
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998 505

Speech Trajectory Discrimination Using the
Minimum Classification Error Learning

Rathinavelu Chengalvarayan,Member, IEEE, and Li Deng,Senior Member, IEEE

Abstract—In this paper, we extend the maximum likelihood
(ML) training algorithm to the minimum classification error
(MCE) training algorithm for discriminatively estimating the
state-dependent polynomial coefficients in the stochastic tra-
jectory model or the trended hidden Markov model (HMM)
originally proposed in [2]. The main motivation of this extension
is the new model space for smoothness-constrained, state-bound
speech trajectories associated with the trended HMM, contrasting
the conventional, stationary-state HMM, which describes only
the piecewise-constant “degraded trajectories” in the observation
data. The discriminative training implemented for the trended
HMM has the potential to utilize this new, constrained model
space, thereby providing stronger power to disambiguate the
observational trajectories generated from nonstationary sources
corresponding to different speech classes. Phonetic classification
results are reported which demonstrate consistent performance
improvements with use of the MCE-trained trended HMM both
over the regular ML-trained trended HMM and over the MCE-
trained stationary-state HMM.

Index Terms—Discrimination, MCE training, mixture trended
HMM, phonetic classification, trajectory.

I. INTRODUCTION

T HE formulation of the trended hidden Markov model
(HMM), also called the parametric nonstationary-state

HMM or parametric stochastic trajectory model, has been used
in speech recognition applications for the past few years by
a number of research groups [2], [4], [6]–[8], [13]. The main
motivation for using the trajectory model is its advantage of
capturing smoothed temporal variations ubiquitously observed
in the spectral aspects of speech data. This leads to an effective
means of succinct parameterization of the segment-bound
temporal correlation structure of speech which cannot be
modeled by the conventional HMM. The model parameters of
the trended HMM, especially the state-dependent time-varying
Gaussian means, used in the past were trained by a modified
Viterbi algorithm based on the joint-state maximum likelihood
(ML) principle [4]. The method of ML, however, is generally
not optimal in terms of minimizing classification error rate in
classification tasks in which the observation is assumed to be
produced by one of the many source classes [1]. Only the in-
class information is available to train each model when the
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ML approach is used; that is, a separate model is constructed
for each class (a phone or a word, for example) and is trained
on tokens of that class only. This type of ML-based training is
not discriminative, since each model is built independently
and one intends only to model the acoustic observations
representative of that class. Discrimination can be improved if
out-of-class information is jointly used in training the models.
Discriminative training methods do not aim at construction
of the best model of observation data for each class, but
instead attempt to predict whether a given observation belongs
to one class or another. Since such methods focus on the
use of parameters on the decision surface among different
classes and not on the distribution of observations themselves,
they have theoretical advantages over the ML method in term
of classification performance. An example of discriminative
training is the minimum classification error (MCE) training
algorithm, which has been implemented in various forms (e.g.,
[1], [9], [12]).

In the study reported in this paper, the MCE algorithm
is extended from the earlier formulation that applies to the
conventional or stationary-state HMM to the trended HMM.
In particular, the MCE algorithm is used to discriminatively
estimate the state-dependent and mixture-dependent polyno-
mial coefficients in the trended HMM based on a gradient-
descent method. The properties of the MCE formulation
for training the trended HMM are analyzed by examining
goodness-of-fit of the raw speech data to the polynomial
trajectories in the model, and comparative experimental results
on phonetic classification are reported which demonstrated the
effectiveness of the MCE algorithm for the trended HMM.
All our experimental results have substantiated our theoretical
reasoning and motivation for the application of the MCE
algorithm to the trended HMM. That is, given that the trended
HMM tracks the stochastic trajectories of the speech data,
new degree of freedom in the space of the modeled tra-
jectories associated with the trended HMM, together with
the constraint forcing the modeled trajectory to be a (state-
bound) smoothed function of time, should allow discriminative
training to exploit interactions between the new model space
and the constraint. This should then allow discriminative
training to gain more power to disambiguate the different
trajectories associated with different speech classes.

This paper is organized as follows. The formulation of a
mixture version of the trended HMM including the mixture-
dependent and state-dependent polynomial coefficients is pro-
vided in Section II. In Section III, the basic principle of
the MCE training is summarized, and the training procedure
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applied specifically to the optimization of the state-dependent
polynomial functions and the variances in the trended HMM
is described in detail. Experimental results on fitting the
trended HMM to real speech data are provided in Section IV.
These results, presented as comparisons between use of the
ML training algorithm and use of the MCE training algo-
rithm, illustrate the need for discriminative training in the
trended HMM and show effectiveness of the algorithm in
achieving enhanced discrimination ability. In Section V, we
report phonetic classification results obtained using the TIMIT
data base. These results demonstrate consistent performance
improvements with use of the MCE-trained trended HMM
over the regular ML-trained trended HMM and over the
MCE-trained conventional stationary-state HMM. Concluding
remarks are finally given in Section VI.

II. M IXTURE TRENDED HMM

The trended HMM is of a data-generative type and can be
described in the following equation for the generation of the
acoustic observation sequence:

(1)

where is a modeled observation data
sequence of length within the HMM state indexed by

are mixture-dependent and state-dependent poly-
nomial regression coefficients of order indexed by mixture
component and by state and the term is the stationary
residual (after the data-fitting by the first term assumed
to be independent and identically distributed (i.i.d.) and zero-
mean Gaussian source characterized by state-dependent,
mixture -dependent, but time-invariant diagonal covari-
ance matrix

In the conventional, stationary-state HMM [15], the first
term in (1) is only a function of state not a function of
time Note also that the polynomials for each state depend
not only on the coefficients but also on the time-
shift parameter The term represents the sojourn time
in state at time where registers the time when state
in the HMM is just entered before regression on time takes
place. Polynomial coefficients (for state and mixture
component are considered as true model parameters and
is merely an auxiliary parameter for the purpose of obtaining
maximal accuracy in estimating In the recognition
step, is again estimated as the auxiliary parameter so as
to achieve a maximal score in matching the model to the
unknown utterance over all possible values.

In summary, a mixture trended HMM consists of the fol-
lowing parameter quadruple .

1) is the transition probability
matrix of the underlying Markov chain with a total of
N states.

2)
and are the polynomial coefficients, of

order and associated with stateand mixture in
the state-dependent deterministic regression function of
time. (Dimensionality of vector is the same
as that of feature vector

3) and are
the time-invariant covariance matrices (dimensionality
of of the zero-mean Gaussian i.i.d. residual signals

(These matrices are also state and mixture
dependent.)

4) and are
the mixture weights.

III. D ISCRIMINATIVE TRAINING

FOR MIXTURE TRENDED HMM

One major purpose of this study is to develop and imple-
ment the MCE-based discriminative training paradigm in the
context of the trended HMM for achieving optimal estimation
of the state-dependent polynomial coefficients. Let

denote the parameter set characterizing the trended
HMM for the th class, where is the total number of
classes. The classifier based on theseclass models can be
characterized by The purpose of the
MCE-based discriminative training is to find the parameter set

such that the probability of misclassifying all the training
tokens is minimized.

Let denote the log-likelihood associated with the
optimal state sequence for the input token obtained
by applying the Viterbi algorithm using model for the
th class. Then, for the utterance (from class the

misclassification measure is determined by

(2)

where denotes the incorrect model with the highest log-
likelihood (i.e., the most confusible class). In this definition, a
negative value of corresponds to a correct classifica-
tion. The definition in (2) focuses on the comparison between
the true model and only the closest-competing wrong model,
an approximation which we adopt in this study for computation
efficiency. (A more general form of the misclassification
measure using the log-likelihoods from all models can be
found in [1] and [16]). A loss function with respect to the
input token is defined in terms of the misclassification measure
given by

(3)

which projects into the interval [0,1]. Note that the
loss function is directly related to the classification
error rate and is first-order differentiable with respect to all the
model parameters of Once the objective
function in (3) is determined, the MCE-based discriminative
training is reduced to finding the gradient of the objective
function with respect to all the model parameters and to using
the computed gradient to update the model parameters in an
iterative manner.
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A. Gradient Descent Method

Let be a parameter in the model Provided that
is differentiable with respect to that parameter is adjusted
in the gradient descent method according to

(4)

In (4), is the new estimate of the parameter andis a small
positive constant that monotonically decreases as the iteration
number increases. This gradient descent method is iteratively
applied to all training tokens in a sequential manner (for all
model parameters) to minimize the loss function during the
training process.

Some intuitive explanations for (4) are given here. In the
case of near error-free classification (i.e., or
in the case of a complete loss (very poor classification; i.e.,

the magnitude of in (4) would be close to
zero and therefore the change ofwould become very small.
On the other hand, if (i.e., the likelihoods
for the correct and the best wrong model about the same,
then the magnitude of would reach a maximum. Therefore,
the training procedure as described in (4) will focus on input
tokens which are likely to be misclassified but can be classified
correctly after proper adjustment of the model parameters.

In order to determine in (4), we note that in
the trended HMM, each mixture of each state is characterized
by a multivariate time-varying Gaussian density function in
the form of

(5)

where and denote the polynomial coefficients
for the time-varying Gaussian mean and the covariance matrix
associated with the th mixture of th state, respectively;

is the sojourn time1 in state at time and is
the dimensionality of the observation vector Superscripts

and and the symbol denote matrix transposition,
inversion, and determinant, respectively. Based on the trended
HMM for speech class the optimal state sequence

and the corresponding mixture sequence
for an input token

frames in total) is obtained by means of the Viterbi algorithm,
with modification by incorporating an additional optimization

1In this work we have not used duration-normalized time because of its
implementational complexity. In our earlier work we show advantages of
duration normalization in performance for an ML-based system [19] but to
rigorously (not heuristically as other groups have done) carry out duration
normalization for the current MCE-based system requires substantial new
efforts that we have not taken in the current work.

loop for the state sojourn time (see Appendix for details).
Then, the log-likelihood is given by

(6)

which will be used to compute the gradient in
(4) for model parameters in the mixture trended HMM to be
described in later portions of this section.

B. Initializing Model Parameters

Once all the state boundaries and the optimal mixture
components along the optimal state sequence are determined
via the modified Viterbi segmentation step (see Appendix for
detail), determining the time-varying mean parameters in the
trended HMM reduces essentially to the problem of polyno-
mial regression according to the ML method, which we adopt
for model initialization. Here, we present the general solution
for the regression problem involving multiple observation
tokens where each token can be a subsequence of a training
utterance that has been segmented and assigned to a given
state. In the remainder of this subsection, class indexwill be
omitted since in-class information is used in the ML method
and hence each class’ model is built independently of another.

Let denote a set of feature vector
sequences (i.e., a total of variable-length tokens), and let

denote the th sequence which has
a total of frames in length. Define

as a -dimensional vector of explanatory variables with
representing the sojourn time in stateThen the ML

estimate for the polynomial coefficients becomes the solution
to the regression equation

where and are computed according to

In the above equation, the quantity is set to one if
the model stays in mixture of state , and is set to zero,
otherwise. The covariance matrix is determined according to
the equation shown at the bottom of the next page, and the
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formula for mixture weight parameters is

for and The observation
density assumes the following form in our current model
implementation:

That is, only the most likely mixture component is chosen as
the observation density for each HMM state.

C. Gradient Computation for the
Mixture-Dependent Polynomials

By substituting (2), (5), and (6) in (4), the gradient cal-
culation of the th mixture of th state parameter,

for the th model becomes

(7)

where the variable is defined as

if (correct-class)
if (closest-competing-class)
otherwise

and the set includes all the time indices such that mix-
ture and state are in the optimal Viterbi path determined
using the -class model; that is,

D. Gradient Computation for the State and
Mixture-Dependent Variances

Similarly, the gradient formula for covariance matrices can
be derived (cf. [16]), which has the following final form:

(8)

where indicates the unity matrix and is the
log-transformed diagonal covariance matrices to automatically
impose the constraint that the variances always remain positive
definite during training.

IV. EXPERIMENTS ONFITTING MODELS TO SPEECHDATA

The problem of speech classification can be viewed as
a statistical data-fitting problem, where relative closeness in
fitting an array of speech models to the unknown speech
data sequence provides the classification decision. In order to
provide insights into the advantages of the MCE training on
the trended HMM, we, in this section, report results of data-
fitting experiments where both the conventional HMM and the
trended HMM, trained with ML and with MCE, respectively,
are used to fit the acoustic observation data.

The procedure and the criterion for the data-fitting exper-
iments are discussed here first. Once the structure of the
trended HMM is determined, the ML and MCE training
algorithms discussed in Section III are used to estimate the
trended HMM model parameters using a given set of training
data. After the parameters are estimated, diagnostic analysis
is carried out to examine the residuals measuring closeness of
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the model fitting to the data. To do this, the modified Viterbi
algorithm as described in Appendix is used first to find the
optimal state sequence associated with
the given speech data, from which the model fitting error is
then computed according to the data-fitting criterion described
below.

Given the parameters of the mixture trended HMM, the
model-generated observation sequenceis given by

(9)

where state at given time is determined by the state se-
quence and are the Viterbi-segmentation
boundaries of states. By setting the fitting function

can be computed according to

The overall model data-fitting error is then computed by a
linear summation of the residual squares over the states and
over the state-bound time frames; that is,

(10)

The smaller this error is, the better we consider the data-fitting
would be (zero error indicates perfect fitting).

The test data sequence from phone for which we show
the data-fitting results in this section, is selected from a female
speaker of dialect region one of the TIMIT speech corpus. The
raw speech data is in the form of a digitally sampled signal at
16 kHz. The conventional mel-frequency cepstral coefficients
(MFCC’s) are computed with a frame rate of 10ms. For
illustration purposes, we show the data-fitting results only
for the second-order MFCC The contains acoustic
information about summation of log energies of low- and
high-frequency channels subtracting those of mid-frequency
channels. Other orders of MFCC’s give similar results which
will not be plotted due to space limitation.

Figs. 1 and 2 show the results of fitting the acoustic data
(C2) of using the “correct” -model and using the
“wrong” -model, respectively. The top two subplots in
each figure show the data-fitting results for the ML-trained
stationary-state HMM (left) (polynomial order and
for the trended HMM (right) with a linear trend function
(polynomial order respectively. The bottom two
subplots in each figure show the data-fitting results using the
MCE-trained stationary-state HMM and the trended HMM,
respectively. In all the plots, the solid lines are the speech
data, of the C2 sequence from the test token (i.e., not
used in training the models). The vertical axis represents the
magnitude of C2 and the horizontal time axis is expressed in
terms of the frame number. Note that the C2 data sequence
is far from stationary. (In analyzing statistical properties of

Fig. 1. Fitting three-state “correct”aa-models to anaaaaaa data C2 sequence.

Fig. 2. Fitting three-state “wrong”ae-models to theaaaaaa data C2 sequence.

the MFCC data in TIMIT, we found that not only glides,
liquids, diphthongs, and transition regions between phones
reveal the most notable nonstationary nature in speech, but
even vowels contain virtually no stationary portions. This has
been consistent with the spectrographic studies of continuous
speech [20].)

In all our data-fitting experiments, a left-to-right, three-
state topology (with no skip) is used for both stationary-state
HMM’s and trended HMM’s. Only one Gaussian is used per
mixture for both types of the HMM’s. For each subplot of
Figs. 1 and 2, the two break-points in the otherwise continuous
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solid lines correspond to the frames at which the optimal state
transitions occur from state one to state two, and from state two
to state three, respectively. The dash-dot lines in all subplots
of Figs. 1 and 2 are the four different fitting functions,
varying in the order or of the trend function
and in the training procedure (ML or MCE). These labels are
shown at the head of each subplot, together with the data-fitting
error computed according to (10).

Several observations are made in examining the example
data-fitting results shown in Figs. 1 and 2. First, the MCE
training consistently produces greater data-fitting errors than
the ML counterparts. This is equivalent to reduced likelihoods
from the ML to MCE training, and is consistent with the two
respective training objectives. Second, for data fitting using
the “correct” model (Fig. 1), the trended HMM’s consistently
gives lower fitting errors than the stationary-state HMM’s,
regardless of ML or MCE training. (This may not be true
when using the “wrong” model for data fitting as shown in
Fig. 2). Third, and importantly, despite the increased data-
fitting errors in going from the ML to MCE training (for
both cases of the “correct” and the “wrong” models), the
differencebetween the data-fitting errors associated with use
of the “correct” model and with use of the “wrong” model is
much greater for the MCE training than for the ML training.
That is, use of the “wrong” model produces greater errors
in the data fitting than the “correct” model (this accounts
for the differential likelihood scores necessary for identifying
the correct speech class and discriminating against the wrong
class), and this difference margin is significantly enhanced
in going from the ML training to the MCE training.2 More
specifically, the enhancement of the error-difference margin
discussed above is greater for the trended HMM than that for
the stationary-state HMM. Examining the results of Figs. 1 and
2, in the case of MCE training, this enhancement of the error-
difference margin for the trended HMM is

significantly bigger than that for the stationary-state
HMM This difference shows a
greater degree of freedom of the modeled trajectory space
offered by the trended HMM, which should therefore endow
the discriminative training with more power to distinguish
the trajectories generated from different speech classes. The
corresponding enhancement values for error-difference margin
in the case of ML training is
and for the trended HMM and
the stationary-state HMM, respectively. The small difference
between these two values (in comparison with that for the
MCE-training case) suggests that with use of the ML training,
the improvement of speech discrimination would be relatively
slight in going from the stationary-state HMM to the trended
HMM.

We should note at this point that although it is the temporally
cumulative state likelihood (5) that determines the recognition
score (rather than the data-fitting error measure [(10)], the

2We note here that although the MCE criterion does not directly aim
at enhancing error differences between data fitting using the correct model
and that using wrong models, this enhancement can be easily understood as
a natural consequence of the MCE criterion. Such enhancement is highly
desirable for robust speech recognition.

difference between the two measures lies only in the variances
which could weigh the frame errors differently with different
variances. So long as the variances do not differ substantially
(which we checked is the case for our data-fitting example
shown in Figs. 1 and 2), the conclusions drawn from the
above data-fitting results are valid. Nevertheless, the data-
fitting results are able to illustrate a number of phenomena
that cannot be shown by using the cumulative state likelihood.
Specifically, the data-fitting results enable us to visualize
detailed behaviors regarding how the trajectory from the model
matches the actual data trajectory. Use of the cumulative
state likelihood shows only the final score of the comparison
between the modeled trajectory and the actual data trajectory,
and does not show details of such a comparison which is
important to understand and thereby to improve the model.
Further, data-fitting results shown in Figs. 1 and 2 allow us
to understand the underlying structure of the mixture trended
HMM in terms of the important constraint that each linear
trajectory is not allowed to jump across different mixture
components within each state. This cannot be appreciated
by using the cumulative state likelihood as the measure
alone.

The above example, representative of many other TIMIT
examples we have examined in this study, is only intended
to illustrate the general, largely qualitative analysis of the
discriminative mechanisms for both the stationary-state HMM
and the trended HMM. The quantitative behavior in terms
of relative effectiveness under varying modeling structures
and varying training criteria can be assessed only in a large
scale experiment, from which some meaningful statistics are
extracted. The average classification error rate appears to be
such a meaningful statistic which also has the advantage of
being simple to compute and to illustrate. The experiments
we have conducted to acquire such a statistic are described
next.

V. PHONETIC CLASSIFICATION EXPERIMENTS

In this section we report the results from empirical studies,
using the TIMIT data base, on the convergence property of
the MCE training procedure described in Section III, and on
phonetic classification performance achieved by applying this
procedure. The TIMIT data base with a total of 462 different
speakers is divided into a training set and a test set with
no overlapping speakers. The training set consists of 442
speakers with a total 3536 sentences and the test set consists
of 160 sentences spoken by the 20 remaining speakers. These
speech materials contain a total of 129 743 phone tokens in the
training set and 5775 phone tokens in the test set. In these data
sets, only “sx” and “si” sentences were used. The experiments
described in this section are aiming at classifying (i.e., using
the phone segment information provided in the TIMIT data
base) the 61 TIMIT labels defined in the TIMIT data base. In
keeping with the convention adopted by many other speech
recognition researchers, we folded 22 phone labels into the
remaining 39 classes in determining classification accuracy.

The acoustic analysis used a 21-channel filterbank with
approximates mel-spaced filters at a frame rate of 10 ms per
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frame. Following is the analysis condition under which the
static speech features are computed.

Sampling rate kHz

Frame size ms samples

Window type Hamming

Window length ms samples

Window overlap ms samples

Analysis Short-time spectrum analysis

Features Mel-frequency cepstrum coefficients

(MFCC’s)

For the computation of MFCC’s, 21 triangular bandpass filters
are simulated, spaced linearly from 0 to 1 kHz and exponen-
tially from 1–8.86 kHz, with the adjacent filters overlapped in
the frequency range by 50%. The fast Fourier transform (FFT)
power spectral points are combined using a weighted sum to
obtain the output of the triangular filter. The MFCC’s (static
features) are then computed according to (11)

where is the log-energy output of theth mel-filter. A
twelve-component static feature vector is extracted every 10
ms throughout the signal. Thus the augmented feature vector
is represented by a vector of 25 components, with 12 cepstrum
coefficients, 12 delta cepstra3 and the delta log energy. Each
phone is a left-to-right (with only self and forward state
transitions), three-state HMM with mixture Gaussian state
observation densities (time invariant or time-varying). The
covariance matrices in all the states of all the models are
diagonal and are not tied. In the testing phase, the acoustic
data of each test phone is scored with all phone models by
applying the modified Viterbi algorithm, and the model with
the highest likelihood score is treated as the recognized phone
(i.e., ML decoding).

In Fig. 3, we show empirical results on the behavior of the
MCE training procedure for the 39-phone context-independent
phonetic classification task. (We first initialized the trainable
parameters of the trended HMM’s described in Section III-B
before performing the MCE training.) Some fixed parameters

3Use of delta parameters in our trajectory model is motivated by our
earlier empirical finding, based on empirical comparisons between stationary-
state HMM’s with delta parameters and linearly trended HMM’s without
delta parameters, that delta parameters and trajectory modeling partially
complement each other in capturing true dynamic properties in speech data
sequences [3]. Mixed use of delta parameters and trajectory modeling is
admittedly heuristic, as we proceed in this study, but it nevertheless jointly
utilizes different ways in which the two separate approaches exploit the
dynamic properties of the speech data. Technically, the difference between use
of delta parameters in the stationary-state HMM setup and use of the linear
trended HMM without delta parameters can be seen as follow: the former takes
fixed temporal differences of static MFCC’s in the preprocessor (and finally
mixing the results back with the static MFCC’s in calculating likelihoods),
while the latter trains the model parameters related to the dynamics (i.e.
polynomial coefficients or slopes in the linear case) specific for each HMM
state and for each speech class.

of the models that we used to obtain the results of Fig. 3
are as the number of HMM states for each phone,
and as the number of Gaussian mixtures in each
HMM state. The upper graph of Fig. 3 shows the classification
rates as a function of the epoch (a complete pass through
the entire training data set is called an epoch) of the MCE
training algorithm for the testing data. The solid lines are
associated with MCE-trained conventional HMM
and the dotted lines with trended HMM The lower
graph of Fig. 3 shows the average loss for the entire training
data set as a function of the training epoch. The convergence
behavior of the MCE training which we expected from general
theoretical considerations is confirmed by the results shown in
Fig. 3; that is, the classification rate monotonically increases
with the training epoch, and the average loss monotonically
decreases, both reaching their respective asymptotic values
after five epochs of the training. Note that the decreasing
values of the average loss with the training epoch follow
the same tendency, in a qualitative manner, as those of the
classification error rate. The average loss decreases faster for
the trended HMM than for the conventional HMM, indicating
the effectiveness of the newly trained trended HMM. Similar
characteristics in the classification performance are also ob-
served. This indicates that the original objective set out for
minimizing the classification error via the MCE training is
accomplished and that the MCE training may be more effective
for the trended HMM than the conventional HMM. In the
remaining of this section we will report full detail of the
phonetic classification results, focusing on the comparative
performances of the MCE-trained trended HMM versus the
conventional HMM.

For the MCE approach, the initial trended HMM’s are
obtained using the ML objective criterion with five iterations
of the modified Viterbi algorithm as described in Section III-B
and in the Appendix. The polynomial coefficients and diagonal
covariances of the trended HMM’s are further trained employ-
ing the MCE optimization procedure. A total of five epochs
are performed and only the best-incorrect-class is used in
the misclassification measure. Further, for both the stationary-
state HMM and the trended HMM, we have explored both
context-independent (CI) and context-dependent (CD) versions
of the phonetic model. For the CI model, a total of 39 models

states) are constructed, one for each of the 39
classes intended for the classification task. A CD phonetic
model that we used in this study is the one that is made
dependent on both the left and the right neighboring phone
classes. The phone classes used are the same as those described
in our earlier work [16], which result in a total of 1209 states
for the folded 39 CD phones in TIMIT.

Several sets of experiments are run to evaluate the phonetic
classifiers constructed using two types of HMM’s (stationary-
state and trended) and two types of training (ML and MCE).
The overall performance of the phonetic classifiers, organized
as the classification rate as a function of the polynomial
trend function order for stationary-state HMM’s and

for linearly trended HMM’s) and of the mixture number
or in each HMM state, is summarized in

Table I for the case of ML training, and in Table II for the
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Fig. 3. Convergence characteristics of the MCE training procedure. Top graph shows the context-independent phonetic classification rates for the test
set; bottom graph shows the average loss as a function of the training epoch.

TABLE I
TIMIT 39-PHONE CONTEXT INDEPENDENT (LEFT) AND CONTEXT DEPENDENT (RIGHT) CLASSIFICATION RATES USING THE ML TRAINING

TABLE II
TIMIT 39-PHONE CONTEXT INDEPENDENT (LEFT) AND CONTEXT DEPENDENT (RIGHT) CLASSIFICATION RATES USING THE MCE TRAINING

case of MCE training, respectively. Both CI and CD results are
shown. The results shown in Tables I and II can be elaborated
as follows. First, under all conditions, the MCE training is
superior to the ML training; the MCE-based classifier achieves
an average of 25% classification error rate reduction, uniformly
across all types of speech models (both CI and CD ones,
both stationary-state and trended HMM’s), over the ML-based
classifier. Second, for the ML-based classifier (Table II), the
trended HMM is slightly superior to the stationary-state HMM,
consistent with our earlier finding based on a different evalu-
ation task [4]. Third, for the MCE-based classifier (Table II),
superiority of the trended HMM over the stationary-state
HMM becomes significantly greater than the ML case; this
is true even at a better baseline performance level, and true
for both the CI and CD models. Finally, the improvement
in the classification rate in going from the ML to the MCE

training with use of the trended HMM is higher than that
with the stationary-state HMM. This shows that the behavior
exhibited in Figs. 1 and 2 in our data-fitting experiments is
a dominant one, testifying to our conjecture that the MCE
training should be particularly effective for the trended HMM
because of the new constrained degree of freedom existing
in the modeled speech data sequence to allow for trajectory
discrimination.

We conclude from the above phonetic classification results
that the difference in performance between the stationary-state
HMM and the trended HMM becomes more significant when
MCE training is used than when ML training is used. The best
result is achieved by using a combination of the trended HMM
and the MCE training algorithm, which produces an error rate
reduction from 25–33% in moving from the ML training to
the MCE training.
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VI. SUMMARY AND DISCUSSION

In this study, the MCE training algorithm using gradient
descent is derived, implemented and evaluated for optimally
estimating the state-dependent polynomial coefficients in the
trended HMM. Development of this new training approach
is motivated by our recognition of the poor discriminative
ability of the conventional ML training paradigm, particularly
in view of the additional constrained degree of freedom
in modeling speech data trajectories offered by the trended
HMM, which we developed in the past. This degree of freedom
is more limited in the conventional stationary-state HMM
(which models piecewise constant “trajectories” rather than
continuous trajectories as exhibited in most real speech data),
and hence we infer that the discriminative training should be
more powerful when applied to the trended HMM than to the
stationary-state HMM which has already been demonstrated
with some degrees of success by other research groups [1],
[12], [10].

Our expectation for superiority of the MCE-trained trended
HMM has been confirmed, as reported in Sections IV and
V in this paper, both by data-fitting experiments and by
phonetic classification experiments. We have observed consis-
tently from the data-fitting experiments that use of a “wrong”
model to fit test speech utterances generally produces greater
data-fitting errors than the errors with use of the “correct”
model, and that such error differentials (“wrong” model versus
“correct” model) are the greatest with the MCE-trained trended
HMM, followed by the MCE-trained conventional HMM,
then by the ML-trained trended HMM, then by the ML-
trained conventional HMM. These observations have been
corroborated by the independent set of conclusions drawn from
the phonetic classification experiments. The results summa-
rized in Tables I and II demonstrate the best classification
performance achieved with use of the MCE-trained trended
HMM (classification rate of 83.48%), followed by the MCE-
trained conventional HMM (classification rate of 80.19%),
then by the ML-trained trended HMM, then by the ML-trained
conventional HMM4.

The results we have reported in this paper are promising, but
at first glance may be striking in light of the opposite behav-
ior in performance improvement from ML training to MCE
training observed in comparing the following two scenarios
of increasing model parameters: adding more mixtures versus
adding linear trends.5 For the former, the gain of MCE training
is reduced moving from one Gaussian to five Gaussians
per mixture (79.08%–76.62% versus 80.19%–78.60%), while
for the latter, the gain is enhanced (79.08%–76.62% versus

4At this point, we should point out that quantitative comparisons of our
results reported on Section V with other published results on the TIMIT task
are inherently difficult because different authors tend to use different test sets
and different HMM setups. The performance of the benchmark ML-trained
HMM for the CI task we reported (57.76% phone classification rate) is not
far from other similar classifiers; for example, a somewhat higher rate on the
same task (62.3%) is reported in [18], which uses 32 Gaussians per mixture
in the HMM (we used five Gaussians per mixture only), and 39-dimensional
feature vectors (we used 25-dimensional vectors), and tested on 112 male
speakers (we tested on 20 mixed female and male speakers).

5The authors thank Dr. E. McDermott of ATR, Japan who pointed out this
sharp observation to us and offered valuable discussions.

82.89% –77.07%) (cf. Tables I and II). It is easy to explain
the mixture case. With the conventional HMM using one
Gaussian per mixture for speaker-independent data (such as
TIMIT reported in this paper), the model does not have enough
degrees of freedom in representing the true data distribution.
Therefore, ML training with this highly limited model is very
poor in finding good decision boundaries, where the MCE
training becomes comparatively more powerful. When the
degree of freedom is increased as more Gaussians per mixtures
are added, the problems with the ML training are subdued.
The MCE training in this case will still perform better but
not as much in comparison with the one-Gaussian-per-mixture
case.

The behavior opposite to the above in performance improve-
ment from ML to MCE with use of the trended HMM (which,
like adding more Gaussians per mixture, also increases model
parameters), however, requires more careful explanations. It
is clear that although the trended HMM and the mixture
HMM both increase model parameters, the manner in which
they increase the degree of freedom in the model space is
completely different. We conjecture that the greater (rather
than reduced) difference in performance between ML and
MCE trainings with use of the trended HMM is attributed to
the interactions between the increased model space due to the
new parameters in the trend functions and the constraint in the
model which forces the model to produce a smoothed trajec-
tory within each HMM state. (The constraint is implemented in
the modified Viterbi algorithm which forbids the trend function
from jumping across different mixture components within each
state.) This constraint balances the increased degree of freedom
due to addition of the regression parameters, and allows the
MCE training to work more effectively. Therefore, it is not just
the size of model parameters that matters the most. Rather,
it is how these parameters are structured and constrained
which determines the relative effectiveness of various training
algorithms in the recognition performance achievable by the
models.

In summary, the work presented in this paper has provided
evidence for the superior performance of the trended HMM, as
a parametric stochastic trajectory model for speech acoustics,
to the conventional HMM when the parameters character-
izing the modeled trajectories are trained discriminatively.
Mechanisms for such superiority are investigated through data-
fitting experiments, which shed light on the role of speech
trajectory discrimination in speech recognition. Because the
trajectory model for speech acoustics as studied in this work
is only a primitive and highly simplified model intended
to describe the hierarchically structured dynamic process in
speech production, we conclude that the discriminative anal-
ysis and learning will also play significant roles in more
advanced and realistic dynamic models of speech production
for use in speech recognition. In this context, the role of
discriminative learning may be identified as one of the two
critical components which shape and define the goal of speech
production in a recently proposed phonetic theory of speech
production [11], [14].
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APPENDIX

MODIFIED VITERBI SEGMENTATION ALGORITHM

This appendix describes the modified Viterbi segmentation
algorithm that we developed in this study for automatic train-
ing of the parameters, notably the time-varying polynomial
coefficients, in the trended HMM. Let
be the state sequence and be the
given vector-valued observation sequence of lengthwith
dimension Define a duration sequence where

indicates the sojurn time in state (the time spent in the
current state since the last state transition). Then the largest
probability along a single state-sequence path up to time
with duration at state can be expressed as

where is the parameter ensemble of the model.
Given the above notations and definitions, the following four

operations are a complete description of the segmentation step,
where is efficiently computed via recursion, and

is used to store the most likely state and mixture
information at time given that and

.
1) Initialization:

otherwise

with being the initial probability distribution of Markov
states.

2) Forward Recursion:See the formula at the top of the
page, for and

3) Termination of Recursion:

4) Backtracking for Optimal Path:
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