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Abstract. Recovering the shape of an object from two views fails at occluding contours of smooth objects
because the extremal contours are view dependent. For three or more views, shape recovery is possible, and several
algorithms have recently been developed for this purpose. We present a new approach to the multiframe stereo
problem that does not depend on differential measurements in the image, which may be noise sensitive. Instead, we
use a linear smoother to optimally combine all of the measurements available at the contours (and other edges) in
all of the images. This allows us to extract a robust and reasonably dense estimate of surface shape, and to integrate
shape information from both surface markings and occluding contours. Results are presented, which empirically
show that in the presence of noise, smoothing over more than three views reduces the error even when the epipolar
curve is nonplanar.
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1. Introduction

Most visually guided systems require representations
of surfaces in the environment in order to integrate sens-
ing, planning, and action. The task considered in this
paper is the recovery of the 3D structure (shape) of ob-
jects with piecewise-smooth surfaces from a sequence
of profiles taken with known camera motion. Thepro-
file (also known as theextremal boundaryor occluding
contour) is defined as the image of thecontour gen-
erator of the projection map from the surface to the
image plane. Since profiles are general curves in the
plane without distinguished points, there is noa priori
pointwise correspondence between these curves in dif-
ferent views. However, given the camera motion, there
is a correspondence based on theepipolar constraint.
For two images, i.e., classicalbinocular stereo, this

epipolar constraint is a set of straight lines which are
the intersection of theepipolar planeswith the image
plane. The epipolar plane through a point is determined
by the view direction at that point and the instantaneous
camera translation direction.

In the case of contours that are not view depen-
dent, e.g., creases (tangent discontinuities) and surface
markings, many techniques have been developed for
recovering the 3D contour locations from two or more
images under known camera motion (Marr and Poggio,
1979; Mayhew and Frisby, 1980; Arnold, 1983; Bolles
et al., 1987; Baker and Bolles, 1989; Matthies et al.,
1989). Techniques have also been developed for si-
multaneously estimating contour locations and camera
positions (Tsai and Huang, 1984; Faugeras et al., 1987;
Horn, 1990). However, for smooth curved surfaces, the
critical set which generates the profile is different for
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each view. Thus, the triangulation applied in two-frame
stereo will not be correct along the occluding contour
for smooth surfaces. For the same reason, it is often
not possible to determine the camera motion from the
images unless some assumptions are made either about
the surface or the motion (Arborgast and Mohr, 1992;
Giblin et al., 1992). However, the fact that the critical
sets sweep out an area means that the connectivity of
the surface points can be determined, i.e., one obtains
a surface patch rather than a set of points.

The problem of reconstructing a smooth surface
from its profiles has been explored for known pla-
nar motion by Giblin and Weiss (1987) and subse-
quently for more general known motion by Vaillant
and Faugeras (Vaillant, 1990; Vaillant and Faugeras,
1992), Cipolla and Blake (Blake and Cipolla, 1990;
Cipolla and Blake, 1990, 1992; Blake et al., 1992),
Zheng (1994), and Boyer and Berger (1997). These ap-
proaches are either based on a differential formulation
and analysis, or they use curve fitting but still only use
three frames. Unfortunately, determining differential
quantities reliably from real images in this way is diffi-
cult. Even fitting curves to data from three images can
be unsatisfactory. This has led Cipolla and Blake to use
relative measurements in order to cancel some of the er-
ror due to inadvertent camera rotation. Their approach
approximated image contours with B-snakes, which re-
quire initialization for each contour that is tracked. In
addition, B-snakes implicitly smooth the contours in
the image. Since the recovery of 3D points is a linear
problem (as we will show in this paper), the smoothing
can be done in 3D on the surface where more context
can be used in the detection of discontinuities so that
detailed structure can be preserved.

It is natural to consider surface reconstruction as an
optimal estimation problem. To overcome the limita-
tions of previous algorithms, the approach we develop
in this paper applies standard techniques from estima-
tion theory (Kalman filtering and smoothing) to make
optimal use of each measurement without computing
differential quantities (see also Blake et al. (1992),
where a recursive filter is used as part of the contour
tracking phase). First, we derive alinear set of equa-
tions between the unknown shape (surface point po-
sitions and radii of curvature) and the measurements.
We then develop a robust linear smoother (Gelb, 1974;
Bierman, 1977) to compute statistically optimal current
and past estimates from the set of contours. Smoothing
allows us to combine measurements on both sides of
each surface point.

Our technique produces a continuous surface de-
scription, i.e., a network of linked 3D surface points,
which provides us with a much richer description than
just a set of 3D curves. Some parts of the surface may
never appear on the profile. In some cases this is due to
occlusion either by the same surface or another one. In
other cases, it is due to limitations of the camera trajec-
tory (Giblin and Weiss, 1994). Since the method pre-
sented here also works for arbitrary surface markings
and creases, a larger part of the surface can be recon-
structed than from occluding contours of the smooth
pieces alone. Our approach also addresses the difficult
problem of contours that merge and split in the image,
which must be resolved if an accurate and continuous
3D surface model is to be constructed.

The method we develop has applications in many ar-
eas of computer vision, computer aided design, and vi-
sual communications. The most traditional application
of visually based shape recovery is in the reconstruction
of a mobile robot’s environment, which allows it to per-
form obstacle avoidance and planning tasks (Curwen
et al., 1992). Visually based shape recovery can also
be used to develop strategies for robotics grasping and
manipulation tasks, or as an off-line technique to auto-
matically “learn” object descriptions for object or pose
recognition tasks. In less traditional applications, our
system could be used to performreverse engineering,
i.e., to automatically acquire 3D computer aided design
(CAD) description of real-world objects or prototypes,
or even to construct a “3D fax” for transmitting 3D
object descriptions and images between desktops.

Our paper is structured as follows. We begin in Sec-
tion 2 with a description of our edge detection, contour
linking, and edge tracking algorithms. In Section 3,
we discuss the estimation of the epipolar plane for a
sequence of three or more views. Section 4 presents
the linear measurement equations which relate the edge
positions in each image to the parameters of the circular
arc being fitted at each surface point. Section 5 then re-
views robust least squares techniques for recovering the
shape parameters and discusses their statistical inter-
pretation. Section 6 shows how to extend least squares
to a time-evolving system using the Kalman filter, and
develops the requisite forward mapping (surface point
evolution) equations. Section 7 extends the Kalman
filter to the linear smoother, which optimally refines
and updates previous surface point estimates from new
measurements. Section 9 presents a series of experi-
ments performed both on noisy synthetic contour se-
quences and on real video images. We close with a
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Figure 1. Input processing: (a) sample input image (dodecahedral puzzle), (b) estimated edgels and orientations (maxima in|G1|2), (c) tracked
edgels, (d) correspondence of points on the occluding contours using the epipolar constraint.c0 andc1 are two camera centers.n̂epi = N(v× t̂0)

is the epipolar plane normal defined by the view directiont̂0 corresponding to surface pointq0, andv is the camera velocity.q1 is the surface
point corresponding to the tracked edgel, andl1 is the projection of the linec1q1 onto the epipolar plane.

discussion of the performance of our new technique
and a discussion of future work.

2. Contour Detection and Tracking

The problem of edge detection has been extensively
studied in computer vision (Marr and Hildreth, 1980;
Canny, 1986). The choice of edge detector is not cru-
cial in our application, since we are interested mostly
in detecting strong edges such as occluding contours
and visible surface markings.1 For our system, we have
chosen thesteerable filtersdeveloped by Freeman and

Adelson (1991), since they provide good angular res-
olution at moderate computation cost, and since they
can find both step and peak edges. We have used first-
order derivatives of Gaussians as filters, with the de-
fault parameters suggested by Freeman and Adelson.
An example of our edge detector operating on the input
image in Fig. 1(a) is shown in Fig. 1(b).

Once discrete edgels have been detected, we use lo-
cal search to link the edgels into contours. We find the
two neighbors of each edgel based on proximity and
continuity of orientation. Note that in contrast to some
of the previous work in reconstruction from occluding
contours (Cipolla and Blake, 1990, 1992; Blake et al.,
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1993), we do not fit a smooth parametric curve to the
contour since we wish to directly use all of the edgels
in the shape reconstruction, without losing detail.2 The
curve fitting problem is essentially one of detecting
outliers. Since the 3D reconstruction provides more
context, smoothing in 3D should be preferred.

We then use the known epipolar line constraints
(Section 3) to find the best matching edgel in the next
frame. Our technique compares all candidate edgels
within the epipolar line search range (defined by the
expected minimum and maximum depths), and selects
the one which matches most closely in orientation,
contrast, and intensity (see Fig. 1(c)). Once an initial
estimate for the 3D location of an edgel has been com-
puted, the search range can be dramatically reduced
(see Section 5.3).

Since contours are maintained as a list of discrete
points, it is necessary to resample the edge points in or-
der to enforce the epipolar constraint on each track. We
occasionally start new tracks if there is a sufficiently
large (2 pixel wide) gap between successive samples
on the contour. While we do not operate directly on
the spatiotemporal volume, our tracking and contour
linking processes form a virtual surface similar to the
weaving walltechnique of Harlyn Baker (1989). Un-
like Baker’s technique, however, we do not assume a
regular and dense sampling in time.

3. Reconstructing Surface Patches

The surface being reconstructed from a moving cam-
era can be parametrized in a natural way by two fam-
ilies of curves (Giblin and Weiss, 1987; Cipolla and
Blake, 1990): one family consists of the critical sets
on the surface; the other is tangent to the family of rays
from the camera focal points. The latter curves are
calledepipolar curvesand together with the critical sets
form theepipolar parametrization(Blake and Cipolla,
1990; Cipolla and Blake, 1990). This parametrization
can always be used except when the profile is singular
or when the normal to the surface is perpendicular to
the direction of camera translation (Giblin and Weiss,
1994). For a pair of stereo images, each viewing di-
rection (pixel) together with the translation vector from
one camera center to the other determines a plane called
anepipolar plane, which we denote bŷnepi. The same
construction holds in the case of motion: in the limit, as
the time between samples goes to zero, the plane deter-
mined by a view direction̂t i and the camera translation
velocity v will also be called an epipolar planênepi

Figure 2. Local coordinate axes and circle center point calculation
in the epipolar plane. In this figure, the view raysci qi are projected
to the linesl i . The epipolar curve is projected to the ellipse, and
the osculating circle is fit to the projected lines.l0 andn̂0 define the
local coordinate axes.

(Fig. 1(d)). For a more detailed discussion of epipolar
curves see (Giblin and Weiss, 1994).

The problem is that any smooth surface reconstruc-
tion algorithm that is more than a first-order approxi-
mation requires at least three images and, in general,
the three corresponding tangent rays will not be copla-
nar. However, there are many cases when this will be a
good approximation. One such case is when the camera
trajectory is almost linear. If the camera trajectory is
linear, then the epipolar planes form a pencil of planes
containing that line (even under perpective projection).
Under orthographic projection, if the camera motion is
planar (a weaker constraint), then all of the epipolar
curves will be planar as well.

Cipolla and Blake (1990, 1992) and Vaillant and
Faugeras (Vaillant, 1990; Vaillant and Faugeras, 1992)
noticed that to compute the curvature of a planar curve
from three tangent rays, one can determine a circle
which is tangent to these rays (Fig. 2). The assumption
one needs to make is that the surface remains on the
same side of the tangent rays. This is true for inter-
vals of the curve that do not have a singularity or zero
curvature.

Given three or more edgels tracked with our tech-
nique, we would like to compute the location of the
surface and its curvature by fitting a circular arc to the
lines defined by the view directions at those edgels. In
general, a nonsingular space curve will have a unique
circle that is closest to the curve at any given point. This
is called theosculating circle, and the plane of this cir-
cle is called theosculating plane. It is easy to see that
if the epipolar curve is nonsingular, then the epipolar
plane is an estimate of its osculating plane (Cipolla
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and Blake, 1992), and the lines defined by the view
directions are close to this plane and can be projected
onto it. The accuracy of the computation of the radius
of curvature depends on the conditioning of this pro-
jection. Since in the limit, the epipolar plane is the
osculating plane for the epipolar curve, the epipolar
curves should be the most robust to reconstruct by pro-
jecting onto this plane. The error in this approximation
has been studied empirically using simulation and the
results are presented in Section 9.

The relationship between the curvature of a curve
such as the epipolar curve and the curvature of the sur-
face is determined by the angle between the normal to
the curve and the normal to the surface. The curvature
of the curve scaled by the cosine of this angle is the
normal curvature. The curvature of a surface can be
thought of as a function that assigns to every tangent
directionv a value, which is the curvaturekv of the
normal slice in that direction. Ifv is the tangent to
the epipolar curve,kepi is the curvature of the epipolar
curve, andφ is the angle between the epipolar plane
and the plane containingv and the surface normal, then
the relationship among them is given by the equation

kv = kepi cosφ (1)

This gives Meusnier’s Theorem, which says that the
normal curvature is the same for all curves on the sur-
face with a given tangent direction. Since the normal
to the surface can be determined from the image, the
normal curvature can be obtained from the epipolar
curve.

4. Measurement Equations

Once we have selected the epipolar plane as the re-
construction plane for fitting the circular arc, we must
compute the set of lines in this plane which should be
tangent to the circle. This can be done either by pro-
jecting the 3D lines corresponding to the linked edgels
directly onto the plane, or by intersecting the tangent
planes (defined by the edgels and their orientations)
with the reconstruction plane. Figure 1(d) shows the
former case, where the (dashed) linel1 is the projection
of the linec1q1 onto the epipolar plane(c0, n̂epi).

We represent the 3D line corresponding to an edgel
in frame i by a 3D pointqi and a direction̂t i . The
pointqi is chosen to be the intersection of the viewing
ray with a reference planez = z0. The direction is
given by t̂ i = N (qi − ci ), whereci is the camera

center andN ( ) normalizes a vector. We choose one of
these lines as thereference frame(n̂0, t̂0) centered atq0

(wheren̂0 = t̂0× n̂epi), e.g., by selecting the middle of
n frames for a batch fit, or the last frame for a Kalman
filter. This line lies in the reconstruction plane defined
by n̂epi.

If we parameterize the osculating circle by its cen-
ter c= (xc, yc) and radiusr (Fig. 2), we find that the
tangency condition between linei and the circle can be
written as

ci xc + si yc + r = di (2)

whereci = t̂ i · t̂0, si = −t̂ i · n̂0, anddi = (qi −q0) · n̂i .
Thus, we have a linear estimation problem in the
quantities(xc, yc, r ) given the known measurements
(ci , si , di ). This linearity is central to the further de-
velopments in the paper, including the least-squares
fitting, Kalman filter, and linear smoother, which we
develop in the next three sections.

5. Least Squares Fitting

While in theory the equation of the osculating circle can
be recovered given the projection of three nonparallel
tangent lines onto the epipolar plane, a much more
reliable estimate can be obtained by using more views.3

Given the set of equations (2), how can we recover the
best estimate for(xc, yc, r )? Regression theory (Albert,
1972; Bierman, 1977) tells us that the minimum least-
squared error estimate of the system of equationsAx =
d can be found by minimizing

e= |Ax − d|2 =
∑

i

(ai · x− di )
2. (3)

This minimum can be found by solving the set ofnor-
mal equations4

(ATA)x̂ = ATd (4)

or (∑
i

ai aT
i

)
x̂ =

∑
i

ai di .

A statistical justification for using least squares is pre-
sented in Section 5.1.
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In our circle fitting case,ai = (ci , si , 1), x =
(xc, yc, r ), and the normal equations are


∑

i c2
i

∑
i ci si

∑
i ci∑

i si ci
∑

i s2
i

∑
i si∑

i ci
∑

i si
∑

i 1


 xc

yc

r

 =

∑

i ci di∑
i si di∑
i di

 .
(5)

If we solve the above set of equations directly, the es-
timates forxc andr will be very highly correlated and
both will be highly unreliable (assuming the range of
viewpoints is not very large). This can be seen both
by examining Fig. 2, where we see that the location
of c is highly sensitive to the exact values of thedi ,
or by computing the covariance matrixP = (ATA)−1

(Section 5.1).
We cannot do much to improve the estimate ofr

short of using more frames or a larger camera displace-
ment, but we can greatly increase the reliability of our
shape estimate by directly solving for thesurface point
(xs, ys), wherexs = xc + r andys = yc.5 The new set
of equations is thus

ci xs + si ys + (1− ci )r = di . (6)

While there is still some correlation betweenxs andr ,
the estimate forxs is much more reliable (Section 5.1).
Once we have estimated(xs, ys, r ), we can convert this
estimate back to a 3D surface point,

p0 = q0+ xsn̂0+ yst̂0, (7)

a 3D center point

c= q0+ (xs − r )n̂0+ yst̂0 = p0− r n̂0, (8)

or a surface point in thei th frame

pi = c+ r n̂i = p0+ r (n̂i − n̂0), (9)

where

n̂i = t̂ i × n̂epi

is the osculating circle normal direction perpendicular
to line l i (Fig. 2).

5.1. Statistical Interpretation

The least squares estimate is also theminimum vari-
anceand maximum likelihoodestimate (optimal sta-
tistical estimate) under the assumption that each mea-
surement is contaminated with additive Gaussian noise
(Bierman, 1977). If each measurement has a different
varianceσ 2

i , we must weight each term in the squared
error measure (3) bywi = σ−2

i , or, equivalently, mul-
tiply each equationai · x = di by σ−1

i .
In our application, the variance ofdi , σ 2

i , can be
determined by analyzing the edge detector output and
computing the angle between the edge orientation and
the epipolar line

σ 2
i = σ 2

e

/
(l̂ i · n̂epi)

2 = σ 2
e

/
(1− (m̂i · n̂epi)

2),

whereσ 2
e is the variance ofqi along the surface normal

m̂i , which can be computed by multiplying the edge
position uncertainty (variance) by the squared distance
to the object. This statistical model makes sense if the
measurementsdi are noisy and the other parameters
(ci , si ) are noise-free. This is a reasonable assumption
in our case, since the camera positions are known but
the edgel locations are noisy. The generalization to
uncertain camera locations is left to future work.

When using least squares, the covariance matrix of
the estimate can be computed fromP= (ATA)−1. We
can perform a simple analysis of the expected covari-
ances forn measurements spacedθ apart. Using Taylor
series expansions forci = cosi θ andsi = sini θ , and
assuming thati ∈ [−m . . .m], n = 2m+ 1, we obtain
the covariance matrices

Pc
3 ≈

 6θ−4 0 −6θ−4

0 1
2θ
−2 0

−6θ−4 0 6θ−4


and

Ps
3 ≈

 1 0 −2θ−2

0 1
2θ
−2 0

−2θ−2 0 6θ−4


wherePc

3 is the 3 point covariance for the center-point
formulation, andPs

3 is the 3 point covariance for the
surface-point formulation. As we can see, variance of
the surface point localx estimate is four orders of mag-
nitude smaller than that of the center point. Similar re-
sults hold for the overdetermined case (n > 3). Extend-
ing the analysis to the asymmetrical case,i ∈ [0 . . .2m],
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we observe that the variance of thexs andys estimates
increases.

5.2. Robustifying the Estimate

To further improve the quality and reliability of our
estimates, we can applyrobust statisticsto reduce the
effects ofoutlierswhich are due to grossly erroneous
measurements as well as large changes in the surface
curvature (Huber, 1981). Many robust techniques are
based on first computingresiduals, ri = di −ai · x, and
then re-weighting the data by a monotonic function

(σ ′i )
−2 = σ−2

i g(|ri |)

or throwing out measurements whose|ri |À σi . Al-
ternatively, least median squares can also be used to
compute a robust estimate, but at an increased com-
plexity.

In our application, outliers occur mainly from gross
errors in edge detection (e.g., when adjacent edges
interfere) and from errors in tracking. Currently, we
compute residuals after each batch fit, and keep only
those measurements whose residuals fall below a fixed
threshold.

5.3. Predicting 2D Locations for Tracking

Once a 3D estimate for an edgel location has been com-
puted, this can be used to predict where the edgel would
appear in the next frame, and hence to improve the cor-
respondence produced by the tracking stage. When no
3D information is available, i.e., after 3 frames have
been processed, we project the viewing ray passing
through a 2D edgel into the next frame to give us the
epipolar search line. We use the intersection of the
viewing ray with a minimum and maximum depth plane
to determine the endpoints that limit the search range.

When a 3D position estimate is available, we project
the 3D position and covariance estimate into the new
reconstruction plane. The position on the screen of
the edgel then gives us the middle of the search range,
while a multiple of the standard deviation in the local
x direction (which is parallel to the image plane and in
the reconstruction plane and hence along the epipolar
line) times the epipolar line determines the limits of
the search range. More formally, the endpoints of the
search line are

Pi (pi ± ασxn̂0)

wherePi projects points in 3D onto thei th frame, and
σ 2

x is the variance in the localx direction.
Our approach is similar in spirit to thevalidation

gate approach used by Blake et al. (1993) for their
Kalman-filter snake tracking. Even more sophisticated
data association techniques could be used to disam-
biguate multiple intersecting tracks (Bar-Shalom and
Fortmann, 1988).

6. Kalman Filter

The Kalman filter is a powerful technique for effi-
ciently computing statistically optimal estimates of
time-varying processes from series of noisy measure-
ments (Gelb, 1974; Bierman, 1977; Maybeck, 1979).
In computer vision, the Kalman filter has been applied
to diverse problems such as motion recovery (Rives
et al., 1986), multiframe stereo (Matthies et al., 1989),
and pose recovery (Lowe, 1991). In this section, we de-
velop a Kalman filter for contour-based shape recovery
in two parts: first, we show how to perform the batch
fitting of the previous section incrementally; second,
we show how surface point estimates can be predicted
from one frame (and reconstruction plane) to another.

Theupdateor data processingpart of a Kalman fil-
ter takes a current estimatex̃i with its associated co-
varianceP̃i and produces an updated estimatex̂i and
covariancêPi by processing a single measurement

di = ai · xi . (10)

The traditional Kalman filter formulation (Gelb, 1974)
first computes a Kalman gain matrix

K i = P̃i ai
(
aT

i P̃i ai + σ 2
i

)−1
, (11)

whereσ 2
i is the variance associated with measurement

i . It then increments the state estimate by adding a
weighted residual

x̂i = x̃i + K i (di − ai · x̃i ). (12)

and decrements the covariance matrix

P̂i = P̃i − K i aT
i P̃i . (13)

Applying this Kalman filter to our circular arc fitting
task is straightforward, since each of our tangent lines
is of the required form (10),di = ai · xi . More nu-
merically stable or computationally efficient forms of
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the Kalman filter have also been developed (Bierman,
1977), but we have not yet implemented them to see if
they improve our performance.

The update part of the Kalman filter is derived di-
rectly from the measurement equation (2) (Gelb, 1974).
It provides an incremental technique for estimating
quantities in astaticsystem, e.g., for refining a set of
(xs, ys, r ) estimates as more edgels are observed. For
our application, however, we need to produce a series
of surface points that can be linked together into a com-
plete surface description. If we were using batch fitting,
we would perform a new batch fit centered around each
new 2D edgel. Instead, we use the complete Kalman
filter, since it has a much lower computational com-
plexity. The Kalman filter provides a way to deal with
dynamicsystems where the statexi is evolving over
time. We identify each measurementxi with the sur-
face point(xs, ys, r ) whose local coordinate frame is
given by(n̂i , t̂ i , n̂epi) centered atqi in framei .

The second half of the Kalman filter requires asystem
modelorprocess modelwhich predicts the evolution of
state variables over time (Gelb, 1974). For our smooth
surface model, we assume thatr (the third component
of x) can vary slowly over time, but that the other two
components have no associated process noise, i.e.,s=
(0, 0, sr ).6

The overall sequence of processing steps is there-
fore the following. Initially, we perform a batch fit
to n(≥3) frames, using the last frame as the refer-
ence frame. Next, we convert the local estimate into a
global 3D position (7) and save it as part of our final
surface model. We use this 3D estimate to construct
a reduced search range for edgels during the tracking
phase. Then, we project the 3D surface point and its
radius onto the next frame, i.e., into the frame defined
by the next 2D edgel found by the tracker.7 Then, we
update the state estimate using the local line equation
and the Kalman filter updating equations. We repeat
the above process (except for the batch fit) so long as
a reliable track is maintained (i.e., the residuals are
within an acceptable range). If the track disappears or
a robust fit is not possible, we terminate the recursive
processing and wait until enough new measurements
are available to start a new batch fit.

7. Linear Smoothing

The Kalman filter is most commonly used in control
systems applications, where the current estimate is used

to determine an optimal control strategy to achieve a
desired system behavior (Gelb, 1974). In certain appli-
cations, however, we may wish to refine old estimates
as new information arrives, or, equivalently, to use
“future” measurements to compute the best current esti-
mate. Our shape recovery application falls into this lat-
ter category, since the accuracy of the estimate depends
on the range of viewing angles for the measurements,
and this can be increased by taking measurements from
both sides of the 3D curve corresponding to a given vis-
ible occluding contour. In addition, it should be noted
that if the curvature of the epipolar curve is not con-
stant, then for each interval over which it is monotonic,
filtering rather than smoothing will introduce a bias.

The generalization of the Kalman filter to update
previous estimates is called thelinear smoother(Gelb,
1974). The smoothed estimate ofxi based on all the
measurements between 0 andN is denoted bŷxi | N .
Three kinds of smoothing are possible (Gelb, 1974).
In fixed-interval smoothing, the initial and final times
0 and N are fixed, and the estimatêxi, | N is sought,
wherei varies from 0 toN. In this case, each point in
the model is estimated from all of the data in a track.
In fixed-point smoothing, i is fixed andx̂i | N is sought
as N increases. Each point is updated as new data
is obtained, i.e., there is a separate smoother for each
point. Infixed-lag smoothing, x̂N−L | N is sought asN
increases andL is held fixed. This has the advantage
that each point is estimated within a fixed amount of
time from when it appears on the profile, and it is only
estimated once. Since the lag time is nonzero, infor-
mation on both sides of the critical set are used.

For surface shape recovery, both fixed-interval and
fixed-lag smoothing are of interest. Fixed-interval
smoothing is appropriate when shape recovery is
performed off-line from a set of predetermined mea-
surements. The results obtained with fixed-interval
smoothing should be identical to those obtained with
a series of batch fits, but at a much lower computa-
tional cost. The fixed-interval smoother requires a small
amount of overhead beyond the regular Kalman filter
in order to determine the optimal combination between
the outputs of a forward and backward Kalman filter
(Gelb, 1974; Bierman, 1977).

For our contour-based shape recovery algorithm,
we have developed a new fixed-lag smoother, which,
while sub-optimal, allows us to predict the position
of the contour in successive images and simplifies the
tracking problem. Our fixed-lag smoother begins by
computing acenteredbatch fit ton (≥3) frames. The
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surface point is then predicted from framei − 1 to
frame i as with the Kalman filter, and a new mea-
surement from framei + L, L = bn/2c is added to
the predicted estimate. The addition of measurements
ahead of the current estimate is straightforward using
the projection equations for the least-squared (batch)
fitting algorithm.

Our modified fixed-lag smoother and the optimal
fixed-lag smoother incorporate the same information
into the current estimate, but use slightly different rel-
ative weightings of the data. Intuitively, the optimal
smoother weights the data most heavily towards the
middle (inversely proportional to the distance from the
current estimate), while our modified smoother weights
the data most heavily towards the front (most recent
measurement). For systems where the process noise
σ 2

s is much smaller than the measurement noiseσ 2
i ,

the results should be similar. We examine the relative
performance of the batch estimator, Kalman filter, and
sub-optimal linear smoother in Section 9.

8. Building a Complete Surface Description

The batch fitting, Kalman filter, and linear smoothers
all produce a series of surface point estimates, one for
each input image. Because our reconstruction takes
place in object space, features such as surface mark-
ing and sharp ridges are stationary in 3D (and have
r = 0). For these features, we would prefer to produce
a single time-invariant estimate. While the detection
of stationary features could be incorporated into the
Kalman filter or smoother itself, we currently defer
this decision to a post-processing stage, since we ex-
pect the estimates of position and radius of curvature
to be more reliable after the whole sequence has been

Figure 3. Four images from synthetic truncated ellipsoid sequence. The top and left-hand side are truncated (cut off), while the front and back
sides are inscribed with an ellipse (surface marking).

processed. The post-processing stage collapses succes-
sive estimates which are near enough in 3D (say, less
than the spacing between neighboring sample points on
the 3D contour). It adjusts the neighbor (contour) and
temporal (previous/next) pointers to maintain a consis-
tent description of the surface.

To fit a complete surface to the data while interpo-
lating across small gaps, a variety of techniques could
be used. Traditionally, physically based deformable
models (Terzopoulos and Metaxas, 1991; Pentland and
Sclaroff, 1991) have been used to fit such sparse and
incomplete 3D data. An alternative, which does not
suffer from the restrictions on topology imposed by
previous techniques, is to use a self-triangulating sys-
tem of particles to model and interpolate the surface
(Szeliski et al., 1993). We plan to investigate the in-
tergration of this system with our multiframe stereo
algorithm in future work.

9. Experimental Results

To determine the performance of our shape recon-
struction algorithm, we generated a synthetic motion
sequence of a truncated ellipsoid rotating about its
z-axis (Fig. 3). The camera is oblique (rather than
perpendicular) to the rotation axis, so that the epipo-
lar curves are not planar, and the reconstruction plane
is continuously varying over time. We chose to use a
truncated ellipsoid, since it is easy to analytically com-
pute its projections (which are ellipses, even under per-
spective), and the radius of curvature is continuously
varying (unlike a cylinder or sphere).

When we run the edge images through our least-
squares fitter or Kalman filter/smoother, we obtain a
series of 3D curves (Fig. 4). The curves corresponding
to the surface markings and ridges (where the ellipsoid
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Figure 4. Top view of reconstructed 3D curves. The surface markings and ridges are stationary, while the occluding contours (ellipse) sweeps
around the object.

Figure 5. Oblique and top view of reconstructed 3D surface (all 3D curves are superimposed). The left pair shows only the reconstructed
profile curves, while the right pair shows the profiles linked by the epipolar curves (only a portion of the complete meshed surface is shown for
clarity). A total of 72 images spaced 5◦ apart were used.

is truncated) should be stationary and have 0 radius,
while the curves corresponding to the occluding con-
tour should continuously sweep over the surface.

We can observe this behavior using a three-
dimensional graphics program we have developed for
displaying the reconstructed geometry. This program
allows us to view a series of reconstructed curves either
sequentially (as an animation) or concurrently (over-
layed in different colors), and to vary the 3D view-
ing parameters either interactively or as a function of
the original camera position for each frame. Figure 5
shows all of the 3D curves overlayed in a single im-
age. As we can see, the 3D surface is reconstructed
quite well. The left-hand pair of images shows an
oblique and top view of a noise-free data set, using
the linear smoother withn= 7 window size. The right-
hand pair shows a portion of the reconstructed surface,
showing both the profile and epipolar curves.

To obtain a quantitative measure of the reconstruc-
tion algorithm performance, we can compute the root
median square error between the reconstructed 3D
coordinates and the true 3D coordinates (which are
known to the synthetic sequence generating program).
Table 1 shows the reconstruction error and percent-
age of surface points reconstructed as a function of
algorithm choice and various parameter settings. The

table compares the performance of a regular 3-point fit
with a 7-point moving window (batch) fit, and a lin-
ear fixed-lag smoother withn= 7. Results are given
for the noise-free andσi = 0.1 pixels case. The differ-
ent columns show how by being more selective about
which 3D estimates are considered valid (either by
requiring more frames to have been successfully fit,
or lowering the threshold on maximum covariance),
a more reliable estimate can be obtained at the ex-
pense of fewer recovered points. For noise-free data,

Table 1. Root median square error and percentage of edges recon-
structed for different algorithms, window sizes (n), input image noise
σi , and criteria for valid estimates (n f : minimum number of frames
in fit, σ 2

x : covariance in localx estimate). These errors are for an
ellipse whose major axes are(0.67, 0.4, 0.8) and for a 128× 120
image.

n f ≥ 7∧
Algorithm n σi n f ≥ 3 n f ≥ 7 σ 2

x < 0.5

Smoother 7 0.0 .0074 (77%) .0046 (45%) .0044 (38%)

Smoother 7 0.1 .0114 (74%) .0054 (41%) .0051 (36%)

Batch 7 0.0 .0042 (79%) .0036 (56%) .0035 (43%)

Batch 7 0.1 .0074 (77%) .0054 (53%) .0051 (42%)

Batch 3 0.0 .0008 (77%)

Batch 3 0.1 .0159 (75%)
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the 3-point algorithm is better because it is less sen-
sitive to curvature variation. However, for noisy data,
the 7-point algorithms are better, with batch fitting per-
forming slightly better than linear smoothing.

One question that needed to be answered was
whether the projection of the view rays onto the epipo-
lar plane introduces a significant error in the results.
Experiments on sythetic data showed that this was not
a problem for standard situations in which the epipolar
curve was not planar and there was even a small amount
of noise in the data. The benefits of smoothing over a
large number of views reduced the error in position of
the reconstructed points despite the fact that the rays
deviated significantly from a coplanar configuration. In
other words, the error decreased as the number of views
increased. Four epipolar curves on a sphere were used.
Imagine a camera moving in a circular orbit around a
unit sphere. By varying the angle of elevation, the three
nonplanar epipolar curves were generated. The angles
of elevation wereπ/10,π/5 and 0, respectively. To ob-
tain the fourth curve (torsion 0), an elevation of 0 was
used with a starting point that was on the equator. A
measure of the deviation from the plane is captured by
the total torsion over all 16 views. This is presented in
Table 2. The error is shown as a function of the number
of viewsn incorporated in the smoothing.

We have also applied our algorithm to the four real
image sequences shown in Fig. 6. These sequences

Table 2. Position error for reconstructed point. The num-
ber of views was varied for four different epipolar curves.
The amount of camera rotation between views was 9◦.
The noise added wasN[0, 0.1], i.e. normal with standard
deviation 0.1. The distance from the camera to the surface
was approximately 10 units, and the focal length of the cam-
era was 1.0. Curves 1–3 had nonzero torsion. Thus, they
were not planar and the distance from the epipolar plane
increased for each new point. The total torsion gives a mea-
sure for comparing the deviation from planarity for each of
the curves. The table shows the error of the reconstructed
point for each of the curves.

n Curve 1 Curve 2 Curve 3 Curve 4

4 6.9061 7.7920 6.5723 6.5981

6 2.5117 2.7320 2.4448 2.4463

8 1.4676 1.6842 1.4088 1.4155

10 0.8289 0.9365 0.8084 0.8062

12 0.5890 0.6915 0.5749 0.5704

14 0.4567 0.5378 0.4463 0.4445

16 0.3544 0.4272 0.3456 0.3442

Total torsion 6.9031 16.9601 5.5689 0

were obtained by placing an object on a rotating mech-
anized turntable whose edge has a Gray code strip used
for reading back the rotation angle (Szeliski, 1991;
Szeliski, 1993). The camera motion parameters for
these sequences were obtained by first calibrating the
camera intrinsic parameters and extrinsic parameters to
the turntable top center, and then using the computed
turntable rotation. Figure 7 shows the edges extracted
from each of these images.

Figure 8 shows two views (oblique and top) of
each set of reconstructed 3D curves. We can see
that the overall shape of the objects has been recon-
structed quite well. We show only the point locations,
since the profile and epipolar curves would make the
line drawing too dense for viewing at this resolution.
Figure 9 shows both the profile curves and the epipolar
curves for selected portions of the soda can and coffee
objects.

As a final example, Fig. 10 shows some partial re-
sults (10 reconstructed profile curves) from an image
sequence of a coffee mug. This example demonstrates
that our method can handle objects with interior holes,
since we are not limited to only following the bound-
ing contours of the objects. In future work, we plan
to study the events that occur when contours occlude
each other in the image sequence (which corresponds
to points of bitangency in 3D).

10. Discussion and Conclusion

This paper extends previous work on both the recon-
struction of smooth surfaces from profiles (edge-based
multiframe stereo) and on the epipolar analysis on spa-
tiotemporal surfaces. The ultimate goal of our work is
the construction of a complete detailed geometric and
topological model of a surface from a sequence of views
together with an estimate of uncertainty. Towards this
end, our observations are connected by tracking edges
over time as well as linking neighboring edges into
contours. The information represented at each point
includes the position, surface normal, and curvatures
(currently, only in the viewing direction). In addition,
error estimates are also computed for these quantities.
Since the sensed data does not provide a complete pic-
ture of the surface, e.g., there can be self-occlusion or
parts may be missed due to coarse sampling or limita-
tions on the camera trajectory, it is necessary to build
partial models. In the context of active sensing and
real-time reactive systems, the reconstruction needs to
be incremental as well.
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Figure 6. Sample real image sequences used for experiments: (a) dodecahedron, (b) soda can, (c) coffee, and (d) tea.
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Figure 7. Extracted edges: (a) dodecahedron, (b) soda can, (c) coffee, and (d) tea.
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Figure 8. 3D reconstructed points from: (a) dodecahedron, (b) soda can, (c) coffee, and (d) tea.
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Figure 9. Profile and epipolar curves for: (a–b) soda can and (c–d) coffee. Only a subset of the curves is displayed in order to reduce the visual
clutter.
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Figure 10. Another example: coffee cup. Note that objects with interior holes (non-trivial topology) can be easily handled by this method.
Only the first 10 profile curves are shown (from two different viewpoints).
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Because our equations for the reconstruction algo-
rithm are linear with respect to the measurements, it
is possible to apply statistical linear smoothing tech-
niques, as we have demonstrated. This satisfies the
requirement for incremental modeling, and provides
the error estimates that are needed for integration with
other sensory data, both visual and tactile. The appli-
cation of statistical methods has the advantage of pro-
viding a sound theoretical basis for sensor integration
and for the reconstruction process in general (Szeliski,
1989; Clark and Yuille, 1990).

In future work, we intend to develop a more com-
plete and detailed surface model by combining our
technique with regularization-based curve and surface
models. We also plan to investigate the integration of
our edge-based multiframe reconstruction technique
with other visual and tactile techniques for shape re-
covery.
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Notes

1. Unlike many edge detection applications, however, our system
provides us with a quantitative way to measure the performance
of an edge detector, since in many cases we can measure the
accuracy of our final 3D reconstruction.

2. However, we do perform a small amount of curvature-dependent
smoothing along the curves to reduce noise. This can be viewed
as part of the edge extraction stage.

3. Of course, since the curvature of the surface is not usually con-
stant, using more views will eventually result in degraded esti-
mates. Sophisticated curve fitting techniques could be used to
locally select the optimal number of views to be integrated. For
now, we simply fix this number by hand for the whole sequence
(Section 9).

4. Alternative techniques for solving the least squares problem
include singular value decomposition(Press et al., 1986) and
Householder transforms (Bierman, 1977).

5. While the point(xs, ys)will not in general lie on the line(q0, t̂0),
the tangent to the circle at(xs, ys) will be parallel tot̂0.

6. This is analogous to assuming for a tracker that the velocity has
a random drift but that the position is a deterministic function
of the velocity. For surfaces, this is equivalent to assuming that
they are smooth (well approximated locally by their curvature
and normal).

7. For even higher accuracy, we could use the 2D projection of our
3D surface point as the input to our tracker.
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