

abstract

To integrate a software component into a system, it must

interact properly with the system's other components.

Unfortunately, the decisions about how a component is to

interact with other components are typically committed

long before the moment of integration and are difficult to

change. This paper introduces the Flexible Packaging

method, which allows a component developer to defer

some decisions about component interaction until sys-

tem integration time. The method divides the compo-

nent's source into two pieces: the ware, which

encapsulates the component's functionality; and the

packager, which encapsulates the details of interaction.

Both the ware and the packager are independently reus-

able. A ware, as a reusable part, allows a given piece of

functionality to be employed in systems in different

architectural styles. A packager, as a reusable part, encap-

sulates conformance to a component standard, like an

ActiveX control or an

odbc

 database accessor. Because

the packager’s source code is often formulaic, a tool is

provided to generate the packager's source from a high-

level description of the intended interaction, a descrip-

tion written in the architectural description language

UniCon. The method and tools are evaluated with two

case studies, an image viewer and a database updater.

1 introduction

In order to reuse a software component, not only must a

developer consider what the component computes, but

also how it makes that computation available to other

components. A component that expects to interact with

other components through procedure calls, for example,

is difficult to reuse in a system where components interact

by exchanging messages, or by raising and listening for

events, or by accessing data in shared memory. The

assumptions a component makes about how it interacts

with other components constitutes its

packaging

. Today,

reusing a component in a new system requires attention

to both its functionality and its packaging.

The motivation for selecting a component for reuse is

typically its functionality. Often the only preference a

developer has about packaging is that it be appropriate to

the system in which the component is to be integrated. A

Windows developer, for example, will shop for an

ActiveX control with the desired functionality for his

application, whereas a Unix developer will look for a fil-

ter. Today’s off-the-shelf components come

prepackaged

:

decisions about the component’s packaging are made at

development time, before the component is made avail-

able for reuse. When the packaging decisions encapsu-

lated in a reused component are unsuitable in the context

of a new system, the condition is called

packaging mis-

match

 [

6]

[

12]

.

When packaging mismatch occurs, the system integra-

tor must undo or circumvent the unsuitable packaging

decisions, which is often an expensive proposition. In the

source code of a conventional software component, the

code that accomplishes the interactions tends to be inter-

spersed with the code that accomplishes the component’s

functionality. This makes it difficult to identify the code

related to packaging. When changing the source code is

infeasible or overly expensive, the system integrator typi-

cally overcomes packaging mismatch by introducing

“glue code” in the form of wrappers or mediators [

10]

.

For example, if a component packaged to interact

through procedure calls is to be used in an event-based

system, the system integrator might place a wrapper

around the component that receives events and that

makes the appropriate procedure calls on the wrapped

component. This glue code becomes another part of the

system to test and maintain.

The heart of the packaging mismatch problem is that

engineering decisions are being made too early, when too

little of the relevant information is known – a violation of

Parnas’ widely accepted information hiding principle

[

11]

. Since packaging decisions are largely about system

integration, they should be deferred until the information

about the integration context is known. This paper intro-

duces a method, called

Flexible Packaging

, for structuring

a software component’s source code to defer decisions

about interaction until integration time. Of course, not

all decisions about interaction can be deferred: a compo-

nent’s functionality cannot be expressed without men-

tioning some aspects

of interaction. Flexible Packaging

provides a mechanism for specifying those aspects of

interaction that are essential to the functionality, while

Avoiding Packaging Mismatch with Flexible Packaging

Robert DeLine

Carnegie Mellon University

5000 Forbes Ave.

Pittsburgh PA 15213

412-268-2582

rdeline@cs.cmu.edu

deferring the incidental details.

As one would expect, every component cannot be

packaged in every way; the fact that the functional and

interactive concerns can be separated does not imply that

arbitrary mix-and-match between them is feasible [

5]

.

This paper focuses on the mechanism that achieves the

separation between these concerns. Describing abstract

patterns of interaction based on this mechanism, which

would allow compatibility checks between the function-

ality and packaging, is the next phase of the research.

The remainder of this paper discusses Flexible Packag-

ing in more detail. Section

2

 uses a simple example to

contrast the current practice of packaging components

with Flexible Packaging. Section

3

 explains the technol-

ogy and tools behind Flexible Packaging. Section

4

 dis-

cusses our use of case studies to evaluate the method.

Section

5

 reviews related research, and Section

6

 con-

cludes.

2 flexible packaging in action

To illustrate the problems with today’s component devel-

opment and integration and to contrast current practice

with the Flexible Packaging method, this section uses an

example component that is small enough for complete

source code to be shown but representative of a larger

class of computations. The example component’s func-

tion is to compute the arithmetic mean of all the scores of

each student enrolled in a course. In pseudocode, this

could expressed as in Figure

1

(a). Suppose that this aver-

aging component needs to be packaged two ways. For the

%{
float total;
int count;
char* name;
}%

%token STRING
%token NL /* newline */
%token INT
%token FLOAT

%%
start: student start | student ;
student: name id scores { printf("%s %f\n", name, total/count); } ;
name: "name" ":" STRING NL { name = $3; total = 0.0; count = 0; } ;
id: "id:" INT NL ;
scores:score scores | score;
score:"score" INT ":" FLOAT NL { total += $4; count++; } ;
%%

main() { yyparse(); }

#define cellref(C,R) (sprintf(cell, "%c%d", C, R), cell)

void main(int argc, char** argv) {
_ApplicationPtr app;
_WorksheetPtr sheet;
char cell[10], col; float total; int row, count;

app.CreateInstance(L"Excel.Application.8");
app→Visible = VARIANT_TRUE;
sheet = app→Workbooks→Open(argv[1])→ActiveSheet;
for (row=2; sheet→Range[cellref('A', row)]→Value.vt != 0; row++) {

total = 0.0; count =0;
for (col='B'; sheet→Range[cellref(col, row)]→Value.vt != 0; col++) {

_bstr_t value = (_bstr_t)sheet→Range[cell]→Value;
total += atof((char*)value); count++;

}
sheet→Range[cellref(col, row)]→Value = total/count;

}
app→Quit();

}

(d)

(b)

Figure 1. The source code for a component that computes the means of students’ scores, when implemented (a)

in pseudocode, (b) as a spreadsheet update, and (d) as a filter that processes records formatted like those in (c).

name: John Smith
id: 123456789
score 1: 86.0
score 2: 90.5
score 3: 88.0
name: Sally Jones
id: 987654321
score 1: 92.0
score 2: 91.0
score 3: 80.0

(c)

for each student S
total = 0
count = 0
for each score s of student S

total = total + s
count = count + 1

report S’s mean is total/count

(a)

first way, both the student scores and the means to be

reported are stored as cells in a Microsoft Excel spread-

sheet, which the component accesses through ActiveX.

For the second, the component is a filter which reads stu-

dent records, formatted as in Figure

1

(c), from standard

input and reports the means to standard output.

Current practice: mixing concerns

The source code for the spreadsheet version of the aver-

aging component is shown in Figure

1

(b); the source code

for the filter version, a script that is input to the parser

generator Yacc, is shown in Figure

1

(d). Several important

aspects of today’s practice can be readily seen in this

example. First, the code that implements the packaging

and the code that implements the functionality are com-

pletely intermingled. Indeed, even visually spotting the

key lines from the pseudocode version is difficult. (The

change bars at the right of the figure highlight those lines

of code.) Second, the implementation of the packaging

can cause the expression of the component’s functionality

to be obscured. For example, the arrangement of the code

that Yacc induces in Figure

1

(d) has little relation to the

pseudocode in Figure

1

(a). Third, the two versions of the

code are very different from one another. Changing the

implementation of the averaging component from one

version to the other would be challenging.

Separating the concerns

In contrast to current practice, the Flexible Packaging

method advocates and supports the separation of a com-

ponent’s functionality and its packaging into distinct

software artifacts. The component’s functionality is

encapsulated in a reusable part called a

ware

; its packag-

ing, in a reusable part called a

packager

. The ware and

packager, when compiled together, form a complete com-

ponent.

Figure

2

(a) shows the source code for the ware for our

averaging component. It is written in a language called

Ciao, which is the C programming language supple-

mented with high-level constructs for describing the

intended interaction with other components. Packagers

are also written in Ciao. Rather than being implemented

by hand, a packager’s source code is typically automati-

cally generated from a high-level description of the pack-

aging, written in the architectural description language

UniCon. Figure

2

(b) shows a UniCon description of the

packaging for the version of our averaging component

that accesses the Excel spreadsheet; Figure

2

(c) shows a

description of the packaging for the filter version. When a

system integrator gives the ware code in Figure

2

(a) and

the packaging description in Figure

2

(b) to the Flexible

Packaging tools, these tools automatically produce a soft-

ware component whose behavior is the same as the hand-

made component from Figure

1

(b). Alternatively, he

could give the ware and the packaging description in Fig-

ure

2

(c) to the tools, which would create a component

like that in Figure

1

(d). By coupling the component’s

functionality with a description of its packaging at sys-

tem integration time, the component’s packaging can be

tailored to the context of integration.

channel in stream char* StudentNames;
channel in stream float Scores;
channel out stream (char*, float) Means;
char* name;
float score;

while (more(StudentNames)) {
float total = 0.0, mean;
int count = 0;
in(StudentNames, name);
while (more(Scores)) {

in(Scores, score);
total += score;
count++;

}
mean = total/count;
out(Means, name, mean);

}

Figure 2. The component from Figure 1, re-implemented using Flexible Packaging.

INTERFACE Filter WITH
In: PLAYER StreamIn WITH

format: Seq [
Lit("name:"), Named("Name", Plus(InSet("0-9"))), EndOfLine,
Lit("id:"), Plus(InSet("0-9"))), EndofLine,
Star(Seq [

Lit("score "), Plus(InSet("0-9")), Lit(": "),
Named("Score", Star(InSet("0-9."))), EndOfLine])] ;

END
Out: PLAYER StreamOut WITH

format: [PrintVar("Name"), Print(" "), PrintVar("Mean")];
END

END

INTERFACE SpreadsheetAccessor WITH
Names: PLAYER SpreadsheetRead WITH

range: ((Col("A"), Row("2")), (Col("A"), FirstEmptyCell));
Scores: PLAYER SpreadsheetRead WITH

range: ((Col("B"), Current), (FirstEmptyCell, Current));
END
Mean: PLAYER CellWrite WITH

cell: (FirstEmptyCell, Current);
END

END
END

(a)

(c)

(b)

3 the flexible packaging method and tools

This section describes in detail the method and tools that

allow the system integration scenario sketched in the pre-

vious section. This section covers design choices at the

heart of any software method: what commitments are to

be made by whom, what knowledge is needed to make

them, when the commitments are made, and how the

commitments are expressed.

Setting for the technology

The Flexible Packaging method recognizes three distinct

roles in the development and deployment of a software

component: (

1

) the ware developer, whose expertise cov-

ers the problem domain that the component’s functional-

ity is solving; (

2

) the packaging specialist, who expertise

covers a particular architectural style or component

interface standard (such a pipes and filters, ActiveX and

com

, or relational databases); and (

3

) the system integra-

tor, whose expertise is in assembling components in a

given architectural style. To make these distinctions clear,

consider an ActiveX component that analytically solves

differential equations. The expertise behind the function-

ality of this component (the convergence properties of

various numerical methods, the effects of floating-point

round-off, and so on) is obviously distinct from the

knowledge of what it takes for a given piece of software to

be an ActiveX component. But notice also that second

and third roles are distinct: there are many more Visual

Basic programmers who use ActiveX components in their

vb

 applications than developers who create ActiveX com-

ponents. Given the diversity of the expertise behind these

three roles, it would not be unusual for three different

people to play them and at different times. As such, the

required coordination among the people playing these

roles should be kept to a minimum.

The Ciao language

As was illustrated with the example in Section

2

, each of

the packager and the ware has computation associated

with it. The packager’s computation achieves the interac-

tion (for example, the calls to ActiveX interfaces in Figure

1

); the ware’s computation achieves the functionality (the

calculation of the mean scores). Given that these two

computations must be combined to achieve the compo-

nent’s total behavior, what mechanism should be used to

coordinate the two computations, i.e. to allow them to

exchange control and data? Given that the packager and

the ware are to be produced independently and that the

ware should be usable with a variety of packagers (and

vice versa), whatever mechanism is chosen must support

this independence.

The most ready choice is the mechanism that today’s

tools support best and that is best understood in practice,

namely the procedure call (or its relatives, method call

and higher-order function call). Using this mechanism,

the packager and the ware could each be encapsulated in

its own module, with procedure calls between them for

exchanging control and data. Unfortunately, this choice

of mechanism violates our desire to make the packager

and ware independently reusable pieces. To see this, we’ll

explore several design alternatives for a small example.

Consider a ware that needs to output three values and a

packager that transactionally writes those three values to

a database. Figure

3

(a) illustrates a procedural interface

between the ware and packager that is designed for the

convenience of the ware. Although this interface presents

a clean abstraction for the ware (there is one procedure to

call to accomplish each of the outputs), the packager’s

implementation of this interface must awkwardly fit the

begin and end transactions calls into the implementation

of these procedures. Figure

3

(b) shows the alternative

void begin_output() { begin_transaction(); }
void output_name(char* n) { update_field("NAME", n); }
void output_mean(float m) { update_field("MEAN", m); }
void output_grade(char g) { update_field("GRADE", g); }
void end_output() { end_transaction(); }

void compute() {
output_name(n);
... compute the mean ...
output_mean(m);
... compute the grade ...
output_grade(g);

}

void compute() {
begin_output();
output_name(n);
... compute the mean ...
output_mean(m);
... compute the grade ...
output_grade(g);
end_output();

}

void output_name(char* n) { begin_transaction(); update_field("NAME", n); }
void output_mean(float m) { update_field("MEAN", m); }
void output_grade(char g) { update_field("GRADE", g); end_transaction(); }

(a)

(b)

ware code packager code

Figure 3. Using a procedural interface between the packager and the ware causes either (a) the packager’s

computation to be awkwardly decomposed or (b) the ware’s interface to be poorly abstracted.

where the interface is designed to clean up the structure

of the packager’s computation, but at the price of adding

two new procedures to the interface that are fundamen-

tally not part of the ware’s abstraction. Alternatively, we

could place the transaction brackets and database

updates together in the same procedure body in the pack-

ager, but this would constrain the ware to perform its out-

put in one batch, rather than incrementally.

In general, a procedural interface serves two distinct

purposes: (

1

) it provides an abstraction of a computa-

tional service to the interface caller; and (

2

) it provides a

preliminary decomposition of the interface definer’s

computation. These two purposes may be at odds. With a

procedural interface, one of the two modules must be

written to deal with the constraints imposed by the other,

which reduces their independence.

To promote independence, the Flexible Packaging

method provides its own mechanisms for tying together

the packager and the ware: channels, for exchanging data;

and coroutines, for exchanging control. Packagers and

wares are written in a language called Ciao, which is the C

programming language with a few additional constructs:

channel

 [

in

|

out

|

inout

] [

stream

] <

type

> <

cname

>;

in(

<

cname

>

,

 <

varname

>

);

out

(<

cname

>

,

 <

expression

>

);

alt {

(<

in

>

:

 <

statements

>)+

}

The first of these constructs declares a channel, which is a

communication medium between the packager and ware

and is reminiscent of channels in occam [

8]

. If one of the

two declares the channel as

in

 and the other as

out

, then

data flows unidirectional across the channel from the

out

declarer to the

in

 declarer. If both declare the channel as

inout

, then dataflow is bidirectional. (Other combina-

tions of

in

,

out

, and

inout

 are reported as erroneous.)

The

in

 statement is used for receiving data from a chan-

nel; the

out

 statement, for sending data to a channel. Both

the dataflow direction and the type of the data specified

in an

in

 or

out

 statement must be consistent with the

channel declaration. It is erroneous, for example, for an

out

 statement to name a channel declared as

in

, and it is

illegal for an

out

 statement to send a floating point value

on an

out

 channel of type int. Stream channels are used

to communicate multiple values between the ware and

packager; they support a function to express that no

more values will be written to the channel (“close”) and

another to test for this condition (“more”). The

alt

 con-

struct, like its namesake in occam, allows an input to

occur from any one of a set of

in

 statements for which

input is ready.

The ware and packager computations are run in a style

that is analogous to coroutines. The component as a

whole has a single thread of control that is passed back

and forth between the ware’s computation and the pack-

ager’s. The thread is switched between computations

whenever the currently running computation performs

an

out

 statement or performs an

in

 statement on an

empty channel. This allows one of the computations to

produce a value that the other may immediately con-

sume. Because the packager governs the component’s

interaction and because exchanging a thread of control

among components is a form of interaction, the pack-

ager’s computation always gets the thread of control first.

Figure

4

 shows the example from Figure

3

 re-written in

Ciao. The thread of control begins in the packager. The

packager executes until it reaches the first

in

 statement.

Because no value has been yet sent along the Name chan-

nel, the thread of control switches to the ware, which exe-

cutes its first

out

 statement. The thread is then given back

to the packager which executes until the next

in

 state-

ment, and so forth. In this way, the ware’s computation

and packager’s computations are effectively interleaved.

Notice that this channel mechanism avoids the pitfall dis-

cussed before with procedure calls: both the ware and

packager may be structured into procedures in whatever

way is natural.

The Flexible Packaging toolset includes a Ciao com-

piler, which translates Ciao files into C code. The chan-

nels are implemented with dynamic arrays; the

coroutining, with the Windows

nt

 Fiber library (light-

weight threads). Ciao was implemented as a language

extension rather than a C library to allow channels to be

type-checked.

Mismatch-in-the-small

Although the Flexible Packaging method addresses mis-

matches in interaction among components, there is still

the opportunity for mismatch between the packager and

the ware. Given that the packager and the ware are inde-

pendently written in Ciao – typically by two different

developers who never meet – there is no reason to assume

that their use of channels will be consistent. In particular,

the ware and packager may be inconsistent from one

another in four aspects of their channel use:

• They may use different names for the same channel

(name mismatch). For example, the ware could call a

void ware() {
channel out char* Name;
channel out float Mean;
channel out char Grade;

out(Name, name);
... calculate the mean ...
out(Mean, mean);
... calculate the grade ...
out(Grade, grade);

}

void packager() {
channel in char* Name;
channel in float Mean;
channel in char Grade;

begin_transaction();
in(Name, n);
update_field("NAME", n);
in(Mean, m);
update_field("MEAN", m);
in(Grade, g);
update_field("GRADE", g);
end_transaction();

}

Figure 4. The ware and packager from Figure 3 rewritten in

Ciao, which allows each to have a clean functional decom-

position and a clean interface between them.

channel “Init;” whereas the packager calls it “Begin.”

• They may differently represent the data on a channel

(datatype mismatch). For example, the ware may send

an

ascii

 string on a channel; whereas the packager

expects a Unicode string.

• They may differ in the order in which they use the

channels (ordering mismatch). For example, the ware

may do an

in on channel A then an in on channel B;

whereas the packager may do an out on channel B then

an out on channel A.

• They may use different numbers of channels to interact

(aggregation mismatch). For example, the ware may

send one integer apiece on two channels; whereas the

packager expects to receive a pair of integers on one

channel.

To accommodate name and datatype mismatch, which

are anticipated to be quite common when the ware and

packager are separately taken “off the shelf ” for reuse, the

Ciao compiler accepts an explicit map between ware and

packager channel names. For each pair of names, the

map may also contain a small Ciao program to overcome

datatype mismatch. For example, if the ware contains this

channel declaration

channel in double Grade;

and the packager contains this channel declaration

channel out char* Score;

a map entry that unifies these two channels would look

like this

(Grade, Score, TypeFixupCode("

channel in char* String;

channel out double Real;

char* s;

double r;

in(String, s);

r = atof(s);

out(Real, r); "))

The fix-up Ciao code must contain exactly one in and

one out channel declaration. The Ciao compiler then

unifies the fixup code’s out channel with the mismatched

code’s in channel and vice versa (e.g. Score and String are

unified, and Grade and Real are unified). Given these

name associations, the Ciao compiler then inlines the fix-

up code wherever an out statement appears in the origi-

nal mismatched code (e.g. all out statements on the chan-

nel Score). Datatype mismatches on inout channels,

which would require a bidirectional conversion, are not

currently supported.

In order to accommodate ordering mismatch, the

meaning of out statements has been made looser than the

equivalent in occam. In occam, out statements block

until the corresponding in statement is ready to execute.

Although this semantics could have been chosen for

Ciao, it would mean that the ware and packager would

have to agree exactly on the order in which they use chan-

nels. Instead, out statements buffer their data until the

corresponding in statement occurs; an out statement

never blocks. (Clearly, in statements still block until their

corresponding out statements happen; otherwise, there

would be no value to assign to the variable in the in state-

ment. If both the ware and packager are blocked on in

statements, the resulting deadlock is detected at runtime

and reported.)

Although this semantics does accommodate a certain

amount of ordering mismatch, there is a price for this

looseness: a computation committing an out statement

has no guarantee about when, if ever, its sister computa-

tion will “react” to the output it has given. Indeed, under

this looser semantics, the Ciao compiler does not even

insist that there be an in statement corresponding to

every out statement. This design trade-off between acco-

modating ordering mismatch and providing consump-

tion guarantees may need to be revisited as more

experienced is gained with Flexible Packaging. With the

case studies discussed in Section 4, the tolerance for

ordering mismatch proved to be useful; whereas no need

for a consumption guarantee was encountered.

The Ciao tools currently do not accomodate aggrega-

tion mismatch. A variation on the approach taken for

datatype mismatch could be added.

Generating packagers

Although both the packager and the ware are written in

Ciao, there are two important ways in which the pack-

ager’s source code differs from the ware’s. First, the pack-

ager’s source code is both tediously detailed and

formulaic in nature. This makes the task of writing the

packager’s source code both unrewarding and error-

prone. Second, whether a given packager’s source is

directly reusable varies a lot from packaging to packag-

ing. Such packagings as Netscape plug-ins are exactly the

same from component to component. No matter what

functionality a given Netscape plug-in provides, its inter-

face to Netscape is always the same; thus, a single pack-

ager can encapsulate Netscape-plugin-ness and be reused

directly with different wares. Other packagings, however,

vary from component to component. For example, a

packager that is used to access a particular database will

contain details specific to that database, like queries that

reflect a given schema. This packager could not be used

to access a database with a different schema. Hence reus-

ing a particular ware with different packagers is often

more plausible than reusing a particular packager with

different wares.

Software generation addresses both the formulaic and

situated nature of packager source code. Given a high-

level description of a component’s packaging in the archi-

tecture description language UniCon [13], a Flexible

Packaging tool, called a packager maker, generates the

packager’s source code. Examples of such packaging

descriptions were shown previously in Figures 2(b) and

2(c). Consider the description of the filter packaging

shown in Figure 2(c). It describes the intended packaging

in high-level terms: how many input streams and output

streams the filter has and, for each stream, the format,

given as a regular expression, of the ascii text flowing on

the stream. The filter packager maker reads this descrip-

tion and from it generates both the Yacc script needed to

parse the input and the print statements needed to pro-

duce the output. The result (in this case after Yacc has

been run) is a Ciao source file that uses channels to out-

put the results of parsing and to get the input to the print

statements. The names of the channels are derived from

the filter’s UniCon description.

Another important observation about packaging is

that for a piece of software to achieve a given packaging is

often not just a question of the content of its source code

but also the software construction steps used to process

that source code. Consider the list of requirements a

component must meet to be a Netscape plug-in: it must

implement sixteen particular functions and use memory

management functions that Netscape provides; it must be

compiled into a dynamically linked library (dll) that

exports three particular functions and that contains a

resource fork with two particular text resources; the dll’s

name must be in dos 8.3 format and begin with the let-

ters NP; the dll must appear in a particular directory. Of

these, the first is about the content of the component’s

source code; the rest, about its construction. Here, too,

software generation is helpful. The Flexible Packaging

toolset comes with a set of tools, called experts [13]. For a

given component packaging, a packaging expert pro-

duces construction instructions (in the form of a Make-

file) that perform the necessary steps to process the

component’s source code.

In summary, there are three forms in which a packag-

ing specialist can capture his knowledge. If the packaging

does not vary from component to component, the

knowledge is encapsulated as packager source code writ-

ten in the Ciao language. If the packaging does vary from

component to component, then the knowledge is encap-

sulated in the form of a packager maker. This packager

maker reads a UniCon description (which captures the

dimensions along which the packaging varies) and gener-

ates the packager source code. Finally, in either case, the

knowledge of the construction steps necessary to achieve

the packaging is encapsulated in a packaging expert.

Given the variety of packagings in the world and that new

packagings appear over time, the Flexible Packaging

toolset provides a framework for easing the job of creat-

ing new packager makers and packaging experts.

Flexible Packaging at a Glance

Figure 5 summarizes the major tools and files associated

with the Flexible Packaging method. The developers

playing each of the three roles makes his own indepen-

dent contribution. The products they create are shown

with thicker lines.

The ware developer programs the component’s func-

tionality as a Ciao file (or a set of Ciao files), labeled (a) in

Figure 5, and places the file(s) on the shelf for reuse.

The packaging expert, independently, uses a frame-

work provided with the Flexible Packaging toolset to

encapsulate her knowledge of a particular packaging in

the form of a packager maker and a packaging expert,

labeled (b). The packaging expert then makes these tools

available for reuse.

The system integrator decides on the required func-

tionality and packaging for a component to be integrated

into his system. He acquires a ware that achieves the

desired functionality and a set of packaging tools that

achieve the desired packaging. He then produces a Uni-

Con description of the desired component packaging,

labeled (c). He runs the packager maker on the descrip-

tion, which automatically produces a packager (one or

more Ciao files). With a packager and a ware now in

hand, the system integrator edits the UniCon description

to add a channel map to show the associations between

the ware and packager channels and to overcome any

datatype mismatch. Finally, he feeds the UniCon descrip-

tion to UniCon, which automatically does the rest. Uni-

Con invokes the Ciao compiler on the Ciao sources to

produce standard C source files and invokes the packag-

ing expert on the component’s description to produce a

Makefile. UniCon then invokes Make on the C sources

and Makefile to produce the final component.

4 case studies
To test the feasibility of using Flexible Packaging to

develop to “real-world” components, I performed two

case studies. Each case study consisted of developing one

ware and packaging it three different ways. The emphasis

Figure 5. The major tools associated with Flexible Packag-

ing and the files that these tools produce and consume.

packaging description

Uni

packager source

Ciao

ware source

Ciao

packager source

C

ware source

C

Ciao compiler

packaging expert packager maker

Makefile

Mak

(b)

(c)

channel map

(a)

(b)

of these initial case studies is on the packagings: Can

Flexible Packaging handle the complexity of packagings

used in practice today? As such, while the six packagings

are all drawn from current practice, the two wares in the

study are relatively simple; an on-going case study is test-

ing whether the method works for more complex wares.

All of the materials associated with these case studies,

including complete source code, are publicly available at

www.cs.cmu.edu/~Compose/packaging.

Case study 1: Area code converter

In order to accommodate an ever increasing need for new

telephone numbers in western Pennsylvania (usa), the

412 telephone area code was recently split into two area

codes, 412 and 724. Whether a given phone number

remained in the 412 area code or switched to the new 724
area code was determined by its exchange (first three dig-

its). One of the effects of this change is that phone num-

bers must be updated in many databases and other

electronic artifacts. The variety of artifacts to be updated

is staggering: traditional databases from a number of

vendors, spreadsheets, formatted text files, text docu-

ments and document templates, web pages, electronic

business cards, address books in contact managers, and

many others.

Such a problem provides a natural opportunity to use

Flexible Packaging. The goal is to create a family of tools

that all share a common function – the ability to update

the area code of a phone number – but differ in the kind

of database each updates. This case study involved creat-

ing three batch programs, each of which accesses a differ-

ent kind of database: a Microsoft Access database

(accessed via odbc); a Microsoft Excel spreadsheet

(accessed via com); and a text file formatted with one

record of comma-delimited values per line (accessed via

ascii streams). The database and spreadsheet programs

perform in-place updates of the data, while the text file

program acts as a filter. All three programs share an iden-

tical ware but use different packagers, generated from

UniCon descriptions. All three components run on a

Pentium running Windows nt.

Case study 2: PNG image viewer

The Portable Network Graphics (png) image standard

was recently designed to be a successor to the popular gif
standard. One of the reasons the gif standard still pre-

vails is that many different kinds of software need to dis-

play images – drawing programs, document editors,

stand-alone image viewers, user interface design tools,

web browsers – and each imposes its own packaging

requirements on the image-handling component. Creat-

ing a png viewing component for each of these niches

takes time. Here, too, is a natural opportunity for Flexible

Packaging. We would like to capture the functionality of

parsing and displaying a png image once and reuse it in

many different contexts.

The second case study involved creating three different

components for displaying png images: a Netscape (ver-

sion 4) plug-in; an ActiveX control; and a stand-alone

Windows application. As with the previous example, all

three programs share an identical ware but use different

packagers, generated from UniCon descriptions.

Observations

The primary result of the case studies is an initial valida-

tion that Flexible Packaging can be used to develop “real-

world” components. Beyond this, several observations

can be drawn from the experience.

Non-code artifacts and software construction

Getting a component to have a particular packaging is

not always merely a question of calling the right i/o rou-

tines in the component’s source code. As was previously

mentioned, it can also involve a component’s construc-

tion steps, including the creation of non-code artifacts.

The two case studies differ greatly in this regard. With the

area code case study, achieving the desired packaging was

a question of calling the right i/o routines: the standard C

i/o routines, for the filter; the odbc library, for the data-

base accessor; and Excel’s exported com interface, for the

spreadsheet accessor.

In contrast, the png case study involved software con-

struction steps, not i/o libraries. Section 3 sketched the

construction steps needed to package a component as a

Netscape plug-in. The UniCon Netscape plug-in expert,

created for this case study, automates all these construc-

tion steps, including the generation the two non-code

artifacts involved: a file that the linker uses to guide dll
construction and a file that describes the resources

(name/value pairs) associated with the dll. Unlike the

analogous Microsoft wizard, this expert completely hides

the existence of these non-code artifacts. Similarly, the

Windows application packaging involves the creation of a

resource file. The ActiveX packaging involves the creation

of four non-code artifacts: a linker file and a resource file,

like those needed for Netscape plug-ins; a description of

the component’s com interfaces in the Interface Defini-

tion Language (idl); and a file that instructs Windows on

how to place the ActiveX component in the system regis-

try.

Internal versus external control

The example averaging component introduced in Section

2 is similar to the area code component and can be used

as a surrogate for making an observation. Notice the dif-

ference between the pseudocode in Figure 1(a) and its

implementation as a Yacc script in Figure 1(d). The

former is expressed using what is often called “internal

control,” where the algorithm itself determines the order

in which the computational steps proceed. The latter is

expressed using “external control,” where the content of

the data being parsed determines the order in which the

steps proceed. In the case of the grading component,

except for the breaks between student records, we know

exactly what data to expect from input to input, hence

expressing the algorithm using internal control is a natu-

ral fit; this is simply not a situation where the data drives

the computation. The nature of the Yacc tool – the fact

that it supports the description of variable data – artifi-

cially induces the expression of the algorithm using exter-

nal control in Figure 1(d). In contrast, as Figure 2(a)

shows, the use of channels in the interface between the

packager and the ware allows the algorithm to be

expressed using internal control, even when the tool used

to produce the packager, like Yacc, induces the use of

external control.

On the other hand, the nature of the png component is

to offer two services – the parsing and painting of png
files – that may be used in whatever order and as many

times as the client desires. In this case, external control is

endemic to the component and is expressed in the ware’s

main routine in the form of a loop:

while (! done) alt { ... }

This kind of alt loop is typical of many different kinds of

service-based components: rpc-based servers; Unix

socket-based servers; components that listen for events or

that receive messages; components with user interfaces;

and command interpreters. In short, the use of in, out,

and alt statements allows the ware developer explicitly

and directly to express his expectations about the order

and variability of interaction, regardless of how the pack-

ager is expressed.

Packaging abstractions

Given the tedious, detailed nature of typical packager

source code, the Flexible Packaging method asks the

packaging specialist to create two important abstractions.

The first abstraction is a set of UniCon definitions, based

on which the system integrator will describe his compo-

nent’s packaging. A Netscape plug-in specialist, for exam-

ple, must decide what it means for a system integrator to

describe a component in UniCon as being packaged as a

Netscape plug-in – for example, what properties must

appear in the description. Because the system integrator’s

packaging description is the input to the packager maker,

the needs of the packager generation process influence

the creation of this abstraction.

The second abstraction for which the packaging spe-

cialist is responsible is how the packager appears to the

ware in form of channels. The design tension here is to

hide unnecessary details from the ware without preemp-

tively concealing information that a ware might find use-

ful. As an example, while the sixteen required Netscape

plug-in operations provide a strong hint about what

information to out to the ware, only some of the opera-

tion’s parameters are included in the out statements.

Performance

One of the costs of using Flexible Packaging is the run-

time overhead that the channel mechanism imposes. This

is not a fixed cost, but varies depending on the number of

channel communications and the amount of computa-

tion performed between those communications. The

more channel communications there are between the

ware and the packager, the more run-time overhead the

component will experience; the fewer computations per-

formed between communications, the more run-time

overhead the component will experience.

To measure this overhead, I re-implemented the three

components from the area code case study to combine

the code from the packager and ware into one module,

removing the use of channels. I then measured the differ-

ence in execution time between the original and hand-

altered versions of the components. Based of these mea-

surements, each component experiences the following

percentage of run-time overhead due to channels: 8% for

the filter; 2% for the odbc database accessor; 1% for the

Excel spreadsheet accessor. The variation is due to the

different execution times of the three packagers. Taking

consistent measurements for the three png components

is infeasible because these components interact with the

user.

5 related work
The observation that a component’s interaction should

be separated from its functionality is not new. Gelertner

argued for this separation in his work on Linda [7].

Although Linda does allow a component’s interactive and

functional concerns to be separated, it does so at the cost

of making interaction a second-class concern: the only

interaction mechanism between components that he sup-

ports is sharing a Linda “tuplespace.”

Closer in spirit to this work is that of Callahan and

Purtilo [2]. Like Flexible Packaging, their system Nimble

also allows a component to be accessed through different

interaction mechanisms, restricted to members of a fam-

ily: procedure call, cross-language procedure call, and

remote procedure call. This restriction allows them both

to develop their equivalent of wares in standard program-

ming languages and to infer and generate the packager to

be used. This work and its later extension to handle mis-

matches in event systems [3] inspired the channel maps

used in Flexible Packaging.

Contemporary projects have also influenced the

research on Flexible Packaging. The Flexible Packaging

framework for creating packager makers and packaging

experts is a locally implemented variation on Batory,

Lofaso, and Smaragdakis’ Jakarta Tool Suite [1], support-

ing C rather than Java.

The Aspect-Oriented Programming project [9]
directly influenced the expression of a flexibly packaged

component as the combination of a ware (“component”

in the aop lexicon) and a high-level, declarative descrip-

tion of its packaging (“aspect” in the aop lexicon). While

similar, aop and Flexible Packaging have taken different

design paths: with aop, “aspects” are always specified rel-

ative to particular “components;” with Flexible Packag-

ing, packaging descriptions are specified independently

of any ware. As a consequence, the source code generated

from an “aspect” can be interleaved (“woven”) with the

“component” source code at compile-time; whereas, a

packager and ware’s computations are interleaved at run-

time via channels.

6 conclusion
This paper introduces the Flexible Packaging method,

which allows a component’s functional and interactive

concerns to be separated. A component’s functionality is

captured in a ware. A ware’s use of channels allows it to

specify enough about interaction to express its function-

ality, while leaving most details unspecified. A compo-

nent’s interaction is captured in a packager, which may

either be reused directly or automatically generated from

a high-level description of the component’s packaging.

This method supports the following reuse scenario: a sys-

tem integrator takes a ware “off the shelf ” with function-

ality that she needs, describes the packaging it must have

to be compatible with the system’s architectural style, and

then uses the Flexible Packaging tools to turn the ware

and the packaging description into a software component

with the specified packaging. This tailored software com-

ponent can then be directly integrated into the system.

What is missing from this scenario is a means to tell

whether the ware and the packager are compatible. Each

of them advertises a list of channels – their names, types,

and directionality. Through the process of matching up

these channels, the system integrator can tell something

about their compatibility; documentation about the ware

and packager would have to provide the rest. (This is not

very different from reusing a procedure or class library

today, where a combination of the procedure/method

signatures and the library documentation informs the

developer about the library’s use.) The next phase of this

research is to create interaction abstractions, namely pat-

terns of channel use that clarify the intentions of the

packager or ware’s creator and that support compatibility

checking.

ACKNOWLEDGMENTS

I am grateful to Mary Shaw for her timely, helpful feed-

back on this paper and for suggesting the area code case

study. The Wright Laboratory, Aeronautical Systems Cen-

ter, Air Force Materiel Command, usaf, and the

Advanced Research Projects Agency have supported this

work under grant f33615-93-1-1330. This paper represents

the views of the author and not of Carnegie Mellon Uni-

versity nor of any of the sponsoring agencies.

REFERENCES

[1] Don Batory, Bernie Lofaso, and Yannis Smaragdakis.

“JTS: A tool suite for building GenVoca generators.”

In Proc. International Conf. on Software Reuse, 1998.

[2] John R. Callahan and James M. Purtilo. “A packaging

system for heterogeneous execution environments.”

University of Maryland Technical Report cs-tr-

2542, 1990.

[3] Chen Chen and James M. Purtilo. “Event adaptation

for integrating distributed applications.” In Proc.

International Conf. on Software Engineering and

Knowledge Engineering, 1995.

[4] Melvin E. Conway. “Design of a separable transition-

diagram compiler.” Communications of the ACM

6(7): 396–408, 1963.

[5] Robert DeLine, Gregory Zelesnik, and Mary Shaw.

“Lessons on converting batch systems to support

interaction.” In Proc. International Conf. on Software

Engineering, 1997.

[6] David Garlan, Robert Allen, and John Ockerbloom.

“Architectural mismatch, or Why it’s hard to build

systems out of existing parts.” In Proc. International

Conf. on Software Engineering, 1995.

[7] David Gelertner and Nicholas Carriero. “Coordina-

tion Languages and their Significance.” Communica-

tions of the ACM 35(2): 97–107, 1992.

[8] Inmos Ltd. occam2 reference manual. Prentice-Hall

International Series in Computer Science, 1988.

[9] Gregor Kiczales, John Lamping, Anurag Mandhekar,

Chris Maeda, Christina Lopes, Jean-Marc Loingtier,

and John Irwin. “Aspect-Oriented Programming.”

Xerox parc Technical Report spl-97-008, 1997.

[10] Diane E. Mularz. “Pattern-based integration archi-

tectures.” Chapter 7 in James O. Coplein and Dou-

glas C. Schmidt, editors, Pattern Languages of

Program Design, 1995. Addison-Wesley.

[11] D. L. Parnas. “On the criteria to be used in decom-

posing systems into modules.” Communications of

the ACM 15(12).

[12] Mary Shaw. “Architectural issues in software reuse:

It’s not just the functionality, it’s the packaging.” In

Symposium on Software Reusabilty, 1995.

[13] Mary Shaw, Robert DeLine, and Gregory Zelesnik.

“Abstractions and implementations for architectural

connections.” In Proc. Conf. on Configurable Distrib-

uted Systems, 1996.

Microsoft, ActiveX, and Windows nt are trademarks of the

Microsoft Corporation.

