
AUTOMATIC GENERATION OF SYNTHESIS UNITS FOR
TRAINABLE TEXT-TO-SPEECH SYSTEMS

H. Hon, A. Acero, X. Huang, J. Liu, and M. Plumpe

Microsoft Research
One Microsoft Way

Redmond, Washington 98052, USA

ABSTRACT
Whistler Text-to-Speech engine was designed so that we can
automatically construct the model parameters from training data.
This paper will describe in detail the design issues of constructing
the synthesis unit inventory automatically from speech databases.
The automatic process includes (1) determining the scaleable
synthesis unit which can reflect spectral variations of different
allophones; (2) segmenting the recording sentences into phonetic
segments; (3) select good instances for each synthesis unit to
generate best synthesis sentence during run time. These processes
are all derived through the use of probabilistic learning methods
which are aimed at the same optimization criteria. Through this
automatic unit generation, Whistler can automatically produce
synthetic speech that sounds very natural and resembles the
acoustic characteristics of the original speaker.

1. INTRODUCTION

In [4][7], we have presented Whistler: Microsoft’s Trainable Text-
to-Speech (TTS) System. In contrast to most other TTS systems
(including both formant and concatenative synthesizers)
[1][2][12] which require human experts to hand-craft and fine-
tune the synthesis units (or unit parameters), Whistler uses an
automatic procedure to configure and generate the scaleable
synthesis units directly from any speech database. In this paper,
we will describe in detail the design issues and improvements we
made to the construction the synthesis unit inventory
automatically from speech databases.

Whistler is based upon a concatenative synthesizer whose unit
inventory is generated by cutting speech segments from a database
recorded by a target speaker [4][7][11]. There are typical three
phases in the process of building a unit inventory:

1. Determine the synthesis units and derive the conversion
between a phoneme string and a unit string.

2. Segmentation of each unit from spoken speech.
3. Selection of one (or a few) good unit instance when many

are available in the corpus.

The synthesis unit needs to be scaleable and reflect spectral
variations of different allophones, so one can build the optimal
TTS systems under various resource requirements. Diphones [5]
which are the most popular synthesis unit employed today,
however, fail to meet both criteria. Whistler uses the decision-tree
clustered phone-based unit [9][4][7] as the synthesis unit. The
decision-tree clustered phone-based unit not only can effectively
model contextual variation, but also provides an ideal scaleable

mechanism for tradeoff between voice quality and memory size,
generality and specificity.

Manual segmentation and unit selection phases are typically very
labor-intensive for concatenative synthesizers because it involves
subjective judgement for thousands of synthesis units. They are
often based on a trial and error process, which doesn’t usually
address the potential distortion at any concatenation point.
Moreover, it is very difficult to optimize the segmentation and unit
selection phases with the choice of synthesis units. Whistler uses
a probability framework for both segmentation and unit selection
phases, which is consistent with the decision-tree clustered phone-
based unit. This unified unit generation procedure will yield
synthesis sentence with optimal probability and hopefully optimal
quality.

This paper is organized as follows. In Section 2 we present
Whistler’s synthesis unit - the decision-tree clustered phone-based
unit. In Section 3 we then discuss how to segment the speech
recording into units. In Section 4 we describe the process of
automatic unit selection, including multiple instance case. Finally
we summarize our major findings and outline our future work.

2. SYNTHESIS UNIT

2.1 Diphone

Diphone [5][12], which contains the transitions between two
phones, has been chosen as the synthesis unit for concatenative
synthesizers. There are about 1500 to 2000 diphones in English,
and the diphone mapping for a phoneme string is straightforward.
The word HELLO /hh ah l ow/ can be mapped into the diphone
sequence: /sil-hh/, /hh-ah/, /ah-l/, /l-ow/, /ow-sil/. While diphones
retain the transitional information, there can be large distortions
due to the difference in spectra between the stationary parts of two
units obtained from different contexts. For example, there is no
guarantee the spectra of /ah-l/ and /l-ow/ will match at the junction
since /ah-l/ could have a very different right context than /ow/ or
/l-ow/ could have a very different left context than /ah/. As
evidenced in the diphone-based systems, naturalness of synthetic
speech can be sometimes significantly hampered by the context
mismatch between certain diphone units.

2.2 Senone

To achieve a more natural voice quality, one must take more
contexts into account, going beyond diphones. However, simply
modeling triphones [9] (a phone with the immediate left and right

contexts) already requires more than 10,000 units for English.
Fortunately, effective clustering of similar contexts modeled in a
sub-phonetic level, to allow flexible memory-quality compromise,
has been well studied in the speech recognition community [6]. A
senone [6][3] is a context-dependent sub-phonetic unit which is
equivalent to a HMM state in a triphone. Senones can usually
model spectral variation in a fine sub-phonetic level. However,
they introduce many more junctions than a diphone system.
Those excessive junctions create potential quality degradation for
synthesis systems.

2.3 Decision-Tree Clustered Phone-Based Unit

To achieve the same rich context modeling as senones while not
introducing more junctions, the decision-tree clustered phone-
based unit is used as our synthesis unit. First we construct the
inventory of context-dependent phone units. The context-
dependent phones could be triphones, quinphones (a phone with
two immediate left and right contexts), stress-sensitive phones,
word-dependent phones (the same phone in particular words are
considered distinct context-dependent phones), or a combination
of the above. In order to reduce the total number of synthesis units
down to a manageable number while incorporating more contexts,
we need to utilize clustering decision trees [9][8] to cluster similar
context-dependent phone units together.

The decision tree is a binary tree with a categorical question
associated with each branching node. Traversing the trees is
equivalent to following the answers for the branching nodes from
root to leaves, which determines the clusters for similar context-
dependent phones. The decision trees are generated automatically
from the analysis database to obtain minimum within-unit
distortion (or entropy) for each split. The distortion measure
could be obtained through the correspondent HMM’s parameters
[9]. Therefore, one needs to acquire a large inventory of context-
dependent phone HMM’s with decent coverage of the contexts
one wishes to model. This criterion will assure minimum spectral
variation for the context-dependent phones within each cluster.
Therefore the context-dependent phone unit can be substituted by
any other unit within the same cluster. Since these clustering
decision trees should be consistent across different speakers, the
use of a large speaker-independent database (like the DARPA’s
WSJ database) instead of a limited speaker-dependent database
allows us to model more contexts (like quinphones) as well as to
build deeper trees to generate high-quality TTS voices.

Unlike senones, our phone-based units require no more junctions
than diphone-based systems and yet assure consistency within
each unit to achieve better concatenation through rich context
modeling. Moreover, the use of decision trees will generalize to
contexts not seen in the training data, based on phonetic
categories of neighboring contexts. Finally, the structure of the
decision tree allows maximum scalability. One can decide how
many leaves (synthesis units) to use based on resource constraints.

3. AUTOMATIC SEGMENTATION

To segment the speech corpus into sequences of phone-based
units, we used the automatic Viterbi alignment developed in
Whisper [6]. We used Whisper to align the input waveform with

phonetic symbols that are associated with correspondent HMMs.
HMMs are trained from the speaker-dependent data of the target
speaker. We observed that 4% of the sentences in the database
contain some gross segmentation errors (larger than 20 ms) when
compared to hand labeled data, and most of the errors were caused
by incorrect transcriptions. Nevertheless, good context coverage
and consistent segmentation by HMMs typically overcomes the
drawback of an imperfect automatic segmentation when compared
to manual segmentation.

3.1 Non-uniform HMM Topologies

Figure 1. Diagram showing a vowel to stop
concatenation. The shaded area represents vowel-stop
transition.

During error analysis, the biggest discrepancy between automatic
segmentation and hand-labeled segmentation is in vowel-stop,
stop-vowel, fricative-vowel, and vowel-fricative regions. The
spectrum change of stops and fricatives is typically much smaller
when compared to that of vowels. Since Whisper [6] use a
uniform topology for all units, the beginning and ending states of
a stop or fricative tend to model the transitions from vowels or to
vowels in order to achieve HMM optimization. This results in V-
S (vowel-stop) parts in Figure 1 usually segmented together with
S instead of V; where manual segmentation often associates the
V-S part with V because the V-S has already enough vowel
characteristics. From synthesis point of view, the V-S transitions
is better tied to V than stop S to assure smooth transition since the
spectral mismatch between V and V-S is more perceptive than that
of V-S and S. Therefore we decide to use simple topologies for
stop and fricative units (1-state HMM for fricative units and 2-
state HMM for stop units) to alter the segmentation. As expected,
the new segmentation does improve the concatenation quality for
stop/fricative-vowel and vowel-stop/fricative transitions.

Using simple topologies for stop/fricative units for decision tree
generation will also result in trees with fewer leaves allocated for
stop/fricative units and more leaves allocated for non-
stop/fricative units. This change could potentially improve the
quality because more resources are allocated for units with high
spectral variation. It is also possible that perceptual degradation is
not linear to the spectral mismatch. Incorporating more
perception-based features into our probability framework could be
a important direction to further improve TTS voice quality.

3.2 Pitch-Synchronized Segments

The segmentation derived from HMM’s Viterbi alignment is
based on uniform time frames rather than pitch-synchronized
frames (in sync with exact epoch boundaries). However, pitch-
synchronized units are absolutely necessary for concatenative TTS
in order to do arbitrary concatenation and pitch/duration
stretching. To obtain pitch-synchronized segments, one needs to
perform pitch/epoch estimation [4][7] on recording speech in

 V S V-S

addition to HMM segmentation. Figure 2 illustrates HMM Viterbi
alignment segments two units at time m which is between time Ti

correspondent to epoch i and time Ti+1 correspondent to next
epoch i+1. The epoch points are derived by a pitch/epoch
estimator. Now the task is to realign the boundary m to either Ti

or Ti+1, so the units will be pitch-synchronized. One solution is to
adjust the segmentation boundary m to the nearest epoch point.
A better one is to adjust the new boundary to either the immediate
left or right epoch point so that the pitch changes within each unit
is minimized. In other words, if absolute pitch difference |P(Fi+1)
- P(Fi)| is greater than |P(Fi) - P(Fi-1)|, the segmentation boundary
m will be adjusted to Ti; otherwise adjusted to Ti+1Moreover, for
unvoiced frame, the P(F) will take the value of negative infinity.
Thus the above algorithm will segment at voiced/unvoiced
boundary for voiced/unvoiced transition.

Figure 2. Diagram showing how to align HMM
boundaries to pitch-synchronized boundaries

4. UNIT SELECTION

As described in Section 2, every leaf in the decision trees
represent a coherent set where any particular instance of a
particular context-dependent phone unit could represent the entire
cluster. However, it is necessary to have a comprehensive unit
selection procedure to (1) discard bad units caused by
mispronunciation or bad segmentation; (2) select good unit
instances when many are available for better concatenation and
prosody stretching.

When reliable statistics can be obtained from enough instances,
the bad unit instances should reside on the outlier of the
distribution. To discard the bad units residing in the outlier, we
first compute unit statistics for duration, amplitude, pitch, and
voiced frame percentage (how many percentage of frames are
voiced within a unit), and remove those unit instances residing
more than one standard deviation away from the unit mean. In
addition to pruning the bad instances, keeping the selected
instances close to the cluster mean of duration, amplitude and
pitch is important because prosody modification during synthesis
of such units should on the average require less stretching which
will lead to better synthesis quality. For the next two subsections
(single-instance and multiple-instance systems), the selection
procedure only consider surviving candidates after outlier
pruning.

4.1 Single Instance System

At minimum, we need to select one unit instance for each
decision-tree cluster to be able to synthesize any text. The
advantage of a single-instance system is its simplicity and compact
size. The disadvantage is that the instance chosen needs to be
very robust for all-context concatenations and arbitrary prosody

stretching. We have demonstrated that a good single-instance
TTS system can be produced with enough (around 3,000)
decision-tree leaf clusters.

The question now is which unit instance one should choose after
discarding the outliers. In order to solve this question, let’s start
with a simple experiment. By randomly choosing one unit
instance for each decision-tree leaf cluster from the surviving
candidate pool, we get an acceptable but not so great system. The
system sometimes generates large glitches for some
concatenations. This experiment shows that not all surviving
candidates are good and we definitely need some criterion for
choosing good unit instances.

Since our unit generation is based on a unified HMM framework,
HMM matching score alignment (normalized by the length of the
segments) generated by Viterbi indicates how well the individual
instance matches the distribution of the decision tree leaf cluster.
It thus should be a good measurement of how well the instances
can represent the cluster. By choosing the unit instance with
highest HMM score to represent the cluster, we are able to achieve
a very high concatenation quality. In another experiment to further
verify this selection criterion, the instance with the worst HMM
score was chosen and the resulting TTS quality was dismal.

4.2 Multiple Instance System

The motivation for using a multiple-instance system is obvious
because the system can dynamically select the best unit instances
to minimize the concatenation distortion and prosody stretching.
To support this statement, we designed an experiment to randomly
select the unit instance with the 10th highest HMM scores. The
resulting TTS quality is almost as good as the best single-instance
system described in Section 4.2. This result demonstrates that
instances with good enough HMM scores are comparable to the
instance with highest HMM score.

Inspired by the supporting experiment, a small number of unit
instances can be pre-selected through the use of an objective
function. The objective function could be based on a combination
of HMM scores, variety of contexts, and variety of different
prosody attributes. At synthesis time, the synthesizer will
compare all instances of the required synthesis units, selecting the
instances optimizing the joint objective function. Hopefully this
will translated into the best overall speech quality. By increasing
the number of instances in the database, we can make a trade-off
between speech quality and database size and CPU utilization.

The first multiple instance system was similar in concept to ATR’s
system as described in [13]. The original database consisted of
approximately 32,000 unit instances that contained the instances
with the top-10 highest HMM scores after discarding outliers. A
cost function was developed to indicate the synthesis quality. One
key feature of the cost function is that for two units occurred in
sequence in the training database, synthesizing them in sequence
incurs a zero cost. This encourages the selection of sequential
strings of unit instances, a flexible form of long units. If two units
were not sequential in the original speech, their synthesis cost was
based on the spectral distortion at the boundary, the expected
spectral distortion at the boundary calculated from the original
speech, and the type of unit (e.g. larger spectral mismatch is

Fi+1 Fi

HMM segmentation

mTi Ti+1

Fi-1

Epoch i+1Epoch i

Time:

tolerated for fricatives than vowels). If large memory resources
and a large speech database are available, it is possible to use a
multiple-instance system to construct long-units for frequent
words and phrases that will undoubtedly achieve optimal
concatenation quality. Since the units making up this long unit can
also be used individually for other contexts, the multiple-instance
framework can be viewed as an extension of the simple-instance
system with additional instances kept for optimal concatenation
for important and/or frequent contexts.

To reduce the size of the database, a greedy algorithm was used to
minimize the synthesis cost for the training sentences. Starting
with all the instances (and hence a zero cost), the unit which
caused the least increase in total synthesis cost was removed. This
is repeated until the desired database size is achieved. Database
sizes down to about 10,000 instances, or on average three
instances per unit, have quality that is similar to the original
quality. Below this, the quality degrades more quickly. We feel
that the reason for this is that the cost function and statistics are
good at identifying bad units, but are not as successful as in
picking the best units. Once all of the clearly bad units are
discarded, the algorithm is less successful at identifying which
units to keep. For similar reasoning, starting with a minimal
system and adding unit instances was not successful.

Another way to reduce the size of the database is to partition the
instance distribution for each cluster into several regions, which
can hopefully have good coverage for all the real concatenation
conditions. To cluster the data, we use the Line Spectral Pair
representation of the filters for the first and last frame of the
instances. The instance representing the mean of the cluster is
chosen from a subset of all instances. At run-time, dynamic
programming can be applied to find the instance sequence that has
minimum sum of juncture Line Spectral Pairs. One possible
extension will be including the prosody attributes (duration, pitch,
and amplitude) for partition criteria. Thus at run-time we could
dynamically find the instance sequence minimizing a joint cost
function which is the combination of the sum of juncture spectral
mismatch and stretching cost (the amount of modification required
to stretch it during synthesis).

One might increase the number of decision tree leaf clusters to
simulate multiple-instance system without actually using multiple-
instance system. However, it won’t be able to reduce prosody
stretching since our decision trees has yet taken prosody attributes
into account. Moreover, more leaf cluster means fewer unit
instances per cluster. This results in less reliable statistics which
could cause ineffectiveness for outlier pruning. Therefore, how to
balance the number of decision tree leaf clusters and instances per
cluster when building a scalable TTS system will become an
important research topic for multiple-instance TTS systems.

5. Conclusion

Our data-driven unit generation takes advantage of the analysis of
large amounts of natural speech and avoids the over-generation
problem found in traditional hand-tuned systems. We have
demonstrated that a high quality voice inventory can be
automatically configured and built, so the resulting TTS voice is
not only natural but also similar to the original donor speaker. The

voice inventory is also highly scaleable, and can tradeoff between
voice quality and memory size and CPU utilization. A version of
the Whistler TTS system was described in [4] and can be
downloaded from Microsoft Research’s web site [10].

Future work will need to focus on how to further unify the whole
process of unit generation, including unit configuration, automatic
segmentation and unit selection. Some obvious directions include
incorporating duration, pitch information in decision tree
generation; unifying the criteria for unit configuration,
segmentation, unit selection and smoothing.

6. REFERENCES
[1] Allen J., Hunnicutt S., and Klatt D. From text to speech: the

MITalk system. MIT Press, Cambridge, Massachusetts, 1987.
[2] Bailly G. and Benoit C., editors. Talking Machines: Theories,

Models, and Designs. Elsevier Science, 1992.
[3] Donovan R.E. and Woodland P.C. “Improvements in an

HMM-Based Speech Synthesizer”. Proceedings of
Eurospeech Conference, Madrid, Spain, 1995, pages 573-
576.

[4] X. Huang, A. Acero, H. Hon, Y. Ju, J. Liu, S. Meredith, M.
Plumpe “Recent Improvements on Microsoft’s Trainable
Text-To-Speech System - Whistler”. IEEE International
Conference on Acoustics, Speech, and Signal Processing. pp.
959-962, Munich, Germany, April, 1997.

[5] Klatt D. “Review of text-to-speech conversion for English”.
Journal of the Acoustical Society of America, 82(3):737-793,
1987.

[6] Huang X., Acero A., Alleva F., Hwang M.Y., Jiang L. and
Mahajan M. “Microsoft Windows Highly Intelligent Speech
Recognizer: Whisper”. IEEE International Conference on
Acoustics, Speech, and Signal Processing. Detroit, May
1995.

[7] Huang X., Acero A., Adcock J., Hon H., Goldsmith J., Liu J.,
and Plumpe M. “Whistler: A Trainable Text-to-Speech
System”. International Conference on Spoken Language
Processing. Philadelphia, Oct, 1996

[8] Hwang, M.Y. and Huang, X. and Alleva, F. “Predicting
Unseen Triphone with Senones”. IEEE International
Conference on Acoustics, Speech, and Signal Processing,
Minneapolis, MN, pages 311-314. April, 1993.

[9] Hon, H., and Lee, K. “CMU Robust Vocabulary-Independent
Speech Recognition System”, IEEE International Conference
on Acoustics, Speech, and Signal Processing, Toronto,
CANADA, May, 1991.

[10] Microsoft’s Speech Technology web page:
http://www.research.microsoft.com/research/srg/.

[11] Nakajima S. and Hamada H. “Automatic generation of
synthesis units based on context oriented clustering”. IEEE
International Conference on Acoustics, Speech, and Signal
Processing. New York, April 1988, pages 659-662.

[12] Sproat, R. and Oliver, J. “An Approach to Text-to-Speech
Synthesis”. Chapter 17 in book “Speech Coding and
Synthesis”, Elsevier, 1995.

[13] Sagisaka Y., Kaiki N., Iwahashi N. and Mimura. K. “Unit
Selection in A Concatenative Speech Synthesis System Using
Large Speech Database”. International Conference on
Spoken Language Processing. Philadelphia, Oct, 1996.

