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ABSTRACT

In this paper we report recent improvements in voice-
mail transcription. Last year, the speaker independent
and speaker adapted word error rates (WER) on the
Voicemail Transcription task were reported at 41.94%
and 38.18% respectively. This year, we report a rela-
tive improvement of 18% in the speaker independent
performance and 11% in the speaker adapted perfor-
mance over last year. This improvement is a result of
some new algorithms and an increase in the amount
of training data. In the following sections, we describe
the contribution of several components to improving
the word error rate.

1. INTRODUCTION

In this paper we report recent improvements in voice-
mail transcription. The voicemail transcription task
was introduced last year [1] as representing a style
of conversational telephone speech that is somewhat
different from the Switchboard and CallHome data-
bases. Last year, the speaker independent and speaker
adapted word error rates (WER) on this task were
reported at 41.94% and 38.18% respectively, in [1].
This year, we report a relative improvement of 18% in
the speaker independent performance and 11% in the
speaker adapted performance over last year [2]. This
improvement is a result of some new algorithms and
an increase in the amount of training data. In the fol-
lowing sections, we describe the contribution of several
components to improving the word error rate.

2. ACOUSTIC MODELS

2.1. Training/Test data

The starting point for the experiments reported in this
paper was the system described in [1]. This system
was trained on 20 hours of voicemail data (a superset
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of the Voicemail Corpus 1 available through the LDC
- www.ldc.upenn.edu), and had a speaker independent
error rate of 41.94% and speaker adapted performance
of 38.18%. These error rates were reported on a test set
comprising of 43 voicemail messages; this will be used
as the development test set for the purpose of reporting
results on various algorithms in the following sections.

We have continued our efforts to collect voicemail
training data, and have succeeded in doubling the size
of the database that was used last year. The train-
ing database now comprises 40 hours of speech, (400k
words of text) and the size of the vocabulary has in-
creased from 10k to 14k words.

2.2. System Description

The speech recognition system uses a phonetic repre-
sentation of the words in the vocabulary (with an al-
phabet of 62 phones). Each phone is modelled with
a 3-state left-to-right HMM. Further, we identify the
variants of each state that are acoustically dissimilar by
asking questions about the phonetic context in which
the state occurs. The questions are arranged heirarchi-
cally in the form of a decision tree, and its leaves cor-
respond to the bacis acoustic units that we model. A
feature vector is extracted every 10 ms, and we model
the pdf of each leaf of the decision tree, with a mix-
ture of gaussians. The features we used were smoothed
estimates of the Mel cepstra described in [3].

2.3. Model Complexity Adaptation

In our system, each leaf of the decision tree is modelled
by a mixture of gaussians. In an earlier paper [4], we
had described how to select the number of gaussians for
a leaf. The essence of the algorithm is to start with a
small baseline system, S1, and evaluate the probabail-
ity of correct classification of the leaf in the training
data. If this probability is below a threshold, ¢, it im-
plies that the model for the leaf does not match the
data for the leaf very well; hence, the resolution of the
model for the leaf is increased by using the model for



the leaf from a larger system, S2. The corresponding
adapted system is referred to as S1xS2-t. The results
are tabulated in Table II, and graphed in Fig. 1, and
indicate that the performance of the adapted system
is always somewhere between the performance of the
S1 and S2 systems, and generally provides better per-
formance for the same number of gaussians. Hence, it
appears to be an efficient way of compacting a system,
rather than improving on the best performance as ob-
tained with our standard techniques. We also compare
this model compression strategy with other techniques
that use classical model selection criteria [5], such as
BIC in determining the optimum number of gaussians.
The results show that the MCA adapted systems for
a threshold of 0.55 gives similar performance to the
BIC system, however, it provides greater control of the
tradeoff of complexity vs performance, through control

of the threshold.

Table II
Old system
Desc 10 20 40 100 150
Size 24k 44k 75k 126k 148k
WER | 41.09 39.27 38.97 37.11 37.61
MCA system
Desc | 10x100 | 20x100 | 40x100 | 100x150

-0.55 -0.55 -0.55 -0.55

Size 34k 52k 80k 127k

WER | 39.07 38.02 37.92 38.12
Desc | 10x100 | 20x100 | 40x100 | 100x150
-0.45 -0.45 -0.45 -0.45
Size 27k 46k 76k 126k
WER | 40.58 39.17 37.41 37.71
BIC System
Size 45k -
WER | 37.92 -

2.4. Post-processing recognizer outputs using ROVER

In order to exploit the differences in the errors made by
our systems, we used NIST’s ROVER (Recognizer Out-
put Voting Error Reduction) [6] as a post-processor of
the various word hypotheses scripts provided by these
systems. Such voting schemes create a consensus align-
ment from multiple scripts, and will work well when the
systems being combined make independent errors. In
the following, we will briefly describe the systems which
were combined:

e The first system (BL) had 127k gaussians and
2709 leaves and represented the baseline (10ms
frame rate, decision trees use left context and
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Figure 1: Word error rate vs number of gaussians

within-word right context only to predict context
dependent variation of a phone).

e The second system (HF) is the equivalent of the
above system, but uses a higher frame rate of 5
ms. Further, the HMM topologies were changed
to preserve the same minimum duration for all
phones as for the baseline. This system is used
to rescore the top 100 hypotheses produced by
the first system.

e The third system (RC) uses decision trees that
use both left and right context across word bound-
aries. This system had 3017 leaves and 125k gaus-

slans.

e The last system (SA) is a speaker adapted system
described in [7].

Empty scripts are used to avoid possible insertions
and to transform substitutions into deletions if all the
word hypotheses at a current step in the WTN are
different.

Table III
Individual systems
Baseline (BL) 37.01%
Right-context (RC) 38.47%
Higher frame rate (HF) 36.51%
Speaker-adapted (SA) 33.99%
Rover voting
Roverl = HF + BL + RC + empty | 35.45%
SA + Roverl + empty 32.88%

As can be seen from Table III, ROVER reduces the
speaker adapted WER by an additional 3.37% (rela-

tive).



2.5. Data driven approach to designing compound words

One way of modelling the pronuniciation variablility
and co-articulation effects in spontaneous speech is to
construct compound words [1, 8] and explicitly include
baseforms to model the deviant pronunciations of the
compound word. In [1], these were constructed by flag-
ging actual instances of co-articulation in the training
data, and in [8], by designing the words to reduce the
overall perplexity. Here we experimented with alterna-
tive data driven approaches :

Denoting two successive words in the training cor-
pus as W; and W, 1, we created compound word mod-
els for word pairs that had the largest values of the
following quantity.

\/P(Wt = wi/Wt+1 = wj)P(Wt+1 = w]/Wt = wl)

1
This can be seen to be just the square root of the prod-
uct of the bigram probability P(W;41 = w; /Wy = w;),
and a reverse bigram probability, P(W; = w;/ W41 =
wj). The rationale behind the use of this score is
as follows : the words within the pair have to occur
frequently together and more rarely in the pair con-
text of other words. This requirement is necessary
since one very frequent word, say a, can be part of
several different frequent pairs, say (a, b1),. .., (a, bs),
(bn41,a), - .-, (b, a). If all these pairs were to be added
to the vocabulary then the confusability between b; and
the pair (a,b;) or (b;, a) would be increased especially
if word @ has a short phone sequence.

The results with the use of this strategy to select
compound words are tabulated in Table IV. The mea-
sure was applied iteratively. After one iteration, the
pairs that score more than a threshold were transformed
into compound words and all instances of the pairs in
the training data were replaced by these new words.

Table IV
Iteration | # cpd words | Perplexity | WER
0 0 78 39.42%
1 42 103 37.45%
2 19 114 36.79%
3 9 117 36.64%

2.6. Modelling pdf’s with non-gaussian models

Purely gaussian densities have been know to be inad-
equate for the purpose of modelling pdf’s in speech
recognition systems due to the heavy tailed distribu-
tions observed by speech feature vectors. In most of
the speech recognition literature, pdf’s are modelled
as mixtures of gaussian densities. The only attempt

to model the phonetic units in speech with nongauss-
ian mixture densities is [10], where Laplacian densities
were used with a heuristic estimation algorithm.

In [9] we attempted to address this problem by con-
sidering mixture models with the components defined
as

exp [— (= — wIs e - ,u))a]
(2)

The case @ = 2 corresponds to the gaussian density,
whereas the laplacian case considered in [10] corre-
sponds to @« = 1. Smaller values of a correspond
to more peaked distributions (@« — 0 yields the é-
function), whereas larger values of & correspond to dis-
tributions with flat-tops (¢ — oo yields the uniform
distribution over elliptical regions). For more details
about these issues see [9]. This particular choice of
family of densities has been studied in the literature
and referred to in various ways e.g., a-stable densi-
ties as well as power exponential distributions, cf. [11].
More recently, we have also become interested in auto-
matically finding the ‘best’ value of « directly from the
data.

Recognition experiments were carried out on the
voicemail as well as the broadcast transcription task
HUBA4’98 by allowing different mixture components to
have different values of the parameter o as compared
with the fixed values « = 1 and @ = 2. The pre-
ferred values of a tends to be less that 1.0, both for
the voicemail and for the HUB4 task confirming on a
systematic basis that nongaussian mixture components
are preferred. An additional interesting point was that
the distribution of the a values was much wider for the
voicemail task than the HUB4 task. The reason for
this could be the highly variable nature of the voice-
mail data.

z/uX) =
p(z/pX) = pa —

Table I
Performance of a densities
Baseline (BL) 39.7%
a =1 (20 iterations) 38.5%
Prototype dependent o | 38.8%

2.7. Other experiments

In addition to the experiments described above, we also
experimented with a number of other techniques in-
cluding (i) using Bayesian networks to incorporate de-
pendencies on hidden variables that are not related to
the normal linguistic quantities (ii) increasing the con-
ditioning of the probability computation for a feature
vector not just on the leaf at the current time, but
also leaves at adjacent times, and (iii) adaptation tech-
niques where we attempt to obtain better performance



by starting from models that are better matched to
the test speaker than a speaker-independent model, by
clustering the training speakers into homogenous clus-
ters. Details of these experiments are given elsewhere
[12, 2, 7] and will not be repeated here.

3. CONCLUSION

In this paper we report recent improvements in voice-
mail transcription compared to last year. The overall
performance (word error rate) on this task improved
by 18% (relative) for our speaker independent system,
and 11% for our speaker adapted system, respectively,
and we describe the various components that brought
about this improvement. Specifically, we experimented
with

e model selection schemes for selecting the number of
gaussians used to model the pdf - both the discriminant
measure based scheme and BIC allow the model size to
be compressed without loss in accuracy

e the use of voting schemes such as ROVER to create
a consensus alignment from multiple scripts. This gave
us a 3.4% relative improvement in performance

e data driven approach to designing compound words.
This gave us a 7% relative improvement in performance
e use of non-gaussian parametric models to model the
pdf

e use of Bayesian networks to introduce dependencies
not related to linguistic quantities

e speaker adaptation techniques based on speaker clus-
tering that provide a 10.5% relative improvement over
the speaker independent performance
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