.
Technical Report UCB/CSD-96-917, University of California at Berkeley, 1996.

14. L.D. Fosdick and L.J. Osterweil. Data flow analysis in software reliability. ACM
Computing Surveys, 8(3):305–330, September 1976.

15. M.J. Harrold. Using data flow analysis for testing. Technical Report 93-112,
Department of Computer Science, Clemson University, 1993.

16. N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
1992.

17. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-
national Editions, 1991.

18. A. Krigman. Relay ladder diagrams: we love them, we love them not. In Tech,
pages 39–47, October 1985.

19. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-
a survey. In Proceedings of the IEEE, pages 1090–1123, August 1996.

20. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

21. Z. Su. Automatic analysis of relay ladder logic programs. Technical Report
UCB/CSD-97-969, University of California at Berkeley, 1997.

	Introduction
	Constraints
	Constraint Generation
	Relay Race Analysis
	Experimental Results
	Related Work
	Conclusion

