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HIGH-SPEED ALGORITHMS & ARCHITECTURES FOR

NUMBER-THEORETIC CRYPTOSYSTEMS

1. INTRODUCTION

Computer and network security systems rely on the privacy and authenticity of

information, which requires implementation of cryptographic functions. Basic functions

of information security include secret-key and public-key cryptosystems, message-digest

algorithms, and digital signature functions. Software implementations of these algorithms

are often desired because of their exibility and cost e�ectiveness. However, performance

has always been an issue, requiring the algorithm engineer to invent and develop new

methods for high-speed implementations. The computational cost of software cryptogra-

phy is a function of the underlying algorithm and the quality of the implementation of the

algorithm [1]. In this study, we concentrate on developing high-speed and area-e�cient

algorithms for number-theoretic cryptosystems. In this framework, we study modular

multiplication and exponentiation in �nite �elds.

We �rst investigate fast algorithms for modular multiplication which is a popular

operation used in number-theoretic cryptosystems. The RSA algorithm [2], the Di�e-

Hellman key exchange scheme [3] and Digital signature standard [4] require the computa-

tion of modular exponentiation, which is broken into a series of modular multiplications

by the application of the binary or m-ary methods [5]. These algorithms can be imple-

mented in hardware and software [6, 7]. One of the most interesting advances in modular

exponentiation has been the introduction of Montgomery multiplication [8]. It became de

facto algorithm in any cryptographic method utilizing modular multiplication, especially

the RSA cryptosystem [9, 10]. We are interested in two aspects of modular multiplication

algorithms: development of fast and convenient methods on a given hardware platform,
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and hardware requirements to achieve high-performance algorithms.

Arithmetic operations in the Galois �eld GF(2k) have several applications in coding

theory, computer algebra, and cryptography. We are especially interested in cryptographic

applications where k is very large. Examples of the cryptographic applications are the

Di�e-Hellman key exchange algorithm [3] based on the discrete exponentiation and elliptic

curve cryptosystems [11, 12, 13] over the �eld GF(2k). The Di�e-Hellman algorithm

requires implementation of the exponentiation ge, where g is a �xed primitive element

of the �eld and e an integer. In elliptic curves, the exponentiation is used to compute

inverse of an element a 2 GF(2k), based on Fermat's identity a�1 = a2
k�2 [14, 15, 16]. The

exponentiation operation can be implemented using a series of squaring and multiplication

operations in GF(2k) using the binary method [5].

In Chapter 2., several Montgomery multiplication algorithms are discussed [8]. We

focus on developing time and space e�cient algorithms for the Montgomery multiplication.

We �rst study two previously introduced algorithms [17, 18]. We then introduce three

new time and space e�cient algorithms, and analyze their space and time requirements in

detail. These algorithms are implemented in C and in Intel 486 assembler for comparing

their time requirements.

In Chapter 3., we show that the operation c = a � b � r�1 in the �eld GF(2k) can

be implemented signi�cantly faster in software than the standard multiplication, where

r is a special element of the �eld [19]. This operation is a �nite �eld analogue of the

Montgomery multiplication for modular multiplication of integers [8]. The Montgomery

multiplication can be used to achieve fast discrete exponentiation operation in GF(2k),

and is particularly suitable for cryptographic applications where k is large.

In Chapter 4., we examine the implementation issues of number-theoretic crypto-

graphic algorithms (e.g., RSA and Di�e-Hellman), and propose a design methodology

for obtaining high-speed implementations. We show that between the full assembler and

standard C implementations, there is a design option in which only a small number of

code segments are written in assembler. These small code segments are the kernel of
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arithmetic operations for number-theoretic cryptographic algorithms. We propose eight

kernel operations. We are currently working on the speci�cation and implementation of

this cryptographic kernel.

We have also analyzed the instruction set and related architectural features of the

Intel Pentium processor and MMX technology for high-speed implementations of number-

theoretic cryptographic algorithms in Chapter 5.. After carefully examining the kernel

operations for the number-theoretic cryptographic algorithms, we propose new instruc-

tions for the Intel MMX technology.
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2. NEW ALGORITHMS FOR MONTGOMERY
MULTIPLICATION

2.1. Introduction

This chapter discusses several Montgomery multiplication algorithms, two of which

have been proposed before. We describe three additional algorithms, and analyze in

detail the space and time requirements of all �ve methods [20]. These algorithms are

implemented in C and in assembler. The analyses and actual performance results in-

dicate that the Coarsely Integrated Operand Scanning (CIOS) method, detailed in this

chapter, is the most e�cient of all �ve algorithms, at least for the general class of pro-

cessor we considered. The Montgomery multiplication methods constitute the core of the

modular exponentiation operation which is the most popular method used in public-key

cryptography for encrypting and signing digital data.

The motivation for studying high-speed and space-e�cient algorithms for modular

multiplication comes from their applications in public-key cryptography. The RSA al-

gorithm [2] and the Di�e-Hellman key exchange scheme [3] require the computation of

modular exponentiation, which is broken into a series of modular multiplications by the

application of the binary or m-ary methods [5]. Various hardware algorithms for mod-

ular multiplication have been proposed [21, 22, 23]. Modular exponentiation algorithms

using division chains [24], a double-base number system [25], and complex arithmetic [26]

are applicable to software implementations. However, these methods concentrate on fast

modular exponentiation, not on the particular modular multiplication method employed.

Certainly one of the most interesting and useful advances has been the introduction

of the so-called Montgomery multiplication algorithm due to Peter L. Mongtomery [8]

(for some of the recent applications see the discussion by Naccache et al. [27], Ko�c et

al. [20] and Bajard et al. [28]). Various hardware implementations of the Montgomery
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multiplication have been proposed and some of them have been used in commercially

available chips [29, 9, 30]. The Montgomery multiplication algorithm is used to speed

up the modular multiplications and squarings required during the exponentiation process.

The Montgomery algorithm computes

MonPro(a; b) = a � b � r�1 mod n (2.1)

given a; b < n and r such that gcd(n; r) = 1. Even though the algorithm works for any

r which is relatively prime to n, it is more useful when r is taken to be a power of 2.

In this case, the Montgomery algorithm performs divisions by a power of 2, which is

an intrinsically fast operation on general-purpose computers, e.g., signal processors and

microprocessors; this leads to a simpler implementation than ordinary modular multipli-

cation, which is typically faster as well [27].

In this chapter, we study the operations involved in the computing the Mont-

gomery product, describe several high-speed and space-e�cient algorithms for computing

MonPro(a; b), and analyze their time and space requirements. Our focus is to collect

together several alternatives for Montgomery multiplication, three of which are new.

2.2. Montgomery Multiplication

Let the modulus n be a k-bit integer, i.e., 2k�1 � n < 2k, and let r be 2k. The

Montgomery multiplication algorithm requires that r and n be relatively prime, i.e.,

gcd(r; n) = gcd(2k; n) = 1. This requirement is satis�ed if n is odd. A modi�ed Mont-

gomery multiplication has also been introduced for an even modulus [31]. In order to

describe the Mongtomery multiplication algorithm, we �rst de�ne the n-residue of an

integer a < n as �a = a � r (mod n). It is straightforward to show that the set

f a � r mod n j 0 � a � n� 1 g
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is a complete residue system, i.e., it contains all numbers between 0 and n � 1. Thus,

there is one-to-one correspondence between the numbers in the range 0 and n� 1 and the

numbers in the above set. The Montgomery reduction algorithm exploits this property

by introducing a much faster multiplication routine which computes the n-residue of the

product of the two integers whose n-residues are given. Given two n-residues �a and �b, the

Montgomery product is de�ned as the n-residue

�c = �a � �b � r�1 (mod n) , (2.2)

where r�1 is the inverse of r modulo n, i.e., it is the number with the property r�1 � r = 1

(mod n). The resulting number c in (2.2) is the n-residue of the product c = a�b (mod n),

since

�c = �a � �b � r�1 (mod n)

= a � r � b � r � r�1 (mod n)

= c � r (mod n) .

In order to describe the Montgomery reduction algorithm, we need an additional quantity,

n0, which is the integer with the property r � r�1 � n � n0 = 1. The integers r�1 and n0

can both be computed by the extended Euclidean algorithm [5, 32]. The computation of

MonPro(�a;�b) is achieved as follows:

function MonPro(�a;�b)

Step 1. t := �a � �b

Step 2. u := (t+ (t � n0 mod r) � n)=r

Step 3. if u � n then return u� n else return u

Multiplication modulo r and division by r are both intrinsically fast operations, since r

is a power of 2. Thus the Montgomery product algorithm is potentially faster and sim-

pler than ordinary computation of a � b mod n, which involves division by n. However,
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since conversion from an ordinary residue to an n-residue, computation of n0, and con-

version back to an ordinary residue are time-consuming, it is not a good idea to use the

Montgomery product computation algorithm when a single modular multiplication is to

be performed. It is more suitable when several modular multiplications with respect to

the same modulus are needed. Such is the case when one needs to compute modular

exponentiation. Using the binary method for computing the powers [5], we replace the

exponentiation by a series of square and multiplication operations modulo n. Let j be

the number of bits in the exponent e. The following exponentiation algorithm is one way

to compute x := ae mod n with O(j) calls to the Montgomery multiplication algorithm.

Step 4 of the modular exponentiation algorithm computes x using �x via the property of

the Montgomery algorithm: MonPro(�x; 1) = �x � 1 � r�1 = x � r � r�1 = x mod n.

function ModExp(a; e; n)

Step 1. �a := a � r mod n

Step 2. �x := 1 � r mod n

Step 3. for i = j � 1 downto 0

�x :=MonPro(�x; �x)

if ei = 1 then �x :=MonPro(�x; �a)

Step 4. ret x :=MonPro(�x; 1)

In typical implementations, large numbers are stored by breaking the numbers into

words. If w is the wordsize of the computer, then a number can be thought of as a sequence

of integers each represented in radix W = 2w. If these \multi-precision" numbers require

s words in the radix W representation, then we take r as r = 2sw.

In the following sections, we give several algorithms for doing the Montgomery

multiplication MonPro(a; b), and analyze their time and space requirements. We counted

the total number of multiplications, additions (subtractions), and memory read and write

operations in terms of the input size parameter s for the time analysis. For example, the

following operation
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(C,S) := t[i+j] + a[j]*b[i] + C

is assumed to require three memory reads, two additions, and one multiplication since

most microprocessors multiply two one-word numbers, leaving the two-word result in one

or two registers.1

Multi-precision integers are assumed to reside in memory throughout the computa-

tions. Therefore, the assignment operations performed within a routine correspond to the

read or write operations between a register and memory. They are counted to calculate

the proportion of the memory access time in the total running time of the Montgomery

multiplication algorithm. In our analysis, loop establishment and index computations are

not taken into account. The only registers we assume are available are those to hold the

carry C and the sum S as above (or equivalently, borrow and di�erence for subtraction).

Obviously, in many microprocessors there will be more registers, but this gives a �rst-order

approximation to the running time, su�cient for a general comparison of the approaches.

Actual implementation on particular processors gives a more detailed comparison.

The space analysis is performed by counting the total number of words used as the

temporary space. However, the space required to keep the input and output values a, b,

n, n00, and u is not taken into account.

2.3. Algorithms

There are a variety of ways to perform the Montgomery multiplication, just as there

are many ways to multiply. Our purpose in this chapter is to give fairly broad coverage

of the alternatives.

Roughly speaking, we may organize the algorithms based on two factors [20]. The

�rst factor is whether multiplication and reduction are separated or integrated. In the

1We note that in some processors the additions may actually involve two instructions each, since the
value +a[j]*b[i] is double-precision; we ignore this distinction in our timing estimates.
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separated approach, we �rst multiply a and b, then perform a Montgomery reduction.

In the integrated approach, we alternate between multiplication and reduction. This

integration can be either coarse-grained or �ne-grained, depending on how often we switch

between multiplication and reduction (i.e., after processing an array of words, or just one

word); there are implementation tradeo�s between alternatives.

The second factor is the general form of the multiplication and reduction steps.

One form is the operand scanning, where an outer loop moves through words of one of

the operands; another form is product scanning, where the loop moves through words of

the product itself [17]. This factor is independent of the �rst; moreover, it is also possible

for multiplication to have one form and reduction to have the other form, even in the

integrated approach.

In all the cases we consider, the algorithms are described as operations on multi-

precision numbers. Thus it is straightforward to rewrite the algorithms in an arbitrary

radix, e.g., in binary or radix-4 form for hardware.

Clearly, the foregoing discussion suggests that quite a few algorithms are possible,

but in this chapter we focus on �ve as representative of the whole set, and which for

the most part have good implementation characteristics. The �ve algorithms we discuss

include the following:

� Separated Operand Scanning (SOS) (Section 2.3.1.)

� Coarsely Integrated Operand Scanning (CIOS) (Section 2.3.2.)

� Finely Integrated Operand Scanning (FIOS) (Section 2.3.3.)

� Finely Integrated Product Scanning (FIPS) (Section 2.3.4.)

� Coarsely Integrated Hybrid Scanning (CIHS) (Section 2.3.5.)

Other possibilities are variants of one or more of these �ve; we encourage the interested

reader to construct and evaluate some of them. Two of these methods have been described

previously, SOS (as Improvement 1 in [18]) and FIPS (in [17]). The other three, while



10

suggested by previous work, have been �rst described in detail or analyzed in comparison

with the others in [20].

2.3.1. The Separated Operand Scanning (SOS) Method

The �rst method to be analyzed for computing MonPro(a; b) is what we call the

Separated Operand Scanning method (see Improvement 1 in [18]). In this method we �rst

compute the product a � b using

for i=0 to s-1

C := 0

for j=0 to s-1

(C,S) := t[i+j] + a[j]*b[i] + C

t[i+j] := S

t[i+s] := C

where t is initially assumed to be zero. The �nal value obtained is the 2s-word integer t

residing in words

t[0], t[1], ... , t[2s-1]

Then we compute u using the formula u := (t +m � n)=r, where m := t � n0 mod r. In

order to compute u, we �rst take u = t, and then add m � n to it using the standard

multiplication routine, and �nally divide it by r = 2sw which is accomplished by ignoring

the lower s words of u. Since m = t � n0 mod r and the reduction process proceeds word

by word, we can use n00 = n0 mod 2w instead of n0. This observation was �rst made in

[18], and applies to all �ve methods presented in this chapter. Thus, after t is computed

by multiplying a and b using the above code, we proceed with the following code which

updates t in order to compute t+m � n.

for i=0 to s-1

C := 0
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m := t[i]*n'[0] mod W

for j=0 to s-1

(C,S) := t[i+j] + m*n[j] + C

t[i+j] := S

ADD (t[i+s],C)

The ADD function shown above performs a carry propagation adding C to the input array

given by the �rst argument, starting from the �rst element (t[i+s]), and propagates it

until no further carry is generated. The ADD function is needed for carry propagation up

to the last word of t, which increases the size of t to 2s words and a single bit. However,

this bit is saved in a single word, increasing the size of t to 2s+ 1 words.2 The computed

value of t is then divided by r which is realized by simply ignoring the lower s words of t.

These steps are given below:

for j=0 to s

u[j] := t[j+s]

Finally we obtain the number u in s+1 words. The multi-precision subtraction in Step 3

of MonPro is then performed to reduce u if necessary. Step 3 can be performed using the

following code:

B := 0

for i=0 to s-1

(B,D) := u[i] - n[i] - B

t[i] := D

(B,D) := u[s] - B

t[s] := D

2This extra bit, and hence an extra word, is required in all the methods described. One way to avoid
the extra word in most cases is to de�ne s as the length in words of 2n, rather than the modulus n itself.
This s will be the same as in the current de�nition, except when the length of n is a multiple of the word
size, and in that case only one larger than currently.
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if B=0 then return t[0], t[1], ... , t[s-1]

else return u[0], u[1], ... , u[s-1]

Step 3 is performed in the same way for all algorithms described in this chapter, and thus,

we do not repeat this step in the description of the algorithms. However, its time and

space requirements will be taken into account. The operations above contain 2(s + 1)

additions, 2(s+ 1) reads, and s+ 1 writes.

A brief inspection of the SOS method, based on our techniques for counting the

number of operations, shows that it requires 2s2+s multiplications, 4s2+4s+2 additions,

6s2 + 7s + 3 reads, and 2s2 + 6s + 2 writes. (See Section 2.4. for discussion of how to

count the number of operations required by the ADD function.) Furthermore, the SOS

method requires a total of 2s + 2 words for temporary results, which are used to store

the (2s+1)-word array t and the one-word variable m. The SOS method is illustrated in

Figure 2.1 for s = 4.

FIGURE 2.1: The Separated Operand Scanning (SOS) method for s = 4. The multipli-
cation operation t = a � b is illustrated on the left. Then, n00 is multiplied by each word
of t to �nd m. The �nal result is obtained by adding the shifted n�m to t, as shown
on the right.
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The value n00, which is de�ned as the inverse of the least signi�cant word of n

modulo 2w, i.e., n00 = �n
�1
0 (mod 2w), can be computed using a very simple algorithm

given in [18]. Furthermore, the reason for separating the product computation a � b from

the rest of the steps for computing u is that when a = b, we can optimize the Montgomery

multiplication algorithm for squaring. The optimization of squaring is achieved because

almost half of the single-precision multiplications can be skipped since ai �aj = aj �ai. The

following simple code replaces the �rst part of the Mongtomery multiplication algorithm

in order to perform the optimized Montgomery squaring:

for i=0 to s-1

(C,S) := t[i+i] + a[i]*a[i]

for j=i+1 to s-1

(C,S) := t[i+j] + 2*a[j]*a[i] + C

t[i+j] := S

t[i+s] := C

(One tricky part here is that the value 2*a[j]*a[i] requires more than two words to

store; if the C value does not have an extra bit, then one way to deal with this is to

rewrite the loop so that the a[j]*a[i] terms are added �rst, without the multiplication

by 2; the result is then doubled and the a[i]*a[i] terms are added in.) In this chapter,

we analyze only the Montgomery multiplication algorithms. The analysis of Montgomery

squaring can be performed similarly.

2.3.2. The Coarsely Integrated Operand Scanning (CIOS) Method

The next method, the Coarsely Integrated Operand Scanning method, improves on

the �rst one by integrating the multiplication and reduction steps. Speci�cally, instead

of computing the entire product a � b, then reducing, we alternate between iterations of

the outer loops for multiplication and reduction. We can do this since the value of m in

the ith iteration of the outer loop for reduction depends only on the value t[i], which is
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completely computed by the ith iteration of the outer loop for the multiplication. This

leads to the following algorithm:

for i=0 to s-1

C := 0

for j=0 to s-1

(C,S) := t[j] + a[j]*b[i] + C

t[j] := S

(C,S) := t[s] + C

t[s] := S

t[s+1] := C

C := 0

m := t[0]*n'[0] mod W

for j=0 to s-1

(C,S) := t[j] + m*n[j] + C

t[j] := S

(C,S) := t[s] + C

t[s] := S

t[s+1] := t[s+1] + C

for j=0 to s

t[j] := t[j+1]

Note that the array t is assumed to be set to 0 initially. The last j-loop is used to shift

the result one word to the right (i.e., division by 2w), hence the references to t[j] and

t[0] instead of t[i+j] and t[i]. A slight improvement is to integrate the shifting into

the reduction as follows:

m := t[0]*n'[0] mod W

(C,S) := t[0] + m*n[0]

for j=1 to s-1
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(C,S) := t[j] + m*n[j] + C

t[j-1] := S

(C,S) := t[s] + C

t[s-1] := S

t[s] := t[s+1] + C

The auxiliary array t uses only s + 2 words. This is due to fact that the shifting is

performed one word at a time, rather than s words at once, saving s� 1 words. The �nal

result is in the �rst s+ 1 words of array t. A related method, without the shifting of the

array (and hence with a larger memory requirement), is described as Improvement 2 in

[18].

The CIOS method (with the slight improvement above) requires 2s2+ s multiplica-

tions, 4s2 + 4s + 2 additions, 6s2 + 7s + 2 reads, and 2s2 + 5s + 1 writes, including the

�nal multi-precision subtraction, and uses s + 3 words of memory space. The memory

reduction is a signi�cant improvement over the SOS method.

We say that the integration in this method is \coarse" because it alternates between

iterations of the outer loop. In the next method, we will alternate between iterations of

the inner loop.

2.3.3. The Finely Integrated Operand Scanning (FIOS) Method

This method integrates the two inner loops of the CIOS method into one by com-

puting the multiplications and additions in the same loop. The multiplications aj � bi and

m � nj are computed in the same loop, and then added to form the �nal t. In this case,

t0 must be computed before entering into the loop since m depends on this value which

corresponds to unrolling the �rst iteration of the loop for j = 0.

for i=0 to s-1

(C,S) := t[0] + a[0]*b[i]

ADD(t[1],C)

m := S*n'[0] mod W
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(C,S) := S + m*n[0]

The partial products of a � b are computed one by one for each value of i, then m � n is

added to the partial product. This sum is then shifted right one word, making t ready for

the next i-iteration.

for j=1 to s-1

(C,S) := t[j] + a[j]*b[i] + C

ADD(t[j+1],C)

(C,S) := S + m*n[j]

t[j-1] := S

(C,S) := t[s] + C

t[s-1] := S

t[s] := t[s+1] + C

t[s+1] := 0

The di�erence between the CIOS method and this method is that the FIOS method

has only one inner loop. We illustrate the algorithm in Figure 2.2 for s = 4. The use of

the ADD function is required in the inner j-loop since there are two distinct carries, one

arising from the multiplication of aj � bi and the other from the multiplication of m � nj.

(Thus the bene�t of having only one loop is counterbalanced by the requirement of the

ADD function.) The array t is assumed to be set to 0 initially.

The FIOS method requires 2s2+s multiplications, 5s2+3s+2 additions, 7s2+5s+2

reads, and 3s2 + 4s + 1 writes, including the �nal multi-precision subtraction. This is

about s2 more additions, writes, and reads than for the CIOS method. The total amount

of temporary space required is s+ 3 words.

2.3.4. The Finely Integrated Product Scanning (FIPS) Method

Like the previous one, this method interleaves the computations a � b and m � n, but

here both computations are in the product-scanning form. The method keeps the values
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FIGURE 2.2: An iteration of the Finely Integrated Operand Scanning (FIOS) method.

The computation of partial product t(i) = a � bi , illustrated on the left, enables the
computation of m(i) in that iteration. Then an intermediate result t(i+1) is found by
adding n�m(i) to this partial product, as shown on the right.
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of m and u in the same s-word array m. This method was described in [17] and is related

to Improvement 3 in [18]. The �rst loop given below computes one part of the product

a � b and then adds m � n to it. The three-word array t, i.e.,

t[0], t[1], t[2],

is used as the partial product accumulator for the products a � b and m � n.3

for i=0 to s-1

for j=0 to i-1

(C,S) := t[0] + a[j]*b[i-j]

ADD(t[1],C)

(C,S) := S + m[j]*n[i-j]

t[0] := S

ADD(t[1],C)

3The use of a three-word array assumes that s < W ; in general, we need logW (sW (W�1)) � 2+logW s

words. The algorithm is easily modi�ed to handle a larger accumulator.
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(C,S) := t[0] + a[i]*b[0]

ADD(t[1],C)

m[i] := S*n'[0] mod W

(C,S) := S + m[i]*n[0]

ADD(t[1],C)

t[0] := t[1]

t[1] := t[2]

t[2] := 0

In this loop, the ith word of m is computed using n00, and then the least signi�cant word of

m � n is added to t. Since the least signi�cant word of t always becomes zero, the shifting

can be carried out one word at a time in each iteration. The array t is assumed to be set

to 0 initially.

The second i-loop, given below, completes the computation by forming the �nal

result u word by word in the memory space of m.

for i=s to 2s-1

for j=i-s+1 to s-1

(C,S) := t[0] + a[j]*b[i-j]

ADD(t[1],C)

(C,S) := S + m[j]*n[i-j]

t[0] := S

ADD(t[1],C)

m[i-s] := t[0]

m[i-s+1] := t[1]

t[0] := t[1]

t[1] := t[2]

t[2] := 0
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An inspection of indices in the second i-loop shows that the least signi�cant s words of

the result u are located in the variable m. The most signi�cant bit is in t[0]. (The values

t[1] and t[2] are zero at the end.)

The FIPS method requires 2s2+s multiplications, 6s2+2s+2 additions, 9s2+8s+2

reads, and 5s2 + 8s + 1 writes. The number of additions, reads and writes is somewhat

more than for the previous methods, but the number of multiplications is the same. The

method nevertheless has considerable bene�ts on digital signal processors, as discussed

in Section 2.4.. (Note that many of the reads and writes are for the accumulator words,

which may be in registers.) The space required is s+ 3 words.

2.3.5. The Coarsely Integrated Hybrid Scanning (CIHS) Method

This method is a modi�cation of the SOS method, illustrating yet another approach

to Montgomery multiplication. As was shown, the SOS method requires 2s+ 2 words to

store the temporary variables t and m. Here we show that it is possible to use only s+ 3

words of temporary space, without changing the general ow of the algorithm. We call it

a \hybrid scanning" method because it mixes the product-scanning and operand-scanning

forms of multiplication. (Reduction is just in the operand-scanning form.) First, we split

the computation of a � b into two loops. The second loop shifts the intermediate result one

word at a time at the end of each iteration.

The splitting of multiplication is possible because m is computed by multiplying the

ith word of t by n00. Thus, the multiplication a � b can be simpli�ed by postponing the

word multiplications required for the most signi�cant half of t to the second i-loop. The

multiplication loop can be integrated into the second main i-loop, computing one partial

product in each iteration and reducing the space for the t array to s+2 words from 2s+1

words. In the �rst stage, (n � j) words of the jth partial product of a � b are computed

and added to t. In Figure 2.3, the computed parts of the partial products are shown by

straight lines, and the added result is shown by shaded blocks. This computation can be

performed using the following code:



20

for i=0 to s-1

C := 0

for j=0 to s-i-1

(C,S) := t[i+j] + a[j]*b[i] + C

t[i+j] := S

(C,S) := t[s] + C

t[s] := S

t[s+1] := C

FIGURE 2.3: An iteration of the the Coarsely Integrated Hybrid Scanning (CIHS) method
for s = 4. The left-hand side �gure shows the accumulation of the right half of the partial
products of a � b which is performed in the �rst i-loop. The second i-loop is depicted
in two parts in the middle and the right. The addition of n � m to t and the shifting
of t+m� n are illustrated in the middle, which are performed in the �rst j-loop of the
second i-loop. The computation of the remaining words of the partial products of a� b is
illustrated on the right-hand side. Each (PC,PS) pair is the sum of the columns connected
with lines. As illustrated in the bottom of the middle part, the (PC,PS) pair is added to
t(i), which is performed in the last j-loop.
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The multiplication of m �n is then interleaved with the addition a � b+m �n. The division

by r is performed by shifting one word at a time within the i-loop. Since m is one word
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long and the product m � n+ C is two words long, the total sum t+m � n needs at most

s+2 words. Also note that the carry propagation into the sth word is performed into the

(s� 1)st word after the shifting. The array t is assumed to be set to 0 initially.

for i=0 to s-1

m := t[0]*n'[0] mod W

(C,S) := t[0] + m*n[0]

for j=1 to s-1

(C,S) := t[j] + m*n[j] + C

t[j-1] := S

(C,S) := t[s] + C

t[s-1] := S

(C,S) := t[s+1] + C

t[s] := S

t[s+1] := C

The computation of m requires the use of t0 instead of ti, as in the original SOS algorithm.

This is due to the shifting of t in each iteration. The two excess words computed in the

�rst loop are used in the following j-loop which computes the (s+ i)th word of a � b.

for j=i+1 to s-1

(C,S) := t[s-1] + b[j]*a[s-j+i]

t[s-1] := S

(C,S) := t[s] + C

t[s] := S

t[s+1] := t[s+1] + C

We note that the above four lines compute the most signi�cant three words of t, i.e., the

(s� 1)st, sth, and (s+1)st words of t. The above code completes Step 1 of MonPro(a; b).

After this, n is subtracted from t if t � n. We illustrate the algorithm in Figure 3 for
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Montgomery multiplication of two four-word numbers. Here, the symbols PC and PS

denote the two extra words required to obtain the correct (s + i)th word. Each PC, PS

pair is the sum of their respective words connected by vertical dashed lines in Figure 3.

The number of multiplications required in this method is also equal to 2s2 + s. However,

the number of additions decreases to 4s2+4s+2. The number of reads is 6:5s2+6:5s+2

and the number of writes is 3s2+5s+1. As was mentioned earlier, this algorithm requires

s+ 3 words of temporary space.

2.4. Results and Conclusions

The algorithms presented in this chapter require the same number of single-precision

multiplications, however, the number of additions, reads and writes are slightly di�erent.

There seems to be a lower bound of 4s2 + 4s + 2 for addition operations. The SOS and

CIOS methods reach this lower bound. The number of operations and the amount of

temporary space required by the methods are summarized in Table 2.1. The total number

of operations is calculated by counting each operation within a loop, and multiplying this

number by the iteration count. As an example we illustrate the calculation for the CIOS

method in Table 2.2.

We note that the ADD(x[i],C) function, which implements the operation x[i] :=

x[i] + C including the carry propagation, requires one memory read (x[i]), one addition

(x[i]+C) and one memory write (x[i]:=) operation during the �rst step. Considering

the carry propagation from this addition, on average one additional memory read, one

addition, and one memory write is performed (in addition to the branching and loop

instructions). Thus, the ADD function is counted as two memory reads, two additions, and

two memory writes in our analysis.

Clearly, our counting is only a �rst-order approximation; we are not taking into

account the full use of registers to store intermediate values, cache size in the data and
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TABLE 2.1: The time and space requirements of the methods.

Method Multiplications Additions Reads Writes Space

SOS 2s2 + s 4s2 + 4s+ 2 6s2 + 7s+ 3 2s2 + 6s+ 2 2s+ 2

CIOS 2s2 + s 4s2 + 4s+ 2 6s2 + 7s+ 2 2s2 + 5s+ 1 s+ 3

FIOS 2s2 + s 5s2 + 3s+ 2 7s2 + 5s+ 2 3s2 + 4s+ 1 s+ 3

FIPS 2s2 + s 6s2 + 2s+ 2 9s2 + 8s+ 2 5s2 + 8s+ 1 s+ 3

CIHS 2s2 + s 4s2 + 4s+ 2 6:5s2 + 6:5s+ 2 3s2 + 5s+ 1 s+ 3

instruction misses, and the special instructions such as multiply and accumulate. We also

did not count loop overhead, pointer arithmetic, and the like, which will undoubtedly

a�ect performance.

In order to measure the actual performance of these algorithms, we implemented

them in C and in Intel 386-family assembler on an Intel Pentium-60 Linux system. Ta-

ble 2.3 summarizes the timings of these methods for s = 16; 32; 48, and 64. These cor-

respond to 512, 1024, 1536, and 2048 bits since w = 32. The timing values given in

Table 2.3 are in milliseconds, and are the average values over several thousand executions.

The timing values given in Table 2.3 are in milliseconds, and are the average values over

one thousand executions including the overhead of the loop that calls the MonPro func-

tion. The table also contains the compiled object code sizes of each algorithm which is

important when the principles of locality and instruction cache size are considered.

In the C version of the functions, the single-precision (32-bit) multiplications are

realized by dividing them into two 16-bit words. The C version of the function has more

overhead compared to the assembler version, in which 32-bit multiplication operations

are carried out using a single assembler instruction. The assembler version of the ADD
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TABLE 2.2: Calculating the operations of the CIOS method.

Operation

STATEMENT Mult Add Read Write Iterations

for i=0 to s-1 - - - - -

C := 0 0 0 0 0 s

for j=0 to s-1 - - - - -

(C,S) := t[j] + b[j]*a[i] + C 1 2 3 0 s2

t[j] := S 0 0 0 1 s2

(C,S) := t[s] + C 0 1 1 0 s

t[s] := S 0 0 0 1 s

t[s+1] := C 0 0 0 1 s

m := t[0]*n'[0] mod W 1 0 2 1 s

(C,S) := t[0] + m*n[0] 1 1 3 0 s

for j=1 to s-1 - - - - -

(C,S) := t[j] + m*n[j] + C 1 2 3 0 s(s� 1)

t[j-1] := S 0 0 0 1 s(s� 1)

(C,S) := t[s] + C 0 1 1 0 s

t[s-1] := S 0 0 0 1 s

t[s] := t[s+1] + C 0 1 1 1 s

Final Subtraction 0 2(s+ 1) 2(s+ 1) s+ 1 1

2s2 + s 4s2 + 4s+ 2 6s2 + 7s+ 2 2s2 + 5s+ 1

function is optimized to use one 32-bit register for addition and a 32-bit register for

address computation. The propagation of the carry is performed using the carry ag.

The CIOS and FIOS methods are similar to one another in their use of embedded

shifting and interleaving the products ai � b and m � nj. The only di�erence is that CIOS

method computes the partial product ai � b by using a separate j-loop. Then, the accumu-

lation of m � nj to this partial product is performed in the succeeding j-loop. The FIOS

method combines the computation of partial product ai � b and accumulation of ai � b and

m � nj in one single j-loop, thereby obligating the use of the ADD function for propagation

of two separate carries.

The CIOS algorithm operates faster on the selected processor compared to the
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TABLE 2.3: The timing values of MonPro in milliseconds on a Pentium-60 Linux system.
The assembly code is for the Intel 386 family; further improvements may be possible by
exploiting particular features of the Pentium.

512 bits 1024 bits 1536 bits 2048 bits Code size (bytes)

Method C ASM C ASM C ASM C ASM C ASM

SOS 1.376 0.153 5.814 0.869 13.243 2.217 23.567 3.968 1084 1144

CIOS 1.249 0.122 5.706 0.799 12.898 1.883 23.079 3.304 1512 1164

FIOS 1.492 0.135 6.520 0.860 14.550 2.146 26.234 3.965 1876 1148

FIPS 1.587 0.149 6.886 0.977 15.780 2.393 27.716 4.310 2832 1236

CIHS 1.662 0.151 7.268 1.037 16.328 2.396 29.284 4.481 1948 1164

other Montgomery multiplication algorithms, especially when implemented in assembly

language. However, on other classes of processor, a di�erent algorithm may be preferable.

For instance, on a digital signal processor, we have often found the FIPS method to

be better because it exploits the \multiply-accumulate" architecture typical with such

processors, where a set of products are added together. On such architectures, the three

words t[0], t[1] and t[2] are stored in a single hardware accumulator, and the product

a[j]*b[i-j] in the FIPS j-loop can be added directly to the accumulator, which makes

the j-loop very fast.

Dedicated hardware designs will have additional tradeo�s, based on the extent to

which the methods can be parallelized; we do not make any recommendations here, but

refer the reader to Even's description of a systolic array as one example of such a design

[33]. On a general-purpose processor, the CIOS algorithm is probably the best, as it is the

simplest of all �ve methods, and it requires fewer additions and fewer assignments than

the other four methods. The CIOS method requires only s+3 words of temporary space,

which is just slightly more than half the space required by the SOS algorithm.
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3. MONTGOMERY MULTIPLICATION IN GF(2k)

3.1. Introduction

Arithmetic operations in the Galois �eld GF(2k) have several applications in coding

theory, computer algebra, and cryptography. We are especially interested in cryptographic

applications where k is very large. Examples of the cryptographic applications are the

Di�e-Hellman key exchange algorithm [3] based on the discrete exponentiation and elliptic

curve cryptosystems [34, 11, 12, 35] over the �eld GF(2k). The Di�e-Hellman algorithm

requires computation of ge, where g is a �xed primitive element of the �eld and e is an

integer. In elliptic curves, the exponentiation operation is used to compute inverse of an

element in GF(2k), based on Fermat's identity a�1 = a2
k�2 [14, 15, 16, 36].

Cryptographic applications require fast hardware and software implementations of

the arithmetic operations in GF(2k) for large values of k. The most important advance in

this �eld has been the Massey-Omura algorithm [37] which is based on the normal bases.

Subsequently, the optimal normal bases were introduced [38], and their hardware [39, 40]

and software [41, 42] implementations were given. While hardware implementations are

compact and fast, they are also inexible and expensive. The change of the underlying �eld

in a hardware implementation requires a complete redesign. Software implementations,

on the other hand, are perhaps slower, but they are cost-e�ective and exible, i.e., the

algorithms and the �eld parameters can easily be modi�ed without requiring redesign.

Recently, there has been a growing interest to develop software methods for implementing

GF(2k) arithmetic operations for cryptographic and coding applications [42, 43, 44, 45, 10].

We show that the multiplication operation c = a � b � r�1 in the �eld GF(2k) can be

implemented signi�cantly faster in software than the standard multiplication, where r is a

special �xed element of the �eld [19, 46]. This operation is the �nite �eld analogue of the

Montgomery multiplication for modular multiplication of integers. We give the bit-level
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and word-level algorithms for computing the product, perform a thorough performance

analysis, and compare the algorithm to the standard multiplication algorithm in GF(2k).

We also present a new algorithm for computing ae where a 2 GF(2k) and e is an

integer. The proposed algorithm is more suitable for implementation in software, and relies

on the Montgomery multiplication in GF(2k). The speed of the exponentiation algorithm

largely depends on the availability of a fast method for multiplying two polynomials of

length w de�ned over GF(2). The theoretical analysis and our experiments indicate that

the proposed exponentiation method is about 6 times faster than the exponentiation

method using the standard multiplication when w = 8. Furthermore, the availability of

a 32-bit GF(2) polynomial multiplication instruction on the underlying processor would

make the new exponentiation algorithm up to 37 times faster.

3.2. Polynomial Representation

The elements of the �eld GF(2k) can be represented in several di�erent ways [47,

48, 49]. We �nd the polynomial representation useful and suitable for software imple-

mentation. The algorithm for the Montgomery multiplication described in this study is

based on the polynomial representation. According to this representation an element a of

GF(2k) is a polynomial of length k, i.e., of degree less than or equal to k � 1, written as

a(x) =
k�1X
i=0

aix
i = ak�1x

k�1 + ak�2x
k�2 + � � �+ a1x+ a0 ;

where the coe�cients ai 2 GF(2). These coe�cients are also referred as the bits of a, and

the element a is represented as a = (ak�1ak�2 : : : a1a0). In the word-level description of

the algorithms, we partition these bits into blocks of equal length. Let w be the wordsize

of the computer. We assume that k = sw, and write a as an sw-bit number consisting of

s blocks, where each block is of length w. If k is less than sw (and more than (s� 1)w),

then we pad the high-order bits of the most signi�cant block with zero and take k as sw.
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Thus, we write a as a = (As�1As�2 : : : A1A0), where each Ai is of length w such that

Ai = (aiw+w�1aiw+w�2 � � � aiw+1aiw) :

In the polynomial case, this is equivalent to

a(x) =

s�1X
i=0

Ai(x)x
iw = As�1(x)x

(s�1)w +As�2(x)x
(s�2)w + � � �+A1(x)x

w +A0(x) ;

where Ai(x) is a polynomial of length w such that

Ai(x) =

w�1X
j=0

aiw+jx
j = aiw+w�1x

w�1 + aiw+w�2x
w�2 + � � �+ aiw+1x+ aiw :

The addition of two elements a and b in GF(2k) are performed by adding the polynomials

a(x) and b(x), where the coe�cients are added in the �eld GF(2). This is equivalent to

bit-wise XOR operation on the vectors a and b. In order to multiply two elements a and

b in GF(2k), we need an irreducible polynomial of degree k. Let n(x) be an irreducible

polynomial of degree k over the �eld GF(2). The product c = a � b in GF(2k) is obtained

by computing

c(x) = a(x)b(x) mod n(x) ;

where c(x) is a polynomial of length k, representing the element c 2 GF(2k). Thus, the

multiplication operation in the �eld GF(2k) is accomplished by multiplying the corre-

sponding polynomials modulo the irreducible polynomial n(x).

3.3. Montgomery Multiplication in GF(2k)

Instead of computing a � b in GF(2k), we propose to compute a � b � r�1 in GF(2k),

where r is a special �xed element of GF(2k). A similar idea was proposed by Montgomery

in [8] for modular multiplication of integers. We show that Montgomery's technique is

applicable to the �eld GF(2k) as well. The selection of r(x) = xk turns out to be very useful

in obtaining fast software implementations. Thus, r is the element of the �eld, represented
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by the polynomial r(x) mod n(x). The Montgomery multiplication method requires that

r(x) and n(x) are relatively prime, i.e., gcd(r(x); n(x)) = 1. For this assumption to hold,

it su�ces that n(x) be not divisible by x. Since n(x) is an irreducible polynomial over the

�eld GF(2), this will always be case. Since r(x) and n(x) are relatively prime, there exist

two polynomials r�1(x) and n0(x) with the property that

r(x)r�1(x) + n(x)n0(x) = 1 ; (3.1)

where r�1(x) is the inverse of r(x) modulo n(x). The polynomials r�1(x) and n0(x)

can be computed using the extended Euclidean algorithm [49, 47]. The Montgomery

multiplication of a and b is de�ned as the product

c(x) = a(x)b(x)r�1(x) mod n(x) ; (3.2)

which can be computed using the following algorithm:

Algorithm for Montgomery Multiplication

Input: a(x); b(x); r(x); n0(x)

Output: c(x) = a(x)b(x)r�1(x) mod n(x)

Step 1. t(x) := a(x)b(x)

Step 2. u(x) := t(x)n0(x) mod r(x)

Step 3. c(x) := [t(x) + u(x)n(x)]=r(x)

In order to prove the correctness of the above algorithm, note that u(x) = t(x)n0(x) mod

r(x) implies that there is a polynomial K(x) over GF(2) with the property

u(x) = t(x)n0(x) +K(x)r(x) : (3.3)

We write the expression for c(x) in Step 3, and then substitute u(x) with the expression

(3.3) as

c(x) =
1

r(x)
[t(x) + u(x)n(x)]

=
1

r(x)
[t(x) + t(x)n0(x)n(x) +K(x)r(x)n(x)]
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Furthermore, we have n0(x)n(x) = 1+r(x)r�1(x) according to Equation (3.1). Thus, c(x)

is computed as follows:

c(x) =
1

r(x)
[t(x) + t(x)[1 + r(x)r�1(x)] +K(x)r(x)n(x)]

=
1

r(x)
[t(x)r(x)r�1(x) +K(x)r(x)n(x)]

= t(x)r�1(x) +K(x)n(x)

= t(x)r�1(x) mod n(x)

= a(x)b(x)r�1(x) mod n(x) ;

as required. The above algorithm is similar to the algorithm given for the Montgomery

multiplication of integers. The only di�erence is that the �nal subtraction step required

in the integer case is not necessary in the polynomial case. This is proved by showing

that the degree of the polynomial c(x) computed by this algorithm is less than or equal to

k � 1. Since the degrees of a(x) and b(x) are both less than or equal to k � 1, the degree

of t(x) = a(x)b(x) will be less than or equal to 2(k � 1). Also note that the degrees of

n(x) and r(x) are both equal to k. The degree of u(x) computed in Step 2 will be strictly

less than k since the operation is performed modulo r(x). Thus, the degree of c(x) as

computed in Step 3 of the algorithm is found as

degfc(x)g � max[degft(x)g ; degfu(x)g + degfn(x)g] � degfr(x)g

� max[2k � 2 ; k � 1 + k]� k

� k � 1

Thus, the polynomial c(x) is already reduced.

3.4. Computation of Montgomery Multiplication

The computation of c(x) involves standard multiplications, a modulo r(x) multi-

plication, and a division by r(x). The modular multiplication and division operations in
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Steps 2 and 3 are intrinsically fast operations since r(x) = xk. The remainder operation

in modular multiplication using the modulus xk is accomplished by simply ignoring the

terms which have powers of x larger than or equal to k. Similarly, division of an arbitrary

polynomial by xk is accomplished by shifting the polynomial to the right by k places. A

drawback in computing c(x) is the precomputation of n0(x) required in Step 2. However,

it turns out the computation of n0(x) can be completely avoided if the coe�cients of a(x)

are scanned one bit at a time. Furthermore, the word-level algorithm requires the com-

putation of only the least signi�cant word N 0
0(x) instead of the whole n0(x). In order to

explain this, we note that the Montgomery product can be written as

c(x) = x�ka(x)b(x) = x�k
k�1X
i=0

aix
ib(x) (mod n(x)):

The product

t(x) = (ak�1x
k�1 + ak�2x

k�2 + � � �+ a1x+ a0)b(x)

can be computed by starting from the most signi�cant digit, and then proceeding to the

least signi�cant as

t(x) := 0

for i = k � 1 to 0

t(x) := t(x) + aib(x)

t(x) := xt(x)

The shift factor x�k in x�ka(x)b(x) reverses the direction of summation. Since

x�k(ak�1x
k�1 + ak�2x

k�2 + � � � + a1x+ a0) =

ak�1x
�1 + ak�2x

�2 + � � �+ a1x
�k+1 + a0x

�k ,

we start processing the coe�cients of a(x) from the least signi�cant, and obtain the

following bit-level algorithm in order to compute t(x) = a(x)b(x)x�k.

t(x) := 0
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for i = 0 to k � 1

t(x) := t(x) + aib(x)

t(x) := t(x)=x

This algorithm computes the product t(x) = x�ka(x)b(x), however, we are interested in

computing c(x) = x�ka(x)b(x) mod n(x). Following the analogy to the integer algorithm,

we achieve this computation by adding n(x) to c(x) if c0 is 1, making the new c(x)

divisible by x since n0 = 1. If c0 is already 0 after the addition step, we do not add

n(x) to it. Therefore, we are computing c(x) := c(x) + c0n(x) after the addition step.

After this computation, c(x) will always be divisible by x. We can compute c(x) :=

c(x)x�1 mod n(x) by dividing c(x) by x since c(x) = xu(x) implies c(x) = xu(x)x�1 =

u(x) mod n(x). The bit-level algorithm is given below:

Bit-Level Algorithm for Montgomery Multiplication

Step 1. c(x) := 0

Step 2. for i = 0 to k � 1 do

Step 3. c(x) := c(x) + aib(x)

Step 4. c(x) := c(x) + c0n(x)

Step 5. c(x) := c(x)=x

The bit-level algorithm for the Montgomery multiplication given above is generalized

to the word-level algorithm by proceeding word by word where the wordsize is w � 2 and

k = sw. Recall that Ai(x) represents the ith word of the polynomial a(x). The addition

step is performed by multiplying Ai(x) by b(x) at steps i = 0 : : : (s� 1). We then need to

multiply the partial product c(x) by x�w modulo n(x). In this step, we add a multiple of

n(x) to c(x) so that the least signi�cant w coe�cients of c(x) will be zero, i.e., c(x) will be

divisible by xw. Thus, if c(x) 6= 0 mod xw, then we �nd M(x) (which is a polynomial of

length w) such that c(x) +M(x)n(x) = 0 (mod xw). Let C0(x) and N0(x) be the least
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signi�cant words of c(x) and n(x), respectively. We calculate M(x) as

M(x) = C0(x)N
�1
0 (x) mod xw .

We note that N�1
0 (x) mod xw is equal to N 0

0(x) since the property (3.1) implies that

xswx�sw + n(x)n0(x) = 1 (mod xw)

N0(x)N
0
0(x) = 1 (mod xw)

The word-level algorithm for the Montgomery multiplication is obtained as

Word-Level Algorithm for Montgomery Multiplication

Step 1. c(x) := 0

Step 2. for i = 0 to s� 1 do

Step 3. c(x) := c(x) +Ai(x)b(x)

Step 4. M(x) := C0(x)N
0
0(x) (mod xw)

Step 5. c(x) := c(x) +M(x)n(x)

Step 6. c(x) := c(x)=xw

3.5. Montgomery Squaring

The computation of the Montgomery squaring can be optimized due to the fact that

cross terms disappear because they come in pairs and the ground �eld is GF(2). It is easy

to show that

c(x) = a2(x)

= ak�1x
2(k�1) + ak�2x

2(k�2) + � � �+ a1x
2 + a0

= (ak�10ak�20 � � � 0a10a0) ,

and thus, the multiplication steps can be skipped. The Montgomery squaring algorithm

starts with the degree 2(k � 1) polynomial c(x) = a2(x), and then reduces c(x) by com-

puting c(x) := c(x)x�k mod n(x). The steps of the word-level algorithm are given below:
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Word-Level Algorithm for Montgomery Squaring

Step 1. c(x) :=
Pk�1

i=0 aix
2i

Step 2. for i = 0 to s� 1 do

Step 3. M(x) := C0(x)N
0
0(x) (mod xw)

Step 4. c(x) := c(x) +M(x)n(x)

Step 5. c(x) := c(x)=xw

3.6. Computation of the Inverse

The word-level algorithm requires the computation of the w-length polynomial

N 0
0(x) instead of the entire polynomial n0(x) which is of length k = sw. It turns out

that the algorithm introduced in [18] for computing n00 in the integer case can also be

generalized to the polynomial case. The inversion algorithm is based on the observation

that the polynomial N0(x) and its inverse satisfy

N0(x)N
�1
0 (x) = 1 (mod xi) (3.4)

for i = 1; 2; : : : ; w. In order to compute N 0
0(x), we start with N

0
0(x) = 1, and proceed as

Algorithm for Inversion

Step 1. N 0
0(x) := 1

Step 2. for i = 2 to w

Step 3. t(x) := N0(x)N
0
0(x) mod xi

Step 4. if t(x) 6= 1 then N 0
0(x) := N 0

0(x) + xi�1

3.7. Montgomery Exponentiation in GF(2k)

The proposed exponentiation algorithm is based on the Montgomery multiplication

and squaring operations [50, 51]. Let e be an m-bit integer, where ei 2 f0; 1g is the ith
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bit of e for i = 0; 1; : : : ;m � 1. In order to compute c = ae for a given a 2 GF(2k), we

�rst compute the Montgomery images of 1 and a using standard multiplications. The

exponentiation algorithm based on the binary method then proceeds to compute c using

only the Montgomery squaring and multiplication operations.

Algorithm for Montgomery Exponentiation

Step 1. �c := 1 � r

Step 2. �a := a � r

Step 3. for i = m� 1 downto 0 do

Step 4. �c := �c� �c

Step 5. if ei = 1 then �c := �c� �a

Step 6. c := �c� 1

The di�erence of the above algorithm from the binary method using the standard squar-

ing and multiplication operations is that in Steps 4 and 5, respectively, we perform the

Montgomery squaring and multiplication operations. Initially, we have �c = 1 � r. When

a Montgomery squaring or a Montgomery multiplication is performed, the multiplicative

factor r remains in place since

�c� �c = (c � r) � (c � r) � r�1 = (c � c) � r , (3.5)

�c� �a = (c � r) � (a � r) � r�1 = (c � a) � r . (3.6)

We remove this multiplicative factor on �c in Step 6 by performing a Montgomery multi-

plication, and obtain

�c� 1 = (c � r) � 1 � r�1 = c . (3.7)

In order to perform the Montgomery squaring and multiplication operations, we use the

algorithm introduced in [19]. This method is based on the polynomial representation of

the elements of GF(2k), and is particularly suitable for software implementation due to

the fact that it proceeds in a word-level fashion.
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3.8. Analysis

In this section, we give a rigorous analysis of the Montgomery exponentiation al-

gorithm in GF(2k) by calculating the number of word-level operations. The word-level

GF(2) polynomial addition is simply the bitwise XOR operation which is a readily available

instruction on most general purpose microprocessors and signal processors. The word-level

GF(2) polynomial multiplication operation receives two 1-word (w-bit) polynomials a(x)

and b(x) de�ned over the �eld GF(2), and computes the 2-word (2w-bit) polynomial

c(x) = a(x)b(x). For example, given a = (1101) and b = (1010), this operation computes

c as

a(x)b(x) = (x3 + x2 + 1)(x3 + x)

= x6 + x5 + x4 + x

= (0111 0010) :

The implementation of this operation, which we call MULGF2, can be performed in 3 dis-

tinctly di�erent ways:

� An instruction on the underlying processor.

� Table lookup approach.

� Emulation using SHIFT and XOR operations.

In the �rst approach, the underlying processor has a special MULGF2 instruction as de�ned

above. The availability of an instruction to perform this operation would de�nitely be the

fastest method. However, none of the general purpose processors contains an instruction

to perform this operation.

A simple method for implementing the table lookup approach is to use two tables,

one for computing the higher (H) and the other for computing the lower (L) bits of the

product. The tables are addressed using the bits of the operands, and thus, each table is
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of size 2w�2w�w bits. We obtain the values H and L in two table reads. However, we note

that these tables are di�erent from the tables in [41, 43], which are used to implement

GF(2w) multiplications. Here we are using the tables to multiply two (w � 1)-degree

polynomials over GF(2) to obtain the polynomial of degree 2(w � 1).

In the emulation approach, two w-bit polynomials A and B are multiplied using shift,

rotate, and xor operations. The 2-word product is accumulated in two words H and L as

follows:

H := 0

L := 0

for j=w-1 downto 0 do

L := SHL(L,1)

H := RCL(H,1)

if BIT(B,j)=1 then L := L XOR A

Here SHL shifts its �rst operand to the left by the number of bits given in the second

operand. RCL is a rotate (circular shift) instruction shifting the �rst operand to the left

circularly by the number of bits given in the second operand.

This algorithm computes the 2-word result using a total of 2w SHIFT/ROTATE and w

XOR operations. The emulation approach is usually slower than the table lookup approach,

particularly for w � 8.

Our analysis is a �rst-order approximation. We do not consider certain processor

features such as specialized bit-level instructions (test jth bit), conditional executions

(delay slots in conditional branches), and conditional data movement instructions. We

also do not count loop overhead, pointer arithmetic, and the like, which undoubtly a�ects

the performance.

In order to compare the exponentiation algorithms using the standard and the Mont-

gomery multiplications, we count the number of word-level operations required by these

algorithms [51]. We perform this analysis by �xing the exponentiation method as the
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binary method, and taking m as the number of bits in the exponent e. The standard and

Montgomery exponentiation algorithms are given in Figure 3.1 below.

FIGURE 3.1: Exponentiation Algorithms.

Montgomery Exponentiation

Step 1. �c := 1 � r

Step 2. �a := a � r

Step 3. for i = m� 1 downto 0 do

Step 4. �c := �c � �c � r�1

Step 5. if ei = 1 then �c := �c � �a � r�1

Step 6. c = �c � 1 � r�1

Standard Exponentiation

Step 1. c := 1

Step 2. for i = m� 1 downto 0 do

Step 3. c := c � c

Step 4. if ei = 1 then c := c � a

The Montgomery exponentiation algorithm relies on the subroutines for computing the

inverse, the Montgomery squaring and multiplications (in Steps 4 and 5), and a single

standard multiplication (in Step 2). We do not need to perform a multiplication in Step

1. The standard exponentiation algorithm, on the other hand, requires only the standard

squaring and multiplication subroutines.
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The detailed analyses of the word-level Montgomery and standard multiplication

algorithms are given in [19]. Similar analyses can also be given for the word-level Mont-

gomery and standard squaring algorithms. The number of word-level operations required

by these algorithms are summarized in Table 3.1.

TABLE 3.1: Operation counts for the multiplication and squaring algorithms.

Subroutine MULGF2 XOR/AND/OR SHIFT

Montgomery Multiplication 2s2 + s 4s2 -

Montgomery Squaring s2 + s 2s2 + (2w + 1)s (2w + 1)s

Standard Multiplication s2 3(w2 + 1)s2 + w
2 s 2(w + 1)s2 + (w + 1)s

Standard Squaring - 9w
4 s

2 + (2w + 3
2 )s 3ws2 + (3w + 1)s

On the other hand, the inversion algorithm given in Section 5 requires (w � 1) MULGF2,

(w � 1) AND, and (w � 1) SHIFT operations in Step 3. Assuming the least signi�cant

coe�cient of t(x) is equal 0 with probability 1=2, we obtain the number of XOR and

SHIFT operations in Step 4 as (w � 1)=2 and (w � 1)=2, respectively. Using these values

and Table 3.1, we summarize the operation counts of the exponentiation algorithms in

Table 3.2.

In Table 3.3, we summarize the total number of operations required by the Montgomery

and standard exponentiation algorithms for w = 8; 16; 32. Table 3.4 tabulates the maxi-

mum speedup of the proposed exponentiation method assuming the word-level operations

XOR/AND/OR and SHIFT take nearly the same amount of time. The emulation cost of

MULGF2 is 2w SHIFT and w XOR operations in the emulation case. The cost of MULGF2
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TABLE 3.2: Operation counts for the Montgomery and the standard exponentiation.

Montgomery Exponentiation

MULGF2 XOR/AND/OR SHIFT

Inversion w � 1 3
2(w � 1) 3

2(w � 1)

Step 2 s2 3(w2 + 1)s2 + w
2 s 2(w + 1)s2 + (w + 1)s

Step 4 ms2 +ms 2ms2 + (2w + 1)ms (2w + 1)ms

Step 5 ms2 + m
2 s 2ms2 -

Step 6 2s2 + s 4s2 -

Standard Exponentiation

Step 3 - 9w
4 ms

2 + (2w + 3
2 )ms 3wms2 + (3w + 1)ms

Step 4 m
2 s

2 (3w4 + 3
2ms

2 + w
4ms (w + 1)ms2 + (w2 + 1

2)ms

instruction is assumed equal to those of SHIFT and XOR operations in the instruction case.

3.9. Implementation Results and Conclusions

We implemented the Montgomery and standard exponentiation algorithms in C,

and obtained timings on a 100-MHz Intel 486DX4 processor running the NextStep 3.3

operating system. We executed the exponentiation programs several hundred times and

obtained the average timings for each k. The modulus polynomial n(x) is generated

randomly for k = 64, 128, 256, 512, 1024, 1536, 2048. The exponent is an m-bit integer

with equal number of 0 and 1 bits.

The multiplication operation MULGF2 was implemented using three approaches. In
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TABLE 3.3: Comparing the Montgomery and standard exponentiation algorithms for the
number of MULGF2 operations.

MULGF2 w Standard Montgomery

Emulation 8 70:5ms2 + 49ms (52m + 109)s2 + (70m+ 37)s+ 189

" 16 138:5ms2 + 95ms (100m + 209)s2 + (138m+ 73)s+ 765

" 32 274:5ms2 + 187ms (196m+ 409)s2 + (274m + 145)s+ 3069

Instruction 8 59ms2 + 49ms (6m+ 40)s2 + (35:5m + 14)s+ 28

" 16 115ms2 + 95ms (6m+ 68)s2 + (67:5m + 26)s+ 60

" 32 227ms2 + 187ms (6m+ 124)s2 + (131:5m + 50)s+ 124

the �rst approach, we used the emulation algorithm given in the previous section.

In the second approach, a lookup table is used for w = 8, as described before. For

w = 8, each of the tables is of size 64 Kilobytes, which is reasonable. However, for w = 16,

the table size increases to 216 � 216 � 16 bits, which gives 8 Gigabytes. Therefore, we

implemented the table lookup MULGF2 operation only for w = 8.

For w = 16 and w = 32, we implement the MULGF2 operation using a hybrid ap-

TABLE 3.4: Montgomery exponentiation speedup for di�erent MULGF2 implementations.

MULGF2! Emulation Instruction

w 8 16 32 8 16 32

Speedup 1.36 1.39 1.40 9.83 19.17 37.83
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proach: 8-bit tables coupled with emulation to obtain the 16-bit or 32-bit result. For

example, 16-bit multiplication using two 8-bit tables is computed as shown below.

a1 := SHR(a,8)

a0 := a AND 0xff

b1 := SHR(b,8)

b0 := b AND 0xff

L := TableL[a0][b0] XOR SHR(TableH[a0][b0]

XOR TableL[a1][b0] XOR TableL[a0][b1],8)

H := TableH[a1][b0] XOR TableH[a0][b1]

XOR TableL[a1][b1] XOR SHR(TableH[a1][b1],8)

where TableL and TableH are the 8-bit tables giving the low and high order 8-bits of an

8-by-8 bit GF(2) polynomial multiplication. The 32-bit hybrid multiplication algorithm

also uses these 8-bit tables.

TABLE 3.5: Experimental speedup values of Montgomery exponentiation for m = 128.

w ! 8 16 32

k Tab8 Emu Hyb8 Emu Hyb8 Emu

64 6.32 4.10 6.75 5.00 5.33 3.61

128 4.85 3.79 4.51 4.20 4.00 3.25

256 4.95 3.49 4.40 3.60 3.03 2.79

512 5.66 3.83 3.96 3.35 2.88 2.66

1024 5.97 4.04 4.22 3.70 2.83 2.44

1536 6.00 3.95 4.58 3.51 2.69 2.44

2048 6.05 3.76 4.62 3.89 2.56 2.30
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The experimental speedup values are given in Table 3.5. These speedup values are

obtained by dividing the time elapsed for standard exponentiation by the time elapsed for

Montgomery exponentiation. Montgomery exponentiation time includes computation of

N 0
0(x), precomputation of �a and �c, and �nal computation by 1 to obtain c.

FIGURE 3.2: Comparative illustration of Montgomery exponentiation speedup.
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3.10. Conclusions

As the theoretical results summarized in Tables 3.3 and 3.4 the experimental data

in Table 3.5 indicate, the Montgomery exponentiation algorithm is about 6 times faster

than the standard exponentiation for w = 8. The table lookup approach for w � 16

seems unrealistic due to the size of the tables. An e�cient way to implement the MULGF2

operation is to add an instruction to the processor to perform this multiplication. The

availability of such an instruction would yield more speedup than the table lookup ap-
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proach, because memory accesses would be eliminated which are required in the table

lookup approach. For example, the availability of a 32-bit MULGF2 instruction would make

the Montgomery exponentiation about 37 times faster than the standard exponentiation,

as seen in Table 3.4. Table 3.2 illustrates a comparative graph of the speedup values for

Montgomery exponentiation for aforementioned methods.

The crucial part of the proposed exponentiation algorithm is the Montgomery multi-

plication in GF(2k) introduced in [19]. The computation of the Montgomery multiplication

in GF(2k) is similar to the one for modular arithmetic. A review of the Montgomery mul-

tiplication algorithms for modular arithmetic is given in [20]. We are currently analyzing

these algorithms, and comparing their time and space requirements for performing the

Montgomery multiplication operation in GF(2k). Another possible avenue of research is

to compare the proposed exponentiation method to the one which uses trinomials and the

normal basis. The squaring operation in the normal basis is trivial, however, the software

implementation of the multiplication is more complicated.
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4. A METHODOLOGY FOR HIGH-SPEED SOFTWARE
IMPLEMENTATIONS OF NUMBER-THEORETIC

CRYPTOSYSTEMS

4.1. Introduction

Because of their exibility and cost e�ectiveness, software implementations of num-

ber-theoretic cryptographic algorithms (e.g., RSA and Di�e-Hellman) are often desired.

In order to obtain the required level of performance (speed) on a selected platform, the

developers turn to algorithm-level optimizations and assembly language programming. In

this chapter, we examine these implementation issues and propose a design methodology

for obtaining high-speed implementations. We show that between the full assembler im-

plementation and the standard C implementation, there is a design option in which only

a small number of code segments (kernel operations) are written in assembler in order

to obtain a signi�cant portion of the speed increase gained by the full assembler imple-

mentation. We propose a small set of kernel operations which are as simple as a � b + c,

where the numbers a; b; c are 1-word integers. The results of our experiments on several

processors are also summarized.

The privacy and authenticity of information (whether it is stored on a single com-

puter or shared on a network of computers) requires implementation of cryptographic

functions [52]. The basic functions of information security services are very few, and al-

most invariant. These include public-key cryptosystems, digital signatures, message digest

functions, and secret-key cryptographic algorithms [53, 54]. The design and evaluation of

these cryptographic functions is a special topic on its own, requiring advanced knowledge

of combinatorial mathematics, number theory, abstract algebra, and theoretical computer

science [55]. There is also the subject of algorithm engineering, which refers to high-speed

and cost e�ective hardware and software implementation of cryptographic algorithms [56].

Most public-key cryptographic functions require operations with elements of a large
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�nite group, and need to be optimized on the chosen platform for high-speed implemen-

tation. As an example, the RSA cryptosystem [2] uses modular arithmetic operations

(addition, multiplication, and exponentiation) with large integers, usually in the range of

512 to 1024 bits. Arithmetic with such large integers is time consuming, considering the

fact that currently available processor have arithmetic logic units with wordsize up to 32

bits. The current fast implementations of the RSA signature algorithm with a 512-bit

key size require on the order of 50 ms on a signal processor using advanced algorithmic

techniques and assembly language programming [18]. However, the security requirements

are already pushing the key size to 1024 bits, at which a signature operation takes nearly

half a second. This is not an acceptable speed for most networking applications. Other

cryptographic algorithms, for example, the Di�e-Hellman key exchange method [3], the

ElGamal public-key cryptosystem and digital signature algorithm [57], the Digital Sig-

nature Standard [58] also require implementation of modular arithmetic operations with

large integers.

Software implementations of the number-theoretic cryptographic algorithms are of-

ten desired because of their exibility and cost e�ectiveness [1]. Furthermore, certain

applications are suitable for software implementations because of their very nature. How-

ever, the performance is always an issue, requiring the designer to optimize these cryp-

tographic algorithms on the selected processor. In order to exploit the architectural and

arithmetic-logic properties of the processor, the designer needs to analyze and reformulate

the underlying algorithms. Almost inevitably, the programming is performed in assembly

language in order to take advantage of the speci�c architectural properties of the processor,

and thus, to obtain the desired performance [18, 6, 17, 20, 59].

In this chapter, we examine these implementation issues in order to determine the

actual contribution of assembly level programming to the speed of the cryptographic

algorithms. We show that between the full assembler implementation and the standard C

implementation, there is a design option in which only a small number of code segments

are written in assembler in order to obtain a signi�cant portion of the speed increase
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gained by the full assembler implementation [60]. These small code segments are the

kernel of arithmetic operations for number-theoretic cryptographic algorithms, and have

been obtained by analyzing several di�erent implementations of these number-theoretic

cryptosystems. We propose a small set (only 8) of such code segments, implementing

certain arithmetic operations which are as simple as the computation of a � b + c, where

the numbers a; b; c are 1-word integers.

Our experimental results on the Pentium PC show that by developing e�cient as-

sembly language implementation of these 8 operations as `in-line' assembly code segments

in the RSA cryptosystem, we can obtain a speedup of 2.33 over the standard C imple-

mentation. This speedup is about 64 % of the speedup obtained by a full assembler

implementation.

4.2. Implementation Methods

The usefulness of a C implementation is due to its portability, i.e., the fact that

the program can easily be compiled and executed on another machine. However, the C

program may not execute as fast as an assembler program accomplishing the same compu-

tation since speci�c architectural properties of the new machine are not taken into account.

On the other hand, e�cient assembler software development requires full understanding of

the sophisticated microprocessor architecture. The assembly language programmer needs

to know the properties of the assembler instructions, the operation of multiple functioning

units, the rules of instruction issuing, pipeline structure, and alignment rules, and also

certain speci�c information about the cache and the memory structure. The development

of assembler programs is a tedious, lengthy, and expensive task. It can be argued that a

smart compiler will be aware of the detailed architectural issues, and thus, can produce

more e�cient code than a straightforward assembler implementation in many instances

[61]. However, the developers of cryptographic systems often have to turn to assembly
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language programming in order to obtain the required speed. This way the programmer

gets the chance to reformulate the algorithm to be implemented by taking into account

the architectural properties of the processor.

In this study, we consider the design options between the standard C and the as-

sembly language for implementing the number-theoretic cryptographic algorithms. The

properties of these two extreme design options are:

� Standard C: Portable, inexpensive, short development time, slow execution.

� Assembler: Not portable, expensive, long development time, fast execution.

There are several design options between these two ends. A particular design option

involves the use of non-standard C data types such as int64 or long long. We name this

approach C with Extended Types. It turns out some amount of speed increase can be

gained using such data types for number-theoretic cryptography. We are however limited

to those platforms which support these data types and their particular de�nitions and

uses. We gain a certain amount of speed by renouncing a small amount of portability.

As soon as the use of assembly language programming enters the picture, we loose

portability. Once the portability is no longer an issue, the development cost of assembly

language programming needs to be taken into account. One approach is the development

of the entire code or the most crucial subroutines (e.g., the Montgomery multiplication and

squaring) in the assembly language. This involves a great amount of assembly language

programming, and we argue that it is not necessary in many instances. We propose a

design approach in which only a speci�c kernel of operations need to be developed in

assembler. In this chapter, we evaluate and compare the following four approaches in

terms of their resulting performance.

� Standard C code

� C with extended types
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� Complete assembler

� C with kernel in assembler

4.2.1. Standard C Code

In the C language, operands of an arithmetic expression are converted to a common

type before the computation [62, 63], which is referred to as converted type. The value of

a variable may be truncated to a less signi�cant type, or it can be promoted to a more

signi�cant type. The high order bits are ignored in case of truncation. The promotion

is performed using zero padding or sign extension. The result of an operation is also

of the converted type. The truncation inhibits availability of high order bits of certain

arithmetic operations in C, enforcing an emulation approach for precise calculations. For

an addition of n operands using w-bit scalar type, maximum value of result is n(2w � 1).

Assuming n � 2w, the exact result can be stored in two w-bit words. Exact addition of

such variables can be accomplished by computing lower and higher bits separately. The

code segment given below adds two w-bit words to obtain the (w + 1)-bit result. Low w

bits are stored in S, and high order 1-bit (the carry) is stored in C. Multi-operand addition

can be carried out similarly.

#define WSIZE (8*sizeof(word))

#define MSBMASK ((word)1 << (WSIZE-1))

S=(a & ~MSBMASK) + (b & ~MSBMASK);

C=(a >> (WSIZE-1)) + (b >> (WSIZE-1)) + (S >> (WSIZE-1));

S = a + b;

C >>= 1;

A multiplication expression in C language stores only the low order word of the

two-word product. Let the multiplication be c := a � b where a and b are word type

variables. The type of the result is also word. Thus, the actual product is truncated if

a�b � 28�sizeof(word). In order to compute the complete product, the w-bit input operands
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are split into two w=2-bit numbers. The following C code segment can be used to obtain

the full result of c in the word pair (C,S).

#define WSIZE (8*sizeof(word))

#define LOWBITS(x) ((x) & (~((word)0) >> (WSIZE/2)))

#define HIGHBITS(x) ((x) >> (WSIZE/2))

albl = LOWBITS (a) * LOWBITS (b);

ahbl = HIGHBITS(a) * LOWBITS (b);

albh = LOWBITS (a) * HIGHBITS(b);

ahbh = HIGHBITS(a) * HIGHBITS(b);

sum = LOWBITS(albh) + LOWBITS(ahbl) + HIGHBITS(albl);

S = (sum << (WSIZE/2)) + LOWBITS(albl);

C = ahbh + HIGHBITS(albh) + HIGHBITS(ahbl) + HIGHBITS(sum);

4.2.2. C with Extended Types

This approach relies on a non-standard type of the C programming language. The

code is still portable, maintainable, and testable, however, it is restricted to the platform

on which the the non-standard language extensions are supported. This method depends

on the fact that a variable of twice the size of a general purpose register contains all

result bits for the operation. Let the name of this extended type be dword. We can then

implement the addition and multiplication of two words as follows:

Addition

#define WSIZE (8*sizeof(word))

CS = (dword)a + (dword)b;

S = (word)CS;

C = (word)(CS >> WSIZE);

Multiplication

#define WSIZE (8*sizeof(word))

CS = (dword)a * (dword)b;

S = (word)CS;

C = (word)(CS >> WSIZE);

Here C and S are word type variables, and CS is a dword type variable. The extended type

can be used for other operations, e.g., shift and division. The C compiler must convert

the right shifting by wordsize bits to a single register access to achieve better peformance.
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This approach does not require the assembler level implementation. However, the

compiler must support the extended type, and also it should be capable of generating

e�cient code for C blocks involving the extended type. Currently, most C compilers

support double register-size variables. For example, Microsoft Visual C++ has \ int64"

while most of UNIX C compilers have \long long" type for variables of twice the register-

size of the platform processor.

4.2.3. Complete Assembler

An e�cient assembler implementation of a cryptographic algorithm requires a de-

tailed study of the architecture of the underlying processor. Issues related to the instruc-

tion set architecture, register space, multiple functional units, and memory hierarchy need

to be well understood. An assembler implementation produces smaller and faster code by

sacri�cing portability. However, assembler implementations are preferred if development

costs are relatively less than �nal bene�ts.

The Appendix gives assembler programming example codes in Intel Pentium and

Sparc V9 assembly languages for performing several di�erent operations with 32-bit num-

bers. For example, the operations ADD(C,S,a,b) and MUL(C,S,a,b) respectively denote

(C;S) := a+ b and (C;S) := a � b, where C, S, a, and b are 32-bit unsigned integers.

4.2.4. C with Kernel in Assembler

The speedup obtained with the extended types is not as high as possible due to

ine�cient utilization of the processor architecture. The performance is limited by the

optimization capabilities of the C compiler. We propose an alternative hybrid approach

which bene�ts from exibility of C and high performance of assembly languages. We

minimize the development cost of assembly language programming by proposing a small

set of arithmetic operations which need to be coded in the assembler. The remainder of

the code is produced in the standard C. The proposed set of kernel operations is given on

Table 4.1.
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TABLE 4.1: Kernel operations.

Operation Description

ADD(C,S,a,b) (C;S) := a+ b

ADD2(C,S,a,b,c) (C;S) := a+ b+ c

MUL(C,S,a,b) (C;S) := a � b

MULADD(C,S,a,b,c) (C;S) := a � b+ c

MULADD2(C,S,a,b,c,d) (C;S) := a � b+ c+ d

MUL2ADD2(CC,C,S,a,b,c,d) (CC;C; S) := 2 � a � b+ c

SQU(C,S,a) (C;S) := a2

SQUADD(C,S,a,b) (C;S) := a2 + b

The operations in Table 4.1 need to be coded in the assembly language as macros

or in-line assembly code segments. They can be written as functions, but this creates

considerable overhead. The best situation will be the one in which these operations are

supported by the hardware either as instructions or macro instructions.

The amount of assembly language is indeed minimal: each one of these operations

can be coded using about 4 to 8 lines of assembler instructions. Therefore, the entire set

requires about 60 lines of assembly code. The resulting standard C plus assembler code, if

carefully constructed, can be ported on another machine quite easily: only the assembly

code segments need to be developed for the new machine, replacing the existing segments.

4.2.5. Determination of Kernel

The arithmetic operations in the kernel are obtained by analyzing the algorithms

and the actual implementations of number-theoretic cryptosystems. The proposed ker-

nel is quite minimal in the sense adding other similar operations does not provide any
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FIGURE 4.1: Addition of two multi-precision integers: s = a+ b where a = (a3a2a1a0)
and b = (b3b2b1b0).

a3 a2 a1 a0

+ b3 b2 b1 b0

s4 s3 s2 s1 s0

(c0; s0) = a0 + b0
(c1; s1) = a1 + b1 + c0
(c2; s2) = a2 + b2 + c1
(s4; s3) = a3 + b3 + c2

more considerable speedup gain. Since our objective is to perform as little assembly pro-

gramming as possible, we carefully selected these operations among many candidates.

These experiments were run on the Intel 486 DX4, Intel Pentium, and Sun UltraSparc-II

V8+ machines by examining the algorithms and codes for the RSA and Di�e-Hellman

algorithms. The implementation results are summarized in the next section.

Determination of a minimal cryptographic kernel plays a key role in the e�ciency

introduced by the primitive operations. Our focus has been on describing the simple prim-

itives corresponding to a sequence of lengthy C statements observed in pseudocodes of the

aforementioned algorithms, e.g., RSA and Di�e-Hellman. These algorithms require mod-

ular arithmetic using large integers. Multi-precision modular exponentiation composed

of modular multiplications is accomplished by the Montgomery's multiplication method

[5, 8, 20]. Multi-precision addition is used in the RSA private key operation based on

Chinese Remainder Theorem [64, 32]. Addition and multiplication of two quad-precision

unsigned integers are illustrated in Figures 4.1 and 4.2. Pseudocodes for these operations

utilizing the kernel primitives are given in Figure 4.3. In the pseudocodes, variables a; b

and c are arrays of type word, k is the number of words to process. C and S are word

variables.
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In Figure 4.1, each word of the 5-word sum (s4; s3; s2; s1; s0) is formed by the ADD2

kernel operation. In Figure 4.2, xi;j denotes the jth word of the partial product a �

bi. The multiplication of two quad-precision w-bit unsigned integers is accomplished by

accumulating the partial products in the 8-word array s. The accumulation requires

addition of the previous product word si to the partial product word xi;j. Words of

these partial products are computed by (ci;j ; xi;j) = aj � bi + ci;j�1, where ci;�1 = 0 and

i; j = 0 : : : k � 1. Addition of the carry-word ci;j�1 is implicitly present in
Pk�1

j=0 aj � bi.

This operation can be accomplished using the MULADD primitive. We used MULADD2 kernel

primitive to compute (ci;j; si+j) = aj � bi + ci;j�1 + si+j. The sample pseudocode in

Figure 4.3 forms the product a � b in the k-word array s by employing the MULADD2 kernel

operation. Other primitive operations (e.g., MUL2ADD2 and SQUADD are used in squaring,

i.e., when a = b.

The plain C code fragments are obtained by replacing the addition and multiplica-

tion statement sequences given in the previous sections. It is clear that the use of primitive

operations has drastically reduced the code size. Moreover, the performance gained by

the kernel operations exceeds the bene�ts of the extended types in both speed and code

size.

4.3. Implementation Results

The proposed kernel of operations were implemented in the assembly languages

of the Intel 486, Intel Pentium, and Sparc V9 machines. The Intel 486 DX4 processor

has the speed of 100 MHz, and runs the NextStep operating system v3.3. We used the C

compiler of the NextStep. Microsoft Visual C++ v4.2 and Intel VTune v2.0 are used in the

development and analysis for the Intel Pentium processor on a Windows NT 3.51 system.

The SPARCompiler SC4.0 is used on a UltraSparc-II V8+ system. The C compilers are

con�gured to obtain speed-optimized code.
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We implemented the 512-bit and 1024-bit bit modular exponentiation operations

which are common in the RSA and Di�e-Hellman algorithms. The exponentiation algo-

rithm is the binary method [5] using the Montgomery multiplication [8, 20]. The size of

the modulus is 512 bits and 1024 bits. The exponent is selected as 1-word (32-bit) and

full-size (the size of the modulus). Tables 4.2 and 4.3 give the timings in milliseconds for

these operations.

TABLE 4.2: Modular exponentiation timings for 32-bit exponent in milliseconds.

Modulus C with C with

Processor and OS Size (bits) C E.Types Kernel Asm.

i486DX4 100 MHz 512 29 28 26 10

NextStep v3.3 1024 110 103 95 39

UltraSparc-II V8+ 512 8 5 6 3

Solaris 5.5.1 1024 31 21 23 12

Pentium 120 MHz 512 15 11 8 5

NT v3.51 1024 57 43 28 18

The fastest implementation is obtained using assembly language programming. For

example, the assembler implementation of full-size modular exponentiation with 1024 bits

is about 3.63 times faster than the standard C implementation on the Pentium machine.

The standard C coupled with kernel operations produces a code which is 2.33 times faster

than the standard C code, which is about 64 % of the speed increase gained by the assem-

bler implementation. Table 4.4 illustrates the speedup of the other three approaches to the

standard C implementation for performing modular exponentiation where the exponent

is the full size (i.e., it is equal to the modulus size).

On the UNIX machines (NextStep and Solaris), we implemented the kernel opera-

tions using functions, since in-line assembly coding is not exible due to inability to access
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TABLE 4.3: Modular exponentiation timings for full-word exponent in milliseconds.

Modulus C with C with

Processor and OS Size (bits) C E.Types Kernel Asm.

i486DX4 100 MHz 512 488 405 363 205

NextStep v3.3 1024 3,775 3,195 2,800 1,559

UltraSparc-II V8+ 512 150 103 106 55

Solaris 5.5.1 1024 1,144 790 795 414

Pentium 120 MHz 512 206 151 91 59

NT v3.51 1024 1,618 1,166 694 446

the C variables in the inline assembly code. In this case, the speed increase gained by the

use of kernel operations is given away due to the function calling overhead. For example,

the C with kernel operations case is slightly slower than the C with extended types case on

the Sparc machine running Solaris. It seems that the extended types are more e�ciently

utilized by the C compiler on the Next machine. Thus, we observe a small amount of

speedup comparing the C with kernel operations to the C with extended types.

4.4. Conclusions

We have proposed a design methodology and a small set of kernel operations for

obtaining high-speed implementations of the number-theoretic cryptographic algorithms.

It is shown that up to 64 % of speed increase gained by the use of full assembler implemen-

tation can be obtained by coding only this small set of kernel operations in the assembly

language of the underlying processor. It is preferred that the development system provide

in-line assembly coding in order to avoid the overhead of function calling in implementing

the kernel operations.
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TABLE 4.4: Speedup with respect to the standard C implementation.

Modulus C with C with Kernel

Processor and OS Size (bits) E.Types Kernel Asm vs Asm

i486DX4 512 1.20 1.34 2.38 56 %

NextStep v3.3 1024 1.18 1.34 2.42 55 %

UltraSparc-II V8+ 512 1.46 1.42 2.73 52 %

Solaris v5.5.1 1024 1.45 1.45 2.76 53 %

Pentium 512 1.36 2.26 3.49 65 %

NT v3.51 1024 1.39 2.33 3.63 64 %

This approach allows the programmer to drastically reduce assembly language pro-

gramming while gaining a signi�cant speedup. Since the assembler portion is quite min-

imal (a total of 60 lines at most), the maintainability and testability of the code are

retained. The code can easily be ported to a di�erent platform (processor) by imple-

menting only the suggested set of kernel operations. Furthermore, the kernel operations

proposed in this chapter are easy to implement in hardware. If they are available as

instructions (or macros) on microprocessors or signal processors, high-speed implementa-

tions of number-theoretic cryptographic algorithms can easily be obtained.

4.5. Implementation of Kernel Operations

The Pentium and Sparc V9 assembler implementations of the proposed kernel are

given in the following two sections.
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4.5.1. Intel Pentium

ADD(C,S,a,b)
mov eax,dword ptr [a]
mov ebx,dword ptr [b]
mov dword ptr [C],0
add eax,ebx
mov dword ptr [S],eax
setc byte ptr [C]

ADD2(C,S,a,b,c)
mov eax,dword ptr [a]
mov ebx,dword ptr [b]
xor edx,edx
mov ecx,dword ptr [c]
mov dword ptr [C],edx
add eax,ebx
setc byte ptr [C]
add eax,ecx
mov dword ptr [S],eax
adc dword ptr [C],0

MUL(C,S,a,b)
mov eax,dword ptr [a]
mul dword ptr [b]
mov dword ptr [C],edx
mov dword ptr [S],eax

MULADD(C,S,a,b,c)
mov eax,dword ptr [a]
mov ebx,dword ptr [c]
mul dword ptr [b]
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx

MULADD2(C,S,a,b,c,d)
mov eax,dword ptr [a]
mov ebx,dword ptr [c]
mul dword ptr [b]
add eax,ebx
mov ebx,dword ptr [d]
adc edx,0
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx

MUL2ADD2(CC,C,S,a,b,c)
mov eax,dword ptr [a]
mul dword ptr [b]
add eax,eax
mov dword ptr [CC],0
adc edx,edx
mov ebx,dword ptr [c]
adc byte ptr [CC],0
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx
adc byte ptr [CC],0

SQU(C,S,a)
mov eax,dword ptr [a]
mul eax
mov dword ptr [S],eax
mov dword ptr [C],edx

SQUADD(C,S,a,b)
mov eax,dword ptr [a]
mov ebx,dword ptr [b]
mul eax
add eax,ebx
adc edx,0
mov dword ptr [S],eax
mov dword ptr [C],edx
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4.5.2. Sparc V9

ADD(C,S,a,b)
clruw %o2
clruw %o3
add %o2,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

ADD2(C,S,a,b,c)
clruw %o2
clruw %o3
clruw %o4
add %o2,%o3,%g1
add %g1,%o4,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MUL(C,S,a,b)
clruw %o2
clruw %o3
mulx %o2,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MULADD(C,S,a,b,c)
clruw %o2
clruw %o3
clruw %o4
mulx %o3,%o2,%g1
add %g1,%o4,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MULADD2(C,S,a,b,c,d)
clruw %o2
clruw %o3
clruw %o4
clruw %o5
mulx %o2,%o3,%g1
add %o4,%o5,%g2
add %g1,%g2,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

MUL2ADD2(CC,C,S,a,b,c)
clruw %o3
clruw %o4
clruw %o5
mulx %o4,%o3,%g1
mov %g0,%g2
addcc %g1,%g1,%g1
movcs %xcc,1,%g2
addcc %g1,%o5,%g1
movcs %xcc,1,%g2
stuw %g1,[%o2]
srlx %g1,32,%g1
stuw %g2,[%o0]
retl
stuw %g1,[%o1]

SQU(C,S,a)
clruw %o2
mulx %o2,%o2,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]

SQUADD(C,S,a,b)
clruw %o2
clruw %o3
mulx %o2,%o2,%g1
add %g1,%o3,%g1
srlx %g1,32,%g2
stuw %g1,[%o1]
retl
stuw %g2,[%o0]
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FIGURE 4.2: Multiplication of two multi-precision integers: s = a � b where a =
(a3a2a1a0) and b = (b3b2b1b0). Here, xi;j denotes a partial product.

a3 a2 a1 a0

� b3 b2 b1 b0

x0;4 x0;3 x0;2 x0;1 x0;0 �! a � b0 =
P3

j=0 aj � b0

x1;4 x1;3 x1;2 x1;1 x1;0 �! a � b1 =
P3

j=0 aj � b1

x2;4 x2;3 x2;2 x2;1 x2;0 �! a � b2 =
P3

j=0 aj � b2

+ x3;4 x3;3 x3;2 x3;1 x3;0 �! a � b3 =
P3

j=0 aj � b3

s7 s6 s5 s4 s3 s2 s1 s0

FIGURE 4.3: Pseudocodes for multi-precision addition and multiplication.

Addition

C := 0

for i=0 to k-1 do

ADD2(C,S,a[i],b[i],C)

s[i] := S

s[k] := C

Multiplication

for i=0 to 2*k-1 do s[i] := 0

for i=0 to k-1 do

C := 0

for j=0 to k-1 do

MULADD2(C,S,a[i],b[j],s[i+j],C)

s[i+j] := S

s[i+k] := C
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5. AN INSTRUCTION SET ARCHITECTURE FOR
CRYPTOGRAPHY

5.1. Introduction

The execution time of a certain task is computed by accumulating the time consumed

for each instruction executed in the life time of that task. The execution time is a function

of the instruction count and cycles a processor consumes for each instruction. Thus, a

software runs faster if the frequently used instructions are executed in fewer clock cycles.

In order to obtain the instruction histogram of a number-theoretic cryptosystem software,

we modi�ed our programs to compute the number of instructions actually executed on

Intel Pentium platforms. Then, we deduced which instructions should be optimized for a

better performance. In addition to that, we also proposed a set of new instructions which

would speed up numerous cryptographic algorithms including RSA, DSA, RC5 and DES.

In the foregoing sections, we explore individual instructions of the Intel and SPARC

architectures and then propose new instructions to obtain high-speed number-theoretic

cryptographic applications. Because of the particular challanges of fast software imple-

mentation of cryptographic algorithms on Intel 486/Pentium/Pentium Pro, and because

of the pervasiveness of this processor family, we concentrated on Intel Pentium architec-

ture. By doing well on these di�cult-to-optimize-for vehicles we expect to do well on any

modern, 32 or 64-bit processor.

We restrain ourselves from introducing a completely new instruction set architecture

since it would hardly �nd actual application and introduce export restriction disadvantage.
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5.2. Instruction Distribution of Cryptographic Software

Our RSA implementation on the Intel Pentium processor yields the instruction dis-

tribution depicted on Tables 5.1 and 5.2. These �gures denote the instruction distribution

of Intel Pentium assembler programs. Table 5.1 denotes the number of instructions exe-

cuted to perform a modular exponentiation with 32-bit exponent and 1024-bit modulus.

This corresponds to 1024-bit RSA encryption.

Table 5.2 denotes the number of instructions executed to perform a modular ex-

ponentiation with 1024-bit exponent and 1024-bit modulus. However, 1024-bit exponent

is splited into two 512-bit exponents, and 1024-bit modulus is splited into two 512-bit

moduli. Then, the �nal operation is accomplished by combining two 512-bit exponen-

tiations using the Chinese Remainder Theorem [64]. This corresponds to 1024-bit RSA

decryption.

Both �gures indicate that the mov instruction is the most used instruction. The

Intel Pentium processor executes mov instruction in single cycle and this instruction can

be paired in either U or V pipes. Thus, frequent use of the mov instruction does not

introduce a signi�cant bottleneck. Similar observation is also made for add and adc

instructions. However, the compiler or the assembler programmer must be aware that adc

instruction is not pairable in the V pipe. On the other hand, the mul instruction, with

its 10-cycle execution time, is not pairable in either pipe. Therefore, one mul instructions

consumes roughly 10 � 0:5 = 20 times more CPU cycles compared to mov instruction,

assuming 100% pairing for mov instruction. That introduces a signi�cant drawback in the

implementations of number-theoretic cryptosystems.

One interesting instruction is the lea, load e�ective address, with its relatively high

occurence. lea is also used to add a register to another register scaled by 2, 4, or 8, and an

8-bit immediate constant, resulting in a three additions in one cycle. This instruction adds

& scales registers in base address calculations, �nds a common usage in regular additions
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FIGURE 5.1: Intel Pentium instruction counts for 1024-bit modular exponentiation with
32-bit exponent.
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and address increments in loops, which increased its occurrence count.

Instructions rcl and shl are heavily used in Montgomery squaring to compute

2 � a � b, where a and b are two 32-bit quantities. rcl and shl instructions are preferred

over shld, because the latter one is not pairable in either pipe and comsumes a relatively

higher number of cycles. setc is used to eliminate a considerable number of conditional

jump statements, thereby preventing BTB (branch target bu�er) misses. cmp, jle and

inc instructions are primarily used to set up loops and manage loop counters. Similar

counts for these instructions on Table 5.1 con�rms this observation.
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FIGURE 5.2: Intel Pentium instruction counts for 1024-bit modular exponentiation with
CRT using 1024-bit exponent.
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5.3. Case 1: Intel Pentium and PentiumPro Processors

Many features of the Intel Pentium and Pentium Pro are inherited from the Intel x86

architecture which dates back to more than 20 years ago. The relevant limitations of the

486/Pentium/Pentium Pro processor family are: a small register set and a two operand

architecture [65, 66, 67, 68]. In more detail, these chips are 32-bit CISC processors with

current ones running at upto 233 MHz. They have eight general purpose registers, and six

segment registers. The instructions generally work on two operands (A A op B) instead

of three (A B op C). Pentium and Pentium Pro have separate on-chip instruction and

data caches and pipelined instruction decoding. Pentium has two execution pipelines, U

and V, where a limited set of instructions are paired. On the other hand, Pentium Pro has

three parallel instruction decoders, out-of-order issue and out-of-order execution features.
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We propose additional instructions on Table 5.1 to the current Pentium instruction

set architecture. We used the cryptographic kernel operations introduced in the previous

chapter to derive these instructions.

Operands of the instructions are shown as registers, but might also be memory

operands. It might not be easy to encode the three-operand instructions on the intel Pen-

tium architecture. However, the operands may be implicit operands, i.e., the destination

might be hardcoded as edx,eax register pair as in the existing mul instruction.

TABLE 5.1: Proposed instructions to the Intel Pentium processor.

Instruction Operands Operation Description

muladd r1; r2; r3 (r1; r2) = r1 � r2 + r3 multiply-add

mul2add r1; r2; r3 (C; r1; r2) = 2 � r1 � r2 + c3 multiply by 2, then add

mulgf2 r1; r2 (r1; r2) = r1 � r1 GF(2) multiply

The result of the �rst operation always �ts into two registers, because the maximum

value is less than 22w, where w is the wordsize of the operands: (2w�1)(2w�1)+(2w�1) =

22w � 2w < 22w.

The mul2add instruction �rst multiplies two registers speci�ed by its operands.

Then, it shifts the product to the left by one bit position and adds the third operand to

this shifted product. Then, the result �ts in 65 bits for 32 bit operands, hence the carry

bit C is used as part of the result.

The last instruction, mulgf2, multiplies two polynomials of length w = 32 bits over

GF(2), and generates 2w = 64 bit product in the destination register pair. Hardware

requirements of this instruction is fairly less: inhibition of carry generation in the integer
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multiplication hardware yields the desired operation. A comparison of GF(2) multiplica-

tion and exponentiation operations using mulgf2 instruction is elaborated in [19, 50].

5.4. Case 2: Intel MMX Technology

We have analyzed the instruction set and related architectural features of the MMX

technology for obtaining high-speed implementations of certain cryptographic algorithms.

In this section, we mainly concentrated on the RSA and DSS algorithms, DES, IDEA and

RC5 block ciphers. We implemented the RSA and DSS algorithms on a MMX platform,

and obtained timings on a 233 MHz Pentium Pro/MMX processor. These timings in-

dicate that the number-theoretic cryptographic algorithms implemented using the MMX

instructions are signi�cantly slower than those implemented using Pentium instructions.

This turns out to be mainly due to the fact that the MMX architecture performs signed

arithmetic and lacks certain instructions such as 16-bit and 32-bit unsigned multiply and

multiply-add. After carefully examining the kernel of operations for the considered cryp-

tographic algorithms, we propose a set of new instructions for the next generation MMX

technology.

5.4.1. RSA and DSS

The current MMX instruction set has three multiplication instructions. Two of

them multiply two signed 16 bit words and compute the low (PMULL) or high (PMULH) 16

bits of the product. Another instruction multiplies two signed 16 bit words and adds two

such products (PMADD). Each instruction executes four of such multiplications in parallel

However, number-theoretic cryptographic applications require unsigned multiplications.

Therefore, we propose the set of instructions on Table 5.2 to the current MMX instruction

set.

On Table 5.2, each register ri is a 64-bit MMX register. The second operands are

also represented by a registers, but they might be 64-bit memory locations similar to other
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TABLE 5.2: Proposed instruction additions to the Intel MMX technology.

Instruction Operation

paddq r1; r2 r1 = r1 + r2

padcq r1; r2 r1 = r1 + r2 + C

pmuluwd r1; r2 r1(63� 32) = r1(47� 32) � r2(47� 32)

r1(31� 0) = r1(15� 0) � r2(15� 0)

pmuludq r1; r2 r1 = r1(31� 0) � r2(31� 0)

pmuluq r1; r2 (r1; r2) = r1 � r2

pmaddudq r1; r2 r1 = r1(63� 32) � r2(63� 32) + r1(31� 0) � r2(31� 0)

MMX instructions. Indices in the paranthesis denote the bit numbers in the 64-bit MMX

registers.

5.4.2. RC5

RC5 algorithm has three primitive operations [69] as listed below.

1. Two's complement addision and subtraction.

These are readily available on MMX. However, 64-bit RC5 addition would bene�t

64-bit addition and subtraction (paddq, psubq) instructions.

2. Bit-wise exclusive-OR, XOR.

3. Data dependent left and right rotate (spin), ROR, ROL.

There is no rotate instruction in the MMX instruction set. Data dependent rotate

(spin) instructions constitute the security core of the RC5 algorithm. These opera-

tions are emulated using shift and OR instructions. Thus, it is anticipated that data

dependent left/right rotate instructions (pror, prol) would improve RC5 perfor-

mance on MMX.
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Thus, for a fast RC5 implementation exploiting the Intel MMX features, we �nd

the instructions on Table 5.3 bene�cial. The second operands are also represented by

registers, but they might be 64-bit memory locations similar to other MMX instructions.

On the table,n ando denote left and right rotate (spin) operations.

TABLE 5.3: Proposed instruction additions for to the Intel MMX technology for RC5.

Instruction Operation

pror r1; r2=imm8 r1 = r1n r2=imm8

prol r1; r2=imm8 r1 = r1o r2=imm8

paddq r1; r2 r1 = r1 + r2

psubq r1; r2 r1 = r1 � r2

5.4.3. DES

DES has the following primitive operations [70]:

1. BIT-wise exclusive-OR, XOR.

2. Shift by immediate count.

3. Rotate by immediate count.

However, 64-bit registers and 64-bit shift/XOR MMX instructions eliminate the need for

rotate instruction. Thus, we did not �nd a general instruction which would improve DES

throughput on the MMX technology.

5.4.4. IDEA

The primitive operations of IDEA are listed below [71, 72]:
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1. Bit-wise exclusive-OR, XOR.

2. Two's complement 16-bit addition modulo 216, ADD, no carry.

3. Unsigned 16-bit multiplication modulo 216 + 1.

The �rst two operations are readily available in the MMX instruction set. The third

operation is a special multiplication modulo 216 + 1 where inputs are treated as unsigned

integers, but 0 (zero) corresponds to -1, i.e. 216 = �1. This multiplication does not

produce a 0 product provided that operands are not zero, because 216 + 1 is a prime.

Thus, this operations is essentially a 16-bit unsigned multiplication where 0 is treated

separately. The 32-bit signed multiplication instruction pmull can be used to multiply

two unsigned 16-bit operands.

5.5. Case 3: SPARC V9

Sparc V9 is a 64-bit architecture downward compatible with the earlier Sparc family

of processors [73, 74]. It contains 64-bit register and a 64-bit ALU which are important

for development of number-theoretic cryptographic algorithms. It can perform arithmetic

operations on two 64-bit operands such as addition, subtraction, multiplication and di-

vision. However, lack of certain 64-bit operations limits the maximum performance this

architecture would yield.

The �rst problem appears in the 64-bit addition-with-carry. The carry-in bit is al-

ways the 32-bit carry bit. The 64-bit add-with-carry instruction adds two 64-bit operands

and the 32-bit carry bit. Then, addition of a very long integer using multiple 64-bit addi-

tion instructions is not easily streamlined, requiring a manipulation with the carry bits, or

using 32-bit arithmetic. The second problem is with the 64-bit multiplication instruction.

The result of a 64 by 64-bit multiplication is 64-bit: the high order 64-bits are truncated,

causing the developer to feed two 32-bit operands to obtain a 64-bit product.
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We propose three additional instructions to the V9 architecture. These are listed

on Table 5.4.

TABLE 5.4: Proposed instructions to Sparc V9 architecture.

Instruction Operation

addcc i or x cc,regrs1,reg or imm,regrd Add with carry i or x cc

addccc i or x cc,regrs1,reg or imm,regrd Add with carry i or x cc and modify cc's

umulx regrs1,reg or imm,regrd Unsigned multiply, result in regrd,regrs1 pair

Addition instructions addcc and addccc accepts either 32-bit carry (i cc) or 64-

bit carry (x cc) as carry-out and carry-in. Both instructions compute regrd=regrs1+

reg or imm+i or x cc. addccc also modi�es the 32-bit or 64-bit carry ag (i or x cc)

according to the result of the addition.

umulx is an unsigned extended multiplication instruction computing (regrd,regrs1)

= reg or imm � regrs1. If the operands are less than 32-bits, then the product �ts in

one 64-bit register. In this case, the result is in regrd, and regrs1 is zeroized. However, if

the product is larger than 264 � 1, then the high-order 64-bits of the product are stored

in regrs1, and low-order 64-bits are stored in regrd. In either case, the initial contents of

regrs1 are overwritten.
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6. CASE STUDIES

6.1. Introduction

We developed a number of cryptographic functions in C and in various assembly

languages. In spite of many cryptographic algorithms available, only a subset of them

found applications in real life. In the developed software routines, we experienced that

the following algorithms are often practised:

a) RSA encryption and decryption [53, 75]

b) Di�e-Hellman key exchange [53, 75]

c) Data Encryption Standard (DES) [70, 76, 71, 77]

d) Secure Hash Algorithm (SHA-1) [78, 79]

e) MD2, Message Digest Algorithm [80]

f) MD4, Message Digest Algorithm [71]

g) MD5, Message Digest Algorithm [81]

h) Digital Signature Algorithm (DSA, DSS) [4]

i) Password based encryption and decryption (PBE) [53]

j) International Data Encryption Algorithm (IDEA) [71, 72]

k) RC2, encryption [71]

l) RC5, variable key-size encryption [69, 71]

m) Random number generation [82, 83]

We refrain from giving a complete list, because we believe that there is not an

actual complete list of cryptographic algorithms. Some of the items on the presented

list may be obsolete, and others may (and will) be added. In the following sections, our

implementations on various platforms are introduced.
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6.2. A Cryptographic Multi-Precision Library in C

A Cryptographic Multi-Precision (CMP) library is designed and developed for RSA

Data Security. The library contains core functions of the RSA data security system

including modular exponentiation. Programs are written in C and in i486 assembler.

Montgomery multiplication and squaring routines are optimized for the Intel 486 processor.

The CMP library contains arithmetic functions which can be used as building blocks

of number-theoretic cryptosystems. These functions perform modular addition, subtrac-

tion, multiplication and exponentiation on multi-precision unsigned integers. The func-

tions in this library are listed on Table 6.1. Each argument is of type CMPInt. This is a

structure composed of three members: value an unsigned integer array where the words

of a multi-precision integer are stored, length the number of words in the array, space

the number of words reserved in memory.

6.3. RSA and MD5 Implementations on TMS320C16

A cryptographic library is developed for RSA Data Security. The library contains

PKCS compliant 512-bit RSA crypto-system and MD5 message digest algorithm [53, 81,

84] for signature operations. Programs are written in TMS320C16 assembly language

using a TMS320C16 add-on PC card and development package. The function calling

sequences of signing and veri�cation are depicted in Figure 6.1. In the �gure, boxes

represent function blocks. Function input and output arguments are BSafe compatible

type, which enables the developed software package to interface with BSafe using ASN.1

data structures [85, 86].

This signal processor does not have an unsigned multiplication instruction. Thus,

16 by 16-bit unsigned multiplication is accomplished using 15-bit multiplication and cor-

rective additions. If the product t := a � b is computed, the multiplication operation is
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FIGURE 6.1: Signing and veri�cation on TMS320C16 implementation.
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where a; b and t are 16-bit quantities and subscripts are used as bit indices. Product in

part D is computed by a multiplication instruction. Operands to this instruction are low

order 15 bits of a and b. Low order 15 bits of b are left-shifted 15 bits and added to this

partial product if a15 = 1 in part B. Similarly, low order 15 bits of a are left-shifted 15
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bits and added if b15 = 1 in part C. Finally, in part A, a constant number 230 is added if

both a15 = 1 and b15 = 1.

A 512-bit RSA decryption takes about 1.5 second on TMS320C16. The major reason

of this slow execution time is the lack of unsigned multiplication instruction as expressed

in the previous paragraph.

MD5 algorithm heavily uses logical operations such as shift and rotate. However,

shift instructions on this processor are also signed and there is no rotate instruction.

Thus, an unsigned shift and rotate are also accomplished through emulation, introducing

a drawback in performance.

As a conclusion, double-size accumulator and single-cycle multiplication are the

only bene�cial features of TMS320C16 for number-theoretic cryptographic algorithms.

Conversely, lack of unsigned operations, i.e., multiplication and shift/rotate, restricted

register set, and indirect program memory access supersedes the advantages.

6.4. Intel Cryptographic Library on The Pentium Processor

A cryptographic library is designed and developed for Intel Corporation. This

project is currently extended to include elliptic curve cryptosystems. We named this

software Intel Cryptographic Library (ICL). Programs are written in C and Pentium as-

sembly language, and optimized for the Pentium processor. Up to our knowledge, the

fastest RSA, MD5, MD2, DES, SHA, DSS, RC5 implementations on Intel processors are

contained within this library.

RSA cryptosystem, password-based encryption, and Digital Signature Algorithm

and a random number generator are written by myself. A 1024-bit RSA public key

operation and a private-key operations takes 5 and 110 milliseconds, respectively, on an

Intel Pentium 120 MHz system running Windows NT v4.0. Programs are developed using

Microsoft Visual C++ v4.x.
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6.5. RSA Implementation on Sparc V9

RSA crypto-system has been developed for Naval Research Laboratories, Internet

Technologies Division. We designed and developed the library on Sun UltraSparc-II (V8+)

based on a SPARC V9 processor system running Solaris 5.1 [73, 74]. Most of the func-

tions are written in Sparc V9 assembly language, utilizing the 64-bit architecture of the

processor.

We have developed the software as a replacement to RSA part of the RSA Data

Security's BSAFE v3.0 cryptographic toolkit [85]. Software has a BSAFE-like interface

featuring full PKCS compatibility with ASN.1, BER and DER [53, 86]. Programs are

developed using SparCompiler v4.0. Up to our knowledge, the fastest RSA encryption

and decryption functions on Sun SPARC V9 processor is contained within our library.

A 1024-bit input is encrypted by RSA algorithm in less than 10 milliseconds using

the assembler version of the developed software running on a UltraSparc-II, a V9 powered

V8+ Sun architecture. 1024-bit RSA decryption takes 94 milliseconds. RSA encryption

and decryption benchmarks of the C version are 21 and 171 milliseconds, respectively.

In the C versions, extended type long long is used. These �gures are signi�cant im-

provements over RSA BSafe benchmarks which takes 230 milliseconds for 1024-bit RSA

decryption.
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TABLE 6.1: List of CMP fuctions.

Function Description

CMPMove (a; t) t := a

CMPCompare (a; b) a <=> b

CMPInc (a; x) a := a+ x ; x one word

CMPDec (a; x) a := a� x ; x one word

CMPAdd (a; b; t) t := a+ b

CMPMul (a; b; t) t := a � b

CMPDiv (a; b; q) t := a div b

CMPRem (a; b; r) t := a mod b

CMPModAdd (a; b; n; t) t := a+ b mod n

CMPModSub (a; b; n; t) t := a� b mod n

CMPModMul (a; b; n; t) t := a � b mod n

CMPGCD (a; b; g) g := gcd(a; b)

CMPModInv (a; n; t) t := a�1 mod n

CMPModExp (a; e; n; t) t := ae mod n

CMPModExpCRT (a; dp; dq; n; p; q; c; t) t := ((M1 �M2) � c mod p) � q +M2

M1 := (C mod p)dp mod p

M2 := (C mod 1)dq mod q
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