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Abstract

Many compilers do some of their work by means of correctness-preserving, and hopefully

performance-improving, program transformations. The Glasgow Haskell Compiler (GHC)

takes this idea of \compilation by transformation" as its war-cry, trying to express as much

as possible of the compilation process in the form of program transformations.

This paper reports on our practical experience of the transformational approach to com-

pilation, in the context of a substantial compiler.

This paper is based in part on Peyton Jones [1996] and Peyton Jones, Partain & Santos

[1996]. It will appear in Science of Computer Programming 1998.

1 Introduction

Using correctness-preserving transformations as a compiler optimisation is a well-established

technique (Aho, Sethi & Ullman [1986]; Bacon, Graham & Sharp [1994]). In the functional

programming area especially, the idea of compilation by transformation has received quite a

bit of attention (Appel [1992]; Fradet & Metayer [1991]; Kelsey [1989]; Kelsey & Hudak [1989];

Kranz [1988]; Steele [1978]).

A transformational approach to compiler construction is attractive for two reasons:

� Each transformation can be implemented, veri�ed, and tested separately. This leads to a

more modular compiler design, in contrast to compilers that consist of a few huge passes

each of which accomplishes a great deal.

� In any framework (transformational or otherwise) each optimisation often exposes new

opportunities for other optimisations | the \cascade e�ect". This makes it di�cult to

decide a priori what the best order to apply them might be. In a transformational setting

it is easy for compiler-writers to \plug and play", by re-ordering transformations, applying
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them more than once, or trading compilation time for code quality by omitting some. It

allows a late commitment to phase ordering.

This paper reports on our experience in applying transformational techniques in a particularly

thorough-going way to the Glasgow Haskell Compiler (GHC) (Peyton Jones et al. [1993]), a

compiler for the non-strict functional language Haskell (Hudak et al. [1992]). Among other

things this paper may serve as a useful jumping-o� point, and annotated bibliography, for

those interested in the compiler. The following distinctive themes emerge, all of which are

elaborated later in the paper:

� We frequently �nd a close interplay between theory and practice, a particularly satisfying

aspect of functional-language research.

� Often, a single transformation elegantly generalises a textbook compiler optimisation, or

e�ectively subsumes several such optimisations.

� Our compiler infers types for the source program, but then maintains types throughout

the compilation process. We have found this to be a big win, for two reasons: it supports a

powerful consistency check on the correctness of the compiler, and it provides information

that is used to drive some optimisations (notably strictness analysis).

2 Overview

Haskell is a non-strict, purely functional language. It is a relatively large language, with a rich

syntax and type system, designed for full-scale application programming.

The overall structure of our compiler is conventional;

1. The front end parses the source, does scope analysis and type inference, and translates

the program into a small intermediate language called the Core language. This latter

stage is called desugaring.

2. The middle consists of a sequence of Core-to-Core transformations, and forms the subject

of this paper.

3. The back end translates the resulting Core program into C, whence it is compiled to

machine code (Peyton Jones [1992]).

In what sense does this structure perform \compilation by transformation"? After all, since

the middle just transforms one Core program to another, it is presumably optional | and

indeed our compiler has this property. The idea, however, is to do as much work as possible

in the middle, leaving the irreducible minimum in the front and back ends. The front end

should concentrate entirely on scope analysis, type inference

1

, and a simple-minded translation

1

Why do we not instead translate to Core and then typecheck? Because one gets much better error messages

from the typechecker if it is looking at source code rather than desugared source code. Furthermore, to require

the translation to Core to preserve exactly Haskell's type-inference properties places undesirable extra constraints

on the translation. Lastly, the translation of Haskell's system of overloading into Core can only be done in the

knowledge of the programs typing.
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to Core, ignoring e�ciency. The back end should include optimisations only if they cannot be

done by a Core-to-Core transformation. This paper describes several examples of optimisations

that are traditionally done in the desugarer, or in the code generator, which we re-express as

Core-to-Core transformations.

In short, just about everything that could be called an \optimisation" | and optimisations

constitute the bulk of what most quality compilers do | appears in the middle.

In practice, we �nd that transformations fall into two groups:

1. A large set of simple, local transformations (e.g. constant folding, beta reduction). These

transformations are all implemented by a single relatively complex compiler pass that we

call the simpli�er. The complexity arises from the fact that the simpli�er tries to perform

as many transformations as possible during a single pass over the program, exploiting

the \cascade e�ect". (It would be unreasonably ine�cient to perform just one at a time,

starting from the beginning each time.) Despite these e�orts, the result of one simpli�er

pass often still contains opportunities for further simpli�er transformations, so we apply

the simpli�er repeatedly until no further transformations occur (with a �xed maximum

to avoid pathological behaviour).

2. A small set of complex, global transformations (e.g. strictness analysis, specialising over-

loaded functions), each of which is implemented as a separate pass. Most consist of an

analysis phase, followed by a transformation pass that uses the analysis results to iden-

tify appropriate sites for the transformation. Many also rely on a subsequent pass of

the simpli�er to \clean up" the code they produce, thus avoiding the need to duplicate

transformations already embodied in the simpli�er.

We have taken the \plug and play" idea to an extreme, allowing the sequence of transformation

passes to be completely speci�ed on the command line.

Rather than give a super�cial overview of everything, we focus in this paper on three aspects

of our compiler that play a key role in compilation by transformation:

� The Core language itself (Section 3).

� Two groups of transformations implemented by the simpli�er, inlining and beta reduction

(Section 4), and transformations involving case expressions (Section 5).

� Two global transformation passes, one that performs and exploits strictness analysis (Sec-

tion 6), and one that moves bindings to improve allocation and sharing (Section 7).

We conclude with a brief enumeration of the other main transformations incorporated in GHC

(Section 8), a short discussion of separate compilation (Section 9), some measurements of the

performance improvements achievable by transformation (Section 10), and a summary of the

lessons we learned from our experience (Section 11).
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Program Prog ! Bind

1

; : : : ; Bind

n

n � 1

Binding Bind ! var = Expr Non-recursive

j rec var

1

= Expr

1

;

: : : ;

var

n

= Expr

n

Recursive n � 1

Expression Expr ! Expr Atom Application

j Expr ty Type application

j \ var

1

: : : var

n

-> Expr Lambda abstraction

j /\ tyvar

1

: : : tyvar

n

-> Expr Type abstraction

j case Expr of { Alts } Case expression

j let Bind in Expr Local de�nition

j con var

1

: : : var

n

Constructor n � 0

j prim var

1

: : : var

n

Primitive n � 0

j Atom

Atoms Atom ! var Variable

j Literal Unboxed Object

Literals Literal ! integer j float j : : :

Alternatives Alts ! Calt

1

; : : : ; Calt

n

; Default n � 0

j Lalt

1

; : : :; Lalt

n

; Default n � 0

Constr. alt Calt ! con var

1

: : : var

n

-> Expr n � 0

Literal alt Lalt ! Literal -> Expr

Default alt Default ! NoDefault

j var -> Expr

Figure 1: Syntax of the Core language

3 The Core language

The Core language clearly plays a pivotal role. Its syntax is given in Figure 1, and consists

essentially of the lambda calculus augmented with let and case.

Though we do not give explicit syntax for them here, the Core language includes algebraic data

type declarations exactly as in any modern functional programming language. For example, in

Haskell one might declare the type of trees thus:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

This declaration implicitly de�nes constructors Leaf and Branch, that are used to construct

data values, and can be used in the pattern of a case alternative. Booleans, lists, and tuples

are simply pre-declared algebraic data types:
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data Boolean = False | True

data List a = Nil | Cons a (List a)

data Tuple3 a b c = T3 a b c -- One for each size of tuple

Throughout the paper we take a few liberties with the syntax: we allow ourselves in�x operators

(e.g. E1 + E2), and special syntax for lists ([] for Nil and in�x : for Cons), and tuples (e.g.

(a,b,c)). We allow multiple de�nitions in a single let expression to abbreviate a sequence of

nested let expressions, and often use layout instead of curly brackets and semicolons to delimit

case alternatives. We use an upper-case identi�er, such as E, to denote an arbitrary expression.

A Core expression is in weak head normal form (or WHNF) if it is a lambda abstraction,

constructor application, variable, or literal.

3.1 The operational reading

The Core language is of course a functional language, and can be given the usual denotational

semantics. However, a Core program also has a direct operational interpretation. If we are to

reason about the usefulness of a transformation we must have some model for how much it

costs to execute it, so an operational interpretation is very desirable. In what follows we give

an informal operational model, but it can readily be formalised along the lines described by

Launchbury [1993].

Like any higher-order language, the operational model for Core requires a garbage-collected

heap. The heap contains:

� Data values, such as list cells, tuples, booleans, integers, and so on.

� Function values, such as \x -> x+1 (the function that adds 1 to its argument).

� Thunks (or suspensions), that represent suspended (i.e. as yet unevaluated) values.

Thunks are the implementation mechanism for Haskell's non-strict semantics. For example,

consider the Haskell expression f (sin x) y. Translated to Core the expression would look

like this:

let v = sin x

in f v y

The let allocates a thunk in the heap for sin x and then, when it subsequently calls f, passes a

pointer to the thunk. The thunk records all the information needed to compute its body, sin x

in this case, but it is not evaluated before the call. If f ever needs the value of v it will force

the thunk which provokes the computation of sin x. When the thunk's evaluation is complete

the thunk itself is updated (i.e. overwritten) with the now-computed value. If f needs the value

of v again, the heap object now contains its value instead of the suspended computation. If f

never needs v then the thunk is not evaluated at all.

The two most important operational intuitions about Core are as follows:

1. let bindings (and only let bindings) perform heap allocation. For example:
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let v = sin x

in

let w = (p,q)

in

f v w

Operationally, the �rst let allocates a thunk for sin x, and then evaluates the let's

body. This body consists of the second let expression, which allocates a pair (p,q) in

the heap, and then evaluates its body in turn. This body consists of the call f v w, so

the call is now made, passing pointers to the two newly-allocated objects.

In our implementation, each allocated object (be it a thunk or a value) consists only of a

code pointer together with a slot for each free variable of the right-hand side of the let

binding. Only one object is allocated, regardless of the size of the right-hand side (older

implementations of graph reduction do not have this property). We do not attempt to

share environments between thunks (Appel [1992]; Kranz et al. [1986]).

2. case expressions (and only case expressions) perform evaluation. For example:

case x of

[] -> 0

(y:ys) -> y + g ys

The operational understanding is as follows: \evaluate x, and then scrutinise it to see

whether it is an empty list, [], or a Cons cell of form (y:ys), continuing execution with

the appropriate alternative". If x is an as-yet-unevaluated thunk, the act of evaluating

it is typically implemented by saving live variables and a return address on the stack,

and jumping to the code stored inside the thunk. When evaluation is complete, the

now-evaluated thunk returns to the saved return address.

case expressions subsume conditionals, of course. The Haskell expression if C E1 E2 is

desugared to

case C of {True -> E1; False -> E2}

The syntax in Figure 1 requires that function arguments must be atoms

2

(that is, variables or

literals), and now we can see why. If the language allowed us to write

f (sin x) (p,q)

the operational behaviour would still be exactly as described in (1) above, with a thunk and

a pair allocated as before. The let form is simply more explicit. Furthermore, the let form

gives us the opportunity of moving the binding for v elsewhere, if that turns out to be desirable,

which the apparently-simpler form does not. Lastly, the let form is more economical, because

many transformations on let expressions (concerning strictness, for example) would have to

be duplicated for function arguments if the latter were non-atomic.

2

This syntax is becoming quite widely used (Ariola et al. [1995]; Flanagan et al. [1993]; Launchbury [1993];

Peyton Jones [1992]; Tarditi et al. [1996]).
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It is also important to note where atoms are not required. In particular, the scrutinee of a case

expression is an arbitrary expression, not just an atom. For example, the following is quite

legitimate:

case (reverse xs) of { ... }

Operationally, there is no need to build a thunk for reverse xs and then evaluate it; instead,

we can simply save a return address, load xs into an argument register, and jump to the code

for reverse. Again, the operational model determines the syntax.

3.2 Polymorphism

Like any compiler for a strongly-typed language, GHC infers the type of every expression

and variable. An obvious question is: can this type assignment be maintained through the

translation to the Core language, and through all the subsequent transformations that are

applied to the program? If so, both transformations and code generator might (and in GHC

sometimes do) take advantage of type information to generate better code.

In a monomorphic language the answer is a clear \yes", but matters are not initially so clear in

a polymorphic setting. The trouble is that program transformation involves type manipulation.

Consider, for example, the usual composition function, compose, whose type is

compose :: 8��
:(� ! 
)! (�! �)! �! 


In an untyped Core language, compose might be de�ned like this

compose = \f g x -> let y = g x in f y

Now, suppose that we wished to unfold a particular call to compose, say

compose show double v

where v is an Int, double doubles it, and show converts the result to a String. The result of

unfolding the call to compose is an instance of the body of compose, thus:

compose show double v =) let y = double v in show y

Now, we want to be able to identify the type of every variable and sub-expression, so we must

calculate the type of y. In this case, it has type Int, but in another application of compose it

may have a di�erent type. For example if we inline compose in another call

compose toUpper show v

where toUpper converts a String to upper case, we obtain

compose toUpper show v =) let y = show v in toUpper y

and here y has type String.

This di�culty arises because y's type in the body of compose itself is just a type variable, �.

Evidently, in a polymorphic world it is insu�cient merely to tag every variable of the original

program with its type, because this information does not survive across program transforma-

tions.
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What, then, is to be done? Clearly, the program must be decorated with type information in

some way, and every program transformation must be sure to preserve it. Deciding exactly

how to decorate the program, and how to maintain these decorations correctly during trans-

formation, seemed rather di�cult at �rst. We �nally realised that an o�-the-shelf solution was

available, namely the second-order lambda calculus (Girard [1971]; Reynolds [1974]).

The idea is that every polymorphic function, such as compose has a type abstraction for each

universally-quanti�ed polymorphic variable in its type (�; �; and 
 in the case of compose), and

whenever a polymorphic function is called, it is passed extra type arguments to indicate the

types to which its polymorphic type variables are to be instantiated. The de�nition of compose

now becomes:

compose = /\a b c ->

\f::(b->c) g::(a->b) x::a ->

let y::b = g x in f y

The function takes three type parameters (a, b and c), as well as its value parameters f, g and

x. The types of the latter can now be given explicitly, as can the type of the local variable y.

A call of compose is now given three extra type arguments, which instantiate a, b and c just

as the \normal" arguments instantiate f, g and x. For example, the call of compose we looked

at earlier is now written like this:

compose Int Int String show double v

It is now simple to unfold this call, by instantiating the body of compose with the supplied

arguments, to give the expression

let y::Int = double v in show y

Notice that the let-bound variable y is now automatically attributed the correct type.

In short, the second-order lambda calculus provides us with a well-founded notation in which

to express and transform polymorphically-typed programs. It turns out to be easy to introduce

the extra type abstractions and applications as part of the type inference process.

Other compilers for polymorphic languages are beginning to carry type information through to

the back end, and use it to generate better code. Shao & Appel [1995] use type information to

improve data representation, though the system they describe is monomorphic after the front

end. Our implementation uses type abstractions and applications only to keep the compiler's

types straight; no types are passed at runtime. It is possible to take the idea further, however,

and pass types at runtime to specialise data representations (Morrison et al. [1991]), give fast

access to polymorphic records (Ohori [1992]), guide garbage collection (Tolmach [1994]). The

most recent and sophisticated work is Harper & Morrisett [1995].

4 Inlining and beta reduction

The �rst transformation that we discuss is inlining. Functional programs often consist of a

myriad of small functions | functional programmers treat functions the way C programmers

treat macros | so good inlining is crucial. Compilers for conventional languages get 10-15%

performance improvement from inlining (Davidson & Holler [1988]), while functional language
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compilers gain 20-40%

3

(Appel [1992]; Santos [1995]). Inlining removes some function-call over-

head, of course, but an equally important factor is that inlining brings together code that was

previously separated, and thereby often exposes a cascade of new transformation opportunities.

We therefore implement inlining in the simpli�er.

We have found it useful to identify three distinct transformations related to inlining:

Inlining itself replaces an occurrence of a let-bound variable by (a copy of) the right-hand

side of its de�nition. Notice that inlining is not limited to function de�nitions; any

let-bound variable can potentially be inlined. (Remember, though, that occurrences

of a variable in an argument position are not candidates for inlining, because they are

constrained to be atomic.)

Dead code elimination discards let bindings that are no longer used; this usually occurs

when all occurrences of a variable have been inlined.

Beta reduction replaces (\x->E) A by E[A/x]. (An analogous transformation deals with type

applications.)

Beta reduction is particularly simple in our setting. Since the argument A is bound to be atomic,

there is no risk of duplicating a redex, and we can simply replace x by A throughout E. There

is a worry about name capture, however: what if A is also bound in E? We avoid this problem

by the simple expedient of renaming every identi�er as we go, which costs little extra since

we have to construct a new, transformed expression anyway. Whilst beta reduction is simple,

inlining is more interesting.

4.1 Simple inlining

It is useful to distinguish two cases of inlining:

WHNFs. If the variable concerned is bound to a weak head normal form (WHNF) | that is,

an atom, lambda abstraction or constructor application | then it can be inlined without

risking the duplication of work. The only down-side might be an increase in code size.

Non-WHNFs. Otherwise, inlining carries the risk of loss of sharing and hence the duplication

of work. For example,

let x = f 100 in ...x...x...

it might be be unwise to inline x, because then f 100 would be evaluated twice instead of

once. Informally, we say that a transformation is W-safe if it guarantees not to duplicate

work.

3

This di�erence may soon decrease as the increased use of object-oriented languages leads to �ner-gained

procedures (Calder, Grunwald & Zorn [1994]).
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In the case of WHNFs, the trade-o� is simply between code size and the bene�t of inlining.

Atoms and constructor applications are easy: they always small enough to inline. (Recall that

constructor applications must have atomic arguments.)

Functions, in contrast, can be large, so the e�ect of unrestricted inlining on code size can be

substantial. Like most compilers, we use a heuristic (but no formal analysis) for deciding when

to inline functions. More precisely, we compute the \space penalty" of inlining a function at a

call site as follows:

� Compute the size (in syntax nodes) of the body of the function.

� Subtract one for each argument, since we are going to replace a function call with an

instance of the body.

� Lastly, subtract a \discount" for each argument that (a) is scrutinised by a case expression

in the function body, and (b) is bound to a constructor at the call site. If inlining

is performed, a case-of-known-constructor transformation will throw away all but one

branch of the case expression; hence the discount. The discount is very crude, however:

it is just a constant.

If the space penalty thus computed is smaller than some �xed (command-line settable) constant

then we inline the function at the call site.

For non-WHNFs, attention focuses on how the variable is used. If the variable occurs just once,

then presumably it is safe to inline it. Our �rst approach was to perform a simple occurrence

analysis that records for each variable how many places it is used, and use this information

to guide the inlinings done by the simpli�er. There are three complications with this naive

approach.

The �rst is practical. As mentioned earlier, the simpli�er tries to perform as many transfor-

mations as possible during a single pass over the program. However, many transformations

(notably beta reduction and inlining itself) change the number of occurrences of a variable.

Our current solution to this problem is to do a great deal of book-keeping to keep occurrence

information up to date. (Appel & Jim [1996] do something similar.)

The second complication is that a variable may occur multiple times with no risk of duplicating

work, namely if the occurrences are in di�erent alternatives of a case expression. In this case,

the only issue to consider is the tradeo� between code size and inlining bene�t.

Most seriously, though, inlining based on naive occurrence counting is not W-safe! Consider

this expression:

let x = f 100

g = \y -> ...x...

in ...(g a)...(g b)...

If we replace the single occurrence of x by (f 100) we will recompute the call to f every time

g is called, rather than sharing it among all calls to g. Our current solution is conservative: we

never inline inside a lambda abstraction. It turns out, though, that this approach is sometimes

too conservative. In higher-order programs where lots of inlining is happening, it is not unusual
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to �nd functions that are sure to be called only once, so it would be perfectly safe to inline

inside them.

4.2 Using linearity

Because of these complications, the book-keeping required to track occurrence information has

gradually grown into the most intricate and bug-prone part of the simpli�er. Worse, work-

duplication bugs manifest themselves only as performance problems, and may go unnoticed for

a long time

4

. This complexity is especially irritating because we have a strong intuitive notion of

whether a variable can be \used more than once", and that intuitive notion is an invariant ofW-

safe transformations. That suggests that a linear type system would be a good way to identify

variables that can safely be inlined, even though they occur inside lambdas, or that cannot

safely be inlined even though they (currently) occur only once. Just as all transformations

preserve the ordinary typing of an expression (Section 3.2) so W-safe transformations preserve

the linear type information too, and hence guarantee not to duplicate work.

Unfortunately, most linear type systems are inappropriate because they do not take account of

call-by-need evaluation. For example, consider the expression

let x = 3*4

y = x+1

in y + y

Under call by need evaluation, even though y is evaluated many times, x will be evaluated only

once. Most linear systems would be too conservative, and would attribute a non-linear type to

x as well as y, preventing x from being inlined.

Thus motivated, we have developed a linear type system that does take account of call by need

evaluation (Turner, Wadler & Mossin [1995]). The type system assigns a type of Int

!

to y in

the above example, the superscript ! indicating that y might be evaluated more than once.

However, it assigns a type of Int

1

to x, indicating that x can be evaluated at most once, and

hence can W-safely be inlined.

The type system is capable of dealing with \usage polymorphism". For example, consider this

de�nition of apply:

apply f x = f x

In a particular application (apply g y), whether or not y is used more than once depends on

whether g uses its argument more than once. So the type of apply is

5

8�; �:8u; v:(�

u

! �

v

)! �

u

! �

v

The two occurrences of �

u

indicate that the usage u of g's argument is the same as that of y.

Our implementation of this linear type system is incomplete, so we do not yet have practical

experience of its utility, but we are optimistic that it will provide a systematic way of addressing

4

One such bug caused the compiler, which is of course written in Haskell, to rebuild its symbol table from

scratch every time a variable was looked up in the table. The compiler worked perfectly, albeit somewhat slowly,

and it was months before we noticed (Sansom [1994])!

5

In fact, for the purposes of this paper we have simpli�ed the type a little.
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an area we have only dealt with informally to date, and which has bitten us badly more than

once.

5 Transforming conditionals

Most compilers have special rules to optimise conditionals. For example, consider the expression

if (not x) then E1 else E2

No decent compiler would actually negate the value of x at runtime! Let us see, then, what

happens if we simply turn the transformation handle. After desugaring the conditional, and

inlining the de�nition of not, we get

case (case x of {True -> False; False -> True}) of

True -> E1

False -> E2

Here, the outer case scrutinises the value returned by the inner case. This observation suggests

that we could move the outer case inside the branches of the inner one, thus:

case x of

True -> case False of {True -> E1; False -> E2}

False -> case True of {True -> E1; False -> E2}

Notice that the originally-outer case expression has been duplicated, but each copy is now

scrutinising a known value, and so we can make the obvious simpli�cation to get exactly what

we might originally have hoped:

case x of

True -> E2

False -> E1

Both of these transformations are generally applicable. The second, the case-of-known-constructor

transformation, eliminates a case expression that scrutinises a known value. This is always a

Good Thing, and many other transformations are aimed at exposing opportunities for such

case elimination. We consider another useful variant of case elimination in Section 5.3. The

�rst, which we call the case-of-case transformation, is certainly correct in general, but it appears

to risk duplicating E1 and/or E2. We turn to this question next.

5.1 Join points

How can we gain the bene�ts of the case-of-case transformation without risking code duplica-

tion? A simple idea is to make local de�nitions for the right-hand sides of the outer case, like

this:

case (case S of {True -> R1; False -> R2}) of

True -> E1

False -> E2

=)
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let e1 = E1; e2 = E2

in case S of

True -> case R1 of {True -> e1; False -> e2}

False -> case R2 of {True -> e1; False -> e2}

Now E1 and E2 are not duplicated, though we incur instead the cost of implementing the

bindings for e1 and e2. In the not example, though, the two inner cases are eliminated,

leaving only a single occurrence of each of e1 and e2, so their de�nitions will be inlined leaving

exactly the same result as before.

We certainly cannot guarantee that the newly-introduced bindings will be eliminated, though.

Consider, for example, the expression:

if (x || y) then E1 else E2

Here, || is the boolean disjunction operation, de�ned thus:

|| = \a b -> case a of {True -> True; False -> b}

Desugaring the conditional and inlining || gives:

case (case x of {True -> True; False -> y}) of

True -> E1

False -> E2

Now applying the (new) case-of-case transformation:

let e1 = E1 ; e2 = E2

in case x of

True -> case True of {True -> e1; False -> e2}

False -> case y of {True -> e1; False -> e2}

Unlike the not example, only one of the two inner cases simpli�es, so only e2 will certainly be

inlined, because e1 is still mentioned twice:

let e1 = E1

in case x of

True -> e1

False -> case y of {True -> e1; False -> E2}

The interesting thing here is that e1 plays exactly the role of a label in conventional compiler

technology. Given the original conditional, a C compiler will \short-circuit" the evaluation of

the condition if x turns out to be True generating code like:

if (x) {goto l1};

if (y) {goto l1};

goto l2;

l1: ...code for E1...; goto l3

l2: ...code for E2...

l3: ...

Here, l1 is a label where two possible execution paths (if x is True or if x is False and y is True)

join up; we call it a \join point". That suggests in turn that our code generator should be able

to implement the binding for e1, not by allocating a thunk as it would usually do, but rather by
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simply jumping to some common code (after perhaps adjusting the stack pointer) wherever e1

is subsequently evaluated. Our compiler does exactly this. Rather than somehow mark e1 as

special, the code generator does a simple syntactic escape analysis to identify variables whose

evaluation is certain to take place before the stack retreats, and implements their evaluation as

a simple adjust-stack-and-jump. As a result we get essentially the same code as a C compiler

for our conditional.

Seen in this light, the act of inlining E2 is what a conventional compiler might call \jump

elimination". A good C compiler would probably eliminate the jump to l2 thus:

if (x) {goto l1};

if (y) {goto l1};

l2: ...code for E2...

l3: ...

l1: ...code for E1...; goto l3

Back in the functional world, if E1 is small then the inliner might decide to inline e1 at its

two occurrences regardless, thus eliminating a jump in favour of a slight increase in code size.

Conventional compilers do this too, notably in the case where the code at the destination of a

jump is just another jump, which would correspond, in our setting, to E1 being just a simple

variable.

The point is not that the transformations achieve anything that conventional compiler tech-

nology does not, but rather that a single mechanism (inlining), which is needed anyway, deals

uniformly with jump elimination as well as its more conventional e�ects.

5.2 Generalising join points

Does all this work generalise to data types other than booleans? At �rst one might think

the answer is \yes, of course", but in fact the modi�ed case-of-case transformation is simply

nonsense if the originally-outer case expression binds any variables. For example, consider the

expression

f (if b then B1 else B2)

where f is de�ned thus:

f = \as -> case as of {[] -> E1; (b:bs) -> E2}

Desugaring the if and inlining f gives:

case (case b of {True -> B1; False -> B2}) of

[] -> E1

(b:bs) -> E2

But now, since E2 may mention b and bs we cannot let-bind a new variable e2 as we did

before! The solution is simple, though: simply let-bind a function e2 that takes b and/or bs

as its arguments. Suppose, for example, that E2 mentions bs but not b. Then we can perform

a case-of-case transformation thus:

let e1 = E1; e2 = \bs -> E2

in case b of
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True -> case B1 of {[] -> e1; (b:bs) -> e2 bs}

False -> case B2 of {[] -> e1; (b:bs) -> e2 bs}

All the inlining mechanism discussed above for eliminating the binding for e2 if possible works

just as before. Furthermore, even if e2 is not inlined, the code generator can still implement

e2 e�ciently: a call to e2 is compiled to a code sequence that loads bs into a register, adjusts

the stack pointer, and jumps to the join point.

This goes beyond what conventional compiler technology achieves. Our join points can now

be parameterised by arguments that embody the di�erences between the execution paths that

led to that point. Better still, the whole setup works for arbitrary user-de�ned data types, not

simply for booleans and lists.

5.3 Generalising case elimination

Earlier, we discussed the case-of-known-constructor transformation that eliminates a case ex-

pression. There is a useful variant of this transformation that also eliminates a case expression.

Consider the expression:

if null xs then r else tail xs

where null and tail are de�ned as you might expect:

null = \as -> case as of {[] -> True; (b:bs) -> False}

tail = \cs -> case cs of {[] -> error "tail"; (d:ds) -> ds}

After the usual inlining we get:

case (case xs of {[] -> True; (b:bs) -> False}) of

True -> r

False -> case xs of

[] -> error "tail"

(d:ds) -> ds

Now we can do the case-of-case transformation as usual, giving after a few extra steps:

case xs of

[] -> r

(b:bs) -> case xs of

[] -> error "tail"

(d:ds) -> ds

Now, it is obvious that the inner evaluation of xs is redundant, because in the (b:bs) branch

of the outer case we know that xs is certainly of the form (b:bs)! Hence we can eliminate the

inner case, selecting the (d:ds) alternative, but substituting b for d and bs for ds:

case xs of

[] -> r

(b:bs) -> bs

We will see another application of this form of case elimination in Section 6.1.

15



5.4 Summary

We have described a few of the most important transformations involving case expressions, but

there are quite a few more, including case merging, dead alternative elimination, and default

elimination. They are described in more detail by Santos [1995] who also provides measurements

of their frequency.

Like many good ideas, the case-of-case transformation | limited to booleans, but including

the idea of using let-bound variables as join points | was incorporated in Steele's Rabbit

compiler for Scheme (Steele [1978]). We re-invented it, and generalised it for case expressions

and parameterised join points. let-bound join points are also extremely useful when desug-

aring complex pattern matching. Lacking join points, most of the standard descriptions are

complicated by a special FAIL value, along with special semantics and compilation rules, to

express the \joining up" of several execution paths when a pattern fails to match (Augustsson

[1987]; Peyton Jones [1987]).

6 Unboxed data types and strictness analysis

Consider the expression x+y, where x and y have type Int. Because Core is non-strict, x and

y must each be represented by a pointer to a possibly-unevaluated object. Even if x, say, is

already evaluated, it will still therefore be represented by a pointer to a \boxed" value in the

heap. The addition operation must evaluate x and y as necessary, unbox them, add them, and

box the result.

6.1 Exposing boxing to transformation

Where arithmetic operations are cascaded we would like to avoid boxing the result of one

operation only to unbox it immediately in the next. Similarly, in the expression x+x we would

like to avoid evaluating and unboxing x twice. Such boxing/unboxing optimisations are usually

carried out by the code generator, but it would be better to �nd a way to express them as

program transformations.

We have achieved this goal as follows. Instead of regarding the data types Int, Float and so

on as primitive, we de�ne them using ordinary algebraic data type declarations:

data Int = I# Int#

data Float = F# Float#

Here, Int# is the truly-primitive type of unboxed integers, and Float# is the type of unboxed


oats. The constructors I# and F# are, in e�ect, the boxing operations

6

Now we can express

the previously-primitive + operation thus

7

:

6

The # symbol has no signi�cance to the compiler; we use it simply as a lexical reminder that the identi�er

has an unboxed type, or takes arguments of unboxed type.

7

You may wonder why we write (case a# +# b# of r# -> I# r#) instead of the more obvious

I# (a# +# b#). The reason is that the latter is not a term in the Core language | constructor arguments

must be atoms. Furthermore, the alternative (let r# = a# +# b# in I# r#) isn't legal either, because r# is an

unboxed value and hence can't be heap-allocated by let. So the case expression is really just an eager let-binding.
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+ = \a b -> case a of

I# a# -> case b of

I# b# -> case a# +# b# of

r# -> I# r#

where +# is the primitive addition operation on unboxed values. You can read this de�nition

as \evaluate and unbox a, do the same to b, add the unboxed values giving r#, and return a

boxed version thereof".

Now, simple transformations do the Right Thing to x+x. We begin by inlining + to give:

case x of

I# a# -> case x of

I# b# -> case a# +# b# of

r# -> I# r#

But now the inner case can be eliminated (Section 5.3), since it is scrutinising a known value,

x, giving the desired outcome:

case x of

I# a# -> case a# +# a# of

r# -> I# r#

Similar transformations (this time involving case-of-case) ensure that in expressions such as

(x+y)*z the intermediate result is never boxed. The details are given by Peyton Jones &

Launchbury [1991], but the important points are these:

� By making the Core language somewhat more expressive (i.e. adding unboxed data types)

we can expose many new evaluation and boxing operations to program transformation.

� Rather than a few ad hoc optimisations in the code generator, the full range of transfor-

mations can now be applied to the newly-exposed code.

� Optimising evaluation and unboxing may itself expose new transformation opportunities;

for example, a function body may become small enough to inline.

6.2 Exploiting strictness analysis

Strictness analysers attempt to �gure out whether a function is sure to evaluate its argument,

giving the opportunity for the compiler to evaluate the argument before the call, instead of

building a thunk that is forced later on. There is an enormous literature on strictness analysis

itself, but virtually none explaining how to exploit its results, apart from general remarks that

the code generator can use it. Our approach is to express the results of strictness analysis as a

program transformation, for exactly the reasons mentioned at the end of the previous section.

As an example, consider the factorial function with an accumulating parameter, which in Haskell

might look like this:

afac :: Int -> Int -> Int

afac a 0 = a

afac a n = afac (n*a) (n-1)
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Translated into the Core language, it would take the following form:

one = I# 1#

afac = \a n -> case n of

I# n# -> case n# of

0# -> a

n#' -> let a' = n*a;

n' = n-one

in afac a' n'

In a naive implementation this function sadly uses linear space to hold a growing chain of

unevaluated thunks for a'.

Now, suppose that the strictness analyser discovers that afac is strict in both its arguments.

Based on this information we split it into two functions, a wrapper and a worker thus:

afac = \a n -> case a of

I# a# -> case n of

I# n# -> afac# a# n#

one = I# 1#

afac# = \a# n# -> let n = I# n#; a = I# a#

in case n of

I# n# -> case n# of

0# -> a

n#' -> let a' = n*a;

n' = n-one

in afac a' n'

The wrapper, afac, implements the original function by evaluating the strict arguments and

passing them unboxed to the worker, afac#. When it is created the wrapper is marked as

\always-inline-me", which makes the simpli�er extremely keen to inline it at every call site,

thereby e�ectively moving the argument evaluation to the call site.

The code for the worker starts by reconstructing the original arguments in boxed form, and

then concludes with the original, unchanged code for afac. Re-boxing the arguments may be

correct, but it looks like a weird thing to do because the whole point was to avoid boxing the

arguments at all! Nevertheless, let us see what happens when the simpli�er goes to work on

afac#. It just inlines the de�nitions of *, -, and afac itself; and applies the transformations

described earlier. A few moments work should convince you that the result is this:

afac# = \a# n# -> case n# of

0# -> I# a#

n'# -> case (n# *# a#) of

a1# -> case (n# -# 1#) of

n1# -> afac# a1# n1#

Bingo! afac# is just what we hoped for: a strict, constant-space, e�cient factorial function.

The reboxing bindings have vanished, because a case elimination transformation has left them

as dead code. Even the recursive call is made directly to afac#, rather than going via afac| it
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is worth noticing the importance of inlining the wrapper in the body of the worker, even though

the two are mutually recursive. Meanwhile, the wrapper afac acts as an \impedance-matcher"

to provide a boxed interface to afac#.

6.3 A simple strictness and absence analyser

GHC uses a rather simple strictness analyser, the idea being to get a large fraction of the bene�t

of more sophisticated strictness analysis with a small fraction of the e�ort

8

. More speci�cally,

GHC uses a simple, higher-order abstract interpretation, over a domain that includes just top,

bottom, functions, and �nite products. It is described by Peyton Jones & Partain [1993], but

we brie
y review the main design choices in the rest of this section.

6.3.1 Fixpoints and widening

The main challenge in abstract interpretation is usually that of �nding the �xpoints of recursive

abstract functions. We take a simple approach: after each iteration we widen the abstract value,

so that it is easy to compare with the previous iteration. This results in a loss of accuracy, but

it is fast, and easy to implement.

The widening operator we use is this: given an abstract function we �nd out whether it is

strict in each of its arguments independently, and treat the vector of results as the widened

approximation to the function. For example, consider the function:

f x y z = if x==0 then f (x-1) z y else y

The zeroth approximation to the abstract value of f, f

0

, is by de�nition bottom. We write this

approximation in widened form thus: f

0

= SSS | the \S" stands for \strict" | to indicate

that f

0

is strict in all three arguments. After one iteration, we �nd that f

1

= SSL | the \L"

stands for \lazy" | because z is not used in the else branch. After two iterations, using f

1

in

the recursive call to f, we �nd that f

2

= SLL, and this turns out to be the �xpoint. There are

well known pitfalls with this approach (Clack & Peyton Jones [1985]), but they can be avoided

(at the expense of accuracy) by the simple expedient of always using the widened function in

the recursive call.

A side bene�t is that there is an obvious textual representation of the abstract value of a

function, which we use for conveying strictness information between modules (Section 9).

In reality, we have found it essential to widen non-recursive functions as well, for a reason that

is not initially obvious. Consider the following non-recursive de�nitions:

f x = case x of

[] -> ...

(p:ps) -> ...

g y = case y of

C1 a b -> ...(f a)...

8

Of course, it is impossible to know whether one has achieved this goal without implementing a sophisticated

analyser as well, which we have not done!
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C2 c d -> ...(f c)...

C3 e f -> ...(f e)...

If we do not widen the abstract values for f and g then consider what happens when the abstract

interpreter �nds a call such as (g a). It applies the abstract value of g to the abstract value

of a; this application will take the least upper bound of the three case alternatives in g's right

hand side. Each of these three will evaluate a call to (the abstract) f, and each of these calls

will take the least upper bound of f's two case alternatives. There is a multiplicative e�ect, in

which every branch of every conditional reachable from a particular call is evaluated. (In normal

evaluation, of course, only one branch is taken from a conditional, but abstract interpretation,

in e�ect, takes all of them.) This turns out to be far too slow in practice. The solution is to

trade accuracy for time: simply widen non-recursive functions as well as recursive ones. Once

g is widened its right hand side is no longer evaluated at every call. For example, to apply the

widened function value SSL the abstract evaluator simply checks to see if either of its �rst two

arguments are bottom, and if so returns bottom, otherwise top.

6.4 Products and absence analysis

Suppose we have the following function de�nition:

f :: (Int,Int) -> Int

f = \p -> E

It is relatively easy for the strictness analyser to discover not only f's strictness in the pair p,

but also f's strictness in the two components of the pair | it is for precisely this reason that

the abstract domain includes �nite products. For example, suppose that the strictness analyser

discovers that f is strict both in p and in the �rst component of p, but not in the second. Given

this information we can transform the de�nition of f into a worker and a wrapper like this,

f = \p -> case p of (x,y) -> case x of I# x# -> f# x# y

f# = \x# y -> let x = I# x#; p = (x,y)

in E

The pair is passed to the worker unboxed (i.e. the two components are passed separately), and

so is the �rst component of the pair.

We soon learned that looking inside (non-recursive) data structures in this way exposed a

new opportunity: absence analysis. What if f does not use the second component of the

pair at all? Then it is a complete waste of time to pass y to f# at all. Whilst it is unusual for

programmers to write functions with arguments that are completely unused, it is rather common

for them to write functions that do not use some parts of their arguments. We therefore perform

both strictness analysis and absence analysis, and use the combined information to guide the

worker/wrapper split.

Matters are more complicated if the argument type is recursive or has more than one construc-

tor. In such cases we revert to the simple two-point abstract domain.

Notice the importance of type information to the whole endeavour. The type of a function

guides the \resolution" of the strictness analysis, and the worker/wrapper splitting.
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6.5 Strict let bindings

An important, but less commonly discussed, outcome of strictness analysis is that it is possible

to tell whether a let binding is strict; that is, whether the variable bound by the let is sure

to be evaluated in the body. If so there is no need to build a thunk. Consider the expression:

let x = R in E

where x has type Int, and E is strict in x. Using a similar strategy to the worker/wrapper

scheme, we can transform to

case R of { I# x# -> let x = I# x# in E }

We call this the let-to-case transformation. As before, the reboxing binding for x usually will

be eliminated by subsequent transformation. If x has a recursive or multi-constructor type then

we transform instead to this:

case R of { x -> E }

This expression simply generates code to evaluate R, bind the (boxed) result to x and then

evaluate E. This is still an improvement over the original let expression because no thunk is

built.

7 Code motion

Consider the following expression:

let v = let w = R

in w : []

in B

A semantically-equivalent expression which di�ers only in the positioning of the binding for w

is this:

let w = R

in let v = w : []

in B

While the two expressions have the same value, the second is likely to be more e�cient than the

�rst to evaluate. (We will say why this is so in Section 7.3.) A good compiler should transform

the �rst expression into the second. However, the di�erence in e�ciency is modest, and the

transformation between the two seems almost too easy to merit serious study; as a result, not

much attention has been paid to transformations of this kind. We call them \let-
oating"

transformations, because they concern the exact placement of let or letrec bindings; in the

example, it is the binding for w which is 
oated from one place to another. They correspond

closely to \code motion" in conventional compilers.

We have found it useful to identify three distinct kinds of let-
oating transformations:

� Floating inwards moves bindings as far inwards as possible (Section 7.1).

� The full laziness transformation 
oats selected bindings outside enclosing lambda abstrac-

tions (Section 7.2)
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� Local transformations \�ne-tune" the location of bindings (Section 7.3).

After describing the three transformations we describe how they are implemented in GHC

(Sections 7.4 and 7.5). Later on we quantify their e�ectiveness (Section 10.6). More detailed

measurements are presented in Peyton Jones, Partain & Santos [1996].

7.1 Floating inwards

The 
oating-inward transformation is based on the following observation: other things being

equal, the further inward a binding can be moved, the better. For example, consider:

let x = y+1

in case z of

[] -> x*x

(p:ps) -> 1

Here, the binding for x is used in only one branch of the case, so it can be moved into that

branch:

case z of

[] -> let x = y+1

in x*x

(p:ps) -> 1

Moving the binding inwards has at least three distinct bene�ts

9

:

p

The binding may never be \executed". In the example, z might turn out to be of the form

(p:ps), in which case the code which deals with the binding for x is not executed. Before

the transformation a thunk for x would be allocated regardless of the value of z.

p

Strictness analysis has a better chance. It is more likely that at the point at which the

binding is now placed it is known that the bound variable is sure to be evaluated. This

in turn may enable other, strictness-related, transformations to be performed. In our

example, instead of allocating a thunk for x, GHC will simply evaluate y, increment it

and square the result, allocating no thunks at all (Section 6).

p

Redundant evaluations may be eliminated. It is possible that the RHS will \see" the

evaluation state of more variables than before. To take a similar example:

let x = case y of (a,b) -> a

in

case y of

(p,q) -> x+p

If the binding of x is moved inside the case branch, we get:

case y of

9

We indicate advantages with

p

and disadvantages with �. The symbol 2 indicates moot points.
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(p,q) -> let x = case y of (a,b) -> a

in

x+p

Now the compiler can spot that the inner case for y is in the RHS of an enclosing case

which also scrutinises y. It can therefore eliminate the inner case to give:

case y of

(p,q) -> p+p

The �rst two bene�ts may also accrue if a binding is moved inside the RHS of another binding.

For example, 
oating inwards would transform:

let x = v+w

y = ...x...x...

in

B

(where B does not mention x) into

let y = let x = v+w in ...x...x...

in

B

(The alert reader will notice that this transformation is precisely the opposite of that given at

the start of Section 7, a point we return to in Section 7.3.) This example also illustrates another

minor e�ect of moving bindings around:

2 Floating can change the size of the thunks allocated. Recall that in our implementation,

each let(rec) binding allocates a heap object that has one slot for each of its free

variables. The more free variables there are, the larger the object that is allocated. In

the example, 
oating x into y's RHS removes x from y's free variables, but adds v and

w. Whether y's thunk thereby becomes bigger or smaller depends on whether v and/or w

were already free in y.

So far, we have suggested that a binding can usefully be 
oated inward \as far as possible";

that is, to the point where it can be 
oated no further in while still keeping all the occurrences

of its bound variable in scope. There is an important exception to this rule: it is dangerous to


oat a binding inside a lambda abstraction, as we discussed in Section 4.1. If the abstraction is

applied many times, each application will instantiate a fresh copy of the binding. Worse, if the

binding contains a reducible expression the latter will be re-evaluated each time the abstraction

is applied.

The simple solution is never to 
oat a binding inside a lambda abstraction, and that is what our

compiler currently does, although we plan in future to use guidance from linear-type information

(see Section 4.2). But what if the binding is inside the abstraction to start with? We turn to

this question next.
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7.2 Full laziness

Consider the de�nition

f = \xs -> letrec

g = \y -> let n = length xs

in ...g...n...

in

...g...

Here, the length of xs will be recomputed on each recursive call to g. This recomputation can

be avoided by simply 
oating the binding for n outside the \y-abstraction:

f = \xs -> let n = length xs

in

letrec

g = \y -> ...g...n...

in

...g...

This transformation is called full laziness. It was originally invented by Hughes (Hughes [1983];

Peyton Jones [1987]), who presented it as a variant of the supercombinator lambda-lifting

algorithm. Peyton Jones & Lester [1991] subsequently showed how to decouple full laziness

from lambda lifting by regarding it as an exercise in 
oating let(rec) bindings outwards.

Whereas the 
oat-in transformation avoids pushing bindings inside lambda abstractions, the

full laziness transformation actively seeks to do the reverse, by 
oating bindings outside an

enclosing lambda abstraction.

The full laziness transformation can save a great deal of repeated work, and it sometimes applies

in non-obvious situations. One example we came across in practice is part of a program which

performed the Fast Fourier Transform (FFT). The programmer wrote a list comprehension

similar to the following:

[xs_dot (map (do_cos k) (thetas n)) | k<-[0 .. n-1]]

What he did not realise is that the expression (thetas n) was recomputed for each value of

k! The list comprehension syntactic sugar was translated into the Core language, where the

(thetas n) appeared inside a function body. The full laziness transformation lifted (thetas n)

out past the lambda, so that it was only computed once.

A potential shortcoming of the full laziness transformation, as so far described, is this: it seems

unable to 
oat out an expression that is free in a lambda abstraction, but not let(rec) bound.

For example, consider

f = \x -> case x of

[] -> g y

(p:ps) -> ...

Here, the subexpression (g y) is free in the \x-abstraction, and might potentially be an ex-

pensive computation which could be shared among all applications of f. It is simple enough,

in principle, to address this shortcoming, by simply let-binding (g y) thus:

f = \x -> case x of
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[] -> let a = g y

in a

(p:ps) -> ...

Now the binding for a can be 
oated out like any other binding.

The full laziness transformation may give rise to large gains, but at the price of making worse

all the things that 
oating inwards makes better (Section 7.1). Hence, the full laziness transfor-

mation should only be applied when there is some chance of a bene�t. For example, it should

not be used if either of the following conditions hold:

1. The RHS of the binding is already a value, or reduces to a value with a negligible amount

of work. If the RHS is a value then no work is saved by sharing it among many invocations

of the same function, though some allocation may be saved.

2. The lambda abstraction is applied no more than once, information that should be made

available by the linear type inference system (Section 4.2).

There is a �nal disadvantage to the full laziness which is much more slippery: it may cause a

space leak. Consider:

f = \x -> let a = enumerate 1 n in B

where enumerate 1 n returns the list of integers between 1 and n. Is it a good idea to 
oat

the binding for a outside the \x-abstraction? Certainly, doing so would avoid recomputing a

on each call of f. On the other hand, a is pretty cheap to recompute and, if n is large, the list

might take up a lot of store. It might even turn a constant-space algorithm into a linear-space

one, or even worse.

In fact, as our measurements show, space leaks do not seem to be a problem for real programs.

We are, however, rather conservative about 
oating expressions to the top level where, for

tiresome reasons, they are harder to garbage collect (Section 7.5).

7.3 Local transformations

The third set of transformations consist of local rewrites, which \�ne-tune" the placement of

bindings. There are just three such transformations:

(let v=R in B) A =) (let v=R in B A)

case (let v=R in B) of {...} =) let v=R

in

case B of {...}

let x = let v=R1 in R2

in B

=) let v=R1

in

let x=R2

in B

Each of the three has an exactly equivalent form when the binding being 
oated outwards is

a letrec. The third also has a variant when the outer binding is a letrec: in this case,
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the binding being 
oated out is combined with the outer letrec to make a larger letrec.

Subsequent dependency analysis (see Section 7.4) will split up the enlarged group if it is possible

to do so.

The �rst two transformations are always bene�cial. They do not change the number of alloca-

tions, but they do give other transformations more of a chance. For example, the �rst (which

we call let-
oat-from-application) moves a let outside an application. Doing so cannot make

things worse and sometimes makes things better | for example, B might be a lambda abstrac-

tion which can then be applied to A. The second, let-
oat-from-case, 
oats a let(rec) binding

outside a case expression, which might improve matters if, for example, B was a constructor

application.

The third transformation, the let-
oat-from-let transformation, which 
oats a let(rec) binding

from the RHS of another let(rec) binding, is more interesting. It has the following advantages:

p

Floating a binding out may reveal a WHNF. For example, consider the expression:

let x = let v = R in (v,v)

in B

When this expression is evaluated, a thunk will be allocated for x. When (and if) x is

evaluated by B, the contents of the thunk will be read back into registers, its value (the

pair (v,v)) computed, and the heap-allocated thunk for x will be overwritten with the

pair.

Floating the binding for v out would instead give:

let v = R

x = (v,v)

in B

When this expression is evaluated, a thunk will be allocated for v, and a pair for x. In

other words, x is allocated in its �nal form. No update will take place when x is evaluated,

a signi�cant saving in memory tra�c.

p

There is a second reason why revealing a normal form may be bene�cial: B may contain

a case expression which scrutinises x, thus:

...(case x of (p,q) -> E)...

Now that x is revealed as being bound to the pair (v,v), this expression is easily trans-

formed to

...(E[v/p,v/q])...

using the case-of-known-constructor transformation.
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p

Floating v's binding out may reduce the number of heap-over
ow checks. A \heap-over
ow

check" is necessary before each sequence of let(rec) bindings, to ensure that a large

enough contiguous block of heap is available to allocate all of the bindings in the sequence.

For example, the expression

let v = R

x = (v,v)

in B

requires a single check to cover the allocation for both v and x. On the other hand, if the

de�nition of v is nested inside the RHS of x, then two checks are required.

These advantages are all very well, but the let-from-let transformation also has some obvious

disadvantages: after all, it was precisely the reverse of this transformation which we advocated

when discussing the 
oating-inward transformation! Speci�cally, there are two disadvantages:

� If x is not evaluated, then an unnecessary allocation for v would be performed. However,

the strictness analyser may be able to prove that x is sure to be evaluated, in which case

the let-from-let transformation is always bene�cial.

� It is less likely that the strictness analyser will discover that v is sure to be evaluated.

This suggests that the strictness analyser should be run before performing the let-from-let

transformation.

Given these con
icting trade-o�s, there seem to be four possible strategies for local let-
oating:

Never | no local let-
oating is performed at all.

Strict | bindings are 
oated out of strict contexts only; namely, applications, case scrutinees,

and the right-hand-sides of strict lets

10

.

WHNF | like \Strict", but in addition a binding is 
oated out of a let(rec) right-hand-side

if doing so would reveal a WHNF.

Always | like \Strict", but in addition any binding at the top of a let(rec) right-hand-side

is 
oated out.

We explore the practical consequences of these four strategies in Section 10.6.

7.4 Composing the pieces

We have integrated the three let-
oating transformations into GHC. The full laziness and 
oat-

inwards transformations are implemented as separate passes. In contrast, the local let-
oating

transformations are implemented by the simpli�er (Section 2). Among the transformations

performed by the simpli�er is dependency analysis, which splits each letrec binding into its

10

A strict let is one whose bound variable is sure to be evaluated by the body of the let.
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minimal strongly-connected components. Doing this is sometimes valuable because it lets the

resulting groups be 
oated independently.

We perform the transformations in the following order.

1. Do the full laziness transformation.

2. Do the 
oat-inwards transformation. This won't a�ect anything 
oated outwards by full

laziness; any such bindings will be parked just outside a lambda abstraction.

3. Perform strictness analysis.

4. Do the 
oat-inwards transformation again.

Between each of these passes, the simpli�er is applied.

We do the 
oat-inwards pass before strictness analysis because it helps to improve the results of

strictness analysis. The desirability of performing the 
oat-inwards transformation again after

strictness analysis surprised us. Consider the following function:

f x y = if y==0

then error ("Divide by zero: " ++ show x)

else x/y

The strictness analyser will �nd f to be strict in x, because calls to error are equivalent to ?,

and hence will pass x to f in unboxed form. However, the then branch needs x in boxed form,

to pass to show. The post-strictness 
oat-inwards transformation 
oats a binding that re-boxes

x into the appropriate branch(es) of any conditionals in the body of f, thereby avoiding the

overhead of re-boxing x in the (common) case of taking the else branch.

The implementation of the 
oat-in transformation and local let-
oating is straightforward, but

the full laziness transformation has a few subtleties, as we discuss next.

7.5 Implementing full laziness

We use a two-pass algorithm to implement full laziness:

1. The �rst pass annotates each let(rec) binder with its \level number"

11

. In general, level

numbers are de�ned like this.

� The level number of a let-bound variable is the maximum of the level numbers of its

free variables, and its free type variables.

� The level number of a letrec-bound variable is the maximum of the level numbers

of the free variables of all the RHSs in the group, less the letrec-bound variables

themselves.

� The level number of a lambda-bound variable is one more than the number of en-

closing lambda abstractions.

11

Actually, all the other binders are also annotated, but they are never looked at subsequently.
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� The level number of a case- or type-lambda-bound variable is the number of enclosing

(ordinary) lambda abstractions.

2. The second pass uses the level numbers on let(rec)s to 
oat each binding outward to just

outside the lambda which has a level number one greater than that on the binding.

Notice that a binding is 
oated out just far enough to escape all the lambdas which it can

escape, and no further. This is consistent with the idea that bindings should be as far in

as possible. There is one exception to this: bindings with level number zero are 
oated

right to the top level.

Notice too that a binding is not moved at all unless it will de�nitely escape a lambda.

This algorithm is largely as described by Peyton Jones & Lester [1991], but there are a few

complications in practice. Firstly, type variables are a nuisance. For example, suppose that f

and k are bound outside the following \x-abstraction:

\x -> ...(/\a -> ...let v = f a k in ...)

We'd like to 
oat out the v = f a k, but we can't because then the type variable a would

be out of scope. The rules above give a the same level number as x (assuming there are no

intervening lambdas) which will ensure that the binding isn't 
oated out of a's scope. Still,

there are some particularly painful cases, notably pattern-matching failure bindings, such as:

fail = error a "Pattern fail"

We really would like this to get lifted to the top level, despite its free type variable a. There

are two approaches: ignore the problem of out-of-scope type variables, or �x it up somehow.

We take the latter approach, using the following procedure. If a binding v = e has free type

variables whose maximum level number is strictly greater than that of the ordinary variables,

then we abstract over the o�ending type variables, a1..an, thus:

v = let v' = /\a1..an -> e in v' a1 ... an

Now v is given the usual level number (taking type variables into account), while v' is given

the maximum level number of the ordinary free variables only (since the type variables a1..an

are not free in v').

The reason this is a bit half baked is that some subsequent binding might mention v; in theory

it too could be 
oated out, but it will get pinned inside the binding for v. (It's the binding for

v' which 
oats.) But our strategy catches the common cases.

The second complication is that there is a penalty associated with 
oating a binding between

two adjacent lambdas. For example, consider the binding

f = \x y -> let v = length x in ...

It would be possible to 
oat the binding for v between the lambdas for x and y, but the result

would be two functions of one argument instead of one function of two arguments, which is less

e�cient. There would be gain only if a partial application of f to one argument was applied

many times. Indeed, our measurements

12

indicate that allowing lambdas to be split in this way

resulted in a signi�cant loss of performance. Our pragmatic solution is to therefore treat the

12

See Santos [1995] for these �gures; we do not present them here.
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lambdas for x and y as a single \lambda group", and to give a single level number to all the

variables bound by a group. As a result, lambda groups are never split.

The third complication is that we are paranoid about giving bindings a level number of zero,

because that will mean they 
oat right to the top level, where they might cause a space leak.

(In our implementation, all top-level values are retained for the whole life of the program. It

would be possible for the garbage collector to �gure out which of them cannot be referred to

again, and hence which could safely be garbage collected, but doing so adds complexity and

slows both the mutator and the garbage collector.) We use several heuristics which sometimes

decide (conservatively) to leave a binding exactly where it is. If this happens, rather than giving

the binding level number zero, it is given a level number of the number of enclosing lambdas,

so that it will not be moved by the second pass.

8 Other GHC transformations

We have focused so far on particular aspects of GHC's transformation system. This section

brie
y summarises the other main transformations performed by GHC:

The simpli�er contains many more transformations than those described in Sections 4 and 5.

A full list can be found in Peyton Jones & Santos [1994] and Santos [1995]; the latter also

contains detailed measurements of the frequency and usefulness of each transformation.

The specialiser uses partial evaluation to create specialised versions of overloaded functions,

using much the same technique as that described by Jones [1994].

Eta expansion is an unexpectedly-useful transformation (Gill [1996, Chapter 4]). We found

that other transformations sometimes produce expressions of the form:

let f = \x -> let ... in \y -> E

in B

If f is always applied to two arguments in B, then we can W-safely { that is, without risk

of duplicating work | transform the expression to:

let f = \x y -> let ... in E

in B

(It turns out that a lambda abstraction that binds multiple arguments can be implemented

much more e�ciently than a nested series of lambdas.) The most elegant way to achieve

the transformation is to perform an eta-expansion | the opposite of eta reduction | on

f's right hand side:

\x -> R =) \x a -> R a

Once that is done, normal beta reduction will make the application to a \cancel" with

the y, to give the desired overall e�ect.

The crucial question is this: when is eta expansion guaranteed to be W-safe? Unsur-

prisingly, this turns out to be yet another fruitful application for the linear type system

sketched in Section 4.2.
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Deforestation is a transformation that removes intermediate lists (Wadler [1990]). For ex-

ample, in the expression sum (map double xs) an intermediate list (map double xs) is

created, only to be consumed immediately by sum. Successful deforestation removes this

intermediate list, giving a single pass algorithm that traverses the list xs, doubling each

element before adding it to the total.

Full-blown Wadler-style deforestation for higher-order programs is di�cult; the only ex-

ample we know of is described by Marlow [1996] and even that does not work for large

programs. Instead, we developed a new, more practical, technique called short cut defor-

estation (Gill, Launchbury & Peyton Jones [1993]). As the name implies, our method does

not remove all intermediate lists, but in exchange it is relatively easy to implement. Gill

[1996] describes the technique in detail, and gives measurements of its e�ectiveness. Even

on programs written without deforestation in mind the transformation reduces execution

time by some 3% averaged over a range of programs. This is a rather disappointing result,

but we believe that there is potential for improving it considerably.

Deforestation also allows the desugaring of list comprehensions to be simpli�ed consider-

ably, moving a group of optimisations from the desugarer to the deforester. The details

are in Gill, Launchbury & Peyton Jones [1993].

Lambda lifting is a well-known transformation that replaces local function declarations with

global ones, by adding their free variables as extra parameters (Johnsson [1985]). For

example, consider the de�nition

f = \x -> letrec g = \y -> ...x...y...g...

in ...g...

Here, x is free in the de�nition of g. By adding x as an extra argument to g we can

transform the de�nition to:

f = \x -> ...(g' x)...

g' = \x y -> ...x...y...(g' x)...

Some back ends require lambda-lifted programs. Our code generator can handle local

functions directly, so lambda lifting is not required. Even so, it turns out that lambda

lifting is sometimes bene�cial, but on other occasions the reverse is the case. That is, the

exact opposite of lambda lifting | lambda dropping, also known as the static argument

transformation | sometimes improves performance. Santos [1995, Chapter 7] discusses

the tradeo� in detail. GHC implements both lambda lifting and the static argument

transformation. Each buys only a small performance gain (a percentage point or two) on

average.

9 Separate compilation

GHC makes a serious attempt to propagate transformations across modules. When a module

M is compiled, as well as producing M's object code, the compiler also emits M's interface �le

that contains, inter alia, three sorts of information:
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� Scope information: the names and de�ning module of each class, type and value exported

by M. This tells an importing module what names are exported by M, and hence are

brought into scope by importing M.

� Type information: the type declarations of the classes, types, and values de�ned in M,

whether exported or not. Haskell allows an exported value to have a type mentioning type

constructors that are not exported, and the compiler needs access to the latter.

� Implementation information: for each value de�ned in M, the interface �le gives:

{ Its de�nition, in the Core language, if it is smaller than some �xed threshold; this

allows it to be inlined at call sites in other modules.

{ If it is overloaded, what specialised instances of the value have been compiled.

{ Its strictness information.

{ Its linearity information.

{ Its arity (how many arguments it takes).

Providing such implementation information allows an importing module to take advantage of

detailed knowledge about M, but of course it also increases the coupling between modules. If

M is recompiled, and some of this implementation information changes, then each module that

imports M must be recompiled too. We leave the choice to the programmer: implementation

information is written into interface �les if and only if the -O 
ag is speci�ed when invoking

the compiler. In this way the programmer can trade compilation time for runtime e�ciency.

10 E�ect of the Transformations

Whilst every transformation we have described was motivated by particular examples, it is far

from obvious that each will deliver measurable performance gains when applied to \average"

programs. In this section we present quantitative measurements of some of the most important

transformations described above.

10.1 Setup

We measured the e�ect of our transformations on a sample of between 15 and 50 programs

from our Nofib test suite

13

(Partain [1993]). Many of these programs are \real" applications

| that is, application programs written by someone other than ourselves to solve a particular

problem. None was designed as a benchmark, and they range in size from a few hundred to a few

thousand lines of Haskell. Our results are emphatically not best-case results on toy programs!

It is di�cult to present the e�ect of many interacting transformations in a modular way. If

we measure the e�ect of switching them on one at a time we risk being either over-optimistic

(because an otherwise un-optimised program is a very soft target) or over-pessimistic (because

one transformation relies on another to exploit its e�ects). Switching them o� one at a time

13

The number varied between di�erent experiments, which were carried out over an extended period.
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su�ers from the opposite objections, but at least it faithfully indicates the cost of omitting that

transformation from a production compiler.

Accordingly, most results are given as percentage changes from the base case in which all trans-

formations are enabled. A value greater than 1 means \more than the base case", less than 1

means \less than the base case"; whether that is \good" or \bad" depends on what is being

measured.

Space precludes listing the results for each individual program. Instead, we report just the aver-

age e�ect, where for \average" we use the geometric mean, since we are averaging performance

ratios (Fleming & Wallace [1986]).

We concentrate on the following measures:

� Instruction count | how many instructions are taken to execute the program. This

measure is independent of cache locality and paging, which in today's architectures can

sometimes dominate all other e�ects put together. Nevertheless, it is a more portable

measure, and our wall-clock-time measurements (which we made as a sanity check) mostly

track the instruction-count measure in practice.

� Heap allocation | how much heap is allocated by the program during its execution. If an

optimisation reduces allocation by a larger factor than instruction count, it is likely that

a smaller proportion of instructions are memory cycles, and hence that execution time

may decrease by a larger fraction than the instruction count. The reverse is also true, of

course.

� Maximum residency | the maximum amount of live data during execution. This number

directly a�ects the cost of garbage collection, and is the best measure of the space con-

sumption of a program. The residency numbers were gathered by sampling the amount

of live data at frequent intervals, using the garbage collector. Frequent sampling means

that any \spikes" in live memory usage are unlikely to be missed.

� Binary size | the size of the compiled code, excluding symbol table.

� Compile time.

For each set of measurements we recompiled the standard prelude and libraries with the speci�ed

set of transformations enabled, so that the results re
ect the e�ect on the entire program and

not only on the \application" part of it.

Like all quantitative measurements, and especially average measurements, the numbers we

present should not be read uncritically. In particular:

� The averages often conceal large individual variations. It is not uncommon to �nd that a

particular transformation has a small e�ect on most programs, but a dramatic e�ect on

a few.

� Gathering these measurements is a substantial exercise, taking gigabytes of disc space and

weeks of CPU time. The set of benchmark programs was not the same in every case |

hence the range of sample size | nor were all the measures collected in every experiment.
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Nevertheless we believe that the �gures present a reasonably truthful picture of the relative

importance of the di�erent transformations. The sources we cite elsewhere in this paper give

much more detailed breakdowns of many of the �gures we summarise here.

10.2 Overall gains from transformation
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Figure 2: Overall e�ect of transformations

The overall gains from transformations are presented in Figure 2. The x axis represents various

compilation options, each compared to a baseline in which all optimisations are enabled:

None | that is, no transformations at all. It might be argued that this makes the transfor-

mations look unreasonably e�ective, because the desugarer is written assuming that a

subsequent simpli�cation will clear up much of its \litter".

Minimal approximates the e�ect of a more plausible desugarer with no further transforma-

tions. We approximated this setup by performing a single non-iterative run of the sim-

pli�er, with most transformations disabled. The only important transformations that

remain are beta reduction, and the inlining of trivial bindings (that is, ones that bind a

variable to another variable or literal).

Simpli�er only. Here all the global transformations are switched o�, leaving only a full run

of the simpli�er (up to 4 iterations, although this limit was never reached).

Overall, switching o� all transformations increases instruction count by around 140%. The

fairer \minimal" case still increases instruction count by 100%, while switching o� everything

except the simpli�er only increases instruction count by 80%. The minimum compilation time,
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less than half that of full optimisation, is achieved by the \simpli�er only" case, so this is what

GHC uses when compiling without the -O 
ag.

The following sections investigate individual transformations in more detail.

10.3 The simpli�er

It does not make sense to measure the e�ect of switching the simpli�er o� while leaving all the

other transformations on, since they all rely on the simpli�er to clean up after them and exploit

their e�ects. In e�ect, the simpli�er is part of every transformation, so it cannot sensibly be

measured in isolation.

let float from let

32%
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17%beta-reduction
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case of known 

constructor

10%
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9%

case-of-case

8%

let float from case
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let to case
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other

2%

Figure 3: Frequency of transformations

The simpli�er implements a large number of separate transformations, and it certainly makes

sense to ask how often each is used. Figure 3 answers this question by giving the relative

frequency of the most common transformations.

We did not include in the transformation counts the following two transformations, which would

otherwise dominate the pie chart:

� Dead code elimination (unused bindings and unreachable case alternatives).

� Inlining for trivial bindings (ones that bind variables to other variables or literals).

These two transformations almost always occur as a byproduct of some other transformation,

which is made easier to implement thereby, so their frequency is mostly a consequence of the

implementation strategy of other transformations.
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We also measured the e�ect of turning o� individual transformations, one at a time, relative as

always to the full-optimisation base case. Figure 4 shows three interesting cases (let-
oating is

dealt with in Section 10.6):

� Switching o� the case-of-case transformation increases instruction count by a substantial

10%.

� Section 5.1 described how to use let bindings to describe join points, asserting that a

simple analysis in the code generator su�ces to identify these special join-point bindings.

The second column in Figure 4 shows that the analysis is not in fact very important:

switching it o� gives only a 1% increase in instruction count, albeit with a larger increase

in heap allocation.

� Eta expansion (Section 8) has a substantial individual e�ect: switching it o� costs some

8% in both instructions and allocation.

10.4 Inlining

The e�ect of inlining is summarised in Figure 5. The x axis is calibrated by the following

inlining strategies:

O�. Inlining is turned o�, except for trivial bindings of variables to variables or literals.

One occ. Trivial bindings, and variables or functions that occur only once, in aW-safe context,

are inlined.

36



-50%

0%

50%

100%

150%

200%

250%

off one

occ.

0 1 2 4 8 16 32

Threshold

A
ve

ra
ge

 c
ha

ng
e

Instructions Executed

Heap Allocated

Binary Size

Compilation Time

Functions Inlined

Case-of-known-
constructor

Figure 5: E�ect of Inlining Strategies

Threshold(n). Any non-recursive binding is inlined if it is W-safe to do so, and either it

occurs just once, or its space penalty (Section 4.1) is less than the given threshold.

As well as the usual measures (instruction count, heap allocation, compilation time) we also

show the number of functions that are actually inlined. These graphs show the following e�ects:

� The bigger e�ects come directly from inlining variables and functions with one occurrence,

and then reasonable gains come up to threshold 3, where the gains start to be minimal.

� Although we get many more functions inlined with larger thresholds, this is not re
ected

on the number of instructions executed, i.e. we quickly get to a point where more inlining

is (almost) useless.

� Binary size remains virtually unaltered, which means that most of the (larger) functions

being inlined do not occur many times in the program.

� Compilation time actually decreases initially, since we end up with less to do in later

phases of the compiler. With the highest inline threshold we measured (32), compilation

takes about 35% longer than the \one occurrence" case.

10.5 Strictness Analysis

The e�ect of strictness analysis is shown in Figure 6, which shows that if we disable strictness

analysis we will increase execution time by about 18%, and the number of objects allocated in

the heap is also a lot higher, since we will have many more lets.
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Figure 6: Strictness Analysis

10.6 Code motion

As mentioned in Section 7 we identify three kinds of let-
oating: 
oating inwards, full laziness,

and local let 
oating. Figure 7 presents the average e�ects of these let 
oating transformations,

relative to the fully-optimised base case:

FI o� presents the e�ect of turning o� the 
oat inwards transformation; this increases instruc-

tion count by a modest 0.6%.

FL o� presents the e�ect of turning o� the full laziness transformation; results here are some-

what variable, but average to around 7%.

Local LF o� presents the e�ect of turning o� all local let 
oating; this costs around 9%.

All Floating O� presents the e�ect of turning o� all let 
oating, i.e. 
oating inwards, full

laziness and all kinds of local let 
oating. The total penalty in instruction count is

(perhaps surprisingly) about equal to the sum of the three individual e�ects, a substantial

16%. The execution-time sanity check bears this out, with an 18% improvement from let-


oating.

Figure 7 also shows the e�ect of the four variants of local let-
oating described in Section 7.3.

In the baseline case (full optimisation) we use the \WHNF" strategy, because that appears

to give the best results. The other three strategies (\Never", \Strict", and \Always") are

presented in the columns \Local LF o�", \Local LF strict", and \Local LF always". All three

are indeed worse than the baseline strategy; \Strict" and \Never" are very bad (6% and 9%

worse respectively), while \Always" is only a little worse (0.5%).
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Figure 7: Let Floating

11 Lessons and conclusions

What general lessons about compilation by transformation have we learned from our experience?

The interaction of theory and practice is genuine, not simply window dressing. Apart

from aspects already mentioned | second order lambda calculus, linear type systems,

strictness and absence analysis | here are three other examples described elsewhere:

� We make extensive use ofmonads (Wadler [1992]), particularly to express input/output

(Peyton Jones & Wadler [1993]) and stateful computation (Launchbury & Pey-

ton Jones [1994]). Monads allow us to express imperative algorithms in a purely

functional setting. In particular, the compiler can freely use its entire armoury of

transformations on stateful computations expressed using monads; in contrast, opti-

mising compilers for Lisp or ML must perform some kind of e�ects analysis to infer

which \functions" are pure and which may have side e�ects; many optimsiations must

be disabled for the latter. Since monads simply make explicit the otherwise-implicit


ow dependencies it is not clear that we get better code than the analyse-and-disable

approach, but we certainly get a simpler compiler.

� Parametricity, a deep semantic consequence of polymorphism, turns out to be cru-

cial in establishing the correctness of cheap deforestation (Gill, Launchbury & Pey-

ton Jones [1993]), and secure encapsulation of stateful computation (Launchbury &

Peyton Jones [1994]).

� GHC's time and space pro�ler is based on a formal model of cost attribution (Sansom

[1994]; Sansom & Peyton Jones [1995]), an unusual property for a highly operational
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activity such as pro�ling. In this case the implementation came �rst, but the sub-

tleties caused by non-strictness and higher-order functions practically drove us to

despair, and forced us to develop a formal foundation.

Plug and play really works. The modular nature of a transformational compiler, and its

late commitment to the order of transformation, is a big win. The ability to run a

transformation pass twice (at least when going for maximum optimisation) is sometimes

very useful. All this really only applies to compiler writers however; almost all compiler

users will be content to use the bundle of 
ags that are conjured up by using the standard

-O (\please optimise") or -O2 (\please optimise a lot") 
ags.

It is hard to estimate the cost of this plug-and-play approach. Would the compiler be

faster if several passes were amalgamated into a single giant pass? In one case, namely

the simpli�er, we have indeed combined many small transformations into a single pass.

For the larger transformations the bene�ts are probably modest: each does a substantial

task, so the cost reduction from eliminating the intermediate data structure is probably

small and it would come at a high programming cost. It might be more attractive to

develop automatic techniques for fusing successive passes together, perhaps by generalising

the short-cut deforestation technique mentioned above to arbitrary data structures, and

explicitly-recursive functions (Launchbury & Sheard [1995]).

The \cascade e�ect" is important. One transformation really does expose opportunities

for another. Transformational passes are easier to write in the knowledge that subsequent

transformations can be relied on to \clean up" the result of a transformation. For example,

a transformation that wants to substitute x for y in an expression E can simply produce

(\y->E) x, leaving the simpli�er to perform the substitution later.

The compiler needs a lot of bullets in its gun. It is common for one particular transfor-

mation to have a dramatic e�ect on a few programs, and a very modest e�ect on most

others. There is no substitute for applying a large number of transformations, each of

which will \hit" some programs.

Some non-obvious transformations are important. We found that it was important to

add a signi�cant number of obviously-correct transformations that would never apply

directly to any reasonable source program. For example:

case (error "Wurble") of { ... } =) error "Wurble"

(error is a function that prints its argument string and halts execution. Semantically

its value is just bottom.) No programmer would write a case expression that scrutinises

a call to error, but such case expressions certainly show up after transformation. For

example, consider the expression

if head xs then E1 else E2

After desugaring, and inlining head we get:
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case (case xs of { [] -> error "head"; p:ps -> p } of

True -> E1

False -> E2

Applying the case-of-case transformation (Section 5) makes (one copy of) the outer case

scrutinise the call to error.

Other examples of non-obvious transformations include eta expansion (Section 8) and

absence analysis (Section 6.3). We identi�ed these extra transformations by eye-balling

the code produced by the transformation system, looking for code that could be improved.

Elegant generalisations of traditional optimisations have often cropped up, that either ex-

tend the \reach" of the optimisation, or express it as a special case of some other transfor-

mation that is already required. Examples include jump elimination, copy propagation,

boolean short-circuiting, and loop-invariant code motion. Similar generalisations are dis-

cussed by Steele [1978].

Maintaining types is a big win. It is sometimes tiresome, but never di�cult, for each trans-

formation to maintain type correctness

14

. On the other hand it is sometimes indispensable

to know the type of an expression, notably during strictness analysis. Maintaining types

throughout compilation is becoming more popular (Shao & Appel [1995]; Tarditi et al.

[1996]).

Perhaps the largest single bene�t came from an unexpected quarter: it is very easy to

check a Core program for type correctness. While developing the compiler we run \Core

Lint" (the Core type-checker) after every transformation pass, which turns out to be an

outstandingly good way to detect incorrect transformations. Before we used Core Lint,

bogus transformations usually led to a core dump when running the transformed program,

followed by a long gdb hunt to isolate the cause. Now most bogus transformations are

identi�ed much earlier, and much more precisely. One of the stupidest things we did was

to delay writing Core Lint.

Cross-module optimisation is important. Functional programmers make heavy use of li-

braries, abstract data types, and modules. It is highly desirable that inlining, strictness

analysis, specialisation, and so on, work between modules. For example, many abstract

data types export very small functions that would probably be implemented as macros in

C. With cross module inlining they can be inlined at every call site, gaining (most of) the

advantages of macros without the burden of macro processors' strange semantics. Like

the object-oriented community (Chambers, Dean & Grove [1995]), we regard a serious

assault on global (cross-module) optimisation as the most plausible next \big win".

14

This is true for the transformations we have implemented. Some transformations, notably closure conversion,

require more work, and indeed a more sophisticated type system than the second order lambda calculus (Harper

& Morrisett [1995]).

41



Acknowledgements

The Glasgow Haskell Compiler was built by many people, including Will Partain, Jim Mattson,

Kevin Hammond, Andy Gill, Patrick Sansom, Cordelia Hall, and Simon Marlow. I'm very

grateful to Sigbjorn Finne, Hanne Nielson, Will Partain, Patrick Sansom, and Phil Trinder,

and three anonymous referees, for helpful feedback on drafts of this paper.

The Glasgow Haskell Compiler is freely available at

http://www.dcs.gla.ac.uk/fp/software/ghc/

42



References

AV Aho, R Sethi & JD Ullman [1986], Compilers - principles, techniques and tools, Addison

Wesley, 1986.

AW Appel [1992], Compiling with continuations, Cambridge University Press, 1992.

AW Appel & T Jim [1996], \Shrinking Lambda-Expressions in Linear Time," Department of

Computer Science, Princeton University, 1996.

Z Ariola, M Felleisen, J Maraist, M Odersky & P Wadler [1995], \A call by need lambda

calculus," in 22nd ACM Symposium on Principles of Programming Languages, San

Francisco, ACM, Jan 1995, .

L Augustsson [1987], \Compiling lazy functional languages, part II," PhD thesis, Dept Comp

Sci, Chalmers University, Sweden, 1987.

DF Bacon, SL Graham & OJ Sharp [1994], \Compiler transformations for high-performance

computing," ACM Computing Surveys 26(4), Dec 1994, .

B Calder, D Grunwald & B Zorn [1994], \Quantifying behavioural di�erences between C and

C++ programs," Journal of Programming Languages 2(4), Dec 1994, .

C Chambers, J Dean & D Grove [1995], \A framework for selective recompilation in the presence

of complex intermodule dependencies," in Proc International Conference on Software

Engineering, Seattle, Apr 1995.

CD Clack & SL Peyton Jones [1985], \Generating parallelism from strictness analysis," Internal

Note 1679, Department of Computer Science, University College London, Feb 1985.

JW Davidson & AM Holler [1988], \A study of a C function inliner," Software { Practice and

Experience 18, 1988, .

C Flanagan, A Sabry, B Duba & M Felleisen [1993], \The essence of compiling with continua-

tions," SIGPLAN Notices 28(1), June 1993, .

PJ Fleming & JJ Wallace [1986], \How not to lie with statistics - the correct way to summarise

benchmark results," CACM 29(3), March 1986, .

P Fradet & D Le Metayer [1991], \Compilation of functional languages by program transfor-

mation," ACM Transactions on Programming Languages and Systems 13(1), Jan 1991,

.

A Gill, J Launchbury & SL Peyton Jones [1993], \A short cut to deforestation," in Proc Func-

tional Programming Languages and Computer Architecture, Copenhagen, ACM, June

1993, .

AJ Gill [1996], \Cheap deforestation for non-strict functional languages," PhD thesis, Depart-

ment of Computing Science, Glasgow University, Jan 1996.

43



J Girard [1971], \Une extension de l'interpretation de G�odel a l'analyse, et son application a

l'elimination de coupures dans l'analyse et la theorie des types," in 2nd Scandinavian

Logic Symposium, JE Fenstad, ed., North Holland, 1971, .

R Harper & G Morrisett [1995], \Compiling polymorphism using intensional type analysis," in

22nd ACM Symposium on Principles of Programming Languages, San Francisco, ACM,

Jan 1995, .

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M Guzman,

K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil, W Partain & J Peterson

[1992], \Report on the functional programming language Haskell, Version 1.2," SIG-

PLAN Notices 27(5), May 1992.

RJM Hughes [1983], \The design and implementation of programming languages," PhD thesis,

Programming Research Group, Oxford, July 1983.

Thomas Johnsson [1985], \Lambda lifting: transforming programs to recursive equations," in

Proc IFIP Conference on Functional Programming and Computer Architecture, Jouan-

naud, ed., LNCS 201, Springer Verlag, 1985, .

MP Jones [1994], \Dictionary-free overloading by partial evaluation," in ACM SIGPLAN Work-

shop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM), Or-

lando, Florida, ACM, June 1994.

R Kelsey [1989], \Compilation by program transformation," YALEU/DCS/RR-702, PhD thesis,

Department of Computer Science, Yale University, May 1989.

R Kelsey & P Hudak [1989], \Realistic compilation by program transformation," in Proc ACM

Conference on Principles of Programming Languages, ACM, Jan 1989, .

DA Kranz [1988], \ORBIT - an optimising compiler for Scheme," PhD thesis, Department of

Computer Science, Yale University, May 1988.

DA Kranz, R Kelsey, J Rees, P Hudak, J Philbin & N Adams [1986], \ORBIT - an optimising

compiler for Scheme," in Proc SIGPLAN Symposium on Compiler Construction, ACM,

1986.

J Launchbury [1993], \A natural semantics for lazy evaluation," in 20th ACM Symposium on

Principles of Programming Languages (POPL'93), Charleston, ACM, Jan 1993, .

J Launchbury & SL Peyton Jones [1994], \Lazy functional state threads," in SIGPLAN Sym-

posium on Programming Language Design and Implementation (PLDI'94), Orlando,

ACM, June 1994, .

J Launchbury & T Sheard [1995], \Warm fusion," in Proc Functional Programming Languages

and Computer Architecture, La Jolla, ACM, June 1995.

S Marlow [1996], \Deforestation for Higher Order Functional Programs," PhD thesis, Depart-

ment of Computing Science, University of Glasgow, March 1996.

44



R Morrison, A Dearle, RCH Connor & AL Brown [1991], \An ad hoc approach to the implemen-

tation of polymorphism," ACM Transactions on Programming Languages and Systems

13(3), July 1991, .

A Ohori [1992], \A compilation method for ML-style polymorphic record calculi," in 19th ACM

Symposium on Principles of Programming Languages, Albuquerque, ACM, Jan 1992, .

WD Partain [1993], \The no�b Benchmark Suite of Haskell Programs," in Functional Program-

ming, Glasgow 1992, J Launchbury & PM Sansom, eds., Workshops in Computing,

Springer Verlag, 1993, .

SL Peyton Jones [1987], The Implementation of Functional Programming Languages, Prentice

Hall, 1987.

SL Peyton Jones [1992], \Implementing lazy functional languages on stock hardware: the Spine-

less Tagless G-machine," Journal of Functional Programming 2(2), Apr 1992, .

SL Peyton Jones [1996], \Compilation by transformation: a report from the trenches," in Eu-

ropean Symposium on Programming (ESOP'96), Link�oping, Sweden, Springer Verlag

LNCS 1058, Jan 1996, .

SL Peyton Jones, CV Hall, K Hammond, WD Partain & PL Wadler [1993], \The Glasgow

Haskell compiler: a technical overview," in Proceedings of Joint Framework for Infor-

mation Technology Technical Conference, Keele, DTI/SERC, March 1993, .

SL Peyton Jones & J Launchbury [1991], \Unboxed values as �rst class citizens," in Functional

Programming Languages and Computer Architecture (FPCA'91), Boston, Hughes, ed.,

LNCS 523, Springer Verlag, Sept 1991, .

SL Peyton Jones & D Lester [1991], \A modular fully-lazy lambda lifter in Haskell," Software

{ Practice and Experience 21(5), May 1991, .

SL Peyton Jones & WD Partain [1993], \Measuring the e�ectiveness of a simple strictness

analyser," in Functional Programming, Glasgow 1993, K Hammond & JT O'Donnell,

eds., Workshops in Computing, Springer Verlag, 1993, .

SL Peyton Jones, WD Partain & A Santos [1996], \Let-
oating: moving bindings to give faster

programs," in Proc International Conference on Functional Programming, Philadelphia,

ACM, May 1996.

SL Peyton Jones & A Santos [1994], \Compilation by transformation in the Glasgow Haskell

Compiler," in Functional Programming, Glasgow 1994, K Hammond, DN Turner & PM

Sansom, eds., Workshops in Computing, Springer Verlag, 1994, .

SL Peyton Jones & PL Wadler [1993], \Imperative functional programming," in 20th ACM

Symposium on Principles of Programming Languages (POPL'93), Charleston, ACM,

Jan 1993, .

JC Reynolds [1974], \Towards a theory of type structure," in International Programming Sym-

posium, Springer Verlag LNCS 19, 1974, .

45



PM Sansom [1994], \Execution pro�ling for non-strict functional languages," PhD thesis, Tech-

nical Report FP-1994-09, Department of Computer Science, University of Glasgow, Sept

1994. (ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/tech reports/FP-94-09 execution-profiling.ps.Z).

PM Sansom & SL Peyton Jones [1995], \Time and space pro�ling for non-strict, higher-order

functional languages," in 22nd ACM Symposium on Principles of Programming Lan-

guages, San Francisco, ACM, Jan 1995, .

A Santos [1995], \Compilation by transformation in non-strict functional languages," PhD the-

sis, Department of Computing Science, Glasgow University, Sept 1995.

Z Shao & AW Appel [1995], \A type-based compiler for Standard ML," in SIGPLAN Sym-

posium on Programming Language Design and Implementation (PLDI'95), La Jolla,

ACM, June 1995, .

GL Steele [1978], \Rabbit: a compiler for Scheme," AI-TR-474, MIT Lab for Computer Science,

1978.

D Tarditi, G Morrisett, P Cheng, C Stone, R Harper & P Lee [1996], \TIL: A Type-Directed

Optimizing Compiler for ML," in SIGPLAN Symposium on Programming Language

Design and Implementation (PLDI'96), Philadelphia, ACM, May 1996.

A Tolmach [1994], \Tag-free garbage collection using explicit type parameters," in ACM Sym-

posium on Lisp and Functional Programming, Orlando, ACM, June 1994, .

DN Turner, PL Wadler & C Mossin [1995], \Once upon a type," in Proc Functional Program-

ming Languages and Computer Architecture, La Jolla, ACM, June 1995, .

PL Wadler [1990], \Deforestation: transforming programs to eliminate trees," Theoretical Com-

puter Science 73, 1990, .

PL Wadler [1992], \The essence of functional programming," in 19th ACM Symposium on

Principles of Programming Languages, Albuquerque, ACM, Jan 1992, .

46


